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1 Introduction
In this paper we study the solvability of a system of second-order elliptic differential equations subject to
functional boundary conditions (BCs for short). Namely, we investigate parametric systems of the type

{
Lkuk = λk fk(x, u1, . . . , um , ∇u1, . . . , ∇um) in O (k = 1, 2, . . . ,m),
uk(x) = ηk ζk(x) hk[u1, . . . , um] for x ∈ ∂O (k = 1, 2, . . . ,m),

(1.1)

where m ≥ 1 is a fixed natural number, O ⊆ ℝn is a bounded and connected open set of class C1,α for some
α ∈ (0, 1), and λk , ηk, k = 1, . . . ,m, are nonnegative real parameters. Moreover, L1, . . . ,Lm are uniformly
elliptic, second-order linear partial differential operators (PDOs) in divergence form on O. That is,

Lku := −
n
∑
i,j=1

∂xi (a
(k)
i,j (x)∂xju + b

(k)
i (x)u) +

n
∑
i=1

c(k)i (x)∂xiu + d
(k)(x)u, k = 1, . . . ,m,

where
∙ the coefficient functions of Lk belong to C1,α(O,ℝ),
∙ the matrix A(k)(x) := (a(k)i,j (x))i,j is symmetric for every x ∈ O,
∙ Lk is uniformly elliptic in O, i.e., there exists Λk > 0 such that

1
Λk
‖ξ‖2 ≤

n
∑
i,j=1

a(k)i,j (x)ξiξj ≤ Λk‖ξ‖2 for any x ∈ O and ξ ∈ ℝn \ {0},

where ‖ξ‖ stands for the Euclidean norm of ξ ∈ ℝn,
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∙ for every nonnegative function φ ∈ C∞0 (O,ℝ) one has

∫
O

(d(k)φ +
n
∑
i=1

b(k)i ∂xiφ)dx ≥ 0, ∫
O

(d(k)φ +
n
∑
i=1

c(k)i ∂xiφ)dx ≥ 0.

Furthermore, for every fixed k = 1, . . . ,m we also assume that:
∙ fk is a real-valued continuous function defined on O ×ℝm ×ℝnm,
∙ hk is a real-valued continuous functional defined on the space C1(O,ℝm),
∙ ζk ∈ C1,α(O,ℝ) and ζk ≥ 0 on O.
System (1.1) is quite general, and includes, for example, as a particular case a Dirichlet boundary value
problem for elliptic systems with gradient dependence of the form

{{{
{{{
{

−∆u1 = λ1 f1(x, u1, u2, ∇u1, ∇u2) in O,
−∆u2 = λ2 f2(x, u1, u2, ∇u1, ∇u2) in O,
u1∂O = 0 = u2|∂O.

(1.2)

Systems of nonlinear PDEs of this kind are widely studied in view of applications: in fact, the nonlineari-
ties in (1.2) may depend also on the gradient of the solution, and thus represent convection terms. These
problems, in general, are not easily dealt with by means of variational methods. Different approaches in
the study of PDEs with gradient terms have been proposed: for example sub- and super-solutions, topolog-
ical degree theory, mountain pass techniques. We mention, for instance, the pioneering works of Amann
and Crandall [3], Brézis and Turner [4], Mawhin and Schmitt [21, 22], Pokhozhaev [23] and the more recent
contributions [1, 7, 9, 12, 24, 26, 27, 29]. See also the very recent survey [8] and references therein.

In this paper we adopt a topological approach, based on the classical notion of fixed point index (see
e.g. [15]) for the existence result, Theorem 3.3 below, whereas we prove a non-existence result via an ele-
mentary argument. In some sense we follow a path established by Amman [2, 3] and successfully used by
many authors in different contexts. We point out that our approach applies not only to Dirichlet BCs but
permits to consider (possibly nonlinear) functional BCs, including the special cases of linear (multi-point or
integral) BCs of the form

hk[u] =
m
∑
j=1

N
∑
i=1
(α̂ijkuj(ωi) +

n
∑
l=1

β̂ijkl∂xluj(τi)) (1.3)

or
hk[u] =

m
∑
j=1
(∫

Ω

α̂jk(x)uj(x) dx +
n
∑
l=1
∫
Ω

β̂jkl(x)∂xluj(x) dx), (1.4)

where, in (1.3), α̂ijk , β̂ijkl are nonnegative coefficients and ωi , τi ∈ Owhile, in (1.4), α̂jk , β̂jkl are nonnegative
continuous functions on O. In particular, we observe that nonlinear, nonlocal BCs have seen recently atten-
tion in the framework of elliptic equations: we refer the reader to the papers [5, 6, 13, 14, 16, 17, 25] and
references therein.

We wish to point out that an advantage of our setting, with respect to the theory developed in [5, 6, 13,
14, 16, 25], is the possibility to allow also gradient dependence within the functionals occurring in the BCs.
This follows the approach used recently in [18, 19] within the setting of ODEs.

Note that functional BCs that involve gradient terms may occur in applications. For example, consider
a particular case of (1.1) for m = 1 and n = 2, namely

{
−∆u(x) = f(x, u(x), ∇u(x)) x ∈ B,

u(x) = η0u(0) + η1‖∇u(0)‖ x ∈ ∂B,
(1.5)

where B is the Euclidean ball inℝ2 centered at 0with radius 1, ‖ ⋅ ‖ is the Euclidian norm and ηi are nonneg-
ative coefficients. The BVP (1.5) can be used as a model for the steady states of the temperature of a heated
disk of radius 1, where a controller located in the border of the disk adds or removes heat according to the
value of the temperature and to its variation, both registered by a sensor located in the center of the disk. In
the context of ODEs, a good reference for this kind of thermostat problems is the recent paper [28].
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As already pointed out, a peculiarity of system (1.1) is the dependence on the gradient of the solutions,
both in the nonlinearity and in the functionals occurring in the BCs, and this represents the main technical
difficulty that we have to deal with in this paper. For this purpose, we have to perform a preliminary study
of the Green’s function of the partial differential operators which occur in (1.1). In Section 2 we collect some
properties and estimates on Green’s function, which are probably known to the experts in the field, never-
theless we include them for the sake of completeness. Roughly speaking, these estimates yield the a priori
bounds needed to compute the fixed point index in suitable cones of nonnegative functions.

Section 3 contains our main results, while the final Section 4 includes some examples illustrating our
results. In particular, we fix m = 2 and n = 3, and, taking into account the parameters λ1, λ2, η1, η2, we
provide existence and non-existence results in some concrete situations.

2 Preliminaries on Divergence-Form Elliptic Operators
In this section we present, mostly without proof, several results concerning divergence-form operators which
shall play a central role in the forthcoming sections. We refer the reader to, e.g., [10, 11] for a detailed
treatment of this topic.

To being with, letO ⊆ ℝn be a fixed open set and letL be a second-order linear PDO onO of the following
divergence form:

Lu := −
n
∑
i,j=1

∂xi (ai,j(x)∂xju + bi(x)u) +
n
∑
i=1

ci(x)∂xiu + d(x)u = −div(A(x)∇u + bu) + ⟨c, ∇u⟩ + du (2.1)

(here b = (b1, . . . , bn) and c = (c1, . . . , cn)). Throughout the sequel, we shall suppose that the following
“structural assumptions” on O and L are satisfied:
(H0) O is bounded, connected and of class C1,α for some α ∈ (0, 1),
(H1) the coefficient functions of L are Hölder-continuous of exponent α up to ∂O, i.e.,

ai,j , bi , ci , d ∈ Cα(O,ℝ) for every i, j ∈ {1, . . . , n},

(H2) the matrix A(x) := (ai,j(x))i,j is symmetric in O, i.e.,

ai,j(x) = aj,i(x) for every x ∈ O and every i, j ∈ {1, . . . , n},

(H3) L is uniformly elliptic in O, i.e., there exists Λ > 0 such that

1
Λ ‖ξ‖

2 ≤
n
∑
i,j=1

ai,j(x)ξiξj ≤ Λ‖ξ‖2 for any x ∈ O and any ξ ∈ ℝn ,

(H4) the inequalities d − div(b) ≥ 0 and d − div(c) ≥ 0 hold in the weak sense of distributions on O, i.e., for
every φ ∈ C∞0 (O,ℝ) such that φ ≥ 0 on O, one has

∫
O

(dφ +
n
∑
i=1

bi∂xiφ)dx ≥ 0 and ∫
O

(dφ +
n
∑
i=1

ci∂xiφ)dx ≥ 0.

It should be noticed that, since the coefficient functions ofL are assumed to be just Hölder-continuous onO,
it is not possible to computeLu in a point-wise sense (even if u is smooth onO); for this reason, the following
definition is plainly justified.

