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Impact of the COVID-19 pandemic on music: a
method for clustering sentiments

Alessandro Albano, Mariangela Sciandra, Antonella Plaia, Irene Carola Spera

Abstract The outbreak of coronavirus disease 2019 (COVID-19) was highly stress-
ful for people. In general, fear and anxiety about a disease can be overwhelming
and cause strong emotions in adults and children. One way to cope with this stress
consists in listening to music. Aim of this work is to understand if the music heard
during the lock-down reflects the emotions generated by the pandemic on each of us.
So, the primary goal of this work is to build two indices for measuring the anger and
joy levels of the top streamed songs by Italian Spotify users (during the SARS-CoV-
2 pandemic), and study their evolution over time. A Hierarchical Cluster Analysis
has been applied in order to identify groups of weeks reflecting common musical
sentiments, and a Beta regression model is used to validate the results of cluster
analysis.

Key words: Covid-19, Hierarchical clustering, Beta regression, Anger index, Joy
index

1 Introduction

The culture of the societies has always been characterized by art and music, since
the time of the oral transmission of knowledge. Indeed, the music itself has the force
to exorcise fear, anger and to instil emotions. Given this leading role, the music al-
lows us to see how Italians faced the pandemic.
The first signal of the spread of the SARS-CoV-2 virus in Italy occurred on the 31st
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of January 2020. From that time on, the Government restriction measures led to
the quarantine, initially, of 11 different municipalities in northern Italy (on 22nd of
February), and then the complete closure of all schools and universities on the 4th
of March. It is well known that fear and anxiety about a disease can be overwhelm-
ing and cause strong emotions in adults and children. The goal of this paper is to
understand if the bad emotional status of people affected the way they approached
music. More specifically, to study how anger and joy levels in songs changed during
the coronavirus pandemic and to evaluate this change over time. To this aim, firstly,
two different indices of anger and joy respectively are built up by merging informa-
tion from two different types of metadata: song audio features extracted from the
Spotify Web API [2]- [5], and the anger/joy imparted by the lyrics extracted from
Genius Web API [1]- [5]. Secondly, hierarchical clustering [7], based on Canberra
distance [4], is applied in order to investigate the clustering structure over the weeks.
Results from cluster analysis are validated through a Beta regression model, which
analyses the relationship between clustered weeks and the proposed indices.

2 Anger and Joy indices

The study of “music and emotion” is a crucial aspect of understanding the psycho-
logical relationship between human affect and music. A song can instil emotions
through sound and lyrics. The two proposed indices in this work are modified ver-
sions of the Lyrical and Sonic Anger index proposed by Oppenheimer [3]. They
are derived by combining information about both the level of anger/joy due to the
song’s sound and the song’s lyric. Among the song audio features available on the
Spotify Web API, the following were used:

Energy: In a song, this measure varies from 0 to 1 and represents the percentage
of intensity and activity.

Speechiness: It detects the presence of spoken words in a track. The more ex-
clusively speech-like the recording, the closer to 1 the attribute value will
be.

Valence: A measure from 0 to 1 describing the musical positiveness conveyed by
a track.

Levels of anger/joy due to song’s lyrics were measured through the two indices
defined as it follows:

Pct angry: Percentage of angry words in the lyrics according to The NRC’s lexi-
con of words.

Pct joy: Percentage of joyful words in the lyrics according to The NRC’s lexicon
of words.

The Anger index and the Joy index are defined as:

Anger = w1 ·
√

pct angry× speechiness+w2 ·
√
(1−valence)× energy (1)

Impact of the COVID-19 pandemic on music: a method for clustering sentiments 3

Joy = w1 ·
√

pct joy · speechiness+w2 ·
√

valence× energy, (2)

where w1,w2 ≥ 0 and w1 +w2 = 1; thus w1 stands for the importance of the song’s
lyrics while w2 represents the importance of the song’s sound.
Both indices are built in such a way to vary from 0 to 1. Speechiness is used to follow
the intuition that a song will be very angry (joyful) if it contains relatively many
angry (joyful) words in large lyrics. Contextually, song polarity can be determined
by looking at the balance between valence and energy.
In order to establish the weighting structure of the two indices, a sensitivity analysis
was carried out to study the effect on the indices induced by different weighting
schemes. The following weighting structures were compared:

1. w1 = 0.5 w2 = 0.5
2. w1 = 0.4 w2 = 0.6
3. w1 = 0.2 w2 = 0.8
4. w1 = 0.6 w2 = 0.4
5. w1 = 0.8 w2 = 0.2.

We investigated how the weighting structure influences the temporal proximity of
weeks in clusters. The sensitivity analysis results show that the second weighting
scheme (w1 = 0.4 w2 = 0.6) leads to highly cohesive clusters, which are made up of
adjacent weeks (see Section 4). Therefore, we decided to give more importance to
the emotional content imparted by audio features (60%) rather than the emotional
content induced by the lyrics (40%).

3 The Italian music data

The dataset is made up of 340 records representing the top 20 streamed songs per
week by the Italian Spotify users. The time period considered span from the 7th
February to the 4th June (17 weeks). For each song, the number of weekly streams
is counted. Streams are valid in Spotify when a song is played for over 30 seconds.
First, lyrics corpus was preprocessed through tokenization and stop words deletion,
then the Anger and Joy indices are computed as defined in Eq 1 - 2. The distributions
of the two indices over the weeks (adequately weighted for the number of streams
of each song) are shown in Fig.1, the interpretation of boxplots’ color will become
clear in section 4.
Fig.1 shows how the highest levels of Anger are associated with the lowest levels

of Joy. In particular, from the week IV (28th Feb.-5th March) to the week VI (13th-
19th March) the Anger index takes the highest values, with a peak in the week V
(6th March -12th March). In the same week, the Joy index reaches a negative peak.
It is reasonable, considering that they are the first three weeks of lock-down.
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Fig. 1: Distributions of the Anger (left) and Joy (right) indices over the weeks.

4 Cluster analysis and validation

This section aims to detect the existence of weeks sharing similar sentiments by
employing hierarchical cluster analysis. In general, the classification of observations
into groups requires some methods for computing the distance or the (dis)similarity
between each pair of observations. The choice of distance measures is a critical step
in clustering since it influences the shape of the clusters. In our case, computing the
distance between two probability density functions can be regarded as measuring
the overlapping area between the two curves. After a deep exam of the measures
proposed in the literature, we decided to use the Canberra distance, belonging to
the L1 family, whose generalised equation is given in the form:

dcan =
d

∑
i

|Pi −Qi|
Pi +Qi

, (3)

where Pi and Qi are the ith components of vectors P and Q respectively in an n-
dimensional real vector space. In this case, P and Q represent the two discretized
probability density functions under comparison.
The distance matrix between weeks was computed in R using the philentropy
library. The number of clusters was selected by using the first quantile of the pair-
wise distances’ distribution as a threshold. In Tab.1 and Fig.2, the resulting clusters
are shown: as regards the Anger index six clusters are identified, while the clustering
algorithm applied to the Joy index identifies seven groups.
In Fig.1 can be noticed that, although we haven’t imposed any temporal constrain,

all clusters are made up of adjacent weeks. Furthermore, as previously spotted in
section 3, weeks IV, V and VI are effectively grouped in the same cluster either for
Anger and Joy (Cluster 2 depicted in red).
Following, in order to validate the quality of the resulting clustered structure and
verify if the clusters obtained are significantly different in terms of average Anger
and Joy, two Beta models have been estimated as the indices are continuous and
limited in the interval [0,1]. In each model, we set Cluster number 2 (correspond-
ing to the first three weeks of lock-down) as a baseline, in order to compare it with
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Fig. 2: Clusters dendrograms of the Anger and Joy indices.

Table 1: Cluster specifications

Cluster Anger Joy

Cluster 1 07/02- 27/02 07/02- 27/02
Cluster 2 28/02 - 19/03 28/02 - 19/03
Cluster 3 20/03- 23/04 20/03- 09/04
Cluster 4 24/04- 07/05 10/04- 07/05
Cluster 5 08/05 - 21/05 08/05 - 14/05
Cluster 6 22/05- 04/06 15/05- 21/05
Cluster 7 - 22/05- 04/06

all the other clusters. According to the model, Cluster number 2 can be regarded
as the angriest and the least joyful one. The regression coefficients’ p-values here
have only a descriptive validity because they are estimated on the same data used to
derive clusters. Therefore, they can only be interpreted as a confirmatory tool of an
expected inferential result, also due to the high number of observations (streams).
Tab.4 shows the percentage changes, in the Anger and Joy indices of songs for with
respect to Cluster 2. Cluster 6 (from 22th May to 5 th June) has the highest reduction
of Anger equal to 8.4%, while Cluster 5 (from 8th May to 4th May) has the largest
increase of Joy equal to 6.5%.
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Fig. 1: Distributions of the Anger (left) and Joy (right) indices over the weeks.

4 Cluster analysis and validation

This section aims to detect the existence of weeks sharing similar sentiments by
employing hierarchical cluster analysis. In general, the classification of observations
into groups requires some methods for computing the distance or the (dis)similarity
between each pair of observations. The choice of distance measures is a critical step
in clustering since it influences the shape of the clusters. In our case, computing the
distance between two probability density functions can be regarded as measuring
the overlapping area between the two curves. After a deep exam of the measures
proposed in the literature, we decided to use the Canberra distance, belonging to
the L1 family, whose generalised equation is given in the form:

dcan =
d

∑
i

|Pi −Qi|
Pi +Qi

, (3)

where Pi and Qi are the ith components of vectors P and Q respectively in an n-
dimensional real vector space. In this case, P and Q represent the two discretized
probability density functions under comparison.
The distance matrix between weeks was computed in R using the philentropy
library. The number of clusters was selected by using the first quantile of the pair-
wise distances’ distribution as a threshold. In Tab.1 and Fig.2, the resulting clusters
are shown: as regards the Anger index six clusters are identified, while the clustering
algorithm applied to the Joy index identifies seven groups.
In Fig.1 can be noticed that, although we haven’t imposed any temporal constrain,

all clusters are made up of adjacent weeks. Furthermore, as previously spotted in
section 3, weeks IV, V and VI are effectively grouped in the same cluster either for
Anger and Joy (Cluster 2 depicted in red).
Following, in order to validate the quality of the resulting clustered structure and
verify if the clusters obtained are significantly different in terms of average Anger
and Joy, two Beta models have been estimated as the indices are continuous and
limited in the interval [0,1]. In each model, we set Cluster number 2 (correspond-
ing to the first three weeks of lock-down) as a baseline, in order to compare it with
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Fig. 2: Clusters dendrograms of the Anger and Joy indices.

Table 1: Cluster specifications

Cluster Anger Joy

Cluster 1 07/02- 27/02 07/02- 27/02
Cluster 2 28/02 - 19/03 28/02 - 19/03
Cluster 3 20/03- 23/04 20/03- 09/04
Cluster 4 24/04- 07/05 10/04- 07/05
Cluster 5 08/05 - 21/05 08/05 - 14/05
Cluster 6 22/05- 04/06 15/05- 21/05
Cluster 7 - 22/05- 04/06

all the other clusters. According to the model, Cluster number 2 can be regarded
as the angriest and the least joyful one. The regression coefficients’ p-values here
have only a descriptive validity because they are estimated on the same data used to
derive clusters. Therefore, they can only be interpreted as a confirmatory tool of an
expected inferential result, also due to the high number of observations (streams).
Tab.4 shows the percentage changes, in the Anger and Joy indices of songs for with
respect to Cluster 2. Cluster 6 (from 22th May to 5 th June) has the highest reduction
of Anger equal to 8.4%, while Cluster 5 (from 8th May to 4th May) has the largest
increase of Joy equal to 6.5%.
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Table 2: Beta model estimated coefficients for Anger (left) and Joy (right)

Coef Estimate Std. Error P-value

Intercept -0.445 0.00003 < 2e−16

Cluster 1 -0.065 0.00005 < 2e−16

Cluster 3 -0.113 0.00005 < 2e−16

Cluster 4 -0.054 0.00006 < 2e−16

Cluster 5 -0.035 0.00006 < 2e−16

Cluster 6 -0.140 0.00065 < 2e−16

Coef Estimate Std. Error P-value

Intercept -0.593 0.00004 < 2e−16

Cluster 1 0.065 0.00006 < 2e−16

Cluster 3 0.071 0.00007 < 2e−16

Cluster 4 0.022 0.00006 < 2e−16

Cluster 5 0.100 0.00009 < 2e−16

Cluster 6 0.083 0.00010 < 2e−16

Cluster 7 0.096 0.00007 < 2e−16

Table 3: Variation in Anger and Joy indices (%)

Cluster Anger Joy

Cluster 1 -4.2 +4.2
Cluster 3 -6.6 +4.6
Cluster 4 -3.3 +1.4
Cluster 5 -2.1 +6.5
Cluster 6 -8.4 +5.4
Cluster 7 - +6.2

5 Conclusions

Two indices were proposed to measure the levels of anger and joy of Italian songs
listened during the Covid-19 pandemic. A hierarchical clustering algorithm based
on Canberra distance was applied, and the results were validated through a Beta
regression model. Results show that weeks can be clustered into groups sharing
similar sentiments: the first three weeks of quarantine (spanning from 28th February
to 19th march) represent both the angriest and the least joyful cluster of weeks.
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A binned technique for scalable model-based
clustering on huge datasets

Filippo Antonazzo, Christophe Biernacki & Christine Keribin

Abstract Clustering is impacted by the regular increase of sample sizes which pro-
vides opportunity to reveal information previously out of scope. However, the vol-
ume of data leads to some issues related to the need of many computational re-
sources and also to high energy consumption. Resorting to binned data depending
on an adaptive grid is expected to give proper answer to such green computing issues
while not harming the quality of the related estimation. After a brief review of exist-
ing methods, a first application in the context of univariate model-based clustering
is provided, with a numerical illustration of its advantages. The issues of a trivial
multivariate extension are discussed and a marginal-binned strategy is proposed to
estimate bivariate Gaussian diagonal mixtures.

Key words: Big Data, clustering, binned data, green computing.

1 Scalable clustering for huge datasets

Today, thanks to the technological development of the last decades, it is common
to work on huge datasets, which are large collections of data whose volume (both
of observations and attributes) is still growing. But, despite the enormous statistical
information conveyed, any statistical analysis, such as clustering, conducted with
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classical methods is difficult because it requests too much time, too much memory
and too much energy. This is also in contrast with the current eco-friendly policies
of many national governments and industries which are searching for methods able
to do suitable statistical analysis without employing complex and wasteful technolo-
gies. We want to satisfy this need, proposing a method capable to analyse big data
employing limited computational resources, like those of a standard laptop.

For the same reasons, scalable clustering algorithms for huge datasets flourished
in literature during the last two decades. Some algorithms employ data-reduction
techniques, like random subsampling [9] or data-compression through the use of
sufficient statistics [14]. Other authors transform the space of analysis [11] or ex-
amine dense data units built imposing a grid on the original data [1]. It is also pos-
sible to reduce the number of operations, adopting particular data structure, such as
trees [14] or graphs [9], or imposing some criteria [1] to prune irrelevant clusters
that, thus, exit from the computational process. In addition, the problem of dimen-
sionality is usually tackled down by performing clustering in subspaces of lower
dimension [2].

