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Abstract
In this paper, by using the convolution method, we obtain quantitative results in terms
of various moduli of smoothness for approximation of polyanalytic functions by poly-
analytic polynomials in the complex unit disc. Then, by introducing the polyanalytic
Gauss–Weierstrass operators of a complex variable, we prove that they form a con-
traction semigroup on the space of polyanalytic functions defined on the compact unit
disk. The quantitative approximation results in terms of moduli of smoothness are then
extended to the case of slice p-polyanalytic functions on the quaternionic unit ball.
Moreover, we show that also in the quaternionic case the Gauss–Weierstrass operators
of a quaternionic variable form a contraction semigroup on the space of polyanalytic
functions defined on the compact unit ball.
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102 S. G. Gal, I. Sabadini

1 Introduction and Preliminaries

Given a natural number p, a complex-valued function f of a complex variable is called
a p-analytic or polyanalytic of order p, in an open set G ⊂ C, if ∂

p
( f ) = 0 in G,

where ∂
p
is the p-power of the Cauchy-Riemann operator, i.e. ∂ = ∂/∂z. It can be

proved that f necessarily has the representation

f (z) = f0(z) + z f1(z) + · · · + z p−1 f p−1(z), z ∈ G, (1)

where f0, . . . , f p−1 are analytic (holomorphic) in G. If all f0, . . . , f p−1 are polyno-
mials, then f is called p-analytic polynomial and the degree deg( f ) (with respect to z)
of a p-analytic polynomial f , is defined as max{deg( f j ); j = 0, . . . , p−1}. For sim-
plicity, everywhere in the paper we assume that the degree of f is considered with
respect to z.

The concept of a polyanalytic function was introduced in 1908 by Kolossov, see
[34–37], to study elasticity problems. This stream of research was later on continued
by his student Muskhelishvili, see the book [42].

It is also worth mentioning the early paper by Pompeiu [47] and, one decade later,
thework of Burgatti, see [12], and in the thirties Teodorescu’s doctoral dissertation, see
[48]. However, a systematic study of polyanalytic functions was done by the Russian
school under the supervision of Balk, see his book [10].

Although the representation (1) suggests that the building blocks of polyanalytic
functions are holomorphic functions, the class of polyanalytic functions presents deep
differences from the class of holomorphic functions, see [10] for more information.

The lines of the current research on polyanalytic functions are various: the prob-
lem of the uniform approximation by p-analytic polynomials, see, e.g., Fedorovskiy
[18–21], Carmona–Fedorovskiy [13,14], Carmona–Paramonov–Fedorovskiy [15],
Baranov–Carmona–Fedorovskiy [11], Mazalov [39,40], Mazalov–Paramonov
–Fedorovskiy [41], Verdera [50], the study of wavelets and Gabor frames, see e.g.,
Abreu–Gröchenig [5], Abreu [2,3], the time-frequency analysis, see, e.g., Abreu–
Feichtinger [4], the sampling and interpolation in function spaces, see, e.g. [1], the
image and signal processing, see, e.g. Abreu [1]. Other contributions in this field can
be found in Pascali’s works [43–46].

For functions p-analytic in G and continuous in G, the available results on approx-
imation using p-analytic polynomials are of qualitative type.

Thus, the first goal of the present paper is to obtain, in Sect. 2, quantitative uni-
form approximation results in terms of various moduli of smoothness in the particular
case when G = D—the open unit disk in C. Section 3 introduces the polyanalytic
Gauss–Weierstrass complex operators, for which one proves that they form a con-
traction semigroup on the space of polyanalytic complex functions in the unit disk.
We then move to the quaternionic case, and in Sect. 3 we consider the particular case
when G = B is the open unit ball and we obtain quantitative results, similar to those
ones in the complex case, in uniform approximation by slice quaternionic polyana-
lytic polynomials. Finally, Sect. 5 deals with similar properties for the polyanalytic
Gauss–Weierstrass quaternionic operators. The quaternionic cases in Sects. 4 and 5 are
motivated by the recent introduction of the class of polyanalytic functions in the quater-
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nionic framework, see Alpay–Diki–Sabadini [7–9], Alpay–Colombo–Diki–Sabadini
[6].

To obtain our results, we use the classical method of convolution with various even
trigonometric kernels and with the Gauss–Weierstrass kernels, successfully used by
us in the past, see, e.g., Gal [22–24], Gal–Sabadini [27–31], Diki–Gal–Sabadini [17].

2 Approximation by Polyanalytic Polynomials

For p ∈ N and D the open unit disk in C, let us denote by Hp(D) the space of all
p-analytic functions in D and continuous in D, endowed with the uniform norm ‖ · ‖.
Definition 2.1 Let Kn(v) be an even trigonometric polynomial of degree dn ∈ N, with
Kn(v) ≥ 0, for all v ∈ [0, 2π ] and n ∈ N.

For i = √−1, f ∈ Hp(D) and n ∈ N, let us define the convolution operator

Ln( f )(z) = 1

cn
·
∫ 2π

0
f (zeiv)Kn(v)dv = 1

cn
·
∫ π

−π

f (zeiv)Kn(v)dv, (2)

where

cn =
∫ 2π

0
Kn(v)dv. (3)

By the formula in (1), it is immediate that Ln( f )(z) can be written in the form

Ln( f )(z) =
p−1∑
j=0

z j · 1

cn
·
∫ 2π

0
f j (ze

iv) · e−i jv · Kn(v)dv, n ∈ N, z ∈ D. (4)

Let us set

ω1( f ; δ)
D

= sup{| f (z1) − f (z2)|; |z1 − z2| ≤ δ, z1, z2 ∈ D}.

