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ABSTRACT This work presents a comprehensive study, from an industrial perspective, of the process
between the collection of raw data, and the generation of next-item recommendation, in the domain of
Video-on-Demand (VoD). Most research papers focus their efforts on analyzing recommender systems on
already-processed datasets, but they do not face the same challenges that occur naturally in industry, e.g.,
processing raw interactions logs to create datasets for testing. This paper describes thewhole process between
data collection and recommendation, including cleaning, processing, feature engineering, session inferring,
and all the challenges that a dataset provided by an industrial player in the domain posed. Then, a comparison
on the new dataset of several intent-based recommendation techniques in the next-item recommendation task
follows, studying the impact of different factors like the session length, and the number of previous sessions
available for a user. The results show that taking advantage of the sequential data available in the dataset
benefits recommendation quality, since deep learning algorithms for session-aware recommendation are
consistently the most accurate recommenders. Lastly, a summary of the different challenges in the VoD
domain is proposed, discussing on the best algorithmic solutions found, and proposing future research
directions to be conducted based on the results obtained.

INDEX TERMS Industrial data, intent-based, session-based, user behavior.

I. INTRODUCTION
The benefits of recommender systems are clear. They guide
users in the exploration of immense catalogs of products, and
they leverage user behaviors to generate accurate, interesting,
novel, and serendipitous recommendations [1]–[3]. One of
the most important aspects in the design and evaluation of
a recommender system is the data used to profile users
and provide recommendations. In literature, many published
research papers use research datasets such as MovieLens [4],
or 30MUSIC [5] to perform offline experiments. However,
these datasets hardly reflect the challenges posed by a real
scenario. They rarely reach the magnitude of a true system
in terms of number of interactions, users, and items, and they
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hide the complexity of building a dataset from raw collected
data. On the other hand, industrial datasets, i.e., datasets
constructed from the logs of real-world recommenders, pose
different challenges in their construction and usage, and they
can reproduce more accurately a real application scenario.
For example, they introduce the impression bias, i.e., the
fact that the pattern of interactions between users and items
is influenced by how items are presented to the users [6].
Moreover, the size of industrial datasets might be orders
of magnitude larger than research datasets and they are
heavily noisy. Given these differences between research
and industrial datasets, understanding the construction and
processing steps that bring from a low-level interaction log
to a high-level dataset ready for an algorithm is important
for the research community. These constructions steps have
a strong impact, equal to or even greater than that of the
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algorithm itself, on the final quality of the recommendation
process [7], [8]. However, few works using industrial
datasets [6], [9] have addressed these important aspects.

In this work, the construction, processing, and cleaning
of an industrial dataset is described in detail. The dataset
is composed by logs collected in a 6-months period from
an Over-The-Top Media service (OTT), which provides
Video-on-Demand (VoD)media content via the internet. Sim-
ilarly to a real case study in an industrial environment, the new
dataset is then employed to perform an offline comparative
study of several intent-based recommendation techniques
in next-item recommendation. Next-item recommendation
is the typical task that an online recommender system is
asked to accomplish, and it consists in predicting the item
involved in the next action performed by a user. Intent-
based recommenders exploit past user interactions, items
and users metadata, and any other information available to
assess the intent of a user, and generate recommendations
accordingly. A wide range of approaches is confronted, from
simple baselines to sophisticated session-based techniques
for sequence-aware recommendation. Session-based recom-
menders, in particular, assume that the intent of the users can
be inferred from the set of interactions that the user performed
in the same session and they have proved to be particularly
effective for next-item recommendation [1], [2], [10]. Note
that the goal of this paper is not to perform a survey on the
most recent state-of-the-art intent-based algorithms,1 but to
propose a real-world case study that discusses the whole path
from raw data to recommendation, in order to fill the gap
between research and industrial works, especially in the VoD
domain.

The different steps that were preformed to accomplish
this study are depicted in Figure 1. (i) Initially, data was
gathered from the online system. A description of the
collected data, that include user actions, such as clicks,
views and ratings, and VoDs metadata, is provided in
Section III-A. (ii) Collected data was then preprocessed,
in order to remove noisy and inconsistent information. The
various preprocessing steps that raw data collected from
an online system required are discussed in Section III-B,
covering the removal of repeated actions, the handling of
key missing information, and the filtering of incoherent
system interactions. (iii) Preprocessed data was analyzed to
study user behavior, identify common habits, and infer user
sessions. Sessions are crucial to deduce short-term intent
of users, and lead to superior accuracy in the next-item
recommendation task. In Section III-C, the results of the
analysis are shown, and the methodology used to identify
user sessions is discussed. (iv) User sessions were studied
and filtered, in order to exclude data coming from bots or
test users. In Section III-D, the results of the analysis are
described. These results were then used to filter sessions
as shown in Section III-E. (v) In order to perform the
offline evaluation of common intent-based recommendation

