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A B S T R A C T

Oligonucleotides (ONs) are acquiring clinical relevance and their demand is expected to grow. However, the ON 
production capacity is currently limited by high manufacturing costs. Since the purification of the target ON 
sequence from molecularly similar variants represents a major bottleneck, this work presents a resource-effective 
strategy for the optimization of their preparative reversed-phase chromatographic purification. First, a model 
based on the equilibrium-dispersive theory was introduced to describe the chromatographic operation. 
Considering a deoxyribose nucleic acid with 20 nucleobases as case study, a genetic algorithm was developed to 
efficiently determine the adsorption isotherm and mass transfer parameters for the target ON and impurities. 
After the estimation of these parameters, a strategy for the in-silico optimization of the operation was established. 
The product collection window, gradient duration, and resin loading were considered as process variables and 
their influence on yield and productivity was investigated after setting a purity specification of 99.0%. The 
optimal process parameters identified through this analysis were experimentally verified, confirming the reli-
ability of the model, calibrated with only 5 experimental runs. In addition, this optimal setpoint was exploited to 
design the multicolumn countercurrent solvent gradient purification (MCSGP) of this ON mixture, which allowed 
to boost the yield of the process and to work at cyclic steady state, while respecting the purity constraint. This 
study confirmed the potential of this in-silico optimization strategy in both improving the performance of the 
traditional single-column operations and in the rapid development of multicolumn processes.

1. Introduction

Oligonucleotides (ONs) are short-chain deoxyribonucleic (DNA) or 
ribonucleic (RNA) acids that can regulate gene expression [1,2]. Due to 
their mechanism of action and the possibility of controlling the protein 
synthesis at a pre-translational level, ONs offer fascinating perspectives 
as novel therapeutics and their demand is expected to grow significantly 
in the coming years [3-7].

Despite their potential, major manufacturing limitations are 
currently limiting the ON production capacity [5]. The current state of 
the art for ON production is the phosphoramidite-based solid-phase 
synthesis, which is costly and unsustainable from the waste generation 
and material burden point of view. Indeed, the American Chemical So-
ciety (ACS) Green Chemistry Institute Pharmaceutical Roundtable 
(GCIPR) has identified the development of greener ON manufacturing 
practices as an urgent unmet requirement [8]. Many of these practices 
refer to the ON chromatographic purification, the reference process for 
isolating the target sequence from impurities due to its high selectivity, 

scalability, and ease of automation. In fact, the downstream processing 
of ONs accounts for half of the process mass intensity (PMI, defined as 
the amount of raw materials required for the production of a unit mass of 
target compound [9]) of the entire manufacturing [8]. This is attributed 
to both large volumes of eluent consumed in the purification, as well as 
to the typical low yield associated to the process [10,11]. Hence, from a 
process engineering perspective, intensification of the ON chromato-
graphic purification can substantially alleviate material consumption 
and increase the sustainability of the process while improving the 
large-scale manufacturing of ONs [8,12].

Nonetheless, this task is hampered by the complex separation of the 
desired nucleic acid from molecularly similar variants produced during 
the synthesis (e.g. shortmers and longmers). In fact, these impurities 
often partially co-elute with the product in a center-cut chromato-
graphic separation [13,14], as schematically shown in Fig. 1a. As a 
result, only a limited portion of the chromatogram can be recovered at 
the required purity, which is often very stringent for these bio-
pharmaceuticals. On the other hand, the impure side fractions are either 
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reprocessed, increasing the process complexity, or discarded, reducing 
the overall product recovery to less than 40 - 50% [8,15]. Larger yields 
can only be achieved by enlarging the collection window (t3 − t4 in 
Fig. 1a), which however increases the amount of impurities included in 
the product pool, thus penalizing its purity. This trade-off between yield 
and purity is visualized in the Pareto front shown in Fig. 1b, where each 
point on the front maximizes the purity with respect to the points on its 
right and the yield compared to all the points on its left [12,15,16]. This 
trade-off limits the performances of the separation, and is strongly 
affected by the operating conditions. Therefore, the identification of the 
critical process parameters and of their role on the chromatographic 
performance is of paramount importance for intensification of the ON 
downstream processing. Still, given the complexity of the system, an in 
depth understanding of the main input-output correlations comes with 
great experimental effort and material consumption.

To alleviate this shortcoming, in this work we developed a model- 
based optimization strategy for the chromatographic purification of 
ONs, highlighting the most critical process parameters and their effect 
on important process performance metrics like yield and productivity. 
The investigation is conducted specifically on the reversed-phase liquid 
chromatographic purification (RPLC) of a 20-nucleotide single-stranded 
DNA chain. The equilibrium-dispersive theory and the Langmuir 
isotherm were exploited to describe the molecule transport along the 
chromatographic column and the adsorption equilibrium, respectively 
[17]. The characterization of the mass transfer from the liquid to the 
solid phase, expressed through the lumped rate model, as well as of the 
isotherm parameters, which represents the major complexity for fully 
mechanistic models [18-20], was performed with a genetic algorithm. 
This was developed to minimize the difference in key results, including 
retention times of the different species and Pareto fronts, between the 
model and selected experiments by adjusting the model parameters. We 
demonstrated that by only leveraging five training runs in a central 
experimental scheme, the model can be accurately tuned to reproduce 
the experimental evidence, avoiding the extensive and costly experi-
mental effort required by data-driven models [21,22].

Then, the calibrated model was exploited for the in-silico optimiza-
tion of the ON RPLC. In particular, we considered as optimization var-
iables the product collection window, gradient duration, and resin 
loading. These were iteratively tested in a three-step method to maxi-
mize yield and productivity at a minimum acceptable purity of 99.0% 
[16]. The experimental validation of the in-silico optimal process con-
ditions and results confirmed the predictivity of the model. This vali-
dation also demonstrated the possibility of increasing yield and 
productivity compared to the reference process when implementing this 
integral framework.