The first main result is the following.

Theorem 2.2 For f ∈ Hp(D), and each n ∈ N, Ln( f )(z) is a p-analytic polynomial
of degree dn + p − 1. In addition, if there exists a constant M > 0 (independent of n)

and αn → +∞, such that

1

cn
·
∫ π

0
vKn(v)dv ≤ M

αn
< +∞

for all n ∈ N, then

| f (z) − Ln( f )(z)| ≤ 2(1 + M)ω1

(
f ; 1

αn

)
D

, n ∈ N, z ∈ D. (5)

123



104 S. G. Gal, I. Sabadini

That is, since limn→∞ αn = +∞, it follows that Ln( f ) → f uniformly on D.

Proof Taking z = reix ∈ D, 0 ≤ r ≤ 1, we can write

Ln( f )(z) = 1

cn

∫ 2π

0
f (rei(v+x))Kn(v)dv = 1

cn

∫ 2π+x

0
f (reit )Kn(t − x)dt

= 1

cn

∫ 2π

0
f (reit )Kn(t − x)dt,

so that Ln( f )(z) is a convolution type operator.
Since Kn(v) is a trigonometric polynomial of degree dn , we have the representation

Kn(v) =
dn∑
q=0

(Aqe
iqv + Aqe

−iqv), Aq ∈ C, q = 0, . . . , dn .

Since f ∈ Hp(D), we have

f (zeiv) =
p−1∑
j=0

z j e−i jv f j (ze
iv),

where for each j = 0, . . . , p − 1, we can write

f j (z) =
∞∑
l=0

c( j)
l zl , z ∈ D,

with c( j)
l ∈ C.

Inspired by formula (4), we compute

f j (ze
iv) · e−i jv · Kn(v)

=
( ∞∑

l=0

c( j)
l zleilv

)⎛
⎝ dn∑

q=0

(Aqe
iqv + Aqe

−iqv)

⎞
⎠ e−i jv

=
⎛
⎝ ∞∑

l=0

dn∑
q=0

c( j)
l Aqe

iv(l+q)zl +
∞∑
l=0

dn∑
q=0

c( j)
l Aqe

iv(l−q)zl

⎞
⎠ e−i jv

=
∞∑
l=0

dn∑
q=0

c( j)
l Aqe

iv(l+q− j)zl +
∞∑
l=0

dn∑
q=0

c( j)
l Aqe

iv(l−q− j)zl

:= S1 + S2.
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Now, by integrating as in formula (4) and taking into account that

∫ 2π

0
eiv(λ+k)dv =

{
0 if k + λ 
= 0
2π if k + λ 
= 0

,

it easily follows that for each fixed j ∈ {0, . . . , p − 1}, ∫ 2π
0 S1dv reduces to a finite

sum of powers of zl (for those l, q ≥ 0 with l + q = j) and
∫ 2π
0 S2dv reduces to a

finite sum of powers of zl (for those l, q ≥ 0 with l − q = j). Moreover, it is clear
that the maximum for l is obtained in the sum S2 and it is given from the formula
l − q = j , i.e. l = q + j , therefore is attained for for j = p − 1.

In other words, this means that Ln( f )(z) is a p-analytic polynomial of degree
dn + p − 1 and this proves the first part of the theorem.

To prove the second part of the theorem, we use formula (2) and we have

| f (z) − Ln( f )(z)| ≤ 1

cn

∫ 2π

0
| f (z) − f (zeiv)|Kn(v)dv

= 1

cn

∫ π

−π

| f (z) − f (zeiv)|Kn(v)dv

≤ 1

cn

∫ 2π

0
ω1( f ; |z| · |eiv − 1|)

D
Kn(v)dv

≤ 1

cn
·
∫ 2π

0
ω1( f ; 2 · | sin(v/2)|)

D
Kn(v)dv

= 2

cn
·
∫ π

0
ω1( f ; 2 · | sin(v/2)|)

D
Kn(v)dv

≤ 2

cn
·
∫ π

0
ω1( f ;αn|v|/αn)DKn(v)dv

≤ 2ω1

(
f ; 1

αn

)
D

· 1

cn

∫ π

0
(1 + αnv)Kn(v)dv

= 2ω1

(
f ; 1

αn

)
D

·
[
1 + αn · 1

cn

∫ π

0
vKn(v)dv

]

≤ 2(1 + M) · ω1

(
f ; 1

αn

)
D

,

and the proof is complete. ��

Remark 2.3 By taking in Theorem 2.2 as Kn(v) other approximate units, we will get
various other approximation results. For example, if we choose as Kn(v) the so-called
Jackson’s kernel, then we deduce the following result on the p-analytic polynomials
Ln( f ) given by (2):
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106 S. G. Gal, I. Sabadini

Corollary 2.4 If

Kn(v) =
(
sin n′v

2

sin v
2

)4

,

where n′ = [n/2] + 1, n ∈ N and therefore

cn = 3

2πn′[2(n′)2 + 1]

(see [22]), then, Ln( f )(z), n ∈ N are p-analytic polynomials of degree n + p − 1,
which satisfy the quantitative estimate

| f (z) − Ln( f )(z)| ≤ 2(1 + M)ω1

(
f ; 1

n

)
D

, n ∈ N, z ∈ D.

Proof In this case, since by relation (5) in Lorentz [38, p. 57], the case r = 2, we have

1

cn
·
∫ π

0
vKn(v)dv ≤ M

n
,

it follows that we can choose αn = n, for all n ∈ N, which by the estimate (5) leads
to

| f (z) − Ln( f )(z)| ≤ 2(1 + M)ω1

(
f ; 1

n

)
D

, n ∈ N, z ∈ D.