1Please, refer to [11]–[14] for surveys on intent-based recommendation.

techniques (described in Section IV-A), the available data
was partitioned in training, validation and test sets. The
evaluation procedure, including the partitioning scheme, and
the evaluation protocol for offline experiments, is discussed
in detail in Section IV-E. (vi) Finally, the accuracy of the
intent-based algorithms in the next-item recommendation
task was compared. The whole testing procedure, including
its results, are described in Section V. A thorough description
of the hyperparameter optimization procedure adopted is also
reported, as well as an analysis of the impact of within session
(i.e., session length) and across session (i.e., the number of
previous sessions available for a user) information.

To summarize, the main contributions of this paper
are threefold. First, illustrate the construction, processing,
and analysis of an industrial dataset. Second, perform
behavioral analysis of users in the VoD domain. Third, study
the accuracy of several intent-based techniques for VoD
recommendation on the new, real-world dataset. To the best
of our knowledge, this is the first study that presents a detailed
analysis, in a real industrial environment, of the whole
process between raw data, and next-item recommendation in
the VoD domain.

II. RELATED WORKS
Generally, two types of datasets are used for research in
the field, namely research and industrial datasets. Research
datasets are usually small and publicly available. Examples
of these are 30MUSIC [5], [13] and #NOWPLAYING [13],
[15] for music recommendations, and Movielens [4] for
movies recommendations. The main drawback of research
datasets is that they lack sufficient users, items, interactions,
or metadata to model all user profiles. Moreover, research
datasets hide from the research community the challenges
related to the processing steps required to build a dataset from
real interaction logs.

On the other hand, industrial datasets are extracted
from logs of deployed recommender systems serving real
users. ContentWise Impressions [6], MIND [16], Plista [16],
[17], and FINN.no [18] are examples of research-formatted
industrial datasets. The main benefit of industrial datasets
is that they cover much more user profiles due to their
enormous size. This advantage comes with the challenges
of cleaning and processing real-world data, i.e., massive
amount of information to process, users’ privacy, and biases
from previous or existing recommenders [19]. There are two
main differences between the aforementioned works and this
one. First, those datasets, with the exception of ContentWise
Impressions, are not from the VoD domain. Second, they
do not provide extensive user analysis and a comparison of
several intent-based recommendation techniques.

Similar to this work, others have explored and analyzed
user patterns, preferences and behaviors, although in dif-
ferent domains or recommendation scenarios. In the news
domain, [19] collected, analyzed, and built a dataset for
news recommendations on different countries and regions.
They concluded that users have consistent interests with
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FIGURE 1. Flowchart representing the steps presented in this study.

specific news categories but might be influenced by local
news trends. They used these findings to craft a more accurate
recommendation technique.

Other case studies, like the one presented in this work,
have encountered differences of user interests between and
within domains. Therefore, it is important for the community
to present several case studies in different industrial context
and recommendation scenarios, so to better model user pref-
erences. Differences of user interests have been discovered
in particular within the news domain. For instance, [19]
discovered differences between user preferences in web
searches and news recommendations. Reference [20] stated
that user preferences with everyday news recommendations
cannot be extended to services providing highly-specialized
news, like magazine articles, profiles of relevant people,
and timeless articles. Lastly, [21] found differences between
user preferences based on the target user of the service. For
instance, user preferences cannot be generalized to users of
another system if they target different types of users, e.g.,
from another country or anonymous users.

Other works in literature, similarly to this one, have
explored the recommendation quality of state-of-the-art
recommenders, but they present several differences. Refer-
ence [22] shows a description of Netflix’s recommenders
and their usual evaluation scenario, but it does not report
a detailed analysis of data processing steps. Reference [12]
presents a survey of the current state-of-the-art recommenda-
tion techniques, including intent-based ones. However, the
authors solely describe these techniques and they do not
perform an offline evaluation. References [11], [14] and [13]
present evaluations of several recommendation techniques,
including some intent-based ones against datasets of several
domains. However, theseworks are not from theVoD domain,
no user behavior analysis is performed, and their goal is to
benchmark several recommendation techniques in the general
case. For example: sessions are split using ‘‘a commonly used
30-minute user inactivity threshold’’ instead of analyzing
user behaviors to select the inactivity threshold. Lastly, [9],
[23]–[25] present evaluation studies similar to this work, but
they are performed in a different context or recommendation
scenario.