Despite the remarkable intensification gained with this approach, 
Pareto fronts between yield and productivity are invariably obtained 
with single-column operations. To alleviate this limitation, we demon-
strated that the optimal process conditions identified with the in-silico 
optimization proposed herein can be reliably exploited to design the 
multicolumn countercurrent solvent gradient purification (MCSGP) of 
the same ON. This process operates two identical columns in alternated 
interconnected and batch stages with the aim of internally recycling, in a 
completely automated way, the impure side fractions (t2 − t3 and t4 − t5 
in Fig. 1a). The interested reader is referred to [23-25] for further in-
sights in the MCSGP process. Although MCSGP demonstrated important 
gains in product recovery and PMI compared to batch operations for 
monoclonal antibodies [26-28], peptides [29,30], PEGylated proteins 
[16,31,32] and oligonucleotides [12,33,34], its design is typically per-
formed starting from single-column experiments refined until satisfac-
tory performances are obtained. We demonstrated instead that the 
optimal process conditions identified through our model-based 
approach represent a robust setpoint for MCSGP, allowing to reach the 
steady state soon and complying with the purity constraint set at 99.0%, 
while boosting the product recovery compared to the single-column 
process. This can therefore represent a valuable strategy to reduce the 
experimental effort associated to process development while still 
ensuring its intensification.

2. Materials and methods

2.1. Model equations

In this work, the equilibrium-dispersive model was adopted to 
describe the transport of molecules along the column axial coordinate 
(z) during time (t), as reported in Eq. (1) [17]. 

∂Ci

∂t
+
(1 − ε)

ε
∂qi

∂t
= DAX,i⋅

∂2Ci

∂z2 − v⋅
∂Ci

∂z
(1) 

where Ci (g/L) is the concentration of the ith component in the liquid 
phase, qi (g/Lresin) is the average concentration of the adsorbate in the 

solid phase, ε (-) is the column porosity, DAX 

(
cm2

min

)

is the axial dispersion 

coefficient, and v ( cm
min ) the interstitial velocity. To describe the transport 

of the modifier during the gradient, a similar equation was adopted 
neglecting its adsorption to the stationary phase (Equation S1).

The model equations are applied during the four characteristic steps 
of the chromatographic process: loading, wash, elution and strip [35].

Thus, the initial conditions vary depending on the chromatographic 

Fig. 1. (a) Schematic representation of a typical ON chromatogram obtained in a linear gradient elution and its different characteristic regions. The similar 
physicochemical properties of the product (P, in red) and those of weakly adsorbed (W, blue peak) and strongly adsorbed (S, in green) impurities cause their partial 
co-elution. In this example, P and W co-elute from t2 to t3, while P and S co-elute from t4 to t5. Therefore, only in the interval from t3 to t4, P reaches the required 
purity specification. (b) Due to the partial co-elution of the product and the impurities in the two characteristic regions t2 − t3 and t4 − t5, a Pareto front yield vs. 
purity is typically obtained by changing the product collection window (t3 − t4). Enlarging this window allows recovering more product, but at a lower pool purity. 
The point of the maximum yield corresponds to the collection interval t2 − t5.
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step. For the loading phase, i.e. 0 < t ≤ tload, we assumed the column is 
clean and equilibrated to the desired value of modifier volume fraction, 
in this case 30% v/v. The initial conditions are reported in details for 
each chromatographic step in the Supporting Information, Equations S2- 
S13. Moreover, Danckwerts boundary conditions are applied, as re-
ported in Equations S14-S17.

The mass transfer to the solid phase is described using the linear 
driving force approximation, with the change of the average concen-
tration of the species in the solid phase computed as in Eq. (2). 

dqi

dt
= Ki

(
q∗

i − qi
)

(2) 

where q∗
i (g/Lresin) is the concentration of the species i in the solid phase 

when thermodynamic equilibrium with the liquid phase is reached, qi 
(g/Lresin) is the instantaneous average concentration of the same mole-
cule in the solid, and K (min-1) is a rate coefficient lumping together the 
mass transfer resistances encountered by the solute in its partitioning 
between the solid and liquid phases. Throughout the investigation, the 
adsorption isotherm that describes the solid concentration of a species in 
equilibrium with the liquid phase is the generalized Langmuir isotherm 
with linear solvent strength (LSS) to account for the effect of the mod-
ifier, as reported in Eq. (3). 

q∗
i =

ai⋅exp
(
− Sa,i⋅φ

)
⋅ Ci

1 +
∑

jbj⋅exp
(
− Sb,j⋅φ

)
⋅Cj

(3) 

where bj (L/g) is the adsorption equilibrium constant for the j-th specie 
at φ = 0, ai (L/Lresin) is the product of bi and the saturation capacity of 
the resin at φ = 0, while Sa,i (-) and Sb,j (-) are parameters expressing the 
sensitivity of a and b for the i th specie from the modifier volume frac-
tion, respectively.

The partial differential equations (PDEs) involved in the model were 
discretized along the longitudinal coordinate. The semi-discretization 
converts the PDE into a system of ordinary differential equations 
(ODEs) [35,36]. The integration of this ODE system describing the 
chromatographic column in space and time is then performed using the 
MATLAB® ODE15s proprietary solver.

For this semi-discretization, we used the finite volume method 
(FVM) with van Leer’s flux limiters [35-39]. The semi-discretized form 
of Eq. (1) using this scheme is as follows: 

dCi,j

dt
=

DAX

h2

(
Ci,j+1 − 2Ci,j+ Ci,j− 1

)

+
v
h
[
Ci,j− 1 − Ci,j+ 0.5 ϕ

(
ri,j− 1

)(
Ci,j − Ci,j− 1

)
− 0.5 ϕ

(
ri,j
)(

Ci,j+1 − Ci,j
)]

−
(1 − ε)

ε ⋅
dqi,j

dt
(4) 

where h (cm) is the integration step, determined by dividing Lc by an 
appropriate number of nodes on the longitudinal coordinate (Nz), j 
represents the finite volume considered, while ϕ and rj are the van Leer’s 
flux limiter and the gradient sensor, which are calculated as follows: 

rj =
Cj − Cj− 1 + δ
Cj+1 − Cj + δ

(5) 

ϕ
(
rj
)
=

rj +
⃒
⃒rj
⃒
⃒

1 +
⃒
⃒rj
⃒
⃒

(6) 

Where δ is a constant equal to 10− 16 to prevent the algorithm from 
diverging to zero [40]. Finally, the half-cell approximation assuming Ci,1 

– Ci,1/2 = Ci,1/2 – Ci,0 was applied to describe the first finite volume (j =
1).