But by [38, pp. 55–56] Kn(v) is a trigonometric polynomial of degree n, which by
Theorem 2.2 implies that the degree of Ln( f )(z) is n + p − 1, proving the corollary.

��
Remark 2.5 The step 1/n inside the modulus of continuity in Corollary 2.4 can
be put in accordance with the degree n + p − 1 of the p-analytic polynomials
Ln( f )(z), since there exists Cp > 0 (depending only on p) such that ω1 ( f ; 1/n)

D
≤

Cpω1 ( f ; 1/(n + p − 1))
D
, for all n ∈ N and all f ∈ Hp(D). Indeed, it is good

enough to choose Cp > p, which will imply that

ω1

(
f ; 1

n

)
D

≤ ω1

(
f ; Cp

n + p − 1

)
D

≤ (Cp + 1)ω1

(
f ; 1

n + p − 1

)
D

.

Let us define higher moduli of smoothness of f ∈ Hp(D) by

ωq( f ; δ)∂D = sup
r∈[0,1]

sup{|�q
h f (re

ix )|; |x | ≤ π, |h| ≤ δ}, (6)

123



Approximation by Convolution Polyanalytic Operators in... 107

where q ∈ N, q ≥ 2 and

�
q
h f (re

ix ) =
q∑
j=0

(−1)q− j
(
q

j

)
f (rei(x+ jh)).

The error estimate in the approximation of f by Ln( f )(z) as in Corollary 2.4 can be
expressed in terms of ω2( f ; δ)∂D, as follows.

Theorem 2.6 For f ∈ Hp(D), the p-analytic polynomials Ln( f )(z) defined as in
Corollary 2.4, give the estimate

| f (z) − Ln( f )(z)| ≤ Cω2

(
f ; 1

n

)
∂D

,

where C > 0 is an absolute constant.

Proof Indeed, we can write

| f (z) − Ln( f )(z)| ≤ 1

cn

∫ 2π

0
| f (z) − f (zeiv)|Kn(v)dv

= 1

cn

∫ π

−π

| f (z) − f (zeiv)|Kn(v)dv

= 1

cn

∫ 0

−π

| f (z) − f (zeiv)|Kn(v)dv

+ 1

cn

∫ π

0
| f (z) − f (zeiv)|Kn(v)dv

= 1

cn

∫ π

0
|2 f (z) − f (zeiv) − f (ze−iv)|Kn(v)dv.

Writing z = reix , we now easily get

| f (z) − Ln( f )(z)| ≤ 1

cn
·
∫ π

0
ω2( f ; v)∂DKn(v)dv

≤ ω2

(
f ; 1

n

)
∂D

· 1

cn
·
∫ π

0
(nv + 1)2Kn(v)dv ≤ Cω2

(
f ; 1

n

)
∂D

,

where for the last inequality we have applied the relations in Lorentz [38, p. 56].
Here we also have applied the property ω2( f ; λ · δ)∂D ≤ (1 + λ)2 · ω2( f ; δ)∂D.

Also, notice that forω2 we used here a definition equivalent to (6) (in fact it is obtained
from (6) by the simple substitution x + h := y)

ω2( f ; δ)∂D = sup
r∈[0,1]

sup{| f (rei(y+h)) − 2 f (reiy) + f (rei(y−h))|; |y| ≤ π, |h| ≤ δ}.

The theorem is proved. ��
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108 S. G. Gal, I. Sabadini

More generally, let us attach to f ∈ Hp(D) the Jackson-type convolution operator
given by the formula

In,q( f )(z) = −
∫ π

−π

Kn,r (v)

q+1∑
k=1

(−1)k
(
q + 1

k

)
f (zeikv)dv, (7)

where r is the smallest integer for which r ≥ (q + 3)/2, q ∈ N and

Kn,r (v) = 1

λn′,r

(
sin n′v

2

sin v
2

)2r

, n′ =
[n
r

]
+ 1

with λn′,r determined by
∫ π

−π
Kn,r (v)dv = 1.

According to [38, p. 57] Kn,r is a trigonometric polynomial of degree n.
Since f ∈ Hp(D), by using formula (1), we immediately obtain

In,q( f )(z) = −
∫ π

−π

Kn,r (v)

q+1∑
k=1

(−1)k
(
q + 1

k

)
f (zeikv)dv

=
p−1∑
j=0

z j f j (z)

⎡
⎣−

q+1∑
k=1

(1)
k
(
q + 1

k

) ∫ π

−π

Kn,r (v)ei jkvdv

⎤
⎦ .

Reasoning as in the proof of Theorem 2.2, we have that each In,q( f )(z) is a p-analytic
polynomial.

Theorem 2.7 If f ∈ Hp(D), then the p-analytic polynomials In,q( f )(z) are of degree
n + p − 1 and give the error estimate

| f (z) − In,q( f )(z)| ≤ M · ωq+1( f ; 1/n)∂D, n ∈ N, z ∈ D.

Proof As in [38, pp. 57–58] by taking into account the formula (7) and denoting
z = reix , we get

| f (z) − In,q( f )(z)| ≤
∫ π

−π

|�q+1
v f (reix ) · Kn,r (v)dv

≤ ωq+1( f ; 1/n)∂D ·
∫ π

−π

(n|v| + 1)q+1Kn,r (v)dv

≤ Mωq+1( f ; 1/n)∂D.