Definition 2.1. Let assumptions (H0)–(H4) be in force, and let f ∈ L2(O). We say that a function u : O→ ℝ is
a solution of the equation

Lu = f in O (2.2)

if u ∈ W1,2(O) and if, for every test function ϕ ∈ C∞0 (O,ℝ), one has

∫
O

(⟨A(x)∇u + bu, ∇ϕ⟩ + ⟨c, ∇u⟩ϕ + duϕ)dx = ∫
O

fϕ dx.
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Given g ∈ W1,2(O), we say that u is a solution of the Poisson problem

{
Lu = f in O,

u|∂O = g,
(2.3)

if u is a solution of (2.2) and, furthermore, u − g ∈ W1,2
0 (O).

Now, as a consequence of the “sign assumption” (H4) it is possible to prove that a suitable form of the
Weak Maximum Principle holds for L (see, e.g., [11, Theorem 8.1]); from this, one can straightforwardly
deduce Lemma 2.2 below (see [11, Corollary 8.2]), ensuring that the Poisson problem (2.3) possesses at most
one solution.

Lemma 2.2. Let the assumptions (H0)–(H4) be in force, and let u ∈ W1,2
0 (O) be such thatLu = 0 orLTu = 0 in

O. Then u ≡ 0 almost everywhere on O.

2.1 The Poisson Problem forL

Afirst group of resultswe aim to present is about existence and regularity of solutions for the Poisson problem
(2.3) for L. In order to do this, we first introduce the following Banach spaces:
∙ X = (C(O,ℝ), ‖ ⋅ ‖∞), where

‖f‖∞ := max
x∈O
|f(x)|, (2.4)

∙ X = (C1(O,ℝ), ‖ ⋅ ‖C1(O,ℝ)), where

‖f‖C1(O,ℝ) := max
j=1,...,n
{‖f‖∞, ‖∂j f‖∞ : j = 1, . . . , n}, (2.5)

∙ X = C1,θ(O,ℝ) (for some θ ∈ (0, 1)), where

‖u‖C1,θ(O,ℝ) := max
j=1,...,n
{‖u‖∞, ‖∂ju‖∞, sup

x,y∈O

|∂ju(x) − ∂ju(y)|
‖x − y‖θ

}.

Given f ∈ C1(O,ℝ), it will be also convenient to define, with abuse of notation,

‖∇f‖∞ := max
j=1,...,n
{‖∂j f‖∞ : j = 1, . . . , n},

so that, clearly, ‖f‖C1(O,ℝ) = max{‖f‖∞, ‖∇f‖∞}.
Now, by exploiting assumptions (H3)–(H4), Lemma 2.2 and the Fredholm alternative, one can establish

the following basic theorem (for a proof, see [11, Theorem 8.3]).

Theorem 2.3. Let assumptions (H0)–(H4) be in force. Then, for every f ∈ L2(O) and every g ∈ W1,2(O), there
exists a unique solution uf, g ∈ W1,2(O) of (2.3).

Throughout the sequel, we indicate by uf, g the unique solution in W1,2(O) of (2.3) (for fixed f ∈ L2(O) and
g ∈ W1,2(O)), whose existence is guaranteed by Theorem 2.3. In the particular case when g ≡ 0, we simply
write uf instead of uf, 0.

Remark 2.4. Theorem 2.3 holds under more general hypotheses: in fact, it suffices to assume that O is
bounded and that the coefficient functions of L are in L∞(O).

Remark 2.5. Let f1, f2 ∈ L2(O) and, for i = 1, 2, let ui = ufi ∈ W
1,2
0 (O) be the unique solution of (2.3) with

f = fi (and g ≡ 0). Since, obviously, it holds that

L(uf1 + uf2 ) = uf1 + uf2 and uf1 + uf2 ∈ W
1,2
0 (O),

we conclude that the unique solution of (2.3) with f = f1 + f2 and g ≡ 0 is uf1 + uf2 .

Since we aim to apply suitable fixed-point techniques to operators acting on spaces of C1-functions, we are
interested in solving (2.3) for continuous f and regular g. In this context, the unique solution uf, g of (2.3)
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turns out to bemuchmore regular thatW1,2; in fact, we have the following crucial result (for a proof, see [11,
Theorems 8.16, 8.33 and 8.34]).

Theorem 2.6. Let assumptions (H0)–(H4) be in force, and letL be as in (2.1). Moreover, let f ∈ C(O,ℝ) and let
g ∈ C1,α(O,ℝ). Then the following facts hold true:
(i) There exists a unique ûf, g ∈ C1,α(O,ℝ) such that

ûf, g ≡ uf, g a.e. on O.

In particular, ûf, g solves (2.2) and ûf, g ≡ g point-wise on ∂Ω.
(ii) There exists a constant C > 0, only depending on n, Λ and O, such that

‖ûf, g‖C1,α(O,ℝ) ≤ C(‖f‖C(O,ℝ) + ‖g‖C1,α(O,ℝ)).

(iii) If f ≥ 0 on O and g ≥ 0 on ∂O, then ûf, g ≥ 0 on O.

Now, in view of Theorem 2.6 (i), we can define a linear operator as follows

GL : C(O,ℝ)→ C1,α(O,ℝ), GL(f) := ûf , (2.6)

where ûf = ûf, 0 ∈ C1,α(O,ℝ) is the unique solution of (2.3) with g ≡ 0. We shall call GL the Green operator
forL. By exploiting assertions (ii)–(iii) of Theorem2.6, it is possible to deduce some continuous-compactness
properties of GL which shall play a central role in the next sections; to bemore precise, we have the following
proposition.

Proposition 2.7. Let assumptions (H0)–(H4) be in force, and let GL be the operator defined in (2.6). Then the
following facts hold:
(i) GL is continuous from C(O,ℝ) to C1,α(O,ℝ).
(ii) GL is compact from C(O,ℝ) to C1(O,ℝ) ⊇ C1,α(O,ℝ).
(iii) If V0 := C(O,ℝ+) ⊆ C(O,ℝ) denotes the (convex) cone of the nonnegative continuous functions on O, it

holds that GL(V0) ⊆ V0.

Proof. (i) On account of Theorem 2.6 (ii), for every f ∈ C(O,ℝ) one has

‖GL(f)‖C1,α(O,ℝ) ≤ C‖f‖∞ (2.7)

(here C > 0 is a constant independent of f ). Since GL is linear (see Remark 2.5), from (2.7) we immediately
deduce that GL is continuous from C(O,ℝ) to C1,α(O,ℝ).

(ii) Let {fj}j be a bounded sequence in C(O,ℝ). On account of (2.7), we see that the sequence {GL(fj)}j
is bounded in C1,α(O,ℝ); as a consequence, a standard application of Arzelà–Ascoli’s Theorem implies the
existence of u0, . . . , un ∈ C(O,ℝ) such that
(a) ‖GL(fjk ) − u0‖∞ → 0 as k →∞,
(b) ‖∂i(GL(fjk )) − ui‖∞ → 0 as k →∞ (for every i = 1, . . . , n),
where {fjk }k is a suitable sub-sequence of {fj}j. By combining (a) and (b), we deduce that u0 ∈ C1(O,ℝ) and
that ∇u0 = (u1, . . . , un); moreover, one has

‖GL(fjk ) − u0‖C1(O),ℝ) → 0 as k →∞,

and this proves that GL is compact from C(O,ℝ) to C1(O,ℝ), as desired.
(iii) Let f ∈ V0 be fixed. Since, by Theorem 2.6 (iii), we know that GL(f) = ûf, 0 ≥ 0 throughout O, we

immediately conclude that GL(f) ∈ V0 ∩ C1,α(O,ℝ), as desired.

2.2 Green’s Function forL

Now we have established Proposition 2.7, we turn to present a second group of results: this is about the
existence of a Green’s function for L allowing to obtain an integral representation formula for GL.

To begin with, we demonstrate the following key theorem.
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Theorem 2.8. Let assumptions (H0)–(H4) be in force, and let L be as in (2.1). Then there exists a function
gL : O × O→ [0,∞) such that
(a) gL( ⋅ ; x) ∈ L1(O) for almost every x ∈ O,
(b) for every f ∈ C(O,ℝ) one has

GL(f)(x) = ∫
O

gL(y; x)f(y)dy for a.e. x ∈ O. (2.8)

Furthermore, gL enjoys the following properties:
(I) there exists a constant c0 > 0 such that, for a.e. x, y ∈ O, one has

0 ≤ gL(y; x) ≤ c0‖x − y‖2−n , (2.9)

(II) gL( ⋅ ; x) ∈ W1,p
0 (O) for a.e. x ∈ O and every 1 ≤ p < n

n−1 ,
(III) gL(y; ⋅ ) ∈ W1,p

0 (O) for a.e. y ∈ O and every 1 ≤ p < n
n−1 ,

(IV) there exists a constant c1 > 0 such that, for a.e. x, y ∈ O, one has

‖∇ygL(y; x)‖ ≤ c1‖x − y‖1−n and ‖∇xgL(y; x)‖ ≤ c1‖x − y‖1−n . (2.10)

Finally, gL is unique in the following sense: if g̃ : O × O→ [0,∞) is another function satisfying (a)–(b), then
gL( ⋅ ; x) = g̃( ⋅ ; x) in L1(O) for a.e. x ∈ O.