For the integration of the resulting ODE system, the number of time 
and space steps was held constant at 1500 and 100, respectively, to 
allow for feasible computation times while minimizing integration 

errors.

2.2. Model calibration

The 20mer single-stranded DNA sequence investigated in this work 
was kindly provided by YMC Japan. The analytical characterization of 
the mixture of ONs and of the fractions collected during the different 
linear gradient elutions was performed via high-performance liquid 
chromatography (HPLC) following the method reported in [12] and 
detailed in the Supporting Information.

From the analytical chromatogram, the purity was computed as the 
ratio between the area of the product peak appearing at 30.2 min (see 
Figure S1 in the supporting information) and the sum of the areas of all 
the peaks. Based on the retention time of the different impurities, the ON 
mixture was simplified as constituted by three virtual key components 
and product. Early weakly adsorbing impurities W1, lumping up all the 
species eluting before 8.0 min, accounted for those species that do not 
co-elute with the target product in preparative experiments and repre-
sented the 0.33% of the crude material. Late weakly adsorbing impu-
rities W2, eluting from 8.0 to 30.0 min, represented the oligonucleotides 
that overlapped with the target sequence in preparative experiments and 
accounted for 8.57% of the mixture. The product P, eluting at 30.2 min, 
was characterized by 89.70% purity. Finally, the strongly adsorbing 
impurities S, eluting later than the product, accounted for 1.40% of the 
mixture.

To calibrate the model and determine the isotherm parameters and 
mass transport properties, preparative RPLC experiments were carried 
out using a Contichrom CUBE 30 system (YMC ChromaCon) equipped 
with a YMC Triart Prep C18-S column (10 μm particle size, 100 mm 
length x 4.6 mm internal diameter), having a porosity (ε) of 0.6. The 
equilibration buffer was a 0.2 M sodium acetate (C2H3NaO2, purity 
≥99%, molecular weight = 82.03 g/mol; Sigma-Aldrich)/acetonitrile 
(C2H3N, purity ≥99.9%, molecular weight = 41.05 g/mol; sourced 
from Honeywell) 99/1% v/v solution. The elution buffer contained 90% 
v/v of 0.2 M sodium acetate and 10% v/v acetonitrile. Loading of the 
crude mixture was invariably performed at 300 cm/h, while different 
amounts of fed ONs per liter of resin were explored as reported in 
Table 1. Washing was performed at 30% elution buffer for 2 column 
volumes (CV) at 150 cm/h. The gradient was conducted by linearly 
increasing the elution buffer volume fraction from 30% up to 100% at 
200 cm/h for different durations, as shown in Table 1. Stripping was 
performed at 150 cm/h for 2 CV at 100% elution buffer. Finally, the 
system was re-equilibrated at 30% elution buffer for 3 CV at 400 cm/h. 
In each experiment, a feed solution at 4.04 g/L of ONs with the 
composition reported above was used. The separation was performed at 
50 ◦C through an external column thermostat Knauer Azura CT 2.1 
equipped with a solvent pre-heating cartridge. The chromatogram was 
recorded at the outlet of the column with a Knauer BlueShadow 40D UV 
detector set at 300 nm.

During the gradient, 20 fractions were collected for each experiment, 
and analyzed via HPLC. The product purity in each fraction was esti-
mated by dividing the area of the peak associated to the product by the 
sum of the areas of all the peaks in the analytical chromatogram. The 
yield associated to each fraction was defined according to Eq. (7). 

Y =
Vf CP

QloadtloadCP,in
(7) 

Where Vf is the volume of the fraction considered, CP is the product 
concentration in the fraction determined via HPLC, Qload and tload are 
the loading flow rate and duration, respectively, and CP,in is the product 
concentration in the fed mixture.

For each experiment, different collection windows were obtained by 
pooling contiguous fractions and the yield and purity of each of them 
was determined from the HPLC characterization of the pooled fractions 
to create the purity versus yield Pareto fronts.

The experimental data was then used to estimate the adsorption 
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model parameters described in Eq. (3) for each compound as well as the 
axial dispersion and lumped mass transfer coefficients shown in Eqs. (2)
and (4). The parameter estimation was carried out using the genetic 
algorithm (GA) function in MATLAB [41]. The fitness function F 
developed in this work is reported in Eq. (8). 

F =
∑5

exp=1

⎛

⎜
⎝

∑NC

j

(
μexp,j − μmod,j

)2

μ2
exp,j

∗ P+
∑NC

j

(
Cmax,exp,j − Cmax,mod,j

)2

C2
max,exp,j

+
∑NC

j

(
σexp,j − σmod,j

)2

σ2
exp,j

+
∑NC

j

(
HETPexp,j − HETPmod,j

)2

HETP2
exp, j

+
∑NP

k

(
purityexp,k − puritymod,k

)2

purity2
exp,k

⎞

⎟
⎠

(8) 

F sums up the squared relative errors on mean retention time (μ), 
concentration at peak maximum (Cmax), variance (σ), and height 
equivalent to a theoretical plate (HETP) for each component j (with NC 
total components) and experiment exp, as well as the pool purities for k 
experimental collection windows.

To ensure the retention times are accurately predicted, they are 
penalized within the fitness function by a parameter P [41-43]. The 
penalization factor is estimated after a preliminary single-component 
parameter estimation.