The objective of the paper is to introduce scalability in model-based clustering
[8], a statistical approach well appreciated because it enables a theoretically well-
posed framework where formal criteria to assess the quality of the clustering are
available. It is in this context that we will propose our novel method based on binned
data, which, assuming observations with values belonging to a real space X , cor-
respond to a reduced dataset only containing the counts of observations in given
regions of X . In practice they usually appear as soon as it is impossible to collect
data with infinite precision, like in [7] and [3], but we will use them with a dif-
ferent point of view. The key idea we defend is to group original data in order to
obtain artificially binned ones and reduce the dimensionality of the problem work-
ing with them. We first consider the univariate case (where X =R) to introduce the
notation and highlight, through a numerical example, how much promising is our
method. Finally, we discuss how to extend it to the multivariate context, pointing
out possible issues of trivial generalizations and presenting a new marginal-binned
methodology able to cope with them in a restrictive bivariate diagonal scenario, as
a final simulation shows.

2 Binned model-based clustering approach: univariate case

Let x = (x1, . . . ,xn), with xi ∈ X = R, a raw sample of n observations arising from
a univariate K-Gaussian mixture of density

f (x;θ) = ∑K
k=1 πkφ(x; µk,σ2

k ) πk > 0, ∑K
k=1 πk = 1, (1)

in which µk denotes the mean of the k-th component, σ2
k is its variance and θ is the

vector that contains all the parameters, thus θ = (π1, . . . ,πK ,µ1, . . . ,µK ,σ2
1 , . . . ,σ

2
K).

The key-idea is to build a grid G made of R << n cut points (a1, . . . ,aR) that divides
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the real space R into R+ 1 intervals [ar−1,ar[, r = 1, . . . ,R+ 1, setting a0 = −∞
and aR+1 = ∞. In this way, binned data are stored in a vector y = (y1, . . . ,yR+1),
where each component is defined as

yr = #{xi : ar−1 ≤ xi < ar}. (2)

As R � n, working with binned data instead of raw ones reduces the dimen-
sionality of the problem and also proposes interesting theoretical questions. In
fact, the binned statistical model is a multinomial one M(n, p(θ)) with p(θ) =
(p1(θ), . . . , pR+1(θ)), where pr(θ) =

∫ ar
ar−1

f (x;θ)dx. It could be proved (result not
provided here) that this model remains identifiable under certain (and weak) condi-
tions on the grid G.

Here is a numerical example to motivate the fundamental interest of our proposed
“binned” method, which is compared to the subsampling strategy (depending on the
subsample percentage m) on a simulation sample of n = 106 raw data i.i.d. arising
from a univariate Gaussian mixture with three components. Binned data are created
through a grid with the tuning parameter R. An EM algorithm [4] is performed
respectively with different values of R and m (thus different candidate subsample
and binned datasets). In Figure 1 it is possible to note that the loss of information
(measured by the Kullback-Leibler divergence) induced by binning is much lower
than that obtained with subsampling, even negligible if we use a grid moderately
dense. This is in addition accompanied by an evident gain in terms of computer
memory. Such promising results could be also obtained (but not displayed here)
concerning gain in terms of algorithm running time or model selection behaviour.

3 Issues of a trivial multivariate extension

Once analyzed the univariate case, extending the method to a D-variate situation
seems straightforward. Let x = (x1, . . . ,xn), xi ∈ X = RD, a sample arising from
a multivariate K-Gaussian mixture of density
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dense. This is in addition accompanied by an evident gain in terms of computer
memory. Such promising results could be also obtained (but not displayed here)
concerning gain in terms of algorithm running time or model selection behaviour.

3 Issues of a trivial multivariate extension

Once analyzed the univariate case, extending the method to a D-variate situation
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f (x;θ) = ∑K
k=1 πkφ(x; µk,Σk) πk > 0, ∑K

k=1 πk = 1, (3)

where, for each component k = 1, . . . ,K, µk = (µk1, . . . ,µkD) is the vector of means
and Σk is the variance-covariance matrix, with diagonal (σ2

k1, . . . ,σ
2
kD). It is im-

mediate to define a multivariate grid G building it as a Cartesian product between
D one-dimensional grids. It means that G = G1 × . . .×GD, where each grid Gd
has Rd cut points (ad1, . . . ,adRd ). Assuming that Rd = R, for d = 1, . . . ,D, we
can define a (R+ 1)D-dimensional binned vector y = (y1, . . . ,y(R+1)D), where, for
r = 1, . . . ,(R+1)D:

yr = #{xi : 1+ zi1 + zi2(R+1)+ zi3(R+1)2 . . .+ ziD(R+1)D−1 = r},
with zid = l if adl ≤ xid < ad(l+1), l = 0, . . . ,R, ∀d = 1, . . . ,D,

where ad0 =−∞ and ad(R+1) = ∞ for each d = 1, . . . ,D.
Despite the relatively simple formalization, using such a grid is not feasible. In-

deed, the following issues arise:

• It is impossible to obtain a manageable amount of binned data because the num-
ber of non-empty bins increases exponentially increasing the number of variables
(proof not provided here).

• The related EM algorithm employs several multidimensional numerical integra-
tions. Thus, it would become too complex in terms of computing time.

Consequently, we propose below a specific alternative strategy (called ”marginal-
binned”) to estimate multivariate diagonal mixtures not affected by these problems.
For simplicity, we will illustrate it in a restrictive bivariate scenario, where X =R2,
even if the proposal is more general.

4 A marginal-binned strategy for bivariate diagonal mixtures

Let consider a bivariate (D = 2) diagonal Gaussian mixture with K components.
Thus, the variances Σk in (3) are diagonal and the vector of parameters is simply:

θ = (π1, . . . ,πK︸ ︷︷ ︸
π

,µ11, . . . ,µK1,σ2
11, . . . ,σ

2
K1︸ ︷︷ ︸

α1

,µ12, . . . ,µK2,σ2
12, . . . ,σ

2
K2︸ ︷︷ ︸

α2

).

Denoting with x1 and x2 the first and the second component of a sample x =
(x1, . . . ,xn), xi ∈ R2, and adopting a square grid G = G1 ×G2 with R1 = R2 = R,
we define:

• y1 : binned data vector of x1 under G1;
• y2 : binned data vector of x2 under G2.

It means that, for each d = 1,2, yd = (yd1, . . . ,yd(R+1)), where each component is
defined as ydr = #{xdi : ad(r−1) ≤ xdi < adr}. We name y1 and y2 as the marginal
counts of y. By construction, they are equivalent to the counts obtained by binning
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the univariate marginals of the joint distribution. It can be observed that each of them
is a binned data vector arising from a univariate mixture with density fd(xd ;θ d) =

∑K
k=1 πkφ(xd ; µkd ,σ2

kd), with parameter θ d = (π,αd).
Given the one-dimensional binned log-likelihoods �1(θ 1;y1) and �2(θ 2;y2), it is

possible to obtain an estimate of θ maximizing their sum cl(θ ;y1,y2)= �1(θ 1;y1)+
�2(θ 2;y2). This method is not new in literature: in fact, it is known as composite
likelihood estimation, firstly introduced in [6], who also gives interesting theoreti-
cal properties of the estimators obtaining by maximizing the composite likelihood
cl(θ ;y1,y2), like consistency and asymptotic distribution. Important contributions
are given in [5] and [12], who furnished, in a composite likelihood framework, a
specific formulation of the EM algorithm and an application with binned data, re-
spectively. In a mixture model context, a similar approach is followed by [10], but
in a problem involving discrete data, with a more complex formulation and without
taking into account the computational and memory issues mentioned in Section 3.

Combining the ideas contained in [5] and [12], we developed a new marginal-
binned EM algorithm maximizing cl(θ ;y1,y2) (details not displayed here) and we
tried it on simulated data sets of size n = 106, generated by different bivariate diag-
onal mixture models with, for simplicity, two components. In particular, it is inter-
esting to show results obtained in a difficult scenario, where the two components are
not well separated: this is useful to illustrate the goodness of the proposed method-
ology. These ones are depicted in Figure 2, where the 0.95 density ellipses for the
real and the estimated densities (with R = 40) of the two components are shown. It
is possible to note that they are very close, as well as the respective means, denoting
a good quality of estimation, despite the difficulty of the situation. The outcomes
regarding time and memory performances confirm the results of the univariate sim-
ulation presented in Section 2, thus they are not displayed here.

Fig. 2 0.95 density ellipses
and means for the two com-
ponents of the real density
mixture (in red) and of the
estimated one (in black). In
background, the levelplot of
the true density.
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f (x;θ) = ∑K
k=1 πkφ(x; µk,Σk) πk > 0, ∑K

k=1 πk = 1, (3)
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k1, . . . ,σ
2
kD). It is im-
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π

,µ11, . . . ,µK1,σ2
11, . . . ,σ

2
K1︸ ︷︷ ︸

α1

,µ12, . . . ,µK2,σ2
12, . . . ,σ

2
K2︸ ︷︷ ︸

α2

).
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5 Ongoing works

The depicted methodology has proved to be efficient both from the point of view
of statistical quality and computational resources management. But, some problems
remain open. Firstly, it is impossible to estimate non-diagonal mixtures using only
marginal counts. However, we wonder if it is possible to recover an acceptable trade-
off between computational savings and clustering quality using our marginal-binned
strategy. In the section dedicated to the multivariate scenario we did not mention the
problem of model selection: in [13] it is possible to find some choice criteria specific
for composite likelihood estimations but their calculation could be too burdensome.
So, it is important to find a criterion demanding a lighter computational effort. Fi-
nally, the crucial point of the work is grid selection. We aim to find a criterion able to
select the grid providing an optimal estimation (in terms of statistical quality) with-
out neglecting the main purpose of this methodology: saving energetic resources.
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Beyond uncounfoundness in predicting
counterfactuals: a machine learning approach

Gianluca Bontempi

Abstract This paper proposes a machine learning approach, called Dependency-
ToCounterFactuals (D2CF) to estimate causal effects in a data-driven setting where
neither uncounfoundness is taken for granted nor the causal structure is known. Such
task is particularly challenging since the only source of information is the observa-
tional dataset, which has to be used both to infer (at least some parts) of a causal
structural model and then to estimate a counterfactual quantity. A number of ex-
periments performed on synthetic datasets shows the potential of our counterfactual
algorithm with respect to state-of-the-art and naive methods.

1 Introduction

Suppose we collect a dataset recording a set of observed treatments, contexts and
outcome. The problem of counterfactual learning is to predict the outcome vari-
able for a given observed context if a treatment would have been assigned. Coun-
terfactual reasoning has been covered extensively in experimental and observa-
tional studies by using the potential outcomes framework (also known as the Ru-
bin Causal Model) [6]. This framework makes typically the (strong) assumption of
uncounfoundness i.e. that the potential outcomes are independent of the observed
treatments given a proper subset of the context, also called background. This as-
sumption is untestable in practice though techniques exist to assess its plausibility
from data [3]. This paper proposes D2CF, an approach for large dimensional set-
tings which i) makes no assumption of uncounfoundness and ii) relaxes the two-
population assumption by estimating causal effects whose treatment values do not
necessarily belong to the observed dataset. The D2CF counterfactual learning al-
gorithm relies on a number of theoretical results from the work of Pearl on coun-
terfactuals [5] and combine them with a classification technique (D2C [1]) to infer
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causal structural information (e.g. the existence of a causal link) from observed data.
Preliminary results on synthetic data are promising.

2 Counterfactual prediction

A r.v. z is a cause of another r.v. y if the distribution of y is different from the
marginal one when we set the value of z, i.e. p(yz = y) = p(y = y|do(z = z)) �=
p(y = y) where yz is called the potential outcome [6]. By yz(x) we denote the out-
come y when the treatment z is set to z and the observed context is x. In the classical
case the domain of z is Z = {z̄,z} (e.g. in medical jargon the action z is typically
called ”control” and z̄ the ”treatment”). The individualized treatment effect (ITE)
I(x) = E[yz̄(x)]−E[yz(x)] is the difference of two expected potential outcomes for
a specific context x (e.g. for a given patient). The estimation of this quantity in an
observational setting is challenging for the following reasons: i) in an observational
setting we do not have access to any measure from the interventional setting, ii) even
if we were in an experimental setting (i.e. we intervene by setting z = z̄) we would
know only the quantity yz̄(x) (also called the factual outcome) but not the counter-
factual term yz(x) [2] and iii) we could be interested in estimating the treatment
effect for treatment values z and z̄ not contained in the observational set.

Consider now an observational setting where a dataset DN records a set of N in-
terventions, contexts and outcome. Suppose we want to make a counterfactual pre-
diction, i.e. predict from the data the ITE value for an intervention on the treatment
z. The simplest approach is Direct modelling [4] where a conventional supervised
learning model ŷ = h(x,z) is fitted to the factual dataset 〈xi,zi,yi〉(i = 1, . . . ,N) and
used to compute the estimate of the quantity ITE(xi) when the set of possible inter-
ventions Z = {z̄,z} is composed of only two values (e.g. treatment vs. control).

This approach is naive since it makes the assumption that the observed (or empir-
ical) factual distribution coincides with the unobserved counterfactual distribution.
Causal inference literature showed that this is not the case and that the difference be-
tween those two distributions depends on two elements: i) the variation between the
factual treatment assignment mechanism and the counterfactual assignment mecha-
nism of interest, ii) the causal mechanism underlying the process.

2.1 The D2CF algorithm

The proposed algorithm (called D2CF) makes use of two well known causal prop-
erties (”Adjustment for direct causes” and the ”Rule 2 of do-calculus” [5]) to avoid
the limitations of the Naive approach. Let G the DAG model underlying our obser-
vations and suppose that y is a descendant of the variable z. Let us define by πy
the set of parents of the outcome y, by δz the set of descendants of z and by δ ′

z the
set x \ δz. We have πy = (πy ∩ δz)∪ (πy ∩ δ ′

z) = π0
y ∪ π1

y where π0
y (π1

y ) is the set
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of parents of y which are (not) descendants of z. From the causal properties of G it
follows that i) y is conditionally independent of all non descendants of y given πy,
ii) being z an ancestor of y, y is conditionally independent of z given π1

y in the graph
Gz where Gz denotes the graph obtained by deleting all edges emerging from z.

From the Rule 2 of do-calculus it follows p(y|do(z),π1
y ) = p(y|z,π1

y ) The
D2CF algorithm estimates the counterfactual ITE by estimating from data the term
p(y|z,π1

y ). Since the causal model G is not known, we assume that a data-driven
estimator (e.g. D2C [1]) is available to return the probability of existence of a causal
link (e.g. parent, ancestor or descendant) between two variables. The D2CF algo-
rithm relies on the following steps to estimate the potential outcomes yz̄(xi) and
yz(xi) with z̄ �= zi and z �= zi:

1. Check whether y belongs to the descendants of z. If this is not the case (i.e.
estimated D2C probability lower than 0.5), return yz̄(xi) = yz(xi) = yi and exit;

2. For each variable in x estimate the probability of belonging to δz (i.e. being
descendants of z);

3. For each variable in x estimate probability of belonging to πy (i.e. being parents
of y);

4. Select the subset x′ ⊂ x of the S variables having the highest (estimated) prob-
ability of belonging to π1

y (i.e. being parents of y without being descendants of
z);

5. Fit a model h(x′,zi) to the observed dataset and compute the error ε(x′i) = yi −
h(x′i,zi);

6. For each variable in x estimate the probability of being parents of z;
7. Select the subset x′′ ⊂ x of the S variables having the highest probability of being

parents of z;
8. Fit a model h(x′,x”,zi) to the observed dataset;

9. Compute ŷz̄(xi) = Ex”[y|z = z̄,x′i] + ε(x′i) where Ex”[y|z = z̄,x′i] ≈
∑J

j=1 h(x′i,x” j ,z̄)
J

and x” j are J vectors sampled according to the marginal distribution of X ′

10. Compute analogously ŷz(xi).

Step 1 checks whether the treatment z is indeed an ancestor of the outcome y. Steps
2, 3 and 4 estimate the components of the sets δz, πy and π1

y , respectively. Note that
in Step 4 we consider the event ”being parents of y” independent of the event ”being
descendant of z” and that in the experiments we set S = 1. Step 5 estimates from
data the conditional distribution. Since this estimator could be biased (e.g. spurious
paths related to errors in δz, πy and π1

y ), the steps 6-7-8-9 aim to correct the bias by
taking advantage of the adjustment for direct causes.