Throughout the sequel,we shall refer to the function gL in Theorem2.8 as theGreen’s function for the operator
GL (and related to the open set O).

Proof. We begin by proving the existence part of the theorem. In order to do this, we make pivotal use of
several results established in the very recent paper [20].

First of all, by [20, Proposition 5.3] there exists a function gL : O × O→ ℝ such that
(i) gL( ⋅ ; x) ∈ W1,p(O) for a.e. x ∈ O and every 1 ≤ p < n

n−1 ,
(ii) for every fixed f ∈ C(O,ℝ) one has

GL(f)(x) = ∫
O

gL(y; x)f(y)dy for a.e. x ∈ O.

Moreover, by [20, Theorem 6.10] we also have that

0 ≤ gL(y; x) ≤ c0 ‖x − y‖2−n for a.e. x, y ∈ O with x ̸= y,

where c0 > 0 is a suitable constant. In view of these facts, to complete the demonstration we are left to prove
assertion (III) and the point-wise estimates in (2.10).

To this end, let us introduce the so-called (formal) adjoint LT of L: this is the linear differential operator
defined on O in the following way:

LTv := −
n
∑
i,j=1

∂xi (ai,j(x)∂xj v + ci(x)v) +
n
∑
i=1

bi(x)∂xi v + d(x)v = −div(A(x)∇v + cv) + ⟨b, ∇v⟩ + dv. (2.11)

Clearly,LT takes the same divergence-form ofL in (2.1) (with b and c interchanged); furthermore, due to the
“symmetry” in assumption (H4), it is readily seen that LT satisfies the “structural assumptions” (H1)–(H4).

As a consequence, all the results established so far do apply to LT . In particular, for every fixed
g ∈ C(O,ℝ) there exists a unique function T(g) ∈ C1,α(O,ℝ) such that

LTT(g) = g in O and T(g) ≡ 0 on ∂O.

Now, by [20, Theorem 6.12] there exists a function G : O × O→ ℝ such that
(iii) G( ⋅ ; y) ∈ W1,p(O) for a.e. y ∈ O and every 1 ≤ p < n

n−1 ,
(iv) for every fixed g ∈ C(O,ℝ) one has

T(g)(y) = ∫
O

G(x; y)g(x)dx for a.e. y ∈ O.
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On the other hand, since [20, Proposition 6.13] shows that

G(x; y) = gL(y; x) for a.e. x, y ∈ O with x ̸= y, (2.12)

from (iii) we infer that gL(y; ⋅ ) = G( ⋅ ; y) ∈ W1,p(O) for almost every y ∈ O and every exponent p ∈ [1, n
n−1 ).

This is exactly assertion (III).
Finally, we prove the point-wise estimates in assertion (IV). First of all, since L satisfies assumptions

(H1)–(H4), we are entitled to apply [20, Theorem 8.1], ensuring that

‖∇xG(x; y)‖ ≤ c1 ‖x − y‖1−n for a.e. x, y ∈ O with x ̸= y, (2.13)

where c1 > 0 is a suitable constant. Moreover, since also LT satisfies assumptions (H1)–(H4), another appli-
cation of [20, Theorem 8.1] gives

‖∇ygL(y; x)‖ ≤ c1 ‖x − y‖1−n for a.e. x, y ∈ O with x ̸= y, (2.14)

where c1 > 0 is another suitable constant. Gathering together (2.14), (2.13) and (2.12)we immediately obtain
the desired (2.10) (with c1 := max{c1, c1 }).

As for the uniqueness part of the theorem, suppose that there exists another function g̃ : O × O→ [0,∞)
satisfying (a)–(b). In particular, for every ϕ ∈ C∞0 (O,ℝ) one has

∫
O

(gL(y; x) − g̃(y; x))ϕ(y)dy = 0 for a.e. x ∈ O. (2.15)

The space C∞0 (O,ℝ) being separable (with its usual LF-topology), there exists a countable set F ⊆ C
∞
0 (O,ℝ)

which is dense;moreover, by (2.15), for every ϕ ∈ F there exists a set E(ϕ) ⊆ O, with zero-Lebesguemeasure,
such that

∫
O

(gL(y; x) − g̃(y; x))ϕ(y)dy = 0 for all x ∈ E(ϕ).

We then define E := ⋃ϕ∈F E(ϕ). Since F is countable and E(ϕ) has zero-Lebesgue measure for every ϕ, we
see that E has measure zero; moreover, for every x ∈ O \ E we have

∫
O

(gL(y; x) − g̃(y; x))ϕ(y)dy = 0 for all ϕ ∈ F.

This proves that, for every x ∈ O \ E, the distribution gL( ⋅ ; x) − g̃( ⋅ ; x) vanishes on F; the latter being dense,
we then conclude that gL( ⋅ ; x) = g̃( ⋅ ; x) in L1(O) for a.e. x, y ∈ O.

This ends the proof.

Remark 2.9. The approach adopted for the proof of Theorem 2.8 shows the reason why we have assumed
that d − div(b) ≥ 0 and d − div(c) ≥ 0 in the sense of distributions.

In fact, under this assumption, all the mentioned results in [20] hold both forL and for its transposeLT ;
in particular, this allows us to obtain point-wise estimates both for

∇xgL(y; x) = ∇xG(x; y) and ∇ygL(y; x).

Remark 2.10. It is contained in the proof of Theorem 2.8 the following fact: if L is of the form (2.1) and if
b ≡ c on O, then the Green’s function for GL is symmetric, that is,

gL(y; x) = gL(x; y) for a.e. x, y ∈ O.

In fact, if b ≡ c onO, then the adjoint operatorLT coincides withL (see (2.11)); thus, following the notation
in the proof of Theorem 2.8, we have

gL(x; y) = G(x; y) = gL(y; x).



918 | S. Biagi et al., Positive Solutions for Nonlocal Elliptic Systems

Remark 2.11. By carefully scrutinizing the proofs of the existence results for gL contained in [20, Proposi-
tion 5.3], one can recognize that the following properties hold:
(a) for a.e. x ∈ O and every ϵ > 0, we have gL( ⋅ ; x) ∈ W1,2(O \ B(x, ϵ)),
(b) gL( ⋅ ; x) is a solution of LTu = 0 in O \ B(x, ϵ), where LT is as in (2.11).
Analogously, an inspection to the proof of [20, Theorem 6.12] shows that
(a’) for a.e. y ∈ O and every ϵ > 0, we have G( ⋅ ; y) = gL(y; ⋅ ) ∈ W1,2(O \ B(y, ϵ)),
(b’) G( ⋅ ; y) = gL(y; ⋅ ) is a solution of Lu = 0 in O \ B(y, ϵ).
Gathering together all these facts, from the classical elliptic regularity theory (see, e.g., [11, Corollary 8.36])
we deduce that gL is of class C1,α out of the diagonal of O × O.

We now use the point-wise estimates in (2.9)–(2.10) to prove the following lemma.

Lemma 2.12. Let assumptions (H0)–(H4) be in force, and let gL be the Green’s function for GL. Moreover, let
ρ := diam(O). Then the following estimates hold:

∫
O

gL(y; x)dy ≤ c0 ⋅
n ωn ρ2

2 for a.e. x ∈ O, (2.16)

∫
O

∂xigL(y; x)
dy ≤ c1 ⋅ n ωn ρ for a.e. x ∈ O. (2.17)

Here ωn is the Lebesgue measure of the unit ball B(0, 1) ⊆ ℝn.

Proof. We begin by proving (2.16). To this end we first notice that, if x ∈ O is arbitrary, then O ⊆ B(x, ρ); as
a consequence, by crucially exploiting estimate (2.9) we get

∫
O

gL(y; x)dy ≤ c0 ∫
O

‖x − y‖2−n dy ≤ c0 ∫
B(x,ρ)

‖x − y‖2−n dy

= c0 ∫
B(0,ρ)

‖y‖2−n dy = c0
ρ

∫
0

t2−n Hn−1(∂B(0, t))dt

= c0 n ωn

ρ

∫
0

t dt = c0 ⋅
n ωn ρ2

2 ,

which is exactly the desired (2.16). As for the proof of (2.17), we argue essentially in the same way: by
crucially exploiting estimate (2.10) we get

∫
O

∂xigL(y; x)
dy ≤ c1 ∫

O

‖x − y‖1−n dy ≤ c1 ∫
B(x,ρ)

‖x − y‖1−n dy

= c1 ∫
B(0,ρ)

‖y‖1−n dy = c1
ρ

∫
0

t1−n Hn−1(∂B(0, t))dt

= c1 n ωn

ρ

∫
0

dt = c1 ⋅ n ωn ρ,

and this is precisely the desired inequality (2.17).