For the GA optimization process, the population size, generation size, 
and absolute error criteria were set to 400, 100, and 10–6, respectively, 
to ensure high accuracy and computational time trade-off [44,45]. 
Finally, the accuracy of the model was measured as follows: 

Accuracy =

(

1 −
|model prediction − experiment result|

experiment result

)

⋅100% (9) 

2.3. Optimization algorithm

The in-silico procedure aims at optimizing the loading time, gradient 
duration, and collection window to maximize the yield and productivity 
of the ON RPLC whilst being subjected to strict purity constraints [16]. 
With reference to the typical chromatogram for a center-cut purification 
shown in Fig. 1a, the productivity, yield and purity for a collection 
window defined by the interval t3 − t4 were calculated as in Eqs. (10)–
(12) and utilized throughout the optimization procedure. 

Pr =
CP,in⋅Qload⋅tload⋅Y

VC ⋅
(
tload + twash + telution + tstrip

) (10) 

Y =
Qelution⋅

∫ t4
t3

CPdt
QloadtloadCP,in

(11) 

Purity =

∫ t4
t3

CPdt
∑

i
∫ t4

t3
Cidt

(12) 

Based on these definitions, four characteristic process variables are 

iteratively adjusted: t3 (beginning of collection window), t4 (end of 
collection window), telution, and tload. The remaining process parameters 
are kept constant.

The optimization strategy is divided in 3 steps.
During the first step, telution and tload are fixed at 19.5 min (i.e. 6.5 CV) 

and 7.5 min (i.e. 15.0 g/Lresin) respectively, to reproduce the conditions 
of the center point in Table 1. On the other hand, diverse collection 
windows (t3, t4) are analyzed. In particular, different collection starting 
times in the interval t2 ≤ t3 < t5 were considered. For each value of t3, 
different collection end times in the range t3 < t4 ≤ t5 were investigated. 
Each pair (t3, t4) constitutes a possible product collection window, for 
which purity, yield, and productivity were recorded. Among all the 
possible combinations, the optimal collection window (t3, t4) was the 
one leading to the maximum yield, and correspondingly, to the 
maximum productivity, while respecting the purity constraint (i.e. pu-
rity ≥ 99.0%).

The second step repeats the procedure mentioned so far for different 
elution times (telution) from 13.8 min (i.e. 4.5 CV) to 25.5 min (i.e. 8.5 CV) 
while holding tload constant. In this way, the optimal collection window 
and telution maximizing yield and productivity at the required purity 
specification can be identified for a specific tload.

Finally, in the third step, also tload is changed from 3.75 min (i.e. 7.5 
g/Lresin) to 11.25 min (i.e. 22.5 g/Lresin). The ultimate result in this third 
step is the optimal collection window, telution, and tload that maximized 
productivity or yield.

2.4. Model validation and MCSGP

The optimal conditions in terms of loading, gradient duration and 
extension of the collection window defined in-silico were tested experi-
mentally using the same equipment and method reported in Section 2.2. 
This served as a validation of the model developed, as the conditions 
implemented were different from those used for parameter calibration. 
22 fractions were collected during the linear gradient elution and 
analyzed via HPLC to define purity and yield of the product as well as the 
productivity according to Eqs. (10)–(12). These were compared with the 
model results and the deviations for each parameter were quantified in 
terms of prediction accuracy as shown in Eq. (9).

The process conditions leading to the maximum productivity in the 
single-column process were also transferred to MCSGP. The process is 
conducted on the same system and using the same buffers as reported in 
Section 2.2 for the batch operation. The design is performed using the 
ChromIQ software (version 8.0) and requires the specification of 5 
characteristic times, from t1 to t5 in Fig. 1a. These represent the start of 
the gradient, start of the W/P overlap internal recycling, start and stop of 
product collection and stop of P/S internal recycling, respectively [13,
14]. Often, these times are determined from single-column experiments 
[34,46]. Here, t3 and t4 directly came from the model-based optimiza-
tion, t1 was set at the beginning of the gradient, while t2 and t5 were 
taken as the times when the product started and ended to elute based on 
the model simulation. Therefore, we set t1=19.5 min, t2=28.1 min, 
t3=36.9 min, t4=40.9 min, and t5=46.8 min. The MCSGP was conducted 
for 5 consecutive cycles and every cycle a product pool was collected in 
the interval t3 - t4, combining the elutions from each of the two columns. 
These pools were analyzed via HPLC to determine purity, yield and 
productivity of the process cycle after cycle.

3. Results

3.1. Model development and calibration

The equilibrium-dispersive model (Eq. (1)) was adopted to describe 
the transport of the different components and of the modifier in the 
chromatographic column. The accumulation of each molecule in the 
solid phase is computed through the linear driving force approximation, 
as the product between a lumped rate constant and a driving force, 

Table 1 
Conditions adopted in the different experiments used to calibrate the model. 
CV=Column volume.
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which is the distance between the average species concentration in the 
stationary phase from the equilibrium conditions (Eq. (2)). These were 
accounted for using the Langmuir isotherm, whose parameters are 
function of the local volume fraction of modifier φ through the linear 
solvent strength model (Eq. (3)). The obtained system of partial differ-
ential equations was numerically solved with the FVM.

The reliability of the model was first verified by reproducing litera-
ture results. As an example, we qualitatively compared the model results 
obtained at different concentrations of the loaded mixture with those 
proposed by Qamar et al. [35] in Figure S2 (see Supporting Information 
section). The numerical algorithm displays good agreement with the 
analytical solutions provided by the authors at both 2 g/L and 10 g/L 
injections. Therefore, it was considered sufficiently robust and reliable.

After having verified its reliability, the model was calibrated through 
a statistical approach. This exploits a genetic algorithm to minimize the 
difference between experimental and model results in the form of the 
fitness function reported in Eq. (8). To minimize the number of experi-
mental runs, and hence the resources to be dedicated to this model 
calibration stage, while ensuring highly accurate parameter estimations, 
a central scheme was adopted [47-49]. In particular, we investigated 3 
different loadings, i.e. 7.5, 15.0 and 22.5 g/Lresin, and 3 different 
gradient durations, i.e. 4.5, 6.5 and 8.5 CV, as shown in Table 1.