3 Experimental results

This experimental session assesses D2CF vs. a number of naive and state-of-the-art
approaches on several synthetic datasets generated for linear and non-linear DAG
configurations of different sizes. For each observed sample xi,zi,yi by simulation
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5. Fit a model h(x′,zi) to the observed dataset and compute the error ε(x′i) = yi −
h(x′i,zi);
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Step 1 checks whether the treatment z is indeed an ancestor of the outcome y. Steps
2, 3 and 4 estimate the components of the sets δz, πy and π1

y , respectively. Note that
in Step 4 we consider the event ”being parents of y” independent of the event ”being
descendant of z” and that in the experiments we set S = 1. Step 5 estimates from
data the conditional distribution. Since this estimator could be biased (e.g. spurious
paths related to errors in δz, πy and π1

y ), the steps 6-7-8-9 aim to correct the bias by
taking advantage of the adjustment for direct causes.

3 Experimental results

This experimental session assesses D2CF vs. a number of naive and state-of-the-art
approaches on several synthetic datasets generated for linear and non-linear DAG
configurations of different sizes. For each observed sample xi,zi,yi by simulation
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we can create two counterfactual configurations where z is set to z̄ and z respec-
tively. The goal of the algorithms is to estimate from observational data the N ITE
quantities I(xi) = ITE(xi) = yz̄(xi)− yz(xi). The benchmarked algorithms are DIR1
(direct naive approach relying on a supervised learning fitting the dependency be-
tween the treatment variable (only) and the outcome), DIR2 (direct naive approach
relying on a supervised learning fitting the dependency between all the variables
(context and treatment variables) and the outcome), PROP (based on the computa-
tion of a propensity score) and ORACLE (having access to all the variables in the
counterfactual configuration and to the causal graph, relying on supervised learning
to fit the dependency between the parents of the outcome variable and the outcome).
Note that ORACLE corresponds to an idealized configuration where all the causal
information is available for the counterfactual prediction. The same learning algo-
rithm (Random Forest) have been used to fit all the dependencies. The size N of the
training sets is in the range [250,500]. The relative error results for three different
multivariate settings (10 < n < 20 , 20 ≤ n < 40 , 40 ≤ n < 60) are reported in 1,
respectively.

R 10 < n < 20 20 ≤ n < 40 40 ≤ n < 60
DIR 1 0.674 0.686 0.7
DIR 2 0.884 0.932 0.959
PROP 0.675 0.687 0.703
D2CF 0.656 0.669 0.688
ORACLE 0.582 0.599 0.619

Table 1 Relative error results (the lower the better)

The experimental results show the the D2CF is consistently able to outperform
the other data-driven algorithms in terms of better concordance and lower relative
error. The gap between D2CF and ORACLE is a measure of the lost information
due to the unavailability of the true graph. Such results on synthetic data, though
preliminary, are promising. Future work will focus on the assessment of D2CF in
real settings, notably uplift modelling in churn detection.
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at identifying consistent disjoint groups of MVs, each one representing a latent con-
cept, and the hierarchical relationships among them. The non-negativity assumption
turns out to be realistic in real applications (e.g., the g factor [8], the mental abil-
ity tests [1]) since many multidimensional phenomena are described by a set of
variables that are concordant each other. By assuming that the variable space is par-
titioned into Q groups (Q ∈ {1, ..., p}), each one associated with a latent concept, a
(p× p) nonnegative correlation matrix is approximated in the UCM by

Ru = V(RB − IQ)V
′+VRWV′ −diag

(
dg(VRWV′)

)
+ Ip, (1)

where V,RW,RB are the (p×Q) binary and row stochastic membership matrix, the
(Q×Q) within-concept consistency matrix and the (Q×Q) ultrametric between-
concept correlation matrix, respectively. Ru turns out to be a (2Q− 1)-ultrametric
matrix which induces a hierarchy [2, Lemma 1 and Theorem 1] and it is associated
with a parsimonious correlation structure. The ultrametric parameterization allows
a decrease of the number of parameters needed to reconstruct a nonnegative corre-
lation matrix. Indeed, Ru can have as few as 1 parameter if Q = 1, or as many as
p−1 parameters if Q = p ≥ 2. Thus, the lower the number of the variable groups,
the simpler the structure of the ultrametric correlation matrix.

In this short paper, we start to inspect the mathematical advantages that a simpli-
fied structure induced by the ultrametric property entails in the maximum likelihood
estimation of the UCM under the assumption of Gaussian distributed data. We de-
rive the main elements of the likelihood function, i.e., the simplified determinant and
inverse of Ru, for some specific structures of the ultrametric correlation matrix. The
results presented herein will be used, generalized and integrated in the extended
paper along with the estimates of the UCM parameters in a maximum likelihood
framework.

2 Multivariate normal distributions with the ultrametric
correlation matrix

Let X = [X1, ...,Xp]
′ be a p-dimensional random vector with X ∼ Np(µµµX ,ΣΣΣ X ) and

Y = diag(dg(ΣΣΣ X ))
− 1

2 (X− µµµX ) ∼ Np(0,ΣΣΣY ), where dg(A) is the vector including
the elements of the diagonal of a square matrix A and ΣΣΣY = Ru is the (p× p) ul-
trametric correlation matrix in Eq. (1). The number of parameters of Ru to be esti-
mated depends on Q ≤ p. Under the i.i.d. assumption, the log-likelihood function
for the data y = [y1, ...,yn]

′, obtained from the aforementioned transformation of
x = [x1, ...,xn]

′, is

�(Ru;y) =−np
2

log(2π)− n
2

log |Ru|−
n
2

tr(RR−1
u ), (2)

where R is the observed nonnegative correlation matrix.
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Table 1 Ultrametric correlation structures.

Ultrametric Correlation Matrix # parameters Description

1-ultrametric correlation matrix 1 Constant correlation matrix1

3-ultrametric correlation matrix 3+ p 2-block oblique correlation matrix
3-ultrametric correlation matrix 2+ p 2-block orthogonal correlation matrix
with RB = I2

(2Q−1)-ultrametric correlation matrix 2Q−1+ p Q-block oblique correlation matrix2

(2Q−1)-ultrametric correlation matrix Q+ p Q-block orthogonal correlation matrix2

with RB = IQ
(2Q−1)-ultrametric correlation matrix Q+ p Q-block oblique correlation matrix with
with RW = λ IQ constant correlation within blocks2

(2p−1)-ultrametric correlation matrix p−1 p-block correlation matrix3

1 V = 1p.
2 It is assumed Q < p.
3 V = Ip.

Possible structures of the ultrametric correlation matrix Ru are described in Table
1. They can be grouped in three main classes: 1-ultrametric correlation matrices, 3-
ultrametric correlation matrices and (2Q− 1)-ultrametric correlation matrices. The
first one corresponds to an equicorrelation matrix in which a constant correlation
occurs among MVs, i.e., Ru = λ (1p1′p − Ip)+ Ip, where 1p is the p-dimensional
vector of unitary elements and Ip is the identity matrix of order p. The second class
contains two possible cases: (i) two-block oblique correlation matrix, where two
groups of MVs have correlations within blocks equal to λ1 and λ2, respectively,
and correlation between blocks equal to λ3, i.e., Eq. (1) with RW = diag([λ1,λ2]

′)
and RB = λ3(121′2 − I2)+ I2; (ii) two-block orthogonal correlation matrix, where
two groups of MVs have correlations within blocks equal to λ1 and λ2, respec-
tively, and correlation among blocks equal to zero (λ3 = 0), i.e., Eq. (1) with
RW = diag([λ1,λ2]

′) and RB = I2. The third class contains four possible cases: (i)
Q-block oblique correlation matrix, in which Q groups of MVs have correlations
within blocks equal to the diagonal elements of RW and correlations between pairs
of blocks equal to the off-diagonal elements of RB, i.e. Eq. (1); (ii) Q-block orthog-
onal correlation matrix, in which Q groups of MVs have correlations within blocks
equal to the diagonal elements of RW and zero correlation among them, i.e., Eq.
(1) with RB = IQ; (iii) Q-block oblique correlation matrix, with constant correlation
λ within blocks and correlations between pairs of blocks equal to the off-diagonal
elements of RB, i.e., Eq. (1) with RW = λ IQ; (iv) p-block correlation matrix, where
Q = p, i.e., each group is composed of one MV, with correlations between pairs of
MVs equal to the off-diagonal elements of RB, i.e., Eq. (1) with RW = Ip.

In this section, we focus on three structures of Ru shown in Table 1 - the 1-, 3-
and (2Q− 1)-ultrametric correlation matrix - illustrating the simplification of the
main elements of Eq. (2) under the aforementioned parameterization of a nonneg-
ative correlation matrix. For further details on the partitioned matrices which the
following results are based on, see [4, 5].
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2.1 Case 1: 1-ultrametric correlation matrix

If we assume that Q = 1, the 1-ultrametric correlation matrix can be written as
Ru = (1−λ )Ip +λ1p1′p, with 0 ≤ λ < 1. Thus, the determinant of Ru is

det(Ru) = [1+λ (p−1)](1−λ )p−1 (3)

and its inverse - [3, p. 61] and [7] - is

R−1
u =

1
1−λ

(
Ip −

λ
1+λ (p−1)

1p1′p

)
. (4)

2.2 Case 2: 3-ultrametric correlation matrix

If we assume that Q = 2, the 3-ultrametric correlation matrix can be written as Ru =
λ3V(121′2−I2)V

′+VRWV′−diag
(
dg(VRWV′)

)
+Ip, where RW = diag([λ1,λ2]

′),
λ1,λ2,λ3 are the correlations within the first, the second group and between groups,
respectively, with 0 ≤ λ3 ≤ λs < 1, s = 1,2. V is assumed to have contiguous rows
representing MVs which belong to the same group after an appropriate row permu-
tation. The 3-ultrametric correlation matrix can be rewritten as

Ru =

[
A B
B′ D

]
,

where A= (1−λ1)Ip1
+λ11p1

1′p1
, D= (1−λ2)Ip2 +λ21p2

1′p2
, B= λ3(1p1

1′p2
) and

p1, p2 represent the number of MVs in the first and the second group, respectively,
s.t. p1+ p2 = p. It is worth noticing that the matrices A and D are 1-ultrametric (see
Section 2.1). It follows that the determinant of Ru is

det(Ru) = det(D)det(A−BD−1B′) = [1+λ2(p2 −1)] (1−λ2)
p2−1

·

{[
λ1 −

p2λ 2
3

1−λ2

(
1− p2λ2

1+λ2(p2−1)

)]
p1 +(1−λ1)

}
(1−λ1)

p1−1 (5)

and the inverse of Ru is

R−1
u =

[
A B
B′ D

]−1

=

[
K N
N′ M

]
, (6)

where K=(A−BD−1B′)−1 =
[
(1−λ1)Ip1

+
[
λ1 −

p2λ 2
3

1−λ2

(
1− p2λ2

1+λ2(p2−1)

)]
1p1

1′p1

]−1
,

N =−KBD−1 and M = D−1 +D−1B′KBD−1, D and (A−BD−1B′) nonsingular.
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2.3 Case 3: (2Q-1)-ultrametric correlation matrix with zero
correlation among blocks of variables

If we assume that Q = 2 and λ3 = 0, i.e., the correlation between the variable
groups is equal to zero, Ru = VRWV′ − diag

(
dg(VRWV′)

)
+ Ip, where RW =

diag([λ1,λ2]
′). Then, the determinant of Ru is

det(Ru) = [1+λ1(p1 −1)] [1+λ2(p2 −1)] (1−λ1)
p1−1(1−λ2)

p2−1 (7)

and its inverse is

R−1
u =

[
A−1 0p1,p2

0p2,p1 D−1

]

=




1
1−λ1

(
Ip1

− λ1
1+λ1(p1−1)1p1

1′p1

)
0p1,p2

0p2,p1
1

1−λ2

(
Ip2

− λ2
1+λ2(p2−1)1p2

1′p2

)

 . (8)

In order to generalize the latter case to Q groups with no correlation among them,
Ru can be rewritten as a block diagonal matrix

Ru =




(1−λ1)Ip1
+λ11p1

1′p1
0p1,p2 ... 0p1,pQ

0p2,p1 (1−λ2)Ip2
+λ21p2

1′p2
... ...

... ... ... ...
0pQ,p1 ... ... (1−λQ)IpQ

+λQ1pQ
1′pQ


 ,

with p1 + p2 + ...+ pQ = p. Thus,

det(Ru) = [1+λ1(p1 −1)] · [1+λ2(p2 −1)] · ... · [1+λQ(pQ −1)] · (1−λ1)
p1−1

· (1−λ2)
p2−1 · ... · (1−λQ)

pQ−1 (9)

and

R−1
u =




1
1−λ1

(
Ip1

− λ1
1+λ1(p1−1)1p1

1′p1

)
... 0p1,pQ

... ... ...

0pQ,p1 ... 1
1−λQ

(
IpQ

− λQ
1+λQ(pQ−1)1pQ

1′pQ

)


 (10)

which is a block diagonal matrix, where each block is the inverse of a 1-ultrametric
correlation matrix (see Section 2.1).

3 Conclusions and Further Developments

In this paper, a parsimonious parameterization of a nonnegative correlation matrix
via an ultrametric correlation one is proposed. Moreover, we inspect the advantages
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2.3 Case 3: (2Q-1)-ultrametric correlation matrix with zero
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In order to generalize the latter case to Q groups with no correlation among them,
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Ru =




(1−λ1)Ip1
+λ11p1

1′p1
0p1,p2 ... 0p1,pQ

0p2,p1 (1−λ2)Ip2
+λ21p2

1′p2
... ...

... ... ... ...
0pQ,p1 ... ... (1−λQ)IpQ

+λQ1pQ
1′pQ


 ,

with p1 + p2 + ...+ pQ = p. Thus,

det(Ru) = [1+λ1(p1 −1)] · [1+λ2(p2 −1)] · ... · [1+λQ(pQ −1)] · (1−λ1)
p1−1

· (1−λ2)
p2−1 · ... · (1−λQ)

pQ−1 (9)
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 (10)

which is a block diagonal matrix, where each block is the inverse of a 1-ultrametric
correlation matrix (see Section 2.1).