The theorem is proved. ��
Remark 2.8 Reasoning as in Remark 2.5, the estimate in Theorem 2.7 can be replaced
by one of the form

| f (z) − In,q( f )(z)| ≤ Cp · ωq+1

(
f ; 1

n + p − 1

)
∂D

.
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Remark 2.9 For fixed order p and degree m, let us denote by Pp,m the class of all
p-analytic polynomials of degree ≤ m and for f ∈ Hp(D) let us denote by

Ep,m( f ) = inf{‖ f − Pp,m‖
D
; Pp,m ∈ Pp,m},

the best approximation of f by p-analytic polynomials of degree ≤ m, where ‖ ·
‖
D
denotes the uniform norm. Concerning this quantity Ep,m( f ), there exist two

interesting open problems: one is to find the degree of Ep,m( f ) for p-analytic functions
in various subclasses of Hp(D), and the second one is, for given f , p and m, to prove
the existence of P∗

p,m ∈ Pp,m with Ep,m( f ) = ‖ f − P∗
p,m‖

D
and even to construct

polynomials Qm,p ∈ Pp,m , m ∈ N, for which ‖ f − Qp,m‖
D

≤ CEp,m( f ), m ∈ N,
with C > 1 a constant independent of m (and possibly also independent of f ).

In the first case, it is known for example that for Gevrey polyanalytic classes of
functions f of order p, the degree of Ep,m( f ) was obtained in [51].

3 Polyanalytic Gauss–Weierstrass Complex Operators

In this section we deal with the approximation properties of the convolution based on
the classical Gauss–Weierstrass kernel given by Kt (u) = e−u2/(2t), u ∈ R, t > 0,
by introducing the polyanalytic Gauss–Weierstrass complex operator and showing
that the family of these operators has all the properties of a semigroup on the space
of polyanalytic functions of a given order. More exactly, if f ∈ Hp(D), then the
p-analytic Gauss–Weierstrass complex operator is defined by

Wt ( f )(z) = 1√
2π t

·
∫ +∞

−∞
f (ze−iu)e−u2/(2t)du

= 1√
2π t

·
∫ +∞

−∞
f (zeiu)e−u2/(2t)du, z ∈ D, t > 0. (8)

We have:

Theorem 3.1 Let f ∈ Hp(D) be given by (1) with all f j analytic in D given by

f j (z) = ∑∞
l=0 c

( j)
l zl , j = 0, . . . , p − 1. Then

(i) Wt ∈ Hp(D) and we have

Wt ( f )(z) =
p−1∑
j=0

z j ·
∞∑
l=0

zldl, j (t),

where

dl, j (t) = c( j)
l · 1√

2π t
·
∫ +∞

−∞
cos[u(l − j)]e−u2/(2t)du = c( j)

l e−(l− j)2t/2.
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110 S. G. Gal, I. Sabadini

(ii) The following estimate holds:

|Wt ( f )(z) − f (z)| ≤ Cω1( f ;
√
t), for all z ∈ D, t > 0,

where C > 0 is a constant independent of t , z and f .
(iii) The following estimate holds:

|Wt ( f )(z) − Ws( f )(z)| ≤ Cs |
√
t − √

s|, for all z ∈ D, t ∈ Vs ⊂ (0,+∞),

where Cs > 0 is a constant depending on f , independent of z and t and Vs is
any neighborhood of s.

(iv) The operator Wt is a contraction, that is,

‖Wt(f )‖ ≤ ‖f ‖, for all t > 0, f ∈ Hp(D).

(v) (Wt , t ≥ 0) is a (C0)-contraction semigroup of linear operators on the space
Hp(D) and the unique solution v(t, z) ∈ Hp(D), for each fixed t, of the Cauchy
problem

∂v

∂t
(t, z) = 1

2

∂2v

∂ϕ2 (t, z), (t, z) ∈ (0,+∞) × D, z = reiϕ, z 
= 0, (9)

v(0, z) = f (z), z ∈ D, f ∈ Hp(D), (10)

is given by the formula

v(t, z) = Wt ( f )(z) = 1√
2π t

∫ +∞

−∞
f (ze−iu)e−u2/(2t) du. (11)

Proof (i) We obtain

Wt ( f )(z) =
p−1∑
j=0

z j
1√
2π t

∫ +∞

−∞

[ ∞∑
l=0

c( j)
l zleiu(l− j)e−u2/(2t)

]
du

=
p−1∑
j=0

z j
∞∑
l=0

zlc( j)
l

1√
2π t

∫ +∞

−∞

[
eiu(l− j)e−u2/(2t)

]
du

=
p−1∑
j=0

z j
∞∑
l=0

zlc( j)
l

1√
2π t

∫ +∞

−∞
cos[(u(l − j)]e−u2/(2t)du

=
p−1∑
j=0

z j
∞∑
l=0

zldl, j (t),
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where

dl, j (t) = c( j)
l

1√
2π t

∫ +∞

−∞
cos[(u(l − j)]e−u2/(2t)du = c( j)

l e−(l− j)2t/2,

where for the last equality we used, for example, the formula in Theorem 2.2.1 (i) in
the book [25, p. 27] (see also [26, Thm. 2.1 (i)]).

It is easy to see that |dl, j (t)| ≤ |c( j)
l |, for all j = 0, . . . , p − 1 and l ∈ N ∪ {0},

which implies that Wt ( f )(z), z ∈ D, is of the form (1).
It remains to prove thatWt ( f )(z) is continuous on all ofD. In this sense, let z0 ∈ D

and consider a sequence zn ∈ D, n ∈ N, with zn → z0 as n → ∞.
We get

|Wt ( f )(zn) − Wt ( f )(z0)| ≤ 1√
2π t

∫ +∞

−∞
| f (zneiu) − f (z0e

iu)|e−u2/(2t)du

≤ 1√
2π t

∫ +∞

−∞
ω1( f ; |zneiu − z0e

iu |)e−u2/(2t)du

≤ 1√
2π t

∫ +∞

−∞
ω1( f ; |zn − z0|)e−u2/(2t)du

≤ ω1( f ; |zn − z0|).