With the aim of restricting the parameter domain, we preliminarily 
applied the genetic algorithm considering only the target product in the 
simulatons and limiting the number of experiments to E1, E2, and E3. 
The search boundaries and parameter estimations of the target product 
are displayed in Table S1, while Figure S3 shows the comparison be-
tween model and experimental results with the optimal set of parame-
ters after this preliminary screening. It is possible to observe that the 
retention time of the product is invariably overestimated by the model. 
The limitation detected in capturing the retention time for the single- 
component fitting was addressed by placing a penalty of P = 1000 on 
the contribution from the retention time within the fitness function.

With this expedient and the refined lower and upper boundaries for 
the different parameters from the single-component investigation, the 
GA optimization was extended to the multi-component system, 
comprising 3 virtual key components (i.e. W1, W2, and S), the product, 
and the modifier. For this system, the model requires 19 parameters: 4 
parameters of the Langmuir isotherm for each of the 4 components (16 
parameters), 1 axial dispersion coefficient for all components, 1 mass 
transfer rate constant for all components, and 1 axial dispersion coeffi-
cient for the modifier.

The lower boundaries, upper boundaries, and the parameter esti-
mates obtained with this approach are listed in Table 2.

Using these parameters, the multi-component chromatograms and 
Pareto curves were reproduced for each run and compared to the 
experimental results in Fig. 2.

Here, the good accuracy of the model calibrated through the genetic 
algorithm in reproducing both the chromatogram and Pareto front for 
each of the experimental run is evident. In particular, the best fit is 
displayed at the intermediate loading of 15.0 g/Lresin, where the yield- 
purity tradeoff in place for this center-cut purification can be reliably 
captured by the model for the different gradient durations tested. On the 

other hand, the Pareto front tends to be underestimated when higher 
loadings are considered. This might be due to the displacement of the 
weak impurities operated by the product, which increases the measured 
purity when increasing the loading. Indeed, this peculiar phenomenon 
was already reported for the same model ON mixture, while at the same 
time being difficult to be captured by the model [12]. The quantification 
of model accuracy for the different peak features, calculated from Eq. 
(9), is reported in Table S2. From this, we can conclude that the GA 
optimization manages to reliably predict the mean retention time, with 
an accuracy that for all the experiments is >95%. Similar great reli-
ability was found in the prediction of the Pareto fronts, whose accuracy 
is always >96%. More imprecision is observed instead in the repro-
duction of the peak maxima and in the variance of the peaks, mainly at 
large loadings.

3.2. In-silico optimization

After having validated the model accuracy, an in-silico optimization 
of the ON RPLC was carried out. The procedure was articulated on three 
levels, aimed at maximizing yield and productivity at a given purity 
constraint of 99.0% by changing: i) the collection window, ii) telution, and 
iii) tload.

During the first step of the batch process optimization, the gradient 
duration and loading were fixed to 6.5 CV and 15.0 g/Lresin, respectively, 
while different collection windows t3 − t4 were investigated in the 
elution time interval between t2 and t5. Among all the tested combina-
tions, only the product pools characterized by >99.0% purity were 
retained. Fig. 3a graphically displays the iterative procedure. In 
particular, for each t3 considered, corresponding to a single line in the 
plot, increasing values of t4 as second border for the product collection 
window were investigated. By increasing this parameter, as it can be 
deduced from the example chromatogram in Fig. 1a, more and more 
product is initially included in the pool, which causes the purity to in-
crease and eventually surpass the purity specification. However, if t4 is 
further increased, more and more strongly adsorbing impurities are 
included in the pool, whose purity starts dropping. As such, for a given 
t3, the optimal t4 is obtained when the purity decreases below Pspec this 
second time, as this is associated to the maximum possible recovery of 
the product at acceptable purity. Following this approach, from Fig. 3b it 
is possible to observe that the purity constraint is respected only for 31.4 
< t3 < 32.4 min. Among all the values of t3 (and the corresponding 
optimal t4) satisfying these requirements, an optimal collection window 
maximizing the yield can be identified. This was then chosen as the 
optimal product recovery interval at fixed loading and gradient dura-
tion. It is worth highlighting that, being all the characteristic times of the 
process fixed, maximizing the yield ensures that also a maximum pro-
ductivity is obtained (see Eq. (10)). These maximum productivity and 
yield, together with the optimal collection window are reported in 
Table S3, which confirms that the constraint on the minimum accept-
able purity is satisfied. At the same time, with these loading and gradient 
duration, only 21% of the fed product could be recovered at this strict 
purity requirement, confirming the necessity of process optimization.

In the second step of the optimization procedure, the investigation of 

Table 2 
Lower boundaries, upper boundaries, and parameter estimates for the optimization run using population and generation size of 400 and 100, respectively.