3 Conclusions and Further Developments

In this paper, a parsimonious parameterization of a nonnegative correlation matrix
via an ultrametric correlation one is proposed. Moreover, we inspect the advantages
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that a simple structure, induced by an ultrametric correlation matrix, entails in the
maximum likelihood estimation of the Ultrametric Correlation Model parameters,
assuming the normality of the data. The parameterization is studied to derive, in
closed form, the equation of the determinant and inverse of an ultrametric correla-
tion matrix in three cases, i.e., 1-ultrametric correlation matrix, 3-ultrametric corre-
lation matrix and (2Q−1)-ultrametric correlation matrix with no correlation among
groups of MVs. These elements are crucial in the maximum likelihood estimation
of the Ultrametric Correlation Model parameters. The ultrametric correlation matrix
allows a decrease of the number of parameters to be estimated compared to a general
correlation matrix with p(p−1)/2 parameters. The generalization of the results herein
to a (2Q−1)-ultrametric correlation matrix for estimating the Ultrametric Correla-
tion Model in a maximum likelihood framework will be illustrated in an extended
paper.

Our goal for future studies is also to introduce a test for correlation in order
to pinpoint non-significant correlations in the ultrametric matrix; this can further
reduce the number of parameters in the model. Furthermore, the ultrametric corre-
lation matrix in Eq. (1) can be used to parameterize a nonnegative correlation matrix
in Gaussian mixture models [6] when a multidimensional phenomenon is studied on
observations coming from G <+∞ sub-populations with a Gaussian distribution.
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In-sample and cross-validated likelihood-type
criteria for clustering selection

Luca Coraggio and Pietro Coretto

Abstract The selection of an optimal clustering solution is a long-standing prob-
lem. In this study, we focus on model-based clustering, where this problem amounts
to choose the architecture of the mixture distribution. Decisions to be made per-
tain to: cluster prototype distribution; number of mixture components; (optionally)
restrictions on the clusters’ geometry. Typical solutions to aid these decisions use
penalized model selection criteria, based on the observed likelihood function. We
compare these techniques, which we refer to as in-sample methods, with cross-
validation alternatives. The latter is rather popular in many data-driven applications,
but is less explored for clustering problems. We analyse both classical methods such
as BIC, AIC, AIC3 and ICL, and cross-validation schemes, defining the risk in terms
of minus the log-likelihood function. The analysis makes use of the popular Iris
dataset. We find that less explored alternatives like AIC3 and cross-validation meth-
ods yields better performances and deserve further study.

Key words: model based clustering, model selection, penalized likelihood, cross-
validation.

1 Introduction

In this study we compare different criteria to select an optimal clustering solution
among different candidate ones, in model-based clustering. Other studies investi-
gated indexes used for model selection in this setting: [6, 13, 9] compare information
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based criteria; for an extensive review see [7, Ch. 7]. With respect to these works,
we add the less-explored cross-validation criteria to the comparison.

In model-based clustering it is assumed that data are generated from a finite mix-
ture distribution with density

f (· ; θθθ) =
K

∑
k=1

pk fk(· ; aaak),

where K is a finite positive integer indicating the number of components, and
θθθ = [p1, . . . , pK ,aaa�1 , . . . ,aaa

�
K ]

� is the unknown parameter vector. Here fk are den-
sities representing the k-th cluster, 0 < pk < 1’s are mixing proportions, so that
∑K

k=1 pk = 1, aaak is the parameter vector describing the cluster shape under fk.
Henceforth, for some finite integer d > 0, fk(· ; aaak) is the Gaussian density with d-
dimensional mean µµµk, and d ×d covariance matrix ΣΣΣ k, thus aaak = [µµµ�

k ,vect(ΣΣΣ k)]
�,

where vect(AAA) is the row-vector containing the elements of the upper triangle of
the square matrix AAA including its diagonal. Let us indicate with M a set of can-
didate models; then, defining a member, m, of this set requires: (i) defining K;
(ii) defining a parametrization for the covariance matrix ΣΣΣ k, for k = 1, . . . ,K. Let
aaak = [µµµ�

k ,vect(ΣΣΣ (h)
k )]� be the parameters of the k-th component according to a cer-

tain parametrization h of the covariance structure. [4] proposed to decompose ΣΣΣ (h)
k

into parameters describing geometrical notion of clusters’ volume, orientation, and
shape to reproduce different levels of model complexity.

Let θθθ(m) be the parameter vector representing a candidate model m ∈ M . Typ-
ically, the practice is to obtain an estimate, θ̂θθ(m), via maximum likelihood (ML),
for each member of M . These estimates allow the selection of a model m∗, and
its implied clustering, based on some optimality notion. In the context of Gaus-
sian model-based clustering the choice of m∗ is typically performed by optimizing
an information-theoretic statistic, based on the log-likelihood function. In Section
2, we introduce some popular criteria used to inform this choice. In Section 3 we
compare the different criteria using the Iris dataset.

2 Methodology

Let Xn = {x1, · · · ,xn} be a sample of n data points in Rd , for some finite integer
d > 0. Let zi,k be the unobserved assignment, where zi,k = 1 if xi belongs to the k-th
cluster and 0 otherwise. Let K(m) and h(m) be the values of K and h according to
m ∈ M . Define

l(θθθ(m)) =
n

∑
i=1

K(m)

∑
k=1

log(pk fk(xi,aaak,h(m))) (1)

cl(θθθ(m)) =
n

∑
i=1

K(m)

∑
k=1

zi,k log(pk fk(xi,aaak,h(m))) (2)

In-sample and cross-validated likelihood-type criteria for clustering selection 3

where l(·) is the log-likelihood function under m, and cl(·) is the so called complete
log-likelihood function. As mentioned in the introduction, let θ̂θθ(m) the ML esti-
mate of θθθ(m), and let ẑi,k be the maximum a posteriori estimates of zi,k. Replacing
θ̂θθ(m) into (1), and θ̂θθ(m) and ẑi,k into (2), the corresponding sample estimates l̂(m)

and ĉl(m) are obtained. Let νm be the number of free parameters in the model m,
where νm increases with both K(m) and the number of parameters required by the
covariance parametrization h(m). Among the criteria used for model selection, we
consider sampling approximations of the Bayesian Information Criterion (BIC) of
[10], the Akaike Information Critirion (AIC) of [1], a modified version of the AIC
(AIC3) of [3] and the Integrated Complete Likelihood Criterion (ICL) of [2]. These
are defined as:

AIC(m) = 2l̂(m)−2νm, BIC(m) = 2l̂(m)− log(n)νm,

AIC3(m) = 2l̂(m)−3νm, ICL(m) = 2ĉl(m)− log(n)νm.

According to these criteria, we select the model m∗ that maximises one of the
quantities above. Note that, although derived from different perspectives, these
methodologies share the following form: “(complete) log-likelihood at the MLE
− penalty”, where the penalty increases with model complexity, and sometimes de-
creases with n.

Another proposal, that is less explored, but still based on likelihood-type statis-
tics, is the cross-validation (CV) method of [12]. In CV a risk measure CV (m) is
computed out-of-sample by splitting the available data, and a model m∗ is chosen
in order to optimize CV (m). For a given m the CV works as follows: (i) a partition
of Xn into a training-set, Xtr, and a test-set, Xte, is obtained; (ii) θ̂θθ

tr
(m) is estimated

using the sample points in Xtr; (iii) CV (m) = l̂te(m)/n is computed, where l̂te is the
estimated l̂(m) computed on Xte using θ̂θθ

tr
(m). In order to reduce the bias/variance

of the CV, multiple splits are performed and the averaged value of CV (m) is max-
imised. Specifically, ten-fold cross-validation amounts to partition Xn in subsets of
10% size, X (i), using each time 90% of the data for estimation and 10% for eval-
uation. That is, split Xn =

⊔
i=1,...,10 X (i) and obtain a set of (ten) partitions: ΠCV .

Monte Carlo cross-validation (MCCV) randomly shuffles the data Xn and then par-
titions it in two equal-size subsets, X (tr,i) and X (te,i). This is done M times obtaining
a set of partitions ΠMC.

ΠCV =
{
� j �=iX ( j),X (i)

}
i=1,...,10

, ΠMC =
{

X (tr,i),X (te,i)
}

i=1,...,M
.

For every model m and every element of ΠCV (similarly ΠMC), a value of CV (m) can
be computed; denote with CVi(m) the value obtained according to the i-th element in
ΠCV (ΠMC). The selected model is the one that achieves the maximum mean value,

1
|ΠCV |

|ΠCV |

∑
i=1

CVi(m),
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Fig. 1 x-axes show models m ∈ M , ordered in terms of K(m) first, and then by the number of
free parameters implied by the covariance structure h(m) (increasing complexity). Ticks group
models by number of components K(m). For example, models in between “G1” (included) and
“G2” (excluded) are the 14 models with K(m) = 1, sorted in order of increasing free parameters,
νm. For CV plots, 95%-confidence bands for the average CV (m) are shown as well.

where |ΠCV | indicates the cardinality of the set ΠCV (the formula for MCCV is
obtained replacing ΠCV with ΠMC).

Note that this approach uses different data to estimate and evaluate the clustering
solution. This does not happen for the other methods previously introduced, where
the same information is used both to form the estimates, θ̂(m), and to evaluate the
obtained solution. We stress this point referring to AIC, AIC3, BIC and ICL as in-
sample criteria.

3 Comparing methods on real data

We compare the methods introduced in Section 2 using the popular Iris dataset ([5]).
This is a four dimensional dataset with n = 150 observations of Iris, divided in three
different classes/groups based on plant species. The analysis employs the mclust
R package ([11]) for parameters estimation. M includes a total of 140 Gaussian
mixture models, obtained by combining the following:

• the number of mixture components, K, ranges from 1 to 10;
• 14 different covariance parametrizations, as indicated in [4], allowing for a wide

variety of structures on clusters’ shape and geometry.1

1 These correspond to Mclust parametrizations: EII, VII, EEI, VEI, EVI, VVI, EEE, EVE, VEE,
VVE, EEV, VEV, EVV, VVV.

In-sample and cross-validated likelihood-type criteria for clustering selection 5

For cross-validation, we compare two splitting methods:

• 10-fold CV: the data set is randomly partitioned into 10 non-overlapping sub-
sets (the folds), each used once as test-set while setting the remaining 9 folds as
training-set;

• Monte Carlo CV (MCCV): the dataset is partitioned T = 100 times into two
halves, one is used as training-set, the other is used as test-set.

Results for the 6 methods are summarized in Figure 1. There are two winning
solutions. BIC, ICL and MCCV, select K = 2, ellipsoidal structures for both clusters
with varying volume and orientation. This solution merges the overlapping groups
corresponding to versicolor and virginica species, which might be still reasonable.
AIC3 and 10-fold CV selects a solution with K = 3 and covariance structure as be-
fore. This solution achieves an adjusted Rand index = 0.9 (see [8]) where 3.3% of
the points are misclassified in the strongly overlapping region between the versi-
color and virginica species.

Based on our results, we conclude that AIC3 and 10-fold CV seem to have a
superior performance. This is in contrast with results in [6, 13], where BIC achieves
better results. In particular, the stronger penalty used in AIC3 seems to compensate
the tendency of AIC to overestimate the number of groups. Cross-validation meth-
ods seem also promising, treating separately the estimation and evaluation phases
of the solution.

Our analysis is limited in that it considers a single dataset. Thus, no conclusive
statement can be made on the overall relative performances of the different criteria.
Nonetheless, our results show that standard methods like BIC, AIC and ICL may
select inferior solutions in some circumstances, where less popular alternatives like
AIC3 and cross-validated likelihood outperform them. For this reason, we think that
the latter criteria, especially out-of-sample ones, deserve more attention and need
further investigation.
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tion method is to identify which units substantially deviate from the observed la-
beled patterns. Therefore, in a model-based framework, it is firstly of paramount
importance to learn the components that correspond to the manifest groups in the
training set. Secondly, one needs to take into account the lack of knowledge regard-
ing the statistical novelties. Thirdly, contaminated elements in the known classes
could greatly jeopardize the identification of new groups. Motivated by these chal-
lenges, we propose a two-stage Bayesian non-parametric novelty detector. At stage
one, robust estimates are extracted from the training set and, subsequently, such in-
formation is employed to elicit informative priors within a flexible semiparametric
mixture. This general paradigm can be easily adapted to complex modeling frame-
works: we provide here an application to functional data from a food authenticity
study.
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1 Introduction

A model for novelty detection can be seen as a supervised classifier, trained on a
fully-labeled training set, that allows the presence of new classes in the test set,
not previously observed among the training units. This framework is different from
classical classification methods, where the learning units are assumed to be realiza-
tions from all the possible sub-groups contained in the target population. Moreover,
traditional classifiers take the observations in the training set as a reliable source of
information, namely outlier-free and label noise-free. Unfortunately, this scenario is
not always the case: to face this issue, [4] has introduced an adaptive classifier that
employs two algorithms (transductive and inductive) for reliable inference.
Building upon these ideas, we propose a two-stage procedure in a nonparametric
Bayesian framework for simultaneously dealing with outliers, label noise, and hid-
den classes that may be present in the test set.
In the first phase, our model extracts the known patterns from the training dataset us-
ing the Minimum Regularized Covariance Determinant (MRCD) estimator [3]. The
MRCD procedure is characterized by a parameter ηMRCD ∈ [0.5,1]. This parameter
determines the proportion of N observations to consider, such that the determinant
of a convex combination of a target matrix and the sample covariance matrix is min-
imal. Once these �ηMRCDN� observations are detected, they are used to estimate
the location µµµMRCD and dispersion ΣΣΣ MRCD parameters. This estimator ensures the
required robustness by trimming out the problematic observations, and in addition
it can be also applied to “small N big p” data problems.
In the second phase, we use insights from the training set to elicit informative priors,
modeling the data in the test set with a Bayesian mixture of known groups plus a
novelty term. To reflect the lack of knowledge on the novelty term, we resort to a
Dirichlet Process mixture model. The adoption of such nonparametric prior over-
comes the problematic specification of the number of mixture components for the
novel group. The modeling framework that we introduce in Section 2 is flexible
and generalizable to data of different nature. To prove this claim, we will apply our
method to a functional dataset, a type of data object that has become increasingly
popular in recent applications.