Therefore, passing to the limit with n → ∞, since f is continuous on D it follows
from the continuity of Wt ( f )(z) for z ∈ D.

(ii) We obtain

|Wt ( f )(z) − f (z)| ≤ 1√
2π t

∫ +∞

−∞
| f (ze−iu) − f (z)|e−u2/(2t) du

≤ 1√
2π t

∫ ∞

−∞
ω1( f ; |1 − e−iu |)e−u2/(2t) du

= 1√
2π t

∫ +∞

−∞
ω1

(
f ; 2

∣∣∣∣sin u

2

∣∣∣∣
)
e−u2/(2t) du

≤ 1√
2π t

∫ +∞

−∞
ω1( f ; |u|)e−u2/(2t) du

≤ 1√
2π t

∫ +∞

−∞
ω1( f ;

√
t)

( |u|√
t

+ 1

)
e−u2/(2t) du

= ω1( f ;
√
t) + ω1( f ;√

t)√
t · √

2π t

∫ ∞

0
2ue−u2/(2t) du.

Since

∫ ∞

0
2ue−u2/(2t)du = 2t

∫ ∞

0
e−v dv = 2t,
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we infer

|Wt ( f )(z) − f (z)| ≤ ω1( f ;
√
t) +

[
ω1( f ;

√
t)

] 2t

t
√
2π

≤ Cω1( f ;
√
t).

(iii) We have

|Wt ( f )(z) − Ws( f )(z)| ≤ ‖ f ‖√
2π

∫ +∞

−∞

∣∣∣∣∣
e−u2/t

√
t

− e−u2/s

√
s

∣∣∣∣∣ du.

Let us set
√
t = a,

√
s = b. By the mean value theorem, there is a value c ∈ (a, b),

such that
∣∣∣∣∣
e−u2/a2

a
− e−u2/b2

b

∣∣∣∣∣ = |a − b|e−u2/c2
[
2u2

c4
− 1

c2

]
,

which combined with the fact that

∫ +∞

−∞
e−u2/(2c) < ∞,

∫ +∞

−∞
u2e−u2/(2c) < ∞,

immediately implies the desired inequality for Wt .
(iv) Since

1√
2π t

∫ +∞

−∞
e−u2/(2t)du = 1,

we deduce

|Wt ( f )(z)| ≤ 1√
2π t

∫ +∞

−∞
| f (ze−iu)|e−u2/(2t)du ≤ ‖ f ‖, z ∈ D,

which yields ‖Wt ( f )‖ ≤ ‖ f ‖.
(v) Let f ∈ Hp(D), that is,

f (z) =
p−1∑
j=0

z j f j (z) =
p−1∑
j=0

z j
∞∑
l=0

c( j)
l zl , z ∈ D.

If z ∈ D, z = reiϕ , 0 < r < 1, then by (i), we can write

Wt ( f )(z) =
p−1∑
j=0

∞∑
l=0

c( j)
l r l+ j eiϕ(l− j)e−(l− j)2t/2.

It is easy to see thatWt+s( f )(z) = Ws[Wt ( f )](z), for all t, s > 0. If z is on the bound-
ary ofD, then wemay take a sequence (zn)n∈N of points inDwith limn→∞ zn = z and
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we apply the continuity property from the above point (i). Also, denotingWt ( f )(z) by
T (t)( f ), it is easy to see that the property limt↘0 T (t)( f ) = f , the continuity of T (·)
and its contraction property follow from (ii), (iii) and (iv), respectively. Therefore, all
these facts show that (Wt , t ≥ 0) is a (C0)-contraction semigroup of linear operators
on the space Hp(D).

Furthermore, since from (i) the above series representation for Wt ( f )(z) is uni-
formly convergent in any compact disk included in D, it can be differentiated term by
term, with respect to t and ϕ. Then, we easily get that

∂Wt ( f )(z)

∂t
= 1

2

∂2Wt ( f )(z)

∂ϕ2 .

Also, from the same series representation, it is easy to see that

W0( f )(z) = f (z), z ∈ D.

Finally, we note that, in (9) we have to take z 
= 0 because z = 0 cannot be represented
as function of ϕ. The theorem is proved. ��

4 Approximation by Slice Quaternionic Polyanalytic Polynomials

The analogue of polyanalytic functions in the slice quaternionic setting have been
introduced in [7–9] and subsequent papers.
To explain our results we need to introduce the necessary definitions and notation. The
skew field of quaternions is defined to be

H = {q = x0 + x1i + x2 j + x3k ; x0, x1, x2, x3 ∈ R}

where the imaginary units satisfy the relations

i2 = j2 = k2 = −1, i j = − j i = k, jk = −k j = i, ki = −ik = j .

In H the conjugate and the norm of q are defined respectively by

q = Re(q) − Im(q) where Re(q) = x0, Im(q) = x1i + x2 j + x3k

and

|q| = √
qq =

√
x20 + x21 + x22 + x23 .

The set

S =
{
q = x1i + x2 j + x3k; x21 + x22 + x23 = 1

}
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contains all the imaginary units, namely all the elements q such that q2 = −1. Any
quaternion q ∈ H \ R can be written in a unique way as q = x + I y for some real
numbers x and y > 0, and imaginary unit I ∈ S, in fact

q = x0 + x1i + x2 j + x3k

|x1i + x2 j + x3k| |x1i + x2 j + x3k|.