Lower Boundary Upper Boundary W1 W2 P S1 φ

DAX

(
cm2

min

) 1.00E-04 1.00E-02 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.00E-03

ai

(
L

Lresin

)
5000 25,000 15,280 8820 7540 19,200 –

Sa,i ( − ) 5.00 15.00 14.66 11.67 9.93 9.17 –

bi

(
L
g

)
500 3000 2140 1820 2150 1350 –

Sb,i ( − ) 5.00 30.00 10.69 22.44 24.46 20.09 –
K

(
min− 1) 0.80 2.50 0.99 0.99 0.99 0.99 –
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Fig. 2. Comparison of experimental multi-component chromatograms and purity-yield Pareto fronts (symbols) against model results (lines) using the parameters 
estimated from the genetic algorithm and reported in Table 2. (a-b) Load = 7.5 g/Lresin, gradient duration = 6.5 CV; (c-d) Load = 15.0 g/Lresin, gradient duration =
6.5 CV; (e-f) Load = 22.5 g/Lresin, gradient duration = 6.5 CV; (g-h) Load = 15.0 g/Lresin, gradient duration = 4.5 CV; (i-j) Load = 15.0 g/Lresin, gradient duration =
8.5 CV. W1 is displayed in light blue, W2 in dark blue, P in red and S in green.
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the optimal collection window is repeated for different gradient dura-
tions. Figure S4 depicts the productivity and yield associated to the 
optimal collection window satisfying Pspec at each tested elution time. It 
is worth observing that this constraint on purity can only be met for 
elution durations larger than 6.1 CV. For steeper gradients, W2 and S are 
not separated enough from P to identify a collection window with purity 
>99.0%. On the other side, in the highlighted design space, both yield 
and productivity monotonously increase with the elution time. This is 
not surprising as shallower gradients allow for a better separation of the 
different components, so that more product can be collected in the pool 
at the required purity threshold. Based on this, the longer gradient 
duration is considered the optimal one for this specific process. Still, it is 
worth noting the reduction in the slope of the productivity when pro-
ceeding to larger elution times. In fact, despite the larger amount of 
product recovered, the increase in the total process duration associated 
to longer elutions negatively impacts this performance indicator. 
Indeed, we expect an inversion in the trend for even larger gradient 
durations, whose negative effect on productivity would eventually 
prevail the improvement introduced by the increase in the yield, thus 
not justifying long operations.

The last step of the optimization repeats the first and second steps 
whilst varying the loading. Fig. 4a shows the evolution of yield and 
productivity with the gradient duration and loading. In particular, each 
line refers to a value of tested loading time and reports yield and pro-
ductivity at variable gradient duration.

This analysis reflects that both yield and productivity monotonically 
increase with longer gradient durations at all tested loadings (from 7.5 
to 22.5 g/Lresin), as already observed during the second step of the 
optimization. Therefore, the best elution time in this process is the 
largest one (8.5 CV) in our design space. Based on this evidence, Fig. 4b 
reports yield and productivity at this largest gradient duration for the 
different loads. By increasing this process parameter, in a first stage from 
7.5 to 11.0 g/Lresin both yield and productivity improve. Therefore, it is 
not useful for this process to work at loadings below 11.0 g/Lresin. On the 
other hand, above this threshold, a tradeoff between yield and produc-
tivity can be observed, with the former increasing at lower loadings and 
the latter growing in the opposite direction. This behavior can be 
explained considering that increasing the mass of ONs fed to the column 
corresponds to augmenting the area below their elution peaks. This re-
sults in a stronger overlap between the product and main impurities, 
which reduces the amount of product collectable at Pspec. On the other 
hand, increasing the ON loaded to the column has a positive effect on the 

Fig. 3. First stage of the optimization strategy. (a) Effect of t4 on purity (%) for 
selected values of t3 to illustrate the procedure. The dashed line represents 
Pspec=99.0%. In the inset, magnification of the results in proximity of the purity 
constraint. For a given curve, the optimal value of t4 is considered as the largest 
one at the intersection with the purity specification. (b) Evolution of the process 
yield for the different collection windows satisfying the constraint on the 
product purity. The results reported in this figure refer to a loading of 15.0 g/ 
Lresin and gradient duration 6.5 CV.

Fig. 4. Third optimization step. (a) Effect of loading, from 7.5 to 22.5 g/Lresin, 
and gradient duration, from 4.5 to 8.5 CV, on productivity and yield. (b) 
Optimal points at the longest gradient duration of 8.5 CV and different loadings 
from 7.5 to 22.5 g/Lresin, revealing a yield-productivity tradeoff starting from a 
load of 11.0 g/Lresin.
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productivity. Therefore, the optimization strategy is in agreement with 
the common sense and the physics of the system.

We can then conclude that for this process there is no absolute op-
timum, but the best process parameters depend on the desired perfor-
mance. If the yield is to be privileged, which is the case for difficult-to- 
manufacture products, as this would reduce the pressure on the up-
stream processing, a loading of 11.0 g/Lresin should be preferred. In this 
case, up to 50.3% yield can be achieved. Larger values would instead 
violate the constraint on 99.0% purity. On the other hand, working at 
22.5 g/Lresin maximizes the productivity to 10.28 g/(L h). The optimal 
set of process parameters and performances for these two scenarios are 
summarized in Table 3.

Comparing the results with the center point of the experimental 
scheme shown in Table 1, the optimization procedure allowed to in-
crease the yield from 20.9 to 50.3% (+140% gain) when this is the 
parameter of interest, and the productivity from 4.41 to 10.28 g/(L h) 
(+133% gain) when focusing on the latter.

This is an outstanding result, considering that only 5 experiments 
were required to calibrate the model, which in turn was used to simulate 
more than 3200 chromatograms to define the optimal process condi-
tions. It is easy to understand the major saving in experimental effort 
and material consumption introduced by the optimization strategy 
developed in this work, which allowed to achieve a remarkable gain in 
the process performances.

3.3. Model validation

The process conditions identified through the model-based optimi-
zation leading to the maximum yield or productivity were experimen-
tally tested, with the aim of validating the predictions. In particular, the 
setpoints on load, gradient duration, t3 and t4 are those reported in 
Table 3. For both experimental runs, 22 fractions were collected during 
the elution phase and analyzed via HPLC to define the concentration of 
each component. The comparison between the experimental and model 
results in terms of preparative chromatogram and Pareto fronts are then 
shown in Fig. 5.

For both runs, it is possible to appreciate the accurate prediction of 
the mean retention time for all the components as well as of the peak 
height for the product, the most abundant species. In addition, the 
Pareto fronts reliably depict the tradeoff between purity and yield for 
this single-column process. This provides a good indication that the 
partial co-elution of W2 and P as well as of P and S is properly described 
by the model. This confirms the potential of the approach investigated in 
this work and the relevance of the model-based optimization. 