2 Model Specification

Let the test observations to be noisy realizations ym(t), m = 1, . . . ,M of a univariate
stochastic process X (t), t ∈T with T ⊂R. Let ΘΘΘ m(t) =

(
fm(t),σ2

m(t)
)

denote the
vector comprising a smooth mean function fm : T →R and the measurement noise
function σ2

m : T →R+ for the m-th curve in the test set at instant t. We assume fm(t)
and σ2

m(t) to be independent ∀t. Our model can be succinctly specified as follows:
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ym(t)|ΘΘΘ m(t) = N( fm(t),σ2
m(t)), Θm(t) | p̃ i.i.d.∼ p̃

p̃ =
J

∑
j=1

π jδΘΘΘ j +π0

[
+∞

∑
h=1

ωhδΘΘΘ nov
h

]
,

(π0,π1, . . . ,πJ)∼ Dir(a0,a1, . . . ,aJ)

ωωω ∼ SB(γ), ΘΘΘ j ∼ PTr
j , ΘΘΘ nov

h ∼ H,

(1)

where SB represents the usual Stick-Breaking representation [10] and H is the base
measure of a Dirichlet Process DP(γ,H). According to model (1), the parameter
ΘΘΘ m(t) is either sampled from one of the J known classes, or from a Dirichlet Pro-
cess mixture model that describes the novel term. Therefore, the specification of the
prior distributions of the known classes PTr

j is crucial.
We propose informative priors for ΘΘΘ j = ( f j(t),σ2

j (t)) such that their realizations
are concentrated around f̄ j and σ̄2

j , the estimates of the mean and variance func-
tions in each observed class j = 1, . . . ,J obtained from the training set. We smooth
each training curve xn, n = 1, . . . ,N, via a weighted sum of L basis functions
xn(t)=∑L

l=1 ρnlφl(t), where φl(t) is the l-th basis evaluated at t and ρnl its associated
coefficient. Promising results were obtained by adopting B-spline basis functions.
Using this representation, we obtain J matrices of coefficients, each of dimension
Nj ×L, where Nj denotes the sample size of the j-th known class. By treating them
as multivariate entities, as done in [1], we apply the MRCD estimator obtaining the
following robust estimates:

f̄ j(t) =
L

∑
l=1

ρ̂MRCD
jl φl(t), σ̄2

j (t) =
1

Nj −1 ∑
n:ln= j

(
xn(t)− f̄ j(t)

)2

where ρ̂MRCD
jl is the robust location estimate computed via MRCD on the Nj × L

matrix of coefficients and ln denotes the class label of the n-th unit, j = 1, . . . ,J.
Similarly, we adopt a basis representation to induce a flat prior as the base measure
H. The posterior distribution of model 1 is not available in closed form. Therefore,
to conduct posterior inference, we need to rely on MCMC simulation techniques. In
particular, for this paper, we employ a Blocked Gibbs Sampling scheme. We follow
Ishwaran and James [6] and truncate at a level K the infinite sum that models the
Dirichlet Process on the novelties. The selection of K needs to balance the trade-off
between model flexibility and computational complexity. As a rule of thumb, we
set K to be slightly larger than the highest number of novelties that we expect to
find in the test set. Precise truncation error bounds can be found in Ishwaran and
James [6]. Alternatively, it is also possible to adopt different sampling schemes: for
example, one could employ a Slice-sampler algorithm [7] or, if dealing with large
datasets, rely on approximate inference using, for example, mean-field Variational
Bayes techniques [2]. These are both research avenues that we are currently explor-
ing.
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datasets, rely on approximate inference using, for example, mean-field Variational
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3 Application

We employ our model in the context of a food authenticity study, where the aim is
to characterize unknown food samples by identifying their type and/or provenance.
In particular, we test our model on the benchmark dataset of Near Infrared Spec-
tra (NIR) of meat varieties [8]. The considered data contain the electromagnetic
spectrum for a total of 231 homogenized meat samples, with absorbance values
recorded at p = 1050 wavelengths. The dataset encompasses five different meat
types, including 32 beef, 55 chicken, 34 lamb, 55 pork, and 55 turkey units. We
randomly partition the samples into training and test sets. We let the entire beef
group to be unobserved, fully allocating it in the test set as a novel class. More-
over, we manually adulterate four observations in the test set, mimicking the spectra
modifications performed in [5]. In our application, we consider the beef subpopula-
tion and the adulterated units as novelty groups. We approximate each training unit
via a linear combination of L = 100 B-spline functions, and we apply the MRCD
estimator to obtain robust group-wise estimates for the splines coefficients. These
quantities, which are linearly combined with the B-spline bases, account for the
training atoms ΘΘΘ j, j = 1, . . . ,4 specified in Equation (1). A value of ηMRCD = 0.75
is considered for the analysis. Once Θ̂ΘΘ j, j = 1, . . . ,4 are collected, the Bayesian
nonparametric model is applied to the test units. The resulting confusion matrix is
reported in Table 1, where we juxtapose for comparison the classification obtained
via the one-class Support Vector Method (one-class SVM) [9], the baseline classifier
in the novelty detection literature. One can appreciate how the novel class, as well
as the adulterated units (labeled as “Outliers” in the table), are successfully captured
by the novelty component, while the same does not happen for the one-class SVM.
Figure 1 reports the estimated posterior co-clustering matrix estimated on the test
units, whose entries are defined as the proportion of times the algorithm assigns a
pair of observations to the same group across all the iterations of the MCMC chain.
The true data partition is adequately well recovered by our methodology, with only
some misclassification displayed within the poultry (chicken and turkey) superset.
Notice that both the beef observations and the outliers are clustered together ac-
cording to the co-clustering matrix: this happens because they are both captured by
the flexible novelty term. Yet our model, thanks to its probabilistic-based frame-
work, is also able to identify specific sub-structures within such component: from
the co-clustering matrix of Figure 1, the best partition for the novelty subset can
be recovered minimizing, for example, the associated Variation of Information loss
criterion [11]. In this way, the obtained within-novelties clustering discriminates
between beef units and outliers, successfully performing anomaly and novelty de-
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3 Application
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Table 1: Confusion matrices for the semi-parametric Bayesian classifier and one-
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such computation, we introduce: 1) an expectation maximization algorithm with
closed-form updates, that uses efficient formulas that are available for linear re-
gression; 2) a new strategy to select the model based on a Least-Angle-RegreSsion
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1 Introduction

In most practical applications, regression problems deal with situations where
the number of candidate covariates is large. The Lasso, proposed by Tibshirani
(1996), has become very popular for the estimation of high-dimensional linear re-
gression models where a sparse solution, a vector of regression coefficients with
a relatively small number of non-zero elements, is desirable. This makes the com-
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putation of the final solution, as well as the tuning of the penalty necessary to se-
lect the model, particularly cumbersome. We contribute to this literature in two
ways. First, by formulating an efficient procedure based on the EM algorithm with
M-step updates in closed form. Second, by generalizing the use of the LARS al-
gorithm (Efron et al., 2004) to efficiently obtain all cluster-specific lasso solutions
given the estimated posterior probabilities. In this way, we build up a grid, that we
call informated, on which we select the final solution by picking up the combi-
nation of cluster-specific lasso solutions that minimize BIC. The structure of the
paper is laid out as follows. We present the methodology (Section 2), that we eval-
uate on a set of simulation conditions (Section 3) and conclude with some final
comments.

2 The methodology

Let y1, . . . ,yn be a sample of independent observations drawn from the response
random variable Yi, each observed alongside with a vector of J explanatory vari-
ables x1, . . . ,xn. Let us assume Yi|xi to be distributed as a finite mixture of linear
regression models, that is

f (yi|xi;ψ) =
G

∑
g=1

πgφg(yi|xi,σ2
g ,β g) =

G

∑
g=1

pg
1√

2πσ2
g

exp
[
−

(yi −x′iβ g)
2

2σ2
g

]
, (1)

where G is the number of mixture components and πg, β g, and σ2
g are the mixing

proportion, the vector of J + 1 regression coefficients that includes an intercept,
and the variance term for the g-th cluster. The set of all model parameters is given
by ψ = {(π1, . . . ,πG;β 1, . . . ,β G;σ2

1 , . . . ,σ
2
G) ∈ RG+(J+1)G+G : π1 + · · ·+ πG =

1,πg > 0,σ2
g > 0, for g = 1, . . . ,G}.

Based on the model of Equation (1), we can compute the posterior membership
probabilities for each observation as follows

P(g|yi,xi) =
πgφg(yi|xi;σ2

g ,β g)

∑G
h=1 πhφh(yi|xi;σ2

h ,β h)
, (2)

and then classify each observation according, for instance, to fuzzy or crisp classi-
fication rules.
The negative of the log-likelihood function can be specified as

�(ψ) =−
n

∑
i=1

log
{ G

∑
g=1

πg
1√

2πσg2
exp
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−
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, (3)

which we minimize to estimate ψ either by means of direct optimization or with
the perhaps more popular EM algorithm (Dempster et al., 1977).
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Suppose that β = {β 1, . . . ,β G} is sparse, that is some or many of its elements are
exactly equal to zero. ML estimates of β will therefore be close to but never ex-
actly zero. In order to simultaneously estimate all model parameters and shrink to
zero the insignificant regression coefficients, we propose minimizing the following
negative lasso penalized log-likelihood function

p�(ψ) = �(ψ)+ p(ψ), (4)

where the penalty p(ψ) is specified as follows

p(ψ) =
G

∑
g=1

πgλg

J

∑
j=1

∣∣β jg
∣∣ . (5)

The computation of the maximum (penalized) likelihood estimates of model pa-
rameters can be done by using the usual EM algorithm with two modifications.
First, the regression parameters are updated by estimating a weighted LASSO re-
gression instead of a simple regression. For a given vector of lambdas, this update
is available in closed form. Second, we note that, for penalty (5), the update for the
mixing proportions is no longer π̂g =

1
n ∑n

i=1 P̂(g|yi). Some authors suggest updates
based on approximate schemes. Differently, we propose to parametrize the mixing
proportions πg, for g = 1, . . . ,G, with the following multinomial logit

πg =
exp(αg)

∑G
h=1 expαh

, (6)

where αg are real–valued coefficients, for g = 1, . . . ,G− 1, and αG is set to zero
for identification. Then, we update the α’s by one Newton-Raphson step within the
M-step, for which the gradient and the hessian of (4) can be computed in closed
form.
In order to select the model, The proposed soft-LARS algorithm can be described
in the following steps.

Step 0 - Initialization. Set λg, for g = 1, . . . ,G, to some pre-specified values > 0.
Step 1 - Fit. For fixed lambdas, estimate the model parameters of the mixture of

lasso regressions.
Step 2 - Model selection. Select the best model for component g by using the

BIC on the LARS grid of possible solutions given the estimated posterior
weights.

Step 3 - Refit (optional). Fit the unpenalized finite mixture by eliminating from
the components the regressors corresponding to zero coefficients in step 2.

3 Simulation study

In order to asses the proposed methodology, we have carried out a simulation
study. The data are generated from a 2-component clusterwise linear regression
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with 5 regressors and component-specific intercepts. The simulation conditions
are based on the setup of Khalili and Chen (2007). The factors that are consid-
ered are sample size (100 and 200), cluster size (0.5 and 0.5; 0.7 and 0.3; 0.9 and
0.1), magnitude of nonzero coefficients (balanced and unbalanced), and degree
of collinearity between regressors (uncorrelated and correlated), with a total of
24 simulation conditions. For each simulation condition we have generated 250
data sets. For the comparison, we have included the non-penalized estimator of
the clusterwise linear regression model as computed by the R package flexmix
(Leisch, 2004) and the penalized lasso estimator used by Mortiera et al. (2015),
also included in flexmix - we label them respectively flex and flexlasso. Of all
24 simulation conditions, we report the Mean Squared Error, the Adjusted Rand
Index (ARI, Hubert and Arabie, 1985), the rate of correctly classified regression
coefficients (zeros and nonzeros, avgCLASS) and the CPU time (in seconds). Re-
sults, for the sake of brevity, will be presented for the condition with n = 100 and
equal class proportions, for both uncorrelated and correlated regressors. The mean
values of all the target measures are reported in Table 1. Boxplots of ARI, MSE
and avgCLASS are reported in Figure 1.

Method ARI MSE avgCLASS CPU time

uncorrelated regressors

flex 0.748 0.280 0.500 0.018

flexlasso 0.752 0.246 0.762 2.540

soft-LARS 0.771 0.198 0.905 0.004

correlated regressors

flex 0.648 0.470 0.500 0.020

flexlasso 0.657 0.394 0.745 2.850

soft-LARS 0.686 0.281 0.855 0.006

Table 1: Average results (over 250 samples). Simulation condition: n = 100 , equal
class proportions.

Results show that the presence of correlated regressors worsen all the target mea-
sures. The soft-LARS approach is the most accurate among the three considered
approaches. This is the case both in terms of cluster recovery and accuracy of pa-
rameter estimate. The softLARS delivers also the highest rate of correctly classi-
fied zeros/nonzeros. These good performances are obtained with very short com-
puting times whereas the CPU time of an entire run is on average about at least
400 times less than the penalized Lasso flexlasso and even quicker than the unpe-
nalized method flexlasso. Results on the other simulation conditions are qualita-
tively in line with those reported in Table 1.
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Fig. 1: Boxplot of ARI (top), avgClass (middle) and MSE (bottom) over 250 sam-
ples. Simulation condition: sample size n = 100, equal class proportions, uncorre-
lated regressors and correlated regressors.
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Index (ARI, Hubert and Arabie, 1985), the rate of correctly classified regression
coefficients (zeros and nonzeros, avgCLASS) and the CPU time (in seconds). Re-
sults, for the sake of brevity, will be presented for the condition with n = 100 and
equal class proportions, for both uncorrelated and correlated regressors. The mean
values of all the target measures are reported in Table 1. Boxplots of ARI, MSE
and avgCLASS are reported in Figure 1.

Method ARI MSE avgCLASS CPU time

uncorrelated regressors

flex 0.748 0.280 0.500 0.018

flexlasso 0.752 0.246 0.762 2.540

soft-LARS 0.771 0.198 0.905 0.004

correlated regressors

flex 0.648 0.470 0.500 0.020

flexlasso 0.657 0.394 0.745 2.850

soft-LARS 0.686 0.281 0.855 0.006

Table 1: Average results (over 250 samples). Simulation condition: n = 100 , equal
class proportions.

Results show that the presence of correlated regressors worsen all the target mea-
sures. The soft-LARS approach is the most accurate among the three considered
approaches. This is the case both in terms of cluster recovery and accuracy of pa-
rameter estimate. The softLARS delivers also the highest rate of correctly classi-
fied zeros/nonzeros. These good performances are obtained with very short com-
puting times whereas the CPU time of an entire run is on average about at least
400 times less than the penalized Lasso flexlasso and even quicker than the unpe-
nalized method flexlasso. Results on the other simulation conditions are qualita-
tively in line with those reported in Table 1.
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Fig. 1: Boxplot of ARI (top), avgClass (middle) and MSE (bottom) over 250 sam-
ples. Simulation condition: sample size n = 100, equal class proportions, uncorre-
lated regressors and correlated regressors.
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4 Conclusions

In this chapter we have presented a penalized ML estimator of FMLR with a
LASSO penalty. We observed from the simulation stud that our estimator based on
the LARS search performs well - and better than its competitors. Future research
might look into how to reformulate of the penalty to achieve equivariance of the
penalized estimator, as well as how to handle the well–known issue of degeneracy
of (conditional) Gaussian finite mixtures.
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Model-based clustering and first language
acquisition

Massimo Mucciardi, Giovanni Pirrotta and Andrea Briglia

Abstract Language has been traditionally considered as a qualitative phenomenon
that mainly requires hermeneutical methodologies in order to be studied, yet in re-
cent decades - thanks to advances in data storage, processing and visualization -
there has been a growing and fertile interest in analysing language by relying on
statistics and quantitative methods. In light of these reasons, we think it is worth-
while to try to explore databases made up of transcripted infant spoken language
in order to verify whether and how underlying patterns and recurrent sequences of
learning stages work during acquisition. So, we think that model-based clustering
method via the Expectation-Maximization (EM) algorithm can be useful to evaluate
the development of linguistic structures over time in a reliable way.