III. DATASET OVERVIEW
The dataset analyzed in this work is collected over a period
of 6 months from an Over-The-Top Media service (OTT)
which provides Video-on-Demand (VoD) media content via
the internet. The dataset contains different types of user
interactions with items and each item metadata. As the
data is gathered from a real world system, several issues
need to be addressed to ensure that it can be reliably used

for such an analysis. Aligned with recent and important
research about dataset building [26]–[28], the dataset used
in this study is thoroughly described, including its content,
features, preprocessing, and the strategy adopted to infer
sessions. Note that building datasets is a complex task, this
description might provide useful insights for researchers and
practitioners.

A. DATA DESCRIPTION
The dataset contains user actions (clicks, views, ratings)
as well as item metadata, that will be described in this
section. This study considers the problem of session-based
recommendation, in which a session refers to a group of
user actions that occur in a continuous period of time, e.g.,
the user logs in to the platform and interacts with a few
VoD before logging out. Sessions can have varying lengths,
multiple sessions can occur within the same day or be
separated by longer time periods. Note that the dataset does
not contain information on the session in which each action
was performed by the user. Since the intent of the user is
usually bounded to the current session, session identifiers are
generated based on the user actions (see Section III-C).

1) USER CLICKS
A click refers to the user accessing the details page of a
VoD item. The dataset contains 87M click events generated
by 908k distinct users on 41k distinct VoD items. Clicks
frequently contain repetitions, i.e., consecutive clicks on the
same item by the same user.

2) USER VIEWS
A view refers to the user viewing a VoD item. Only a fraction
of the user click actions are converted into a view (i.e., users
consume only a subset of the items they explore). Since views
represent the actual VoDs consumed by the user, they are a
strong indication of the user preferences. The dataset contains
129M view events generated by 1.12M distinct users on 41k
distinct VoDs. Note that some users have a view for an item
but no clicks for that item, due to the fact that they did
not access the detail page. View events are categorized into:
started (first play of the item), paused (every time the item
has been paused by the user) and ended (the item has been
watched by the user in its entirety). The detailed breakdown
of the view events per category is reported in Table 1. It can
be seen that the majority of view events are either started or
paused . On average there is an equal number of started and
paused events. The low number of ended events indicates
that less than half of the started items are actually watched
by the user entirely. It should be noted that ended events are
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TABLE 1. User views statistics before data preprocessing.

registered only when the item has been completely watched
by the user, credits included. However, most users likely skip
the credits, and therefore the ended event is not properly
logged. Upon closer inspection it could be observed that some
paused /ended events do not refer to a preceding started event
in the log of user activity. These events are likely due to
logging mistakes and will be referred to as dangling.

3) USER RATINGS
Less than 5% of the overall actions are explicit loved/unloved
feedback. This is expected since users seldom provide explicit
feedback.While explicit feedback is a valuable asset for every
traditional recommender system based on historical user
preferences, its value has not been established yet for intent-
based recommendation. This is due to both the scarcity of
explicit feedback and to the low impact explicit feedback have
for intent-based recommendations. In a recommender system
that relies upon historical preferences, further feedback from
past interactions allow to build a more complete long-term
user profile. In an intent-based recommender, however, long-
term preferences have a lower impact on the current intent
of the user. Moreover, the user could be drawn to add
explicit feedback for an item they interacted with in the past
during a different session, hence, with an intent that could be
different with respect to that of the current session. This type
of ‘‘out-of-place’’ feedback could confuse the intent-based
recommendation engine.

4) METADATA
Each item in the VoD catalogue is associated with metadata
such as: episode name and title, genres, language, series
identifier (e.g., for TV series episodes), episode number,
season number, release date, director, actors, a summary, etc.
For the purpose of this study it is of particular interest the
item availability window. The availability window represents
the period of time the VoD item was available to users and,
therefore, recommendable to them [29].

The lack of interactions with an item outside its availability
window could be erroneously interpreted as a strong negative
signal for that item by any model not considering the
availability window, thus introducing a strong bias in the
model itself. To prevent this, items should not be considered
outside their availability window during training. The meta-
data contains the start and end date of the license agreements
that allows the OTT to provide the VoD item to the user.
However, some VoD items can change availability window
over time (e.g., in case of special offers from the broadcaster)

and the metadata does not report this information. For this
reason, the availability window is defined using the actual
user actions, the beginning of the availability window will be
at the first user interaction and end at the last interaction.