Remark 2.13. We explicitly observe that, by combining estimate (2.16) in Lemma 2.12 with the representa-
tion formula (2.8), for a.e. x ∈ O we obtain

0 ≤ GL(1̂)(x) = ∫
O

g(y; x)dy ≤ c0 ⋅
n ωn ρ2

2 ,

where ρ := diam(O) and 1̂ denotes the constant function equal to 1 on O. As a consequence, since we have
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GL(1̂) ∈ C(O,ℝ), we get

‖GL(1̂)‖∞ ≤ c0 ⋅
n ωn ρ2

2 .

We conclude this part of the section by deducing from (2.8) an integral representation for the xi-derivatives of
GL(f). To this endwefirst observe that, if f ∈ C(O,ℝ), Lemma2.12 ensures that the following “potential-type”
functions are well-defined:

P(i)f(x) := ∫
O

∂xigL(y; x)f(y)dy (for i = 1, . . . , n). (2.18)

In fact, by estimate (2.17) in Lemma 2.12 we have (for i = 1, . . . , n)

∫
O

|∂xigL(y; x)| ⋅ |f(y)|dy ≤ ‖f‖∞ ⋅ ∫
O

|∂xigL(y; x)|dy ≤ ‖f‖∞ ⋅ c1 n ωn diam(O) (for a.e. x ∈ O).

Moreover, from the above computation we also infer that (again for i = 1, . . . , n)

P(i)f ∈ L∞(O) and ‖P(i)f‖L∞(O) ≤ ‖f‖∞ ⋅ c1 n ωn diam(O).

We are then ready to prove the following proposition.

Proposition 2.14. Let assumptions (H0)–(H4) be in force, and let f ∈ C(O,ℝ). Moreover, let i ∈ {1, . . . , n} be
fixed, and let P(i)f be as in (2.18). Then we have

∂xiGL(f)(x) = P(i)f(x) = ∫
O

∂xigL(y; x)f(y)dy for a.e. x ∈ O. (2.19)

Proof. We first notice, since GL(f) ∈ C1,α(O,ℝ), the identity (2.19) follows if we show that the L∞-function
P(i)f is the weak derivative (in L1(O)) of GL(f). To prove this fact, we argue as follows: firstly, if ϕ ∈ C∞0 (O,ℝ),
by estimate (2.16) in Lemma 2.12 we get

∫
O×O

gL(y; x) ⋅ |f(y)| ⋅ |∂xiϕ(x)|dx dy ≤ ‖f‖C(O,ℝ) ⋅ ‖∂iϕ‖∞ ⋅ ∫
O

(∫
O

gL(y; x)dy)dx

≤ ‖f‖C(O,ℝ) ⋅ ‖∂iϕ‖∞ ⋅ c0 ⋅
n ωn diam(O)2

2 ⋅ |O|;

we are then entitled to apply Fubini’s Theorem, obtaining

∫
O

GL(f)(x)∂xiϕ(x)dx = ∫
O

(∫
O

gL(y; x)f(y)dy)∂xiϕ(x)dx

= ∫
O

(∫
O

gL(y; x)∂xiϕ(x)dx)f(y)dy (since gL(y; ⋅ ) ∈ W
1,1
0 (O), see Theorem 2.8 (III))

= −∫
O

(∫
O

∂xigL(y; x)ϕ(x)dx)f(y)dy =: (⋆).

On the other hand, since the estimate (2.17) in Lemma 2.12 implies that

∫
O×O

|∂xigL(y; x)| ⋅ |f(y)| ⋅ |ϕ(x)|dx dy ≤ ‖f‖∞ ⋅ ‖ϕ‖∞ ⋅ ∫
O

(∫
O

|∂xigL(y; x)|dy)dx

≤ ‖f‖∞ ⋅ ‖ϕ‖∞ ⋅ c1 ⋅ n ωn diam(O) ⋅ |O|,

another application of Fubini’s Theorem is legitimate, and we get

(⋆) = −∫
O

(∫
O

∂xigL(y; x)f(y)dy)ϕ(x)dx
(2.18)
= −∫

O

P(i)f(x)ϕ(x)dx.

Due to the arbitrariness of ϕ ∈ C∞0 (O,ℝ), we then conclude thatP(i)f is the weak derivative of GL(f) in L1(O),
and the proof is complete.
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Remark 2.15. By using the regularity of gL described in Remark 2.11, it is quite standard to recognize that,
for a fixed f ∈ C(O,ℝ), the functions

O ∋ x → ∫
O

gL(y; x)f(y)dy and P(1)f, . . . ,P(n)f

are continuous on O. As a consequence, the representation formulas (2.8) and (2.19) actually hold true for
every x ∈ O (not only almost everywhere).

2.3 Spectral Properties of GL

We conclude this section by briefly turning our attention to the spectral properties of the Green’s operator GL.
To begin with, we remind the following theorem (see, e.g., [11, Theorem 8.6]).

Theorem 2.16. Let assumptions (H0)–(H4)be in force. Then there exists a countable anddiscrete set Σ ⊆ (0,∞)
with the following property: for every σ ∈ Σ the subspace of solutions of the homogeneous problem

{
Lu = σu in O,

u|∂O = 0,

has positive finite dimension (as a subspace ofW1,2(O)).

By making use of Theorem 2.16, we can prove the Proposition 2.17 below.

Proposition 2.17. Let assumptions (H0)–(H4) be in force, and let GL be the Green’s operator forL (thought of
as an operator from C(O,ℝ) into itself). Then the following facts hold true:
(i) The spectral radius r(GL) of GL is strictly positive.
(ii) There exists a nonnegative u0 ∈ C1,α(O,ℝ) \ {0} such that

GL(u0) = r(GL)u0.

Proof. (i) On account of Theorem 2.16, we can find a real number σ > 0 and a function uσ ∈ W1,2(O) \ {0}
such that

{
{
{

Lu = σu in O,
u∂O = 0.

On the other hand, by applying the classical Elliptic Regularity Theory to Lσ := L − σ (see, e.g., [11, Corol-
lary 8.35]), one can find a function ûσ ∈ C1,α(O,ℝ) such that

ûσ ≡ uσ a.e. on O;

as a consequence, by the very definition of GL we infer that

GL(ûσ) =
1
σ
ûσ .

This proves that λ := 1
σ > 0 lays in the (point-wise) spectrum of GL (thought of as an operator from C(O,ℝ)

into itself), and thus r(GL) > 0.
(ii) First of all, since C1(O,ℝ) is continuously embedded in C(O,ℝ), we straightforwardly derive from

Proposition 2.7 (ii) that GL is compact from C(O,ℝ) into itself; moreover, if we denote by V0 the convex cone
in C(O,ℝ) defined as

V0 := C(O,ℝ+) = {u ∈ C(O,ℝ) : u ≥ 0 on O},

we know from Proposition 2.7 (iii) that GL(V0) ⊆ V0. Since, obviously, V0 − V0 is dense in C(O,ℝ) and since,
by statement (i), the spectral radius r(GL) of GL is strictly positive, we are entitled to apply Krein–Rutman’s
Theorem, ensuring that r(GL) is an eigenvalue of GL with positive eigenvector: this means that there exists
u0 ∈ V0 \ {0} such that

GL(u0) = r(GL)u0 ⇐⇒ u0 =
1

r(GL)
GL(u0).
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Now, since u0 ∈ V0 \ {0}, we have u0 ≥ 0 and u ̸≡ 0 on O; moreover, reminding that GL maps C(O,ℝ) into
C1,α(O,ℝ) (see (2.6)), we derive that u0 ∈ C1,α(O,ℝ). Gathering together all these facts, we conclude that
u0 ∈ C1,α(O,ℝ) \ {0} and that u ≥ 0 on O, as desired.