Nonetheless, at load = 11.0 g/Lresin, the concentration at peak maximum 
for W2 is underestimated by the model, which predicts a broader peak 
for this pseudo-component. Since the peak front elutes before the 
product, this is reflected in an overestimation of the maximum purity 
achievable at high yields, as highlighted in the Pareto front. On the other 
side, at high loading (i.e. 22.5 g/Lresin), the model accurately predicts the 
mean retention time of the different components, but overestimates the 
peak front. Indeed, the significant overlap shown by the model results 
for P and W2 in the front leads to the underestimation of the maximum 
purity achievable at high yield, as reflected in the Pareto front.

For both experiments, the process performances in terms of purity, 
yield and productivity were finally determined by pooling the appro-
priate number of fractions to reproduce the optimal collection window 
(t3, t4) predicted by the model in each condition. These are compared 
with the model outputs in Table 3. In all cases, the accuracy of the model 
is >74%, which considering the experimental variability confirms the 
significance of the process optimization. At the same time, it is worth 
highlighting that the implemented collection window shows a remark-
able agreement in terms of product purity with the result from the model 
and, in particular, it allows respecting the constraint on the purity 
specification. This is particularly important considering that meeting a 
certain purity requirement discriminates the release of the entire drug 
lot. These experimental runs also validate the drastic improvement in 
yield and productivity compared to the central point of Table 1, testi-
fying the potential of this model-based optimization.

3.4. MCSGP

In addition to the maximization of yield or productivity for a single- 
column operation, the approach proposed in this work can be appealing 
for the rapid definition of an optimal setpoint for MCSGP. In particular, 
this twin-column operation requires, in addition to the typical process 
parameters like load and gradient duration, a collection window for 
product recovery (t3-t4 in Fig. 1a), as well as time intervals for internal 
recycling of W/P overlaps (t2-t3 in Fig. 1a) and P/S overlaps (t4-t5 in 
Fig. 1a). By applying this internal recycling, the MCSGP significantly 
improves the yield compared to a single-column operation at compa-
rable purity of the product pool. For this reason, the most suitable 
process conditions to be transferred to MCSGP are those maximizing the 
productivity, letting the internal recycling of the impure side fractions 
compensate for the poor product recovery of this operation.

Therefore, with reference to the batch chromatogram in Fig. 5c, we 
designed the MCSGP with the same startup load of 22.5 g/Lresin, gradient 
duration of 8.5 CV and collection window from 36.9 to 40.9 min. On the 
other side, the product-containing impure fractions eluting from 28.1 to 
36.9 min and from 40.9 to 46.8 min were recycled from the upstream to 
the downstream column during the interconnection steps of the process. 
The detailed MCSGP phases are shown in Fig. 6a. The MCSGP was 
conducted for 5 cycles and the UV signal recorded at the outlet of each of 
the two columns is shown in Fig. 6b.

The product pool was collected every cycle and analyzed by HPLC to 
determine its composition and concentration. The results are shown in 
Table 4. It is possible to observe that the system reaches the cyclic steady 
state very soon. In fact, already from the third cycle the composition of 
the pool as well as the process performance do not change anymore. This 
can be visually assessed also from the UV chromatogram in Fig. 6b, 
where the peak profile is preserved very similar starting from 125 min, 
which marked the beginning of cycle 3. In addition, the transfer of the 
optimal collection window defined by the model ensured that the purity 
specification was respected in all the cycles of the MCSGP. This 
confirmed the strength of this approach in the resource effective design 
of a continuous operation providing a product pool in specification. 
Finally, although the productivity is comparable to the one obtained in 
the single-column experiment, the yield could be drastically improved 
from 34.8 to >96.1%. The MCSGP designed through the model devel-
oped in this work allows then major savings in valuable product, while 

Table 3 
Comparison of model predictions and experimental results for productivity, 
purity and yield in the two validation runs maximizing yield (load = 11.0 g/ 
Lresin, gradient duration = 8.5 CV) and productivity (load = 22.5 g/Lresin, 
gradient duration = 8.5 CV).

Model Experiment Accuracy 
[%]

Max Yield Load [g/Lresin] 11.0 –
telution [CV] 8.5 –
t3 [min] 31.7 –
t4 [min] 35.7 –
Productivity [g/(L 
h)]

7.13 5.64 73.6

Purity [%] 99.0 99.3 99.7
Yield [%] 50.3 40.3 75.1

Max 
Productivity

Load [g/Lresin] 22.5 –
telution [CV] 8.5 –
t3 [min] 36.9 –
t4 [min] 40.9 –
Productivity [g/(L 
h)]

10.28 8.94 85.0

Purity [%] 99.0 99.1 99.9
Yield [%] 39.8 34.8 85.6
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providing the required purity.

4. Conclusions

The chromatographic purification of oligonucleotides currently im-
pacts 43% of the overall process mass intensity [8]. This is attributed to 
the large consumption of buffers as well as to the limited product re-
coveries. At the same time, process optimization can be extremely time 
and resource intensive. To overcome this limitation and permit process 
intensification in the purification of oligonucleotides, we developed a 
model-based approach to optimize the performances of the 
single-column chromatographic purification of a 20mer DNA sequence. 
The equilibrium-dispersive model describing the molecule transport 
along the column was considered and the model parameters were cali-
brated through a genetic algorithm by exploiting only 5 experimental 
runs in a central scheme. After having validated the reliability of the 
model, we were able to exploit it in an ad hoc optimization strategy, 
investigating the role of the collection window, loading and gradient 
duration on the yield and productivity of the process, imposing a min-
imum acceptable purity of 99.0%. While an increase in the elution 
duration improves both yield and productivity, we found out that these 
are bound to a tradeoff driven by the column loading. At 11.0 g/Lresin, 
the yield could be maximized to 50%, but the productivity was modest 
(i.e. 7.13 g/L/h). On the other side, the latter could be maximized (i.e. 
10.28 g/L/h) by increasing the load to 22.5 g/Lresin, which in turn led to 
a decrease in the maximum achievable yield to <40%. Still, this is a 
remarkable improvement compared to the central point of the scheme 
used to calibrate the model, suggesting the potential of this optimization 

strategy in improving the performances of the operation.
The yield of the process can be further boosted at comparable purity 

and productivity by MCSGP. We demonstrated that the process param-
eters maximizing the productivity identified by our model-based strat-
egy provided excellent results in the design of an MCSGP operation 
reaching the steady state already at the third cycle and respecting the 
purity specification imposed, while increasing the product recovery 
from <40% to >96%. So overall, the model-based optimization devel-
oped in this work can serve as both a way for improving the existing 
processes based on single-column operations, improving either the yield 
or the productivity based on the most suitable target, or be exploited for 
a resource-effective design of innovative processes, both in the direction 
of process intensification.