Key words: First Language Acquisition, Model-Based Clustering, EM Algorithm,
Phonetic Variation Rate, POS Tags

1 General Framework

First language acquisition can be studied and modeled by using statistical tools: ex-
periments have shown how specific innately biased statistical learning mechanisms
are activated during in vitro settings where children easily learn how to keep mem-
ory of the transitional probability between syllables to spot word’ boundaries [1].
Computational methods and models have contributed to important advances in the
understanding of language acquisition: corpus analysis is one of the most rigorous
ways to account for pattern, regularities and learning stages in a sound and replicable
procedure. The paper is organized as follows: section 2 describes the data structure;
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section 3 briefly recalls the Expectation Maximization (EM) method, estimation
strategy and data analysis. Finally, section 4 provides conclusions and suggestions
for future research.

2 Data Structure

CoLaJE [2] is a database composed of seven children that have been videorecorded
in vivo approximately one hour every month from their first year of life until they
were five. In this exploratory research, statistical treatments have been tested only
on one child (Adrien) because the transcriptions obtained from this corpus are the
most complete. The data is transcripted in three forms: CHI is what the child says
in the orthographic form, PHO what the child really says and MOD what he should
have said according to the adult norm. To make the data uniform in a suitable form
for automatic processing, we had to make trade-off like choices: child language is
subject to interpretation difficulties by adults trying to decode it: in about 5% of the
total number of occurrences, the number of words differs between the three main
aforementioned forms in which sounds are coded: we decide to cut off these occur-
rences because they would have biased the final statistics, since the classification
methods need to have an equal number of words related to the same phrase. The
resulting data structure is a transformation from the video [3] into a statistically
manageable database. In this respect, Code for the Human Analysis of Transcripts
(CHAT) provides a standardized format for producing computerized transcripts of
conversational interactions. By analyzing, cleaning, filtering and normalizing all the
available original CHAT transcripts we aimed at producing one corpus composed
of the overall amount of what the child said through the years. A total of 8214 an-
notated sentences containing more than 100 variables were collected. Some useful
measures have been calculated such as: child age in years (time); Sentence Phonetic
Variation Rate (SPVR) [8]: the SPVR is obtained by comparing mod and pho in or-
der to measure how the relation between varied and correct form evolves over time.
Then, we applied Part-Of-Speech Tagger (POS Tags), a software that reads text in a
given language and assigns parts of speech to each word such as noun, verb, adjec-
tive. We used Stanza Core NLP engine [5] to tag all CHI words by using Universal
Dependencies as a standard of reference for part-of-speech classification [11].

3 Data Analysis 1

The EM algorithm is an iterative method relying on the assumption that the data
is generated by a mixture of underlying probability distributions, where each com-
ponent represents a separate group, or cluster. The method provides the optimal

1 Some results are not shown due to lack of space, they are available upon request.
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number of clusters in any empirical situation, by using a two step iterative algo-
rithm: the (E) or expectation step and the (M) or maximization step. These two
steps are repeated until a further increase in the number of clusters would result in a
negligible improvement in the log-likelihood, namely a convergence. Accordingly,
the program checks how much the overall fit improves in passing from one to two
clusters (formed in all possible ways, and selecting the best), then from two to three,
etc. If the error function calculated for the solution with K+1 clusters is not marked
(e.g at least 5 percent better) more than the simpler solution with K clusters, then
the solution with K clusters is considered ideal and retained [9] [10]. Considering
the nature of the variables (count data) and assuming their independence, we use
finite multivariate Poisson mixtures in the EM procedure. To extend previous re-
search [8], we divide our database in strata considering 3 different age classes of the
child (L=1.97 - 2.64; M= 2.71 - 3.39 H=3.46 - 4.33 expressed in years and months)
and 3 classes of SPVR (L=≤33; M=>33 and ≤66; H>66 expressed in percent). In
total we get 9 strata (from LL to HH). By framing the analysis in this way, we turn
model-based clustering via EM algorithm into a potentially interesting method that
could provide a reliable way to observe linguistic structures development over time.

Table 1 provides three general indexes describing how child language is devel-
oping in quantity, quality and accuracy: these variables are represented respectively
in, Child Total Words Tokenized (CTWT), Child Total Distinct Words Tokenized
(CTDWT) and Normalized Levenshtein Distance (NLD). In particular NLD [4] is a
string metric for calculating the edit distance between two given words, that means
the number of deletion, insertion or substitutions of a single character needed to
turn one word into the other. To obtain a realistic picture of the variation rate over
a child’s ages, we adjust the Levenshtein Distance by normalizing it: this means
that the rate will be expressed in relative values, thus obtaining a result capable of
comparing shorter and longer sentences We can observe the validity of NLD by the
fact that it decreases over the three slot of ages as the child improves his language.
In a coherent way, CTWT, the total number of words pronounced, increases and
the CTDWT, the total number of different word types (proxy of an index of lexical
diversity) increases as well with a similar rate. Table 2 and 3 summarize the main
results obtained from clustering through a detailed overview on the most influential
POS tags for each strata and its related clusters. In addition, the means of the POS
are calculated in each strata (PSM). We recall that the difference between SPVR
and NLD is in the different way of quantifying the variation rate: SPVR counts as a
variated form every word that is not pronounced exactly as it should have been pro-
nounced (coarse-grained), while NLD gives a percentage of the number of letters
by which the pronounced word differs from the target word (fine-grained). These
general indexes have been calculated to test the soundness of our dataset: this was
necessary because the following analysis and computations applied (parsing and
EM) would inevitably be heavily biased by any error occurred in this initial step.
Let’s move on to comment on the clustering results in detail.

- VERB. We can see that VERB occupies an increasing important role in devel-
opment: it is almost absent in the earlier age strata (PSM = L 0.02; M 0.25; H 0.18),
it develops sharply in median age strata (PSM = 0.16; 0.62; 0.44) while it is present
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number of clusters in any empirical situation, by using a two step iterative algo-
rithm: the (E) or expectation step and the (M) or maximization step. These two
steps are repeated until a further increase in the number of clusters would result in a
negligible improvement in the log-likelihood, namely a convergence. Accordingly,
the program checks how much the overall fit improves in passing from one to two
clusters (formed in all possible ways, and selecting the best), then from two to three,
etc. If the error function calculated for the solution with K+1 clusters is not marked
(e.g at least 5 percent better) more than the simpler solution with K clusters, then
the solution with K clusters is considered ideal and retained [9] [10]. Considering
the nature of the variables (count data) and assuming their independence, we use
finite multivariate Poisson mixtures in the EM procedure. To extend previous re-
search [8], we divide our database in strata considering 3 different age classes of the
child (L=1.97 - 2.64; M= 2.71 - 3.39 H=3.46 - 4.33 expressed in years and months)
and 3 classes of SPVR (L=≤33; M=>33 and ≤66; H>66 expressed in percent). In
total we get 9 strata (from LL to HH). By framing the analysis in this way, we turn
model-based clustering via EM algorithm into a potentially interesting method that
could provide a reliable way to observe linguistic structures development over time.

Table 1 provides three general indexes describing how child language is devel-
oping in quantity, quality and accuracy: these variables are represented respectively
in, Child Total Words Tokenized (CTWT), Child Total Distinct Words Tokenized
(CTDWT) and Normalized Levenshtein Distance (NLD). In particular NLD [4] is a
string metric for calculating the edit distance between two given words, that means
the number of deletion, insertion or substitutions of a single character needed to
turn one word into the other. To obtain a realistic picture of the variation rate over
a child’s ages, we adjust the Levenshtein Distance by normalizing it: this means
that the rate will be expressed in relative values, thus obtaining a result capable of
comparing shorter and longer sentences We can observe the validity of NLD by the
fact that it decreases over the three slot of ages as the child improves his language.
In a coherent way, CTWT, the total number of words pronounced, increases and
the CTDWT, the total number of different word types (proxy of an index of lexical
diversity) increases as well with a similar rate. Table 2 and 3 summarize the main
results obtained from clustering through a detailed overview on the most influential
POS tags for each strata and its related clusters. In addition, the means of the POS
are calculated in each strata (PSM). We recall that the difference between SPVR
and NLD is in the different way of quantifying the variation rate: SPVR counts as a
variated form every word that is not pronounced exactly as it should have been pro-
nounced (coarse-grained), while NLD gives a percentage of the number of letters
by which the pronounced word differs from the target word (fine-grained). These
general indexes have been calculated to test the soundness of our dataset: this was
necessary because the following analysis and computations applied (parsing and
EM) would inevitably be heavily biased by any error occurred in this initial step.
Let’s move on to comment on the clustering results in detail.

- VERB. We can see that VERB occupies an increasing important role in devel-
opment: it is almost absent in the earlier age strata (PSM = L 0.02; M 0.25; H 0.18),
it develops sharply in median age strata (PSM = 0.16; 0.62; 0.44) while it is present
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in almost any sentence in the upper age strata (PSM = (0.79; 1.02; 0.67): it is clear
also that VERB causes an increase in the error rate, as their values are higher in
higher error rate strata (more than 33 percent). We can further explain the fact that
VERB is higher in the LM, MM and HM strata by looking at the CTWT and CT-
DWT in the corresponding cells in table 1: they both have higher values as compared
to the other strata: this because in these strata sentences are longer than the others
and - a fortiori - they contain more verbs. If we want to know which specific verbs
occur in the different clusters of a given strata, it is possible to observe the POS
Cluster Mean (PCM) (values not shown) and read which kind of sentences have
been placed in a specific cluster: from our results, it is possible to see how complex
verbs (past and future forms, even in combination with auxiliaries) appear in later
age clusters where PCM is higher than 0.5 while common verbs such as “to do”,
“to be”, “to say”, “to like” occur mainly in their present form in both low and high
valued PCM in earlier strata clusters without any significant distribution detected.
This difference in clustering is probably due to the fact that a two years old child
essentially expresses himself through 1-2 words per sentence, so it is hard to divide
something that already represents a unit in itself. When the child is four year old the
clustering procedure divides in a much clearer way the corpus, helped by the fact
that sentences are longer and grammatically richer. - Morphosyntactic coherence.
If we look at the single sentence [7], we can observe that morphosyntactic coherence
is higher in HL, HM clusters compared to those in L layers, which is in line with
Parisse’s results, we can also observe that the parts of the speech PRON, VERB,
SCONJ - which could be considered as markers of longer sentences - increase their
importance (see the PSM in table 2 and 3) along the age progression. Here below a
couple of example2: escargot tout chaud (CHI) - EskaKgo tu So (PHO) - didago to
so (MOD) in MH strata; une souris verte (CHI) - yn suKi vEKt@ (PHO) - yn ţoji
vat@ (MOD) in HH strata. In the first, morphosyntactic coherence is expressed in
a coherent way in the masculine form, but the pronoun has not been pronounced
while in the second sentence the pronoun is correctly there and it is morphosyntac-
tically coherent with the feminine form centered on the noun. We would then say
that model-based clustering via EM seems capable to sort syntactically analogous
sentences that are part of different error and age classes in a sufficiently precise way.
- NOUN, PROPN and PRON. We can show how children develop a more abstract
and adult-like way to referring to entities by pointing out the evolution of the values
of PRON and the sum of the values of NOUN and PROPN: for L 0.02 vs 0.49, 0.20
vs 0.79, 0.09 vs 0.79; for M 0.13 vs 0.25, 0.70 vs 0.55, 0.41 vs 0.39; for H 1.14
vs 0.45, 1.48 vs 0.58, 0.74 vs 0.33. It is clear how children progressively learn to
properly use pronouns instead of using nouns: this is reflected and confirmed in the
fact that sentences are on average longer and thus children use anaphora in order
to avoid the repetition of the noun or proper noun to indicate the main subject of
the sentence. These results are in line with current literature on the acquisition of
pronouns in French [6].

2 PHO and MOD are the equivalent of the line in standard orthographic form CHI but
have been translitterated in IPA (International Phonetic Alphabet). See for more details
https://www.internationalphoneticalphabet.org/.
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4 Conclusion

There are of course exceptions to these grouping tendencies but, besides that, we
would suggest that these preliminary results represent a fair attempt to visualize
child language development through clusters of words grouped by several criteria
(age, grammatical properties, correct pronounciation). Until now, we can cautiously
say that in this first stage of research the model-based clustering via EM algorithm
can provide us some mild descriptions in the classification of POS tags. In other
words, the unsupervised automatic procedure seems to be able to confirm a general
grammatical development over time. This because cluster memberships are made
up of grammatical categories that are differently learnt at different ages. Next step
will be to focus on particular POS tags development over time by scanning every
cluster and looking to confirm more specific learning tendencies.

Table 1: Corpus index by strata

Corpus index LL LM LH ML MM MH HL HM HH
NLD 0.01 1.04 2.27 0.04 0.84 1.88 0.11 0.69 1.47

CTWT 1.52 2.52 1.54 1.88 3.67 2.34 4.54 5.43 3.01
CTDWT 1.19 2.09 1.26 1.53 3.10 1.98 3.69 4.48 2.49

# of sentences 611 184 914 851 626 1136 1762 1242 888

Table 2: Clustering results by strata (# - clusters number in brackets - POS sorted
for ANOVA post-hoc F-test (in bold) p<0.05)

Ordered POS LL (3) PSM LM (2) PSM LH (4) PSM ML (5) PSM MM (3) PSM
POS1 INTJ 0.13 VERB 0.25 PRON 0.09 CCONJ 0.05 ADP 0.18
POS2 DET 0.09 PROPN 0.04 ADV 0.36 PRON 0.13 ADV 0.65
POS3 ADP 0.01 ADV 0.59 DET 0.08 NOUN 0.22 DET 0.28
POS4 NOUN 0.47 NOUN 0.75 VERB 0.18 AUX 0.05 SCONJ 0.04
POS5 SYM 0.02 INTJ 0.18 NOUN 0.62 VERB 0.16 CCONJ 0.04
POS6 ADV 0.56 PRON 0.20 INTJ 0.06 NUM 0.04 INTJ 0.17
POS7 PROPN 0.02 DET 0.17 PROPN 0.05 SYM 0.02 NOUN 0.52
POS8 PRON 0.02 AUX 0.10 AUX 0.04 ADV 0.83 ADJ 0.09
POS9 VERB 0.02 NUM 0.07 ADJ 0.02 DET 0.09 NUM 0.04

POS10 X 0.02 CCONJ 0.05 SCONJ 0.00 PROPN 0.03 PROPN 0.04
POS11 CCONJ 0.02 ADP 0.03 CCONJ 0.01 ADP 0.03 AUX 0.28
POS12 SCONJ 0.01 X 0.03 ADP 0.01 X 0.03 VERB 0.62
POS13 AUX 0.01 ADJ 0.02 NUM 0.02 INTJ 0.18 PRON 0.70
POS14 NUM 0.10 SCONJ 0.02 SYM 0.00 ADJ 0.01 SYM 0.01
POS15 ADJ 0.00 SYM 0.00 X 0.00 SCONJ 0.01 X 0.00
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vs 0.45, 1.48 vs 0.58, 0.74 vs 0.33. It is clear how children progressively learn to
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fact that sentences are on average longer and thus children use anaphora in order
to avoid the repetition of the noun or proper noun to indicate the main subject of
the sentence. These results are in line with current literature on the acquisition of
pronouns in French [6].