3 Existence and Non-existence Results
In this section we study the solvability of the following system of second order elliptic differential equations
subject to functional BCs

{
Lkuk = λk fk(x, u1, . . . , um , ∇u1, . . . , ∇um) in O (k = 1, 2, . . . ,m),
uk(x) = ηk ζk(x) hk[u1, . . . , um] for x ∈ ∂O (k = 1, 2, . . . ,m),

(3.1)

where, as in the Introduction, m ≥ 1 is a fixed natural number, O ⊆ ℝn is an open set and L1, . . . ,Lm are
uniformly elliptic PDOs on O as in Section 2. To be more precise, we suppose that
(I) O is bounded, connected and of class C1,α for some α ∈ (0, 1),
(II) for every fixed k = 1, . . . ,m, the differential operatorLk satisfies assumptions (H1)–(H3) introduced in

Section 2, that is,
∙ Lk takes the divergence form (2.1), i.e.,

Lku := −
n
∑
i,j=1

∂xi(a
(k)
i,j (x)∂xju + b

(k)
i (x)u) +

n
∑
i=1

c(k)i (x)∂xiu + d
(k)(x)u,

∙ the coefficient functions of Lk belong to C1,α(O,ℝ),
∙ the matrix A(k)(x) := (a(k)i,j (x))i,j is symmetric for any x ∈ O,
∙ Lk is uniformly elliptic in O, i.e., there exists Λk > 0 such that

1
Λk
‖ξ‖2 ≤

n
∑
i,j=1

a(k)i,j (x)ξiξj ≤ Λk‖ξ‖2 for any x ∈ O and ξ ∈ ℝn \ {0},

∙ for every nonnegative function φ ∈ C∞0 (O,ℝ) one has

∫
O

(d(k)φ +
n
∑
i=1

b(k)i ∂xiφ)dx ≥ 0, ∫
O

(d(k)φ +
n
∑
i=1

c(k)i ∂xiφ)dx ≥ 0.

Furthermore, for every fixed k = 1, . . . ,m we also assume that
(III) fk is a real-valued function defined on O ×ℝm ×ℝnm,
(IV) hk is a real-valued operator defined on the space C1(O,ℝm),
(V) ζk ∈ C1,α(O,ℝ) and ζk ≥ 0 on O,
(VI) λk , ηk are nonnegative real parameters.
Throughout the sequel, if u1, . . . , um are real-valued functions defined on O, we set

u(x) := (u1(x), . . . , um(x)) (x ∈ O).

If, in addition, u ∈ C1(O,ℝm) (that is, u1, . . . , um ∈ C1(O,ℝ)), we define

Du(x) := (∇u1(x), . . . , ∇um(x)) (x ∈ O).

Now, in view of assumptions (I)–(II), all the results presented in Section 2 can be applied to each operatorLk
(for a fixed k = 1, . . . ,m); in particular, for every f ∈ C(O,ℝ) there exists a unique solution uf ∈ C1,α(O,ℝ) of
the Poisson problem

{
Lku = f in O,
u|∂O = 0.

(3.2)

Furthermore, since the function ζk belongs to C1,α(O,ℝ) (see assumption (V)), there exists a unique solution
γk ∈ C1,α(O,ℝ) of the Dirichlet problem

{
Lku = 0 in O,
u|∂O = ζk .

(3.3)
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We then denote by Gk the Green’s operator GLk for Lk defined in (2.6), and we indicate by gk the Green’s
function gLk for the operatorGk defined throughTheorem2.8.We remind that, if f ∈ C(O,ℝ) is arbitrary fixed,
Gk(f) is the unique solution in C1,α(O,ℝ) of the Poisson problem (3.2); moreover, we have the representation
formulas

Gk(f)(x) = ∫
O

gk(y; x)f(y)dy and ∂xiGk(f)(x) = ∫
O

∂xigk(y; x)f(y)dy,

holding true for a.e. x ∈ O and any i = 1, . . . , n (see Theorem 2.8 and Proposition 2.14).
Finally, according to Proposition 2.17, we denote by rk = r(Gk) > 0 the spectral radius of the operator Gk

(thought of as anoperator from C1(O,ℝ) into itself) andwefixonce and for all a functionφk ∈ C1,α(O,ℝ) \ {0}
such that (setting μk := 1

rk )
φk = μk Gk(φk) and φk ≥ 0 on O. (3.4)

Now that we have properly introduced all the “mathematical objects” appearing in problem (3.1), it is oppor-
tune to define what we mean by a solution of this problem.

To this end, we first fix some notation. Assume for the moment that f1, . . . , fm are continuous on
O ×ℝm ×ℝnm (as we shall see in Theorem 3.3, this assumption can be relaxed by requiring that the func-
tions fi are continuous on a suitable subset of their domain). Then, for every index k ∈ {1, . . . ,m}, we denote
by Fk the so-called superposition (Nemytskii) operator associated with fk, that is,

Fk : C1(O,ℝm)→ C(O,ℝ), Fk(u) := fk(x, u, Du).

Moreover, we consider the operators T, Γ : C1(O,ℝm)→ C1(O,ℝm) defined by

T(u) = (λk (Gk ∘ Fk)(u))k=1,...,m and Γ(u) := (ηk γk(x) hk[u])k=1,...,m .

We can now give the definition of solution of problem (3.1).

Definition 3.1. We say that a function u ∈ C1(O,ℝm) is a weak solution of system (3.1) if u is a fixed point of
the operator T + Γ, that is,

u = T(u) + Γ(u) = (λk (Gk ∘ Fk)(u) + ηk γk(x) hk[u])k=1,...,m .

If, in addition, the components of u are nonnegative and uj ̸≡ 0 for some j, we say that u is a nonzero positive
solution of system (3.1).

For our existence result, we make use of the following proposition that states the main properties of the
classical fixed point index, for more details see [2, 15]. In what follows the closure and the boundary of
subsets of a cone P̂ are understood to be relative to P̂.

Proposition 3.2. Let X be a real Banach space and let P̂ ⊂ X be a cone. Let D be an open bounded set of X with
0 ∈ D ∩ P̂ and D ∩ P̂ ̸= P̂. Assume that T : D ∩ P̂ → P̂ is a compact operator such that x ̸= T(x) for x ∈ ∂(D ∩ P̂).
Then the fixed point index iP̂(T, D ∩ P̂) has the following properties:
(i) If there exists e ∈ P̂ \ {0} such that x ̸= T(x) + σe for all x ∈ ∂(D ∩ P̂) and all σ > 0, then iP̂(T, D ∩ P̂) = 0.
(ii) If T(x) ̸= σx for all x ∈ ∂(D ∩ P̂) and all σ > 1, then iP̂(T, D ∩ P̂) = 1.
(iii) Let D1 be open bounded in X such that (D1 ∩ P̂) ⊂ (D ∩ P̂). If iP̂(T, D ∩ P̂) = 1 and iP̂(T, D1 ∩ P̂) = 0, then T

has a fixed point in (D ∩ P̂) \ (D1 ∩ P̂). The same holds if iP̂(T, D ∩ P̂) = 0 and iP̂(T, D1 ∩ P̂) = 1.

We can now state a result regarding the existence of positive solutions for system (3.1).
In the sequel, we will consider on the spaceℝs (where s will be either m, n or mn) the maximum norm

|v| := max
i=1,...,s
|vi| (if v = (v1, . . . , vs)). (3.5)

We will work in the Banach space C(O,ℝm) endowed with the norm

‖z‖∞ = max
x∈O
|z(x)| := max{‖z1‖∞, . . . , ‖zm‖∞},
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where z = (z1, . . . , zm) ∈ C(O,ℝm), compare also with (2.4). Moreover, we will consider the Banach space
C1(O,ℝm) endowed with the norm

‖u‖C1(O,ℝm) := max{ max
k=1,2,...,m

‖uk‖∞, max
k=1,2,...,m

‖∇uk‖∞},

= max{‖uk‖∞, ‖∂xluk‖∞ : k = 1, . . . ,m and l = 1, . . . , n}; (3.6)

notice that (3.6) reduces to (2.5) when m = 1. Given a finite sequence ϱ = {ρk}mk=1 ⊆ (0, +∞), we define

I(ϱ) =
m
∏
k=1
[0, ρk] and R(ϱ) =

m
∏
k=1

Rρk , (3.7)

where Rρ = {v ∈ ℝn : |v| ≤ ρ} (for t > 0); we also introduce, with abuse of notation, the sets

P := {u ∈ C1(O,ℝm) : uk ≥ 0 on O for every k = 1, . . . ,m},

P(ϱ) = {u ∈ C1(O,ℝm) : u(x) ∈ I(ϱ) and Du(x) ∈ R(ϱ) for all x ∈ O} ⊆ P.

Theorem 3.3. Let assumptions (I)–(VI) be in force. Moreover, let us suppose that one can find a finite sequence
ϱ = {ρk}mk=1 ⊆ (0,∞) satisfying the following hypotheses:
(a) For every k = 1, . . . ,m, one has that

(a)1 fk continuous and nonnegative on O × I(ϱ) × R(ϱ),
(a)2 hk continuous, nonnegative and bounded on P(ϱ).

(b) There exist δ ∈ (0, +∞), k0 ∈ {1, 2, . . . ,m} and ρ0 ∈ (0,mink=1,...,m ρk) such that

fk0 (x, z,w) ≥ δzk0 for every (x, z,w) ∈ O × I0 × R0, (3.8)

where I0 := ∏m
i=1[0, ρ0] and R0 := ∏

m
k=1 Rρ0 .