It is finally worth highlighting that the approach reported herein is 
agnostic to the type of molecule to be purified, provided that its 
adsorption can be described by a Langmuir isotherm. Hence, this opti-
mization strategy can be extended to the intensification of the chro-
matographic purification of many other molecules, where product- 
related impurities cannot be baseline separated.

Supporting Information: Electronic supplementary information is 
available at the publisher’s website and reports analytical chromato-
gram for the crude mixture used in the experiments, the reproduction of 
a literature case, the chromatogram fitting for the single-component 
case, the estimated parameters, and the results of the first and second 
optimization steps.

Fig. 5. Comparison between experimental results (symbols) and model predictions (lines) in terms of preparative chromatogram and Pareto fronts for the runs 
maximizing the yield, with load = 11.0 g/Lresin and gradient duration = 8.5 CV (a-b) and the productivity, with load = 22.5 g/Lresin and gradient duration = 8.5 CV 
(c-d). W1 is displayed in light blue, W2 in dark blue, P in red and S in green.
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M. Sponchioni, Oligonucleotides: current trends and innovative applications in the 
synthesis, characterization, and purification, Biotechnol. J. 15 (8) (2020) 1900226.

[2] N. Dias, C.A. Stein, Oligonucleotides: basic concepts and mechanisms, Mol. Cancer 
Ther. 1 (5) (2002) 347–355.

[3] E.C. Smith, R. Zain, Therapeutic oligonucleotides: state of the art, Annu. Rev. 
Pharmacol. Toxicol. 59 (1) (2019) 605–630.

Fig. 6. (a) MCSGP process designed from the single-column operation maximizing the productivity. (b) UV signal during the 5 cycles of the MCSGP recorded by the 
detector at the outlet of the left column (blue line) and at the outlet of the right column (red line). The black line shows the volume fraction of the modifier, the blue 
region the W/P internal recycling, the red area the product collection window and the green region the P/S internal recycling.

Table 4 
Characterization of the product pools collected during the 5 cycles of MCSGP compared to the one obtained in the single-column experiment maximizing the 
productivity.

Cycle # W1 [g/L] W2 [g/L] P [g/L] S [g/L] Purity [%] Yield [%] Productivity [g/(L h)]

1 0.00 0.03 4.95 0.00 99.4 68.7 5.64
2 0.00 0.04 6.58 0.01 99.2 93.5 7.68
3 0.00 0.06 6.92 0.01 99.0 96.8 7.95
4 0.00 0.06 6.84 0.01 99.0 96.1 7.89
5 0.00 0.06 6.88 0.01 99.0 96.6 7.93
Batch reference 0.00 0.05 5.29 0.00 99.1 34.8 8.94

S. Taguado Menza et al.                                                                                                                                                                                                                      Journal of Chromatography A 1736 (2024) 465321 

10 

https://doi.org/10.1016/j.chroma.2024.465321
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0001
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0001
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0001
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0001
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0002
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0002
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0003
http://refhub.elsevier.com/S0021-9673(24)00695-2/sbref0003


[4] S.M. Hammond, A. Aartsma-Rus, S. Alves, S.E. Borgos, R.A.M. Buijsen, R.W. 
J. Collin, G. Covello, M.A. Denti, L.R. Desviat, L. Echevarría, C. Foged, G. Gaina, 
V. Arechavala-Gomeza, Delivery of oligonucleotide-based therapeutics: challenges 
and opportunities, EMBo Mol. Med. 13 (4) (2021) e13243.

[5] R.G. Ingle, W.-J. Fang, An overview of the stability and delivery challenges of 
commercial nucleic acid therapeutics, Pharmaceutics. 15 (4) (2023) 1158.

[6] T.C. Roberts, R. Langer, M.J.A. Wood, Advances in oligonucleotide drug delivery, 
Nature Rev. Drug Discov. 19 (10) (2020) 673–694.

[7] J. Kim, C. Hu, C. Moufawad El Achkar, L.E. Black, J. Douville, A. Larson, M. 
K. Pendergast, et al., Patient-customized oligonucleotide therapy for a rare genetic 
disease, New Engl. J. Med. 381 (17) (2019) 1644–1652.

[8] A.I. Benjamin, F.D. Antia, S.B. Brueggemeier, L.J. Dioraziov, S.G. Koenig, M. 
E. Kopach, H. Lee, M. Olbrich, A.L. Watson, Sustainability challenges and 
opportunities in oligonucleotide manufacturing, J. Org. Chem. 86 (1) (2021) 
49–61.

[9] S.R. Madabhushi, J. Gavin, S. Xu, C. Cutler, R. Chmielowski, W. Rayfield, et al., 
Quantitative assessment of environmental impact of biologics manufacturing using 
process mass intensity analysis, Biotechnol. Prog. 34 (2018) 1566–1573.

[10] I. Cedillo, B. Jarvis, T. Pavone, Designing commercial-scale oligonucleotide 
synthesis, Pharmaceutical Technol. 44 (2) (2020) 55.

[11] L.K. Shekhawat, A.S. Rathore, An overview of mechanistic modeling of liquid 
chromatography, Prepar. Biochem. Biotechnol. 49 (6) (2019) 623–638.
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