For every I ∈ S, we set CI = R + RI which is isomorphic to the complex plane C.
It is immediate that H = ⋃

I∈S CI .

In this work, we are interested in the specific case of functions defined on the unit ball
B = {q ∈ H; |q| < 1} and in this case slice p-polyanalytic functions are of the form

f (q) = f0(q) + q f1(q) + · · · + q p−1 f p−1(q), q ∈ B, (12)

where f j (q) = ∑+∞
l=0 qlc( j)

l , c( j)
l ∈ H, j = 0, . . . , p − 1, l = 0, 1, . . . , where the

series is convergent in B, i.e., f j (q) is a slice regular function. In particular, f j (q) can
be a polynomial and if f j (q) is a polynomial for all j = 0, . . . , p − 1 we say that f
is a slice p-polyanalytic polynomial whose degree deg( f ) is defined as the maximum
degree of the f j ’s. We refer the reader to [16,32] for more information on this class of
functions and to [30] for a summary of the approximation results in this framework.

To introduce the corresponding convolution operators of a quaternion variable, we
need a suitable exponential function of a quaternion variable. For any I ∈ S, we choose
the following well-known definition for the exponential: eI t = cos(t) + I sin(t), t ∈
R, see [33]. The Euler’s formula holds:

(cos(t) + I sin(t))k = cos(kt) + I sin(kt),

and therefore we can write [eI t ]k = eIkt .
For any q ∈ H \ R, let r := ‖q‖; then, see [33], there exists a unique a ∈ (0, π)

such that cos(a) := x1/r and a unique Iq ∈ S, such that

q = reIqa, with Iq = iy + jv + ks, y = x2
r sin(a)

, v = x3
r sin(a)

, s = x4
r sin(a)

.

Now, if q ∈ R, then we choose a = 0, if q > 0 and a = π if q < 0, and as
Iq we choose an arbitrary fixed I ∈ S. So that if q ∈ R \ {0}, then again we can
write q = ‖q‖(cos(a) + I sin(a)) (but with a non unique I ). The above is called
the trigonometric form of the quaternion number q 
= 0. For q = 0 we do not
have a trigonometric form for q (exactly as in the complex case). Analogously to the
case of a complex variable, we can introduce the following convolution operator of a
quaternionic variable.

For p ∈ N and B the open unit ball in H, let us denote by SPp(B) the space of
all slice p-polyanalytic functions in B which are continuous in B, endowed with the
uniform norm ‖ · ‖.

Also, let Kn,r (v) be an even, classical, positive-valued, trigonometric polynomial
of degree dn,r ∈ N, with Kn,r (v) ≥ 0, for all v ∈ [0, 2π ] and n, r ∈ N.
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For f ∈ SPp(B), q ∈ H \ R and n ∈ N, let us define the convolution operator

Ln,r ( f )(q) = 1

cn,r
·
∫ 2π

0
f (qeIqv)Kn,r (v)dv

= 1

cn,r
·
∫ π

−π

f (qeIqv)Kn,r (v)dv, (13)

where

cn,r =
∫ 2π

0
Kn,r (v)dv. (14)

In this section, we will use the trigonometric kernels

Kn,r (v) =
(
sin nv

2

sin v
2

)2r

.

According to Lorentz [38, p. 55] they are even and positive trigonometric polynomials
of degree r(n − 1), which can be written in the form

Kn,r (v) =
r(n−1)∑
s=0

Ar ,s · cos(s · v),

with Ar ,s ∈ R, for all r ∈ N, r ≥ 2 and s = 1, . . . , r(n − 1).
Firstly, we prove the following:

Lemma 4.1 The functions Ln,r ( f )(q) are slice p-polyanalytic polynomials.

Proof Since q, q , eIqv and e−Iqv are on the sliceCIq determined by Iq , they commute.
Therefore it is immediate that Ln,r ( f )(q) can be written in the form

Ln,r ( f )(q) =
p−1∑
j=0

q j · 1

cn,r
·
∫ 2π

0
e−Iq jv · f j (qe

Iqv) · Kn,r (v)dv, n ∈ N, q ∈ B.

(15)

From formula (15), we need to calculate

∫ 2π

0
e−Iq jv · f j (ze

Iqv) · Kn(v)dv.
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Again from the fact that Iq , e−Iq jv , ql and eIqlv commute, we get

e−Iq jv · f j (qe
Iqv) · Kn,r (v) = e−Iq jv

( ∞∑
l=0

qleIq lvc( j)
l

) ⎛
⎝r(n−1)∑

s=0

Ar ,s · cos(s · v)

⎞
⎠

=
⎛
⎝ ∞∑

l=0

r(n−1)∑
s=0

qleIq (l− j)vc( j)
l Ar ,s cos(s · v)

⎞
⎠

=
∞∑
l=0

r(n−1)∑
s=0

qlc( j)
l Ar ,s cos((l − j)v) cos(s · v)

+ Iq

∞∑
l=0

r(n−1)∑
s=0

qlc( j)
l Ar ,s sin((l − j)v) cos(s · v)

:= S1 + Iq S2.

Now, by integrating the sum S1 with respect to v from 0 to 2π , it easily follows that
the only terms which are different from zero are the terms for which l = j − 1, with
the maximum value l = p − 1+ nr − r , while integrating S2 we get that all its terms
are equal to zero.

Consequently, formula (15) shows that Ln,r ( f )(q) is a slice (p − 1)-polyanalytic
polynomial of degree p − 1 + nr − 1. ��
Denoting

ω1( f ; δ)
B

= sup{| f (q1) − f (q2)|; |q1 − q2| ≤ δ, q1, q2 ∈ B},

we are now in position to prove the first main result of this section.