(c) Setting, for every k = 1, . . . ,m,

Mk := max {fk(x, z,w) : (x, z,w) ∈ O × I(ϱ) × R(ϱ)},

Hk := sup
u∈P(ϱ)

hk[u],
(3.9)

the following inequalities are satisfied:
(c)1 μk0 ≤ δλk0 ,
(c)2 λk Mk ‖Gk(1̂)‖∞ + ηk Hk‖γk‖∞ ≤ ρk,
(c)3 for any l = 1, . . . , n we have λk Mk Gk,l + ηk Hk‖∂xl γk‖∞ ≤ ρk, where

Gk,l := sup
x∈O
∫
O

|∂xlgk(y; x)|dy (see Lemma 2.12). (3.10)

Then system (3.1) has a nonzero positive weak solution u ∈ C1(O,ℝm) such that

‖u‖C1(O,ℝm) ≥ ρ0 and ‖uk‖∞ ≤ ρk for every k = 1, . . . ,m. (3.11)

Proof. For the sake of readability, we split the proof into different steps.

Step I: We first prove that the operator A := T + Γ maps P(ϱ) into P. To this end, let u ∈ P(ϱ) and let
k ∈ {1, . . . ,m} be fixed. Since u ∈ P(ϱ), from assumption (a)2 we derive that hk[u] ≥ 0; moreover, since
γk ≥ 0 on O (see Proposition 2.7 (iii)) and since, by assumption (VI), ηk ≥ 0, we get

Γk(u)(x) = ηk γk(x) hk[u] ≥ 0 for all x ∈ O. (3.12)

On the other hand, since u ∈ P(ϱ), by assumption (a)1 we also have that

Fk(u)(x) = fk(x, u(x), Du(x)) ≥ 0 for all x ∈ O;

as a consequence, from Proposition 2.7 (iii) we derive that Gk(Fk(u)) ≥ 0 on O. Finally, since λk ≥ 0 (by
assumption (IV)), we get

Tk(u)(x) = λk Gk(Fk(u)(x)) ≥ 0 for every x ∈ O. (3.13)

By (3.12), (3.13) and the arbitrariness of k, we conclude thatA(P(ϱ)) ⊆ P.
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Step II: We now prove thatA : P(ϱ)→ P is compact. To this end, let {uj}j∈ℕ be a bounded sequence in P(ϱ),
and let k ∈ {1, . . . ,m} be fixed. Since hk is nonnegative and bounded on P(ϱ) (see assumption (a)2), the
sequence {hk[uj]}j is bounded in (0,∞); as a consequence, there exists θ0 ∈ [0,∞) such that (up to a sub-
sequence)

lim
j→∞

Γk(uj) = ηk γk(x) θ0 in C1(O,ℝ). (3.14)

On the other hand, since {uj}j ⊆ P(ϱ) and since fk is continuous on O × I(ϱ) × R(ϱ) (see assumption (a)1), we
have (using the notation in (3.9))

‖F(uj)‖∞ ≤ Mk for every j ∈ ℕ.

As a consequence, since the operator Gk is compact (as an operator from C(O,ℝ) into C1(O,ℝ), see Propo-
sition 2.7 (ii)), it is possible to find a function wk ∈ C1(O,ℝ) such that (again by possibly passing to a sub-
sequence)

lim
j→∞

Tk(uj) = lim
j→∞
(λk Gk(Fk(uj))) = λk wk in C1(O,ℝ). (3.15)

Gathering together (3.14), (3.15) and (3.6), we infer that (up to a suitable sub-sequence)

lim
j→∞

A(uj) = (λk wk + ηk γk θ0)k=1,...,m =: ũ in C1(O,ℝm).

Finally, since {A(uj)}j ⊆ P (by Step I) and since P is closed, we conclude that ũ ∈ P; this proves the compact-
ness ofA (as an operator from P(ϱ) to P).

To proceed further, we consider the set P0 ⊆ C1(O,ℝm) defined as follows:

P0 = {u ∈ C1(O,ℝm) : u(x) ∈ I0 and Du(x) ∈ R0 for all x ∈ O} ⊆ P(ϱ),

where I0 and R0 are as in assumption (b). Now, if the operator A = T + Γ has a fixed point u0 ∈ ∂P0 ∪ ∂P(ϱ)
(where the boundaries are both relative to P), then u0 is a solution of problem (3.1) satisfying (3.11), and the
theorem is proved.

If, instead,A is fixed-point free on ∂P0 ∪ ∂P(ϱ), the fixed-point indexes iP(A, P0\∂P0), iP(A, P(ϱ)\∂P(ϱ))
are well-defined. Assuming this last possibility, we consider the following steps.

Step III: In this step we prove the following fact:

iP(A, P(ϱ) \ ∂P(ϱ)) = 1. (3.16)

According to Proposition 3.2 (ii), to prove (3.16) it suffices to show that

A(u) ̸= σ u for every u ∈ ∂P(ϱ) and every σ > 1. (3.17)

To establish (3.17), we argue by contradiction, and we suppose that there exist a function u ∈ ∂P(ϱ) and a
real σ > 1 such that

σu = A(u) = T(u) + Γ(u).
Since u ∈ ∂P(ϱ), there exists an index k ∈ {1, . . . ,m} such that either

‖uk‖∞ = ρk or ‖∇uk‖∞ = ρk .

We then distinguish these two cases.

Case ‖uk‖∞ = ρk. By exploiting assumption (a)1 and (3.9), we have

0 ≤ Fk(u)(x) = fk(x, u(x), Du(x)) ≤ Mk for all x ∈ O; (3.18)

from this, we derive the following chain of inequalities:

σuk(x) = λk Gk(Fk(u))(x) + ηk γk(x) hk[u]
≤ λk Gk(Mk1̂)(x) + ηk γk(x) hk[u] (since Gk(Mk1̂ − Fk(u)) ≥ 0, see (3.18) and Proposition 2.7 (iii))
≤ λk Gk(Mk1̂)∞ +

ηk Hk γk∞ (since u ∈ ∂P(ϱ) ⊆ P(ϱ), see (3.9))
= λk Mk

Gk(1̂)‖∞ + ηk Hk ‖γk‖∞
≤ ρk (see assumption (c)2). (3.19)
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As a consequence, by taking the supremum for x ∈ O in (3.19) (and by reminding that u ∈ ∂P(ϱ) ⊆ P(ϱ)), we
then obtain

sup
x∈O
|σ uk(x)| ≤ σ ρk ≤ ρk ,

which is clearly a contradiction (since σ > 1).

Case ‖∇uk‖∞ = ρk. By the very definition of ‖ ⋅ ‖∞, there exists l ∈ {1, . . . , n} such that ‖∂xluk‖∞ = ρk .More-
over, by Proposition 2.14 we have

σ ∂xluk(x) = λk ∫
O

∂xlgk(y; x)fk(x, u(y), Du(y))dy + ηk ∂xl γk(x) hk[u],

for a.e. x ∈ O. By means of this representation formula, we then obtain

σ ∂xluk(x)| ≤ λk ∫
O

|∂xlgk(y; x)fk(x, u(y), Du(y))|dy + ηk hk [u]|∂xl γk(x)|

≤ λk Mk ∫
O

|∂xlgk(y; x)|dy + ηk Hk |∂xl γk(x)| (since u ∈ ∂P(ϱ) ⊆ P(ϱ), see also (3.18))

≤ λk Mk Gk,l + ηk Hk ‖∂xl γk‖∞ (see (3.10)).

As a consequence, by taking the supremum for x ∈ O in (3.19) (and by reminding that ‖∂xluk‖∞ = ρk), from
assumption (c)3 we infer that

sup
x∈O
(σ|∂xluk(x)|) = σ ρk ≤ λk Mk Gk,l + ηk Hk ‖∂xl γk‖∞ ≤ ρk ,

which is clearly a contradiction (as σ > 1).

This completes the demonstration of (3.17).

Step IV: In this last step we prove the following fact:

iP(A, P0 \ ∂P0) = 0. (3.20)

According to Proposition 3.2 (i), to prove (3.20) it suffices to show that there exists a suitable function
e ∈ P \ {0} satisfying the property

A(u) + σe ̸= u for every u ∈ ∂P0 and every σ > 0. (3.21)

To establish (3.21), we let e := (φ1, . . . , φm) (where φ1, . . . , φm are as in (3.4)) and we argue by contradic-
tion: we thus suppose that there exist u ∈ ∂P0 and σ > 0 such that

u = A(u) + σe = T(u) + Γ(u) + σe.