2 PHO and MOD are the equivalent of the line in standard orthographic form CHI but
have been translitterated in IPA (International Phonetic Alphabet). See for more details
https://www.internationalphoneticalphabet.org/.
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4 Conclusion

There are of course exceptions to these grouping tendencies but, besides that, we
would suggest that these preliminary results represent a fair attempt to visualize
child language development through clusters of words grouped by several criteria
(age, grammatical properties, correct pronounciation). Until now, we can cautiously
say that in this first stage of research the model-based clustering via EM algorithm
can provide us some mild descriptions in the classification of POS tags. In other
words, the unsupervised automatic procedure seems to be able to confirm a general
grammatical development over time. This because cluster memberships are made
up of grammatical categories that are differently learnt at different ages. Next step
will be to focus on particular POS tags development over time by scanning every
cluster and looking to confirm more specific learning tendencies.

Table 1: Corpus index by strata

Corpus index LL LM LH ML MM MH HL HM HH
NLD 0.01 1.04 2.27 0.04 0.84 1.88 0.11 0.69 1.47

CTWT 1.52 2.52 1.54 1.88 3.67 2.34 4.54 5.43 3.01
CTDWT 1.19 2.09 1.26 1.53 3.10 1.98 3.69 4.48 2.49

# of sentences 611 184 914 851 626 1136 1762 1242 888

Table 2: Clustering results by strata (# - clusters number in brackets - POS sorted
for ANOVA post-hoc F-test (in bold) p<0.05)

Ordered POS LL (3) PSM LM (2) PSM LH (4) PSM ML (5) PSM MM (3) PSM
POS1 INTJ 0.13 VERB 0.25 PRON 0.09 CCONJ 0.05 ADP 0.18
POS2 DET 0.09 PROPN 0.04 ADV 0.36 PRON 0.13 ADV 0.65
POS3 ADP 0.01 ADV 0.59 DET 0.08 NOUN 0.22 DET 0.28
POS4 NOUN 0.47 NOUN 0.75 VERB 0.18 AUX 0.05 SCONJ 0.04
POS5 SYM 0.02 INTJ 0.18 NOUN 0.62 VERB 0.16 CCONJ 0.04
POS6 ADV 0.56 PRON 0.20 INTJ 0.06 NUM 0.04 INTJ 0.17
POS7 PROPN 0.02 DET 0.17 PROPN 0.05 SYM 0.02 NOUN 0.52
POS8 PRON 0.02 AUX 0.10 AUX 0.04 ADV 0.83 ADJ 0.09
POS9 VERB 0.02 NUM 0.07 ADJ 0.02 DET 0.09 NUM 0.04
POS10 X 0.02 CCONJ 0.05 SCONJ 0.00 PROPN 0.03 PROPN 0.04
POS11 CCONJ 0.02 ADP 0.03 CCONJ 0.01 ADP 0.03 AUX 0.28
POS12 SCONJ 0.01 X 0.03 ADP 0.01 X 0.03 VERB 0.62
POS13 AUX 0.01 ADJ 0.02 NUM 0.02 INTJ 0.18 PRON 0.70
POS14 NUM 0.10 SCONJ 0.02 SYM 0.00 ADJ 0.01 SYM 0.01
POS15 ADJ 0.00 SYM 0.00 X 0.00 SCONJ 0.01 X 0.00
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Table 3: Clustering results by strata (# - clusters number in brackets - POS sorted
for ANOVA post-hoc F-test (in bold) p<0.05)

Ordered POS MH (3) PSM HL (4) PSM HM (5) PSM HH (5) PSM
POS1 PRON 0.41 PRON 1.16 NOUN 0.55 AUX 0.26
POS2 AUX 0.20 DET 0.32 DET 0.47 NOUN 0.31
POS3 NOUN 0.31 VERB 0.79 PRON 1.48 VERB 0.67
POS4 DET 0.16 NOUN 0.42 ADJ 0.13 DET 0.20
POS5 ADP 0.11 SCONJ 0.15 AUX 0.37 PRON 0.74
POS6 ADV 0.38 ADP 0.23 VERB 1.02 NUM 0.09
POS7 PROPN 0.08 AUX 0.21 ADP 0.26 ADJ 0.09
POS8 SCONJ 0.02 ADV 0.73 ADV 0.67 ADP 0.12
POS9 VERB 0.44 ADJ 0.09 SCONJ 0.10 ADV 0.31
POS10 INTJ 0.06 CCONJ 0.12 X 0.02 X 0.03
POS11 NUM 0.03 SYM 0.02 CCONJ 0.11 PROPN 0.02
POS12 X 0.01 NUM 0.08 NUM 0.04 SCONJ 0.04
POS13 SYM 0.00 X 0.02 SYM 0.01 CCONJ 0.04
POS14 ADJ 0.10 PROPN 0.03 INTJ 0.15 INTJ 0.08
POS15 CCONJ 0.01 INTJ 0.16 PROPN 0.03 SYM 0.00
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Abstract A parsimonious modelling approach for clustering mixed-type (ordinal
and continuous) data is presented. It is assumed that ordinal and continuous data fol-
low a finite mixture of Gaussians that is only partially observed. We define a general
class of parsimonious models for mixed-type data by imposing a factor decomposi-
tion on component-specific covariance matrices. Parameter estimation is carried out
using a EM-type algorithm based on composite likelihood.
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1 Introduction

Cluster analysis methods are used to find subgroups in a population. Different clus-
tering methods exist, mainly divided into dissimilarity-based, such as k-means, and
model-based. The latter are techniques for estimating group memberships usually
based on a parametric finite mixture. In this literature, the finite Gaussian mixture
model is the most commonly used [7] for clustering continuous data. The idea is
to interpret each mixture component as a sub-population, i.e. cluster. It can be ex-
tended to mixed-type data (continuous and ordinal variables) following the under-
lying variable approach (URV, [3, 4, 12]) by assuming that the ordinal variables are
some variates of the mixture only partially observed (see e.g. [14, 1]).
In this framework two main issues closely related should be faced with when the di-
mensionality of the data is high: the number of parameters increases exponentially;
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a large number of ordinal variables makes the full maximum likelihood estimation
infeasible.
To solve the first issue, the model should be more parsimonious in terms of num-
ber of parameters to estimate. At this aim, appropriate reparameterizations need to
be assumed for the covariance matrices. Accordingly, we define a general class of
parsimonious mixture models for mixed-type data by imposing a factor decomposi-
tion on component-specific covariance matrices. The loadings and variances of error
terms of the factor model may be constrained to be equal or unequal across mixture
components [9, 8, 2].
As regard the second issue, we note that the maximum likelihood estimation is
rather complex because it requires the computation of many high dimensional in-
tegrals, due to the presence of ordinal variables. The problem is usually solved by
substituting the likelihood function with a surrogate function. More precisely, we
replace the full likelihood with the composite likelihood [5], defined as the product
of m-dimensional marginal or conditional events. In the current work, we present
the model estimation considering the product of all possible sub-likelihoods based
on two ordinal and all continuous variables. However, as long as sparsity is not a
problem and computations are feasible, it is possible to use a higher m, including
more ordinal variables. Under some regularity conditions [11], composite estimators
are quite efficient [5, 15] even if less than the full maximum likelihood estimators,
but much more efficient in terms of computational complexity. Model parameter
estimates can be computed by an EM-type algorithm based on the complete-data
composite log-likelihood.
Further details will be given in the extended version of the paper along with simu-
lations and real data results to show the effectiveness of the proposal.

2 Model

Let yQ̄ = [y1, . . . ,yP−Q] and x = [xP−Q+1, . . . ,xP] be P−Q continuous variables and
Q ordinal variables, respectively. The associated categories for each ordinal variable
are denoted by ci = 1, . . . ,Ci with i = Q̄+1, . . . ,P, where Q̄ = P−Q.
Following the underlying response variable approach, the observed variables x are
considered as a discretization of continuous latent variables yQ = [yQ̄+1, . . . ,yP]. The
latent relationship between x and yQ is explained by a threshold model defined as
follows,

γ(i)ci−1 ≤ yi < γ(i)ci ⇔ xi = ci,

where −∞ = γ(i)0 < γ(i)1 < .. . < γ(i)Ci−1 < γ(i)Ci
=+∞ are the thresholds defining the Ci

categories.
According to our proposal y= [yQ̄,yQ] follows a mixture of factor analyzers [9, 8, 2]

f (y) =
G

∑
g=1

pgφ(µg,Λ gΛ ′
g +Ψ g)

Mixture of factor analyzers for mixed-type data via a composite likelihood approach 3

where φ is the multivariate normal density, Λ g is the P×K matrix of factor loadings,
and Ψ g is the diagonal matrix of uniqueness. The loadings and uniqueness terms
may be constrained to be equal or unequal across mixture components. The result of
imposing, or not, each of these three constraints is the family of eight parsimonious
Gaussian mixture models (PGMMs) that are described in Table 1 [9]. Each member
of this family of models has a number of covariance parameters that is linear in
data dimensionality. By assuming a common covariance structure, an even more
parsimonious model can be used.

Table 1 The covariance structure of each latent parsimonious Gaussian mixture model

Model ID Λ g = Λ Ψ g =Ψ Isotropic Covariance Structure
CCC C C C Σ g = ΛΛ ′+ψIP
CCU C C U Σ g = ΛΛ ′+Ψ
CUC C U C Σ g = ΛΛ ′+ψgIP
CUU C U U Σ g = ΛΛ ′+Ψ g
UCC U C C Σ g = Λ gΛ ′

g +ψIP
UCU U C U Σ g = Λ gΛ ′

g +Ψ
UUC U U C Σ g = Λ gΛ ′

g +ψgIP
UUU U U U Σ g = Λ gΛ ′

g +Ψ g

For a random i.i.d. sample of size N, the log-likelihood is

�(θ) =
N

∑
n=1

log

[
G

∑
g=1

pg f (yQ̄
n ; µ Q̄

g ,Σ
Q̄Q̄
g )πn

(
µQ|Q̄

n;g ,Σ Q|Q̄
g ,γ

)]
(1)

(2)

where
Σ Q̄Q̄

g = V(yQ̄ | g),

Σ Q|Q̄
g = V(yQ | yQ̄,g)

and

πn

(
µQ|Q̄

n;g ,Σ Q|Q̄
g ,γ

)
=

∫ γ(Q̄+1)
c1

γ(Q̄+1)
c1−1

· · ·
∫ γ(P)cP

γ(P)cP−1

φ(yQ; µQ|Q̄
n;g ,Σ Q|Q̄

g )dyQ

is the probability of response pattern xn in the g-th component mixture with mean
and covariance matrix conditioned on the continuous variables. This likelihood
causes non trivial computational problems due to the presence of multidimensional
integrals.
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3 Estimation

As suggested in [14] and references therein, a composite likelihood approach could
be adopted. It allows us to simplify the problem by replacing the full likelihood with
a surrogate function based on m-dimensional marginals. It is a robust estimation
method and its estimators have been proven to be consistent, asymptotically unbi-
ased and normally distributed, under some mild regularity conditions [5, 15, 11].
In general they are less efficient than the full maximum likelihood estimators, or
estimators obtained with a higher m, but in many cases the loss in efficiency is very
small or almost null [5, 6].
In the sequel we refer to the case based on Q(Q−1)/2 marginal distributions each
of them composed of two ordinal variables and Q̄ continuous variables.

c�(θ) =
N

∑
n=1

Q−1

∑
io=1

Q

∑
jo=io+1

Cio

∑
cio=1

Cjo

∑
c jo=1

log

[
G

∑
g=1

pg f (yQ̄
n ,µ

Q̄
g ,Σ

Q̄Q̄
g )

π(io jo)
cio c jo

(µ(io jo|Q̄)
n;g ,Σ (io jo|Q̄)

g ,γ jo)
]
,

where π(io jo)
cio c jo

(µ(io jo|Q̄)
n;g ,Σ (io jo|Q̄)

g ,γ jo) is the conditional probability of variables i and
j being in category cio and c jo , respectively, given all the Q̄ continuous variables.
Under the model, this conditional probability is obtained by integrating the density
of a bivariate normal distribution with parameters (µ(io jo|Q̄)

n;g ,Σ (io jo|Q̄)
g ,γ jo) between

the corresponding threshold parameters. The computation of parameter estimates is
carried out using simultaneously a standard EM algorithm on each sub-likelihood
having the same set of parameters.

3.1 Classification, model selection and identifiability

As regards the classification, the observation is assigned to the component with the
maximum fit according to CMAP criterion [13]. In a context of standard mixture
models, the classification of the observations can be easily based on the MAP cri-
terion. This means that the observation is assigned to the component corresponding
to the maximum fit. In the same manner, the observations can be classified also un-
der a composite likelihood framework: the observation is assigned to the component
with the maximum fit. However, since the composite likelihood is constructed as the
product of Q(Q−1)/2 sub-likelihoods, following the same principle, the fit of each
observation is obtained by multiplying the corresponding Q(Q− 1)/2 fits. In our
experience, this does not cause any particular issue of numerical underflow. How-
ever, to handle potential numerical underflow, it is always possible to apply some
numerical tricks based on the logarithm scale. In order to express the fit in terms of
degree of membership, the fit of each observation can be normalized (i.e. it varies
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between 0 and 1).
In the estimation procedure, we assume that the number of mixture components and
the structure of covariance matrices are fixed. In practice, they are often unknown
and thus, they have to be estimated through observed data. The best fitted model can
be chosen by selecting the model minimizing the composite integrated classification
likelihood (c-ICL) [13].

c-ICL =−2c�c(θ)+d logN =−2c�(θ)+2EN(p̂)+d logN (3)

where c�c is the conditional expectation of the complete composite log-likelihood
given the observed data, d is the number of parameters, while the second term is
known as entropy of the fuzzy classification obtained in the E-step of the EM algo-
rithm, EN(p̂).
A further important point of the proposed model that is worth to be discussed is
parameter identifiability. To estimate both thresholds and component parameters if
all the observed variables have three categories at least and when groups are know,
we set the first two thresholds to 0 and 1, respectively [10]. Finally, the factorial
reparameterization of component-specific covariance is not uniquely indentified. A
possible identification constraint is to require that Λ ′

gΨ−1
g Λ g is a diagonal matrix.

Further details will be given in the extended version of the paper along with simu-
lations and real data results to show the effectiveness of the proposal.
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3 Estimation

As suggested in [14] and references therein, a composite likelihood approach could
be adopted. It allows us to simplify the problem by replacing the full likelihood with
a surrogate function based on m-dimensional marginals. It is a robust estimation
method and its estimators have been proven to be consistent, asymptotically unbi-
ased and normally distributed, under some mild regularity conditions [5, 15, 11].
In general they are less efficient than the full maximum likelihood estimators, or
estimators obtained with a higher m, but in many cases the loss in efficiency is very
small or almost null [5, 6].
In the sequel we refer to the case based on Q(Q−1)/2 marginal distributions each
of them composed of two ordinal variables and Q̄ continuous variables.

c�(θ) =
N

∑
n=1

Q−1

∑
io=1

Q

∑
jo=io+1

Cio

∑
cio=1

Cjo

∑
c jo=1

log

[
G

∑
g=1

pg f (yQ̄
n ,µ

Q̄
g ,Σ

Q̄Q̄
g )

π(io jo)
cio c jo

(µ(io jo|Q̄)
n;g ,Σ (io jo|Q̄)

g ,γ jo)
]
,

where π(io jo)
cio c jo

(µ(io jo|Q̄)
n;g ,Σ (io jo|Q̄)

g ,γ jo) is the conditional probability of variables i and
j being in category cio and c jo , respectively, given all the Q̄ continuous variables.
Under the model, this conditional probability is obtained by integrating the density
of a bivariate normal distribution with parameters (µ(io jo|Q̄)

n;g ,Σ (io jo|Q̄)
g ,γ jo) between

the corresponding threshold parameters. The computation of parameter estimates is
carried out using simultaneously a standard EM algorithm on each sub-likelihood
having the same set of parameters.