Theorem 4.2 For f ∈ SPp(B), q ∈ H \ R and n ∈ N, let us define the convolution
operator

Ln,2( f )(q) = 1

cn,2
·
∫ 2π

0
f (qeIqv)Kn,2(v)dv = 1

cn,2
·
∫ π

−π

f (qeIqv)Kn,2(v)dv,

(16)

where

Kn,2(v) =
(
sin n′v

2

sin v
2

)4

with n′ = [n/2] + 1, n ∈ N and

cn,2 =
∫ 2π

0
Kn,2(v)dv. (17)
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Then Ln,2( f )(q), n ∈ N are slice p-polyanalytic polynomials of degree n + p − 1,
which satisfy the quantitative estimate

| f (q) − Ln,2( f )(q)| ≤ 2(1 + M)ω1

(
f ; 1

n

)
B

, n ∈ N, q ∈ B,

where M > 0 is a constant independent of q, f and n.

Proof Taking q = reIq x ∈ B, we can write

Ln,2( f )(q) = 1

cn,2

∫ 2π

0
f (reIq (v+x))Kn,2(v)dv

= 1

cn,2

∫ 2π+x

0
f (reIq t )Kn,2(t − x)dt

= 1

cn,2

∫ 2π

0
f (reIq t )Kn(t − x)dt .

It follows that

| f (q) − Ln,2( f )(q)| ≤ 1

cn,2

∫ 2π

0
| f (q) − f (qeIqv)|Kn,2(v)dv

and using calculations similar to those in the proof of the second part of Theorem 2.2
(by replacing αn , i , z by n, Iq , q respectively) we obtain the required estimate. ��
Remark 4.3 Reasoning as in Remark 2.5, the step 1/n inside the modulus of continuity
in Theorem 4.2 can be put in accordance with the degree n + p − 1 of the slice p-
polyanalytic polynomials Ln,2( f )(q), since there exists Cp > 0 (depending only
on p) such that ω1 ( f ; 1/n)

B
≤ Cpω1 ( f ; 1/(n + p − 1))

B
, for all n ∈ N and all

f ∈ SPp(B). Indeed, it is good enough to choose Cp > p, which will imply that

ω1

(
f ; 1

n

)
B

≤ ω1

(
f ; Cp

n + p − 1

)
B

≤ (Cp + 1)ω1

(
f ; 1

n + p − 1

)
B

.

Now, if we define higher moduli of smoothness of f ∈ SPp(B) by

ωm( f ; δ)∂B = sup
Iq∈S

sup
r∈[0,1]

sup{|�m
h f (reIq x )|; |x | ≤ π, |h| ≤ δ}, (18)

where m ∈ N, m ≥ 2 and

�m
h f (reIq x ) =

m∑
j=0

(−1)m− j
(
m

j

)
f (reIq (x+ jh)),

then the error estimate in the approximation of f by Ln,2( f )(q) as in Theorem 4.2,
can be expressed in terms of ω2( f ; δ)∂B, as follows.
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Theorem 4.4 For f ∈ SPp(B), the slice p-polyanalytic polynomials Ln,2( f )(q)

defined in (16) give the estimate

| f (q) − Ln,2( f )(q)| ≤ Cω2

(
f ; 1

n

)
∂B

, q ∈ B,

where C > 0 is an absolute constant.

Proof Indeed, we can write

| f (q) − Ln,2( f )(q)| ≤ 1

cn,2

∫ 2π

0
| f (q) − f (qeIqv)|Kn,2(v)dv.

Then, writing q = reIq x , and reasoning as in the proof of Theorem 2.6 (where i , z
must be replaced by Iq , q respectively) we now easily get the assertion. ��

More generally, for f ∈ SPp(B), let us attach the generalized Jackson-type con-
volution operator given by the formula

In,m( f )(q) = −
∫ π

−π

Kn,r (v)

m+1∑
k=1

(−1)k
(
m + 1

k

)
f (qeIqkv)dv, (19)

where r is the smallest integer for which r ≥ (m + 3)/2, m ∈ N, and

Kn,r (v) = 1

λn′,r

(
sin n′v

2

sin v
2

)2r

, n′ =
[n
r

]
+ 1,

with λn′,r determined by
∫ π

−π
Kn,r (v)dv = 1. According to [38, p. 57] Kn,r is an even

trigonometric polynomial of degree n.
We now set Kn,r (v) = ∑n

s=0 Ar ,s cos(s · v) and we consider f ∈ SPp(B). Using
reasonings and calculations similar to those ones in the proof of Lemma4.1, by formula
(12) we immediately obtain

In,m( f )(q) = −
∫ π

−π

Kn,r (v)

m+1∑
k=1

(−1)k
(
m + 1

k

)
f (qeIqkv)dv

= −
p−1∑
j=0

q j
m+1∑
k=1

(−1)k
(
m + 1

k

) ∞∑
l=0

n∑
s=0

×
{
Ar ,s

∫ 2π

0
cos[v(l − k j)] cos(s · v)dv

}
qlc( j)

l .

Again reasoning as in the proof of Lemma 4.1, we get that each In,m( f )(z) is a slice
p-polyanalytic polynomial of degree n + (p − 1)(m + 1).
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Theorem 4.5 If f ∈ SPp(B), then the slice p-polyanalytic polynomials In,m( f )(q)

are of degree n + (p − 1)(m + 1) and give the error estimate

| f (q) − In,m( f )(q)| ≤ M · ωm+1

(
f ; 1

n

)
∂B

, n ∈ N, q ∈ B,

where M > 0 is independent of f , q and n.