Since u ∈ ∂P0 ⊆ P0 ⊆ P(ϱ) (by the definition of P0, see assumption (b)), we know from Step I that A(u) ∈ P;
as a consequence, if k0 is as in assumption (b), we have

uk0 = A(u)k0 + σ φk0 ≥ σφk0 on O.

Furthermore, by exploiting once again assumption (b) we get

Fk0 (u) = fk0 (x, u(x), Du(x)) ≥ δuk0 (x) ≥ δσφk0 (x) for all x ∈ O. (3.22)

Gathering together all these facts, for every x ∈ O we have

uk0 (x) = λk0Gk0(Fk0 (u))(x) + ηk0 γk0 (x) hk0 [u] + σ φk0 (x)
≥ λk0 Gk0 (δσφk0 )(x) + σφk0 (x) (since Gk0 (Fk0 (u) − δσφk0 ) ≥ 0, see (3.22) and Proposition 2.7 (iii))

=
δλk0
μk0
⋅ σφk0 (x) + σφk0 (x) (since φk0 is an eigenfunction of Gk0 , see (3.4))

≥ 2σφk0 (x) (see assumption (c)1).
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By iterating the above argument, for every x ∈ O we get

uk0 (x) ≥ pσφk0 (x) for every p ∈ ℕ,

but this is contradiction with the boundedness of uk0 ∈ C1(O,ℝ) (as φk0 ̸≡ 0).

We are now ready to conclude the proof of the theorem: in fact, by combining (3.16), (3.20) and Proposi-
tion 3.2 (iii), we infer the existence of a fixed point

u0 ∈ (P(ϱ) \ ∂P(ϱ)) \ P0

ofA = T + Γ; thus, u0 is a solution of (3.1) satisfying (3.11).

Remark 3.4. Let the assumption and the notation of Theorem3.3 do apply.We have already pointed out that,
since ζ1, . . . , ζm ∈ C1,α(O,ℝ) (see assumption (V)), one has

γk ∈ C1,α(O,ℝ) for every k = 1, . . . ,m.

As a consequence, the operator Γ maps C1(O,ℝm) into C1,α(O,ℝm). On the other hand, since the operators
G1, . . . , Gm map C(O,ℝ) into C1,α(O,ℝ), we also have that

T(C1(O,ℝm)) ⊆ C1,α(O,ℝm).

Gathering together all these facts, we conclude that any weak solution of (3.1) (i.e., any fixed point of
A = T + Γ in C1(O,ℝm)) is actually of class C1,α on O.

An elementary argument yields the following non-existence result.

Theorem 3.5. Let assumptions (I)–(IV) be in force. Moreover, let us suppose that there exists a finite sequence
ϱ = {ρk}mk=1 ⊆ (0,∞) such that, for every k = 1, . . . ,m, the following conditions hold:
(a) fk is continuous on O × I(ϱ) × R(ϱ), and there exist τk ∈ (0, +∞) such that

0 ≤ fk(x, z,w) ≤ τkzk for every (x, z,w) ∈ O × I(ϱ) × R(ϱ).

(b) hk is continuous and nonnegative on P(ϱ); moreover, there exist ξk ∈ (0, +∞) such that

hk[u] ≤ ξk ⋅ ‖u‖∞ for every u ∈ P(ϱ).

(c) The following inequality holds:
λkτk‖Gk(1̂)‖∞ + ηkξk‖γk‖∞ < 1. (3.23)

Then system (3.1) has at most the zero solution in P(ϱ).

Proof. We argue by contradiction and we assume that (3.1) has a solution u ∈ P(ϱ) \ {0}. According to
Definition 3.1, this means that u is a fixed point of the operator A = T + Γ. Setting ρ := ‖u‖∞ > 0, we let
j ∈ {1, 2, . . . ,m} such that

‖uj‖∞ = ρ. (3.24)

For every x ∈ O, we then have

0 ≤ Fj(u)(x) = fj(x, u(x), Du(x)) ≤ τjuj(x) ≤ τjρ; (3.25)

from this, we obtain

uj(x) = λj Gj(Fj(u))(x) + ηj γj(x) hj[u]
≤ λj Gj(τjρ1̂)(x) + ηj γj(x) hj[u] (since Gj(τjρ ⋅ 1̂ − Fj(u)) ≥ 0, see (3.25) and Proposition 2.7 (iii))
≤ λj Gj(τjρ1̂)

∞ +
ηj ξjρ γj

∞ (by assumption (b) and since ‖u‖∞ = ρ)
= (λj τj Gk(1̂)‖∞ + ηj ξj ‖γj‖∞)ρ. (3.26)

By taking the supremum in (3.26) for x ∈ O, from (3.23) and (3.24) we finally obtain

ρ = sup
x∈O

uj(x) ≤ (λj τj‖Gk(1̂)‖∞ + ηj ξj ‖γj‖∞)ρ < ρ,

a contradiction. Thus, problem (3.1) cannot have nonzero solutions in P(ϱ).
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4 Examples
In this last section we present a couple of concrete examples illustrating the applicability of ourmain results,
namely Theorems 3.3 and 3.5.

Example 4.1. On Euclidean spaceℝ3, let us consider the following BVP:

{{{{{{{{{
{{{{{{{{{
{

−∆u1 = λ1 eu1(1 + |∇u2|2) in B,
−∆u2 = λ2(16 − u22) cos(⟨∇u1, ∇u2⟩) in B,
u1|∂B = η1(u1(0) + u2(0)),

u2|∂B = η2 ∫
∂B1

u1(1 − |∇u2|2)dσ,

(4.1)

where B is the Euclidean ball centered at 0 with radius 1, and | ⋅ | is the max norm inℝ3, as in (3.5).
Obviously, this problem takes the form (3.1) with (here and throughout, we denote the points of ℝ6

byw = (w1,w2), withw1,w2 ∈ ℝ3)
(i) O := B,
(ii) L1 = L2 = −∆,
(iii) f1 : B ×ℝ2 ×ℝ6 → ℝ, f1(x, z,w) = ez1 (1 + |w2|2),
(iv) f2 : B ×ℝ2 ×ℝ6 → ℝ, f2(x, z,w) = (16 − z22) cos(⟨w1,w2⟩),
(v) h1 : C1(B,ℝ2)→ ℝ, h1[u1, u2] := u1(0) + u2(0),
(vi) h2 : C1(B,ℝ2)→ ℝ, h1[u1, u2] := ∫∂B u

2
1(1 − |∇u2|2)dσ,

(vii) ζ1 ≡ ζ2 ≡ 1.
Furthermore, it is straightforward to check that all the structural assumptions (I)–(VI) listed at the beginning
of Section 3 are satisfied (for every α ∈ (0, 1)).We now aim to show that, in this case, also assumptions (a)–(c)
in statement of Theorem 3.3 are fulfilled.

Assumption (a). To begin with, we consider the finite sequence

ϱ = {ρ1, ρ2}, where ρ1 = ρ2 = √
π
6 . (4.2)

Clearly, the function f1 is continuous and nonnegative on B × I(ϱ) × R(ϱ) (see (3.7) for the definition of I(ϱ)
and R(ϱ)); moreover, since ρ1, ρ2 ≤ 4 and since, by Cauchy–Schwarz inequality, we have (remind the defini-
tion of | ⋅ | in (3.5))

|⟨w1,w2⟩| ≤ 3 |w1| ⋅ |w2| ≤
π
2 for anyw = (w1,w2) ∈ R(ϱ),

we easily deduce that also f2 is (continuous and) nonnegative on B × I(ϱ) × R(ϱ).
As for the operators h1, h2, it is immediate to check that they are (continuous and) nonnegative when

restricted to the cone P(ϱ) (note that, ifu ∈ P(ϱ), we have |∇u2|≤ ρ2 < 1); furthermore, sinceu= (u1, u2) ∈ P(ϱ)
implies that 0 ≤ u1, u2 ≤ √ π

6 , we have

h1[u] = h1[u1, u2] ≤ 2√
π
6 and h2[u] = h2[u1, u2] ≤

π
6
∂B
 =

2π2
3 . (4.3)

Thus, h1, h2 are bounded on P(ϱ), and this proves that assumption (a) is fulfilled.

Assumption (b). First of all we observe that, by definition, one has

f1(x, z,w) ≥ ez1 for every (x, z,w) ∈ B ×ℝ2 ×ℝ6;

as a consequence, given any δ > 0, it is possible to find a small ρ0 = ρ0(δ) ∈ (0,√ π
6 ) such that (here,

I0 = [0, ρ0] × [0, ρ0] and R0 := Rρ0 × Rρ0 , see (3.7))

f1(x, z,w) ≥ ez1 ≥ δz1 for every (x, z,w) ∈ B × I0 × R0.