3.1 Classification, model selection and identifiability

As regards the classification, the observation is assigned to the component with the
maximum fit according to CMAP criterion [13]. In a context of standard mixture
models, the classification of the observations can be easily based on the MAP cri-
terion. This means that the observation is assigned to the component corresponding
to the maximum fit. In the same manner, the observations can be classified also un-
der a composite likelihood framework: the observation is assigned to the component
with the maximum fit. However, since the composite likelihood is constructed as the
product of Q(Q−1)/2 sub-likelihoods, following the same principle, the fit of each
observation is obtained by multiplying the corresponding Q(Q− 1)/2 fits. In our
experience, this does not cause any particular issue of numerical underflow. How-
ever, to handle potential numerical underflow, it is always possible to apply some
numerical tricks based on the logarithm scale. In order to express the fit in terms of
degree of membership, the fit of each observation can be normalized (i.e. it varies

Mixture of factor analyzers for mixed-type data via a composite likelihood approach 5

between 0 and 1).
In the estimation procedure, we assume that the number of mixture components and
the structure of covariance matrices are fixed. In practice, they are often unknown
and thus, they have to be estimated through observed data. The best fitted model can
be chosen by selecting the model minimizing the composite integrated classification
likelihood (c-ICL) [13].

c-ICL =−2c�c(θ)+d logN =−2c�(θ)+2EN(p̂)+d logN (3)

where c�c is the conditional expectation of the complete composite log-likelihood
given the observed data, d is the number of parameters, while the second term is
known as entropy of the fuzzy classification obtained in the E-step of the EM algo-
rithm, EN(p̂).
A further important point of the proposed model that is worth to be discussed is
parameter identifiability. To estimate both thresholds and component parameters if
all the observed variables have three categories at least and when groups are know,
we set the first two thresholds to 0 and 1, respectively [10]. Finally, the factorial
reparameterization of component-specific covariance is not uniquely indentified. A
possible identification constraint is to require that Λ ′

gΨ−1
g Λ g is a diagonal matrix.

Further details will be given in the extended version of the paper along with simu-
lations and real data results to show the effectiveness of the proposal.

References

1. EVERITT, B. A finite mixture model for the clustering of mixed-mode data. Statistics &
Probability Letters 6, 5 (1988), 305–309.

2. GHAHRAMANI, Z., AND HINTON, G. E. The em algorithm for mixtures of factor analyzers.
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lution to this issue consists in fitting mixtures of matrix-variate distributions with
heavy tails. An example of such situation is here discussed by using a dataset con-
cerning the non-life Italian insurance market. The fitting results of the matrix-variate
normal mixture model are the worst, and the related data classification seems not re-
alistic compared to the one produced by the heavy-tailed models.
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in the recent years, especially within the model-based clustering literature. Such data
structure can occur from the observation of several attributes p measured in different
situations r on a set of units N. Therefore, the data can be arranged in a three-
way structure characterized by the following three dimensions: attributes (rows),
situations (columns) and units (layers). In other terms, we have a p× r observed
matrix for each statistical unit.
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In the model-based clustering literature, Viroli (2011) firstly introduced matrix-
variate normal mixtures (MVN-Ms). However, for many real phenomena, the tails of
the matrix-variate normal distribution, used for the mixture components, are lighter
than required, with a direct effect on the corresponding mixture model in terms of
fitting and disruption of the true grouping structure. The most commonly used solu-
tion to deal with such situations consists in relaxing the normality assumption of the
mixture components. For example, Doğru et al. (2016) proposed mixtures of matrix-
variate t distributions (MVt-Ms), and more recently Tomarchio et al. (2020) intro-
duced mixtures of matrix-variate shifted exponential normal distributions (MVSEN-
Ms) and mixtures of matrix-variate tail-inflated normal distributions (MVTIN-Ms).

In fashion of Tomarchio et al. (2020), all the aforementioned mixture models
are herein considered. Specifically, they are fitted to a dataset concerning the non-
life insurance consumption in Italy, across the 103 Italian provinces and over the
years 1998–2002. Such data have been analyzed by Millo and Carmeci (2011) via a
panel analysis, to assess the determinants of the non-life insurance consumption in
Italy. The Italian territory has been always differentiated from the social, cultural,
demographic and economic points of view. In detail, such distinctions mainly op-
pose the Central-Northern part of the country with the Southern and Insular one (see.
e.g. Brunello and Cappellari, 2008; González, 2011). Relatedly, the insurance indus-
try is also affected by such dichotomy (Millo and Carmeci, 2011). By rearranging
the data in a three-way structure, we firstly evaluate if MVN-Ms provide an adequate
fit to the data with respect to the heavy-tailed mixtures (MVt-Ms, MVSEN-Ms and
MVTIN-Ms). Then, a comparison among the produced data classifications is done.
In Section 2, some details about the considered mixtures are given, whereas Sec-
tion 3 contains the insurance data analysis.

2 Matrix-variate mixture models

A p× r random matrix X arises from a parametric finite mixture model if its proba-
bility density function (pdf) can be written as

f (X;∆) =
G

∑
g=1

αg f (X;Θg), (1)

where αg is the mixture weight of the g-th component, with αg > 0 and ∑G
g=1 αg = 1,

f (X;Θg) is the pdf of the g-th component with parameters Θg, and ∆ contains all
of the parameters of the mixture.

Here, we give the following four possibilities for the g-th mixture component,
g = 1, . . . ,G, in (1):

• the MVN distribution, with p× r mean matrix M, p× p row covariance matrix
Σ and r× r column covariance matrix Ψ :
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distance from X to the center M with respect to Σ and Ψ . This notation will
be used also for the subsequent distributions.

• The MVSEN distribution, with p× r mean matrix M, p× p row scale matrix Σ,
r× r column scale matrix Ψ and tailedness parameter θ :
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where φm(z) is the Misra function (Misra, 1940), generalized form of the expo-
nential integral function.

• The MVTIN distribution, with p× r mean matrix M, p× p row scale matrix Σ,
r× r column scale matrix Ψ and tailedness parameter θ :
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where Γ (a,z) denotes the upper incomplete gamma function.
• The MVt distribution, with p×r mean matrix M, p× p row scale matrix Σ, r×r

column scale matrix Ψ and degrees of freedom ν :
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where Γ (a) denotes the gamma function.

Parameter estimation is carried out via several extensions of the expectation-
maximization (EM) algorithm. For a complete description of the algorithms see
Viroli (2011); Doğru et al. (2016); Tomarchio et al. (2020).

3 Insurance data application

The dataset is contained in the splm package (Millo and Piras, 2012) for the R com-
puting environment. For this application, we consider the following three variables:
(V1) real per capita premiums in 2000 euros, non-life insurance excluding manda-
tory motor third party liability, (V2) real per-capita GDP and (V3) real per-capita
bank deposits. The reasons why we focused on this financial variables are: (1) they
are nearly regularly used in the non-life insurance literature, and their influence on
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the insurance industry has been widely discussed (see the references in Millo and
Carmeci, 2011, for further details); (2) avoid an overparametrization of the models.
Therefore for each province we have p = 3 variables and r = 5 years, resulting in a
3×5 matrix.

All the considered matrix-variate mixture models are then fitted to the data for
G ∈ {1,2,3}, and for each model the Bayesian information criterion (BIC; Schwarz
et al., 1978) is used to select G. With the formulation of the BIC used herein, the
lowest its value, the better the model. The results are displayed in Table 1.

Table 1: Number of groups G selected by the BIC, along with the BIC values, for
the considered matrix-variate mixture models.

Model G Value
MVN-Ms 3 20452.70
MSEN-Ms 2 20282.10
MVTIN-Ms 2 20274.66

MVt-Ms 2 20277.50

The first interesting result is that G = 3 for MVN-Ms, whereas for all the heavy-
tailed mixtures G = 2. Furthermore, the MVN-Ms have the worst fitting perfor-
mance, with a BIC value that is by far different from those of the other models.
Relatedly, the BIC values of the heavy-tailed mixtures are close to each other, even
if the best fitting model is the MVTIN-Ms. In addition, all the heavy-tailed mixtures
produce the same data classification. A first comparison among the classifications
produced can be done by looking at the parallel coordinate plots of the three vari-
ables, illustrated in Figure 1 for the MVN-Ms, and in Figure 2 for the MVTIN-Ms.
In both figures, each color corresponds to a group, which are called Group 1 (red),
Group 2 (cyan) and, only for MVN-Ms, Group 3 (green). As we can easily see in
Figure 1, Group 3 is strongly overlapped to Group 2. A possible reason for this may
be due to the tails of the matrix-normal distribution that are not heavy enough to
model the observations which are relatively distant from the bulk of the data (espe-
cially for variables V1 and V3). Then, an additional mixture component is required.
On the contrary, Group 3 is not present in Figure 2, where the two groups seem to
have just a minimum level of overlap.

To better understand the classifications produced, a second graphical comparison
is done by using the Italian political map. Specifically, in Figure 3 the Italian regions
are bordered in yellow (islands excluded), while the internal provinces are delimited
with the black lines and colored (as before) according to the estimated group mem-
berships, both for MVN-Ms and MVTIN-Ms. Here, it is possible to see how Group
3 for MVN-Ms collects provinces spanning over several and different regions with-
out a straightforward and reasonable justification. For example, the Lazio region in
the Central Italy, have provinces belonging to all the three estimated groups, which
is strange since they all share the same political and financial administration. Con-
versely, the two groups for MVTIN-Ms seem to almost perfectly divide Italy in two
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(a) (b) (c)

Fig. 1: Parallel coordinate plots for the best clustering solution according to the
MVN-Ms.

(a) (b) (c)

Fig. 2: Parallel coordinate plots for the best clustering solution according to the
MVTIN-Ms.

macro-regions, the Central-Northern Italy and the Southern-Insular Italy, which is
in line with the findings of Millo and Carmeci (2011), where such separation is dis-
cussed. Furthermore, with the exclusion of three cases, all the provinces belonging
to the same region are clustered together. The only exceptions concern the province
of Rome (in the Lazio region), which due to its social-economic development is rea-
sonably assigned to the Central-Northern Italy group, the province of Ascoli-Piceno
(in the Marche region) and the province of Massa-Carrara (in the Toscana region).
Therefore, considering the supporting literature and the interpretability of the re-
sults, it is reasonable to consider the classification produced by the MVTIN-Ms
better than the one obtained via MVN-Ms.
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the insurance industry has been widely discussed (see the references in Millo and
Carmeci, 2011, for further details); (2) avoid an overparametrization of the models.
Therefore for each province we have p = 3 variables and r = 5 years, resulting in a
3×5 matrix.

All the considered matrix-variate mixture models are then fitted to the data for
G ∈ {1,2,3}, and for each model the Bayesian information criterion (BIC; Schwarz
et al., 1978) is used to select G. With the formulation of the BIC used herein, the
lowest its value, the better the model. The results are displayed in Table 1.

Table 1: Number of groups G selected by the BIC, along with the BIC values, for
the considered matrix-variate mixture models.

Model G Value
MVN-Ms 3 20452.70
MSEN-Ms 2 20282.10

MVTIN-Ms 2 20274.66
MVt-Ms 2 20277.50

The first interesting result is that G = 3 for MVN-Ms, whereas for all the heavy-
tailed mixtures G = 2. Furthermore, the MVN-Ms have the worst fitting perfor-
mance, with a BIC value that is by far different from those of the other models.
Relatedly, the BIC values of the heavy-tailed mixtures are close to each other, even
if the best fitting model is the MVTIN-Ms. In addition, all the heavy-tailed mixtures
produce the same data classification. A first comparison among the classifications
produced can be done by looking at the parallel coordinate plots of the three vari-
ables, illustrated in Figure 1 for the MVN-Ms, and in Figure 2 for the MVTIN-Ms.
In both figures, each color corresponds to a group, which are called Group 1 (red),
Group 2 (cyan) and, only for MVN-Ms, Group 3 (green). As we can easily see in
Figure 1, Group 3 is strongly overlapped to Group 2. A possible reason for this may
be due to the tails of the matrix-normal distribution that are not heavy enough to
model the observations which are relatively distant from the bulk of the data (espe-
cially for variables V1 and V3). Then, an additional mixture component is required.
On the contrary, Group 3 is not present in Figure 2, where the two groups seem to
have just a minimum level of overlap.

To better understand the classifications produced, a second graphical comparison
is done by using the Italian political map. Specifically, in Figure 3 the Italian regions
are bordered in yellow (islands excluded), while the internal provinces are delimited
with the black lines and colored (as before) according to the estimated group mem-
berships, both for MVN-Ms and MVTIN-Ms. Here, it is possible to see how Group
3 for MVN-Ms collects provinces spanning over several and different regions with-
out a straightforward and reasonable justification. For example, the Lazio region in
the Central Italy, have provinces belonging to all the three estimated groups, which
is strange since they all share the same political and financial administration. Con-
versely, the two groups for MVTIN-Ms seem to almost perfectly divide Italy in two
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(a) (b) (c)

Fig. 1: Parallel coordinate plots for the best clustering solution according to the
MVN-Ms.

(a) (b) (c)

Fig. 2: Parallel coordinate plots for the best clustering solution according to the
MVTIN-Ms.

macro-regions, the Central-Northern Italy and the Southern-Insular Italy, which is
in line with the findings of Millo and Carmeci (2011), where such separation is dis-
cussed. Furthermore, with the exclusion of three cases, all the provinces belonging
to the same region are clustered together. The only exceptions concern the province
of Rome (in the Lazio region), which due to its social-economic development is rea-
sonably assigned to the Central-Northern Italy group, the province of Ascoli-Piceno
(in the Marche region) and the province of Massa-Carrara (in the Toscana region).
Therefore, considering the supporting literature and the interpretability of the re-
sults, it is reasonable to consider the classification produced by the MVTIN-Ms
better than the one obtained via MVN-Ms.
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(a) (b)

Fig. 3: Italian provinces colored according to the best clustering solutions for the
MVN-Ms (a) and MTIN-Ms (b).
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Doğru, F. Z., Y. M. Bulut, and O. Arslan (2016). Finite mixtures of matrix variate t
distributions. Gazi University Journal of Science 29(2), 335–341.

González, S. (2011). The north/south divide in italy and england: Discursive con-
struction of regional inequality. European Urban and Regional Studies 18(1),
62–76.

Millo, G. and G. Carmeci (2011). Non-life insurance consumption in italy: a sub-
regional panel data analysis. Journal of Geographical Systems 13(3), 273–298.

Millo, G. and G. Piras (2012). splm: Spatial panel data models in R. Journal of
Statistical Software 47(1), 1–38.

Misra, R. D. (1940). On the stability of crystal lattices. II. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, Volume 36, pp. 173–182. Cam-
bridge University Press.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of
statistics 6(2), 461–464.

Tomarchio, S. D., A. Punzo, and L. Bagnato (2020). Two new matrix-variate distri-
butions with application in model-based clustering. Computational Statistics &
Data Analysis 152, 107050.

Viroli, C. (2011). Finite mixtures of matrix normal distributions for classifying
three-way data. Statistics and Computing 21(4), 511–522.