Proof As in [38, pp. 57–58] by taking into account the formula (19) and denoting
q = reIq x , we get

| f (q) − In,m( f )(q)| ≤
∫ π

−π

|�m+1
v f (reIq x ) · Kn,r (v)dv

≤ ωm+1( f ; 1/n)∂B ·
∫ π

−π

(n|v| + 1)m+1Kn,r (v)dv

≤ Mωq+1

(
f ; 1

n

)
∂B

, q ∈ B,

and the theorem is proved. ��
Remark 4.6 Reasoning as in Remark 4.3, the estimate in Theorem 4.5, can be replaced
by

| f (q) − In,m( f )(q)| ≤ Cm,p · ωm+1

(
f ; 1

n + (p − 1)(m + 1)

)
∂B

.

5 Polyanalytic Gauss–Weierstrass Quaternionic Operators

Keeping the notation in Sect. 3, for SPp(B) let us introduce now the polyanalytic
Gauss–Weierstrass quaternionic operators given by the formula

Wt ( f )(q) = 1√
2π t

+∞∫

−∞
f (qeIqu)e−u2/(2t)du, q ∈ H \ R, q = reIqa ∈ B,

Wt ( f )(q) = 1√
2π t

+∞∫

−∞
f (qeIu)e−u2/(2t)du, q ∈ R \ {0}, q = reIa ∈ B, a = 0 or π,

Wt ( f )(0) = f (0), (20)

where I ∈ S is fixed (but arbitrary).
The results in Sect. 3 can be generalized to this case and we have:

Theorem 5.1 Let f ∈ SPp(B) be given by (12) with all f j slice regular functions in

B given by f j (q) = ∑∞
l=0 q

lc( j)
l , c( j)

l ∈ H, j = 0, . . . , p − 1, l = 0, 1, 2, . . .. Then
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(i) Wt ∈ SPp(B) and we have

Wt ( f )(q) =
p−1∑
j=0

q j ·
∞∑
l=0

qldl, j (t),

where

dl, j (t) =
[

1√
2π t

·
∫ +∞

−∞
cos[u(l − j)]e−u2/(2t)du

]
c( j)
l = e−(l− j)2t/2 · c( j)

l .

(ii) The following estimate holds:

|Wt ( f )(q) − f (q)| ≤ Cω1( f ;
√
t) for all q ∈ B, t > 0,

where C > 0 is a constant independent of t , q and f .
(iii) The following estimate holds:

|Wt ( f )(q) − Ws( f )(q)| ≤ Cs |
√
t − √

s| for all z ∈ B, t ∈ Vs ⊂ (0,+∞),

where Cs > 0 is a constant depending on f , independent of q and t and Vs is
any neighborhood of s.

(iv) The operator Wt is a contraction, that is,

‖Wt(f )‖ ≤ ‖f ‖ for all t > 0, f ∈ SPp(B).

(v) (Wt , t ≥ 0) is a (C0)-contraction semigroup of linear operators on the space
SPp(B) and the unique solution u(t, q) ∈ SPp(B), for each fixed t, of theCauchy
problem

∂v

∂t
(t, q) = 1

2

∂2v

∂ϕ2 (t, q), (t, q) ∈ (0,+∞) × B, q = reIqϕ, q 
= 0,(21)

v(0, q) = f (q), q ∈ B, f ∈ SPp(B), (22)

is given by the formula

v(t, q) = Wt ( f )(q). (23)

Proof (i) Since q j , ql , eIqlu , e−Iq ju are on the same slice, they commute and therefore
we obtain

Wt ( f )(q) =
p−1∑
j=0

q j 1√
2π t

∫ +∞

−∞

[ ∞∑
l=0

qleIqu(l− j)c( j)
l e−u2/(2t)

]
du

=
p−1∑
j=0

q j
∞∑
l=0

ql
{

1√
2π t

∫ +∞

−∞

[
eIqu(l− j)e−u2/(2t)

]
du

}
c( j)
l
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=
p−1∑
j=0

q j
∞∑
l=0

ql
{

1√
2π t

∫ +∞

−∞
cos[(u(l − j)]e−u2/(2t)du

}
c( j)
l

=
p−1∑
j=0

q j
∞∑
l=0

qldl, j (t),

where

dl, j (t) =
{

1√
2π t

∫ +∞

−∞
cos[(u(l − j)]e−u2/(2t)du

}
c( j)
l = e−(l− j)2t/2c( j)

l ,

where for the last equality we used, for example, the formula in Theorem 2.2.1, (i) in
the book [25, p. 27] (see also [26, Thm. 2.1 (i)]).
It is immediate that |dl, j (t)| ≤ |c( j)

l |, for all j = 0, . . . , p − 1 and l ∈ N∪ {0}, which
implies that Wt ( f )(q), q ∈ B, is of the form (1).

The continuity of Wt ( f )(q) on B is obtained exactly as that in the complex case in
the proof Theorem 3.1,(i).

Since the proofs of (ii), (iii), (iv) follow exactly the lines in the proof of Theorem3.1,
(ii), (iii), (iv) and (v), we omit them here.

Also, for the proof of (v) it is enough to observe that denoting q = reIqϕ , 0 < r < 1,
by using the point (i) we can write

Wt ( f )(q) =
p−1∑
j=0

∞∑
l=0

rl+ j eIqϕ(l− j)e−(l− j)2t/2c( j)
l

and from this point we follow exactly the lines in the proof of Theorem 3.1, (v). The
theorem is proved. ��
Remark 5.2 For p = 1 the results in Sects. 4, 5 give the corresponding results in the
quaternionic slice regular case, see [30].
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