This proves that f1 satisfies (3.8), and thus assumption (b) is fulfilled (with k0 = 1).
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Assumption (c). We begin by explicitly computing the quantities appearing in (3.9). On the one hand, by the
very definition of f1, f2 we have

M1 = max
B×I(ϱ)×R(ϱ)

f1 = e
√ π

6 (1 + π6) and M2 = max
B×I(ϱ)×R(ϱ)

f2 = 16. (4.4)

On theother hand, onaccount of (4.3),wehave (notice that the constant functiondefinedonB byu := (√ π
6 , 0)

certainly belongs to P(ϱ))

H1 = sup
u∈P(ϱ)

h1[u] = 2√
π
6 and H2 = sup

u∈P(ϱ)
h2[u] =

2π2
3 . (4.5)

We now observe that, since L1 = L2 = −∆ (and taking into account the very definition of Green operator,
see (2.6)), one obviously has

G1(1̂) = GL1 (1̂) = G(−∆)(1̂) and G2(1̂) = GL2 (1̂) = G(−∆)(1̂),

where G(−∆)(1̂) is the unique solution of

{
− ∆u = 1 in B,
u|∂B = 0.

As a consequence, since a direct computation gives G(−∆)(1̂) = 1
6 (1 − ‖x‖

2), we get

‖G1(1̂)‖∞ = ‖G2(1̂)‖∞ =
1
6 . (4.6)

Analogously, since ζ1 ≡ ζ2 ≡ 1 (and again sinceL1 = L2 = −∆), from (3.3) we deduce that γ1 = γ2 = γ̂, where
γ̂ is the unique solution of

{
∆u = 0 in B,

u|∂B = 1.
As a consequence, since γ̂ ≡ 1 clearly solves the above problem, we get

‖γ1‖∞ = ‖γ2‖∞ = 1. (4.7)

Finally, according to (3.10), we turn to provide an explicit estimate for

sup
x∈B
∫
B

|∂xlg(−∆)(y; x)|dy (with l = 1, 2, 3),

where g(−∆) is the Green function for (−∆) (and related to B). To this end, we make crucial use of the explicit
expression of g(−∆) (see, e.g., [10, Section 2.2.4 (c)])

g(−∆)(y; x) =
1
4π (‖x − y‖

−1 − (1 + ‖x‖2‖y‖2 − 2⟨x, y⟩)−
1
2 ) (4.8)

where ‖ ⋅ ‖ is the usual Euclidean norm inℝ3. Starting from (4.8), a direct yet tedious computation shows that
(for every x, y ∈ B with x ̸= y)

|∂xlg(−∆)(y; x)| ≤
1

2π‖x − y‖2
;

as a consequence, for every x ∈ B we have

∫
B

|∂xlg(−∆)(y; x)|dy ≤
1
2π ∫

B

‖x − y‖−2 dy ≤ 1
2π ∫
{‖x−y‖<2}

‖x − y‖−2 dy

=
1
2π ∫
{‖y‖<2}

‖y‖−2 dy = 1
2π |∂B|

2

∫
0

dρ = 4.

Thus, taking into account that L1 = L2 = −∆, we obtain

G1,l = G2,l = sup
x∈B
∫
B

|∂xlg(−∆)(y; x)|dy ≤ 4 for every l = 1, 2, 3. (4.9)
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By gathering together (4.2), (4.4), (4.5), (4.6), (4.7) and (4.9), we are finally entitled to apply Theorem 3.3:
for any λ1 > 0 and any λ2, η1, η2 ≥ 0 satisfying

λ1
6 e√

π
6 (1 + π6) + 2 η1

√ π
6 ≤
√ π
6 (see assumption (c)2),

8
3 λ2 +

2π2
3 η2 ≤ √

π
6 (see assumption (c)2),

max{4λ1 e√
π
6 (1 + π6), 64λ2} ≤

√ π
6 (see assumption (c)3),

there exists at least one solution u = (u1, u2) ∈ C1(B,ℝ2) of (4.1) such that

‖u1‖∞, ‖u2‖∞ ≤ √
π
6 and ‖u‖C1(B,ℝ2) ≥ ρ0.

Here, ρ0 = ρ0(δ) > 0 is as in assumption (b) and δ > 0 is such that μ1 ≤ δλ1 (see assumption (c)1 and remind
that μ1 > 0 denotes the inverse of the spectral radius of L1 = −∆, see (3.4)). It should be noticed that, since
(3.8) holds for any given δ > 0 (by accordingly choosing ρ0 = ρ0(δ) > 0), there is no need to have an explicit
knowledge of μ1.

Example 4.2. On Euclidean spaceℝ3, let us consider the following BVP

{{{{{{{{{
{{{{{{{{{
{

−∆u1 = λ1 u21(1 − e−|∇u2|) in B,
−∆u2 = λ2 sin(u2)(u31 + |⟨∇u1, ∇u2⟩|) in B,

u1|∂B = η1 ∫
B

u22 dx,

u2|∂B = η2max
∂B

u1,

(4.10)

where B is the Euclidean ball with center 0 and radius 1 and we adopt the same notation of Example 4.1.
Obviously, this problem takes the form (3.1) with

(i) O := B,
(ii) L1 = L2 = −∆,
(iii) f1 : B ×ℝ2 ×ℝ6 → ℝ, f1(x, z,w) = z21(1 − e|w2|),
(iv) f2 : B ×ℝ2 ×ℝ6 → ℝ, f2(x, z,w) = sin(z2)(z31 + |⟨w1,w2⟩|),
(v) h1 : C1(B,ℝ2)→ ℝ, h1[u1, u2] := ∫B u

2
2 dx,

(vi) h2 : C1(B,ℝ2)→ ℝ, h1[u1, u2] := max∂B u1,
(vii) ζ1 ≡ ζ2 ≡ 1.
Furthermore, it is straightforward to check that all the structural assumptions (I)–(VI) listed at the beginning
of Section 3 are satisfied (for every α ∈ (0, 1)). We now aim to show that, in this case, assumptions (a)–(c) in
statement of Theorem 3.5 are fulfilled.

Assumption (a). To begin with, we consider the finite sequence

ϱ = {ρ1, ρ2}, where ρ1 = ρ2 = 1. (4.11)

Clearly, f1 is continuous and nonnegative on B × I(ϱ) × R(ϱ); moreover, for every (x, z,w) ∈ B × I(ϱ) × R(ϱ)
one has (notice that, if z ∈ I(ϱ), then 0 ≤ z1 ≤ 1)

0 ≤ f1(x, z,w) = z1 ⋅ (z1(1 − e−|w2|)) ≤ z1. (4.12)

Thus, f1 fulfills assumption (a) (with τ1 = 1).
As regards f2, we obviously have that also this function is continuous and nonnegative on B× I(ϱ)×R(ϱ);

moreover, since 0 ≤ sin(t) ≤ t for every 0 ≤ t ≤ 1, we have for every (x, z, w) ∈ B × I(ϱ) × R(ϱ),

0 ≤ f2(x, z,w) ≤ z2(1 + |⟨w1,w2⟩|)

≤ z2(1 + 3 |w1| ⋅ |w2|) (by Cauchy–Schwarz inequality, see Example 4.1)
≤ 4z2 (since w = (w1,w2) ∈ R(ϱ) implies that |w1|, |w2| ≤ 1). (4.13)

As a consequence, also f2 satisfies assumption (a) (with τ2 = 4).
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Assumption (b). First of all, it is very easy to check that both h1 and h2 are continuous and nonnegative
when restricted to the cone P(ϱ) ⊆ C1(B,ℝ); moreover, since the condition u = (u1, u2) ∈ P(ϱ) implies that
0 ≤ u1, u2 ≤ 1, we get

h1[u] = h1[u1, u2] ≤ ∫
B

u2 dx ≤ (max
B

u2) ⋅ |B1| ≤
4π
3 ‖u‖∞, (4.14)

and this proves that h1 fulfills assumption (b) (with ξ1 = 4π
3 ).

Finally, by exploiting the very definition of ‖ ⋅ ‖∞, we have

h2[u] = h2[u1, u2] = max
∂B

u1 ≤ ‖u‖∞, (4.15)

and thus also h2 satisfies assumption (b) (with ξ2 = 1).

Assumption (c). By making use of all the computations already carried out in the previous Example 4.1, we
know that (see, precisely, (4.6) and (4.7))
(a) ‖G1(1̂)‖∞ = ‖G2(1̂)‖∞ = 1

6 ,
(b) ‖γ1‖∞ = ‖γ2‖∞ = 1.
As a consequence, by gathering together (4.11), (4.12), (4.13), (4.14), (4.15) and the above (a)–(b), we are
entitled to apply Theorem 3.5: for any λ1, λ2, η1, η2 ≥ 0 satisfying

λ1
2 +

4π
3 η1 < 1 and 2λ2 + η2 < 1,

the BVP (4.10) possesses only the zero solution (notice that u ≡ 0 trivially solves (4.10)).
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