B. DATA PREPROCESSING
The data is gathered from the OTT in the form of logs,
which contain several repeated events. In the scenario of
interest for this study, recommending VoD items that the
user has already seen is allowed. However, the presence of
repeated consecutive interactions with the same item can bias
some intent-based algorithms (sequence-based especially) to
learn that, after a user interacts with a VoD item, they will
likely interact with same item again, leading to trivial and
uninteresting recommendations. To retain only the useful
information from the user logs and to avoid such bias, the data
is preprocessed to remove duplicated consecutive interactions
of the same category:
• User Clicks: repeated clicks of a user on the same item
(accessing the item’s detail page) are compressed into a
single click with the timestamp of the first one. In this
way, the number of click events is reduced from 87M to
60M (-28%).

• User Views: one of the issues encountered is to establish
whether a VoD itemwas viewed entirely or not. Unfortu-
nately, the view time is not explicitly logged in the data.
In principle, it should be possible to approximate the
view time using the time that separates started events
from paused or ended events. However, many started
events do not correspond to any paused or ended event.
Similarly, it also happens that some paused or ended
events are not associated to any started . In all these
cases, estimating the view time is not easily possible.
For these reasons, the view time was not considered.
If a user performed multiple view actions on the same
VoD item, only the first one is kept, the following ones
are removed. This preprocessing has the disadvantage
of considering as a positive interaction even a VoD item
watched just for a few seconds. Unfortunately, not much
else can be done in the absence of further details on
the actual viewing time. The result of this preprocessing
is shown in Table 2. The distribution of event types in
the dataset changes significantly. As can be expected,
the majority of the events (i.e., the first event available
for the interaction of the user with a VoD item) is of
type started . However, it can also be seen that there is a
significant number of paused and ended events. Those
are referred to as dangling events, since the relative
started is missing from the data.

C. INFERRING SESSIONS
Recommender systems literature has widely shown that
sequentially-ordered user interaction logs represent a rich
source of information, and they can be critical for the
success of a recommender [30]. Indeed, being able to
distinguish long-term preferences (from interactions farther
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FIGURE 2. Example of session creation from a sequence of actions performed by a single user, based on idle-time. Circles represent
actions. Arrows connect actions in the same session. Different sessions have different colors.

TABLE 2. User views statistics before and after data preprocessing.

in time) and the short-term intent of a user (from the
most recent interactions) can benefit the quality and the
accuracy of recommendations. The short-term interest of
a user, in particular, is highly relevant in intent-based
recommendation. Being able to deduce what is the purpose of
the user while he/she is using the service allows to personalize
and contextualize the next recommendations generated by the
system. Usually, short-term user intent is inferred through the
interactions performed in a session, i.e., a relatively small
number of interactions that are carried out consecutively by
the user in a limited period of time. Past sessions of the same
user, instead, provide information about his/her long-term
preferences.

Generally, user sessions can be identified directly by
the system when, for example, log-in and log-out events
are recorded. Unfortunately, the dataset collected for this
work did not contain this type of events, since logs were
represented by independent user interactions without any
session reference. However, the availability of the time when
each interaction was recorded allowed to infer user sessions
from data.

When log-in and log-out events are not available, a com-
mon assumption made in the literature is that a user session
ends when the user has been idle for a sufficient amount of
time. Defining the correct idle time to separate user history
in sessions is an actively investigated research topic [1], [2].
Since a session is also associated to a user intent, if sessions
are inferred too long then different user intents may be
merged, while if they are too short the data may becomemore
noisy. More sophisticated models, e.g., based on survival
analysis [31], could be applied but comparing their strengths
and weaknesses is beyond the scope of this work. For this
study the idle time strategy is used, because it is simple,
effective, and in the scenario of interest, as will be described

shortly, the user behavior emerges rather clearly allowing to
easily choose an appropriate threshold.

Figure 2 shows an example on how sessions can be created
based on idle-time. In the example, the chain of events that
constitutes the whole user history is represented as circles.
Idle periods between subsequent events are represented by
arrows. The sessions are created by breaking the chain into
several sub-chains (4 in the example), i.e., the sessions,
in correspondence of arrows longer than the selected idle-
time. It is easy to see that by changing the minimum idle-time
threshold different number of sessions can be generated,
of different length.

The appropriate time threshold can be selected by analyz-
ing the distribution of the temporal distance between clicks
and views to obtain a better understanding of the temporal
dynamics in this domain. From Figure 3 it can be seen that the
distribution of the temporal gap between subsequent actions
is tri-modal.
• Short-term actions: The first peak (≈ 10 seconds),
on the left of Figure 3, corresponds to short-term actions
that occurred in the same user session and is mainly
composed by click actions (e.g., the user is browsing the
catalog before choosing which content to watch).

• Mid-term actions: The second peak (≈ 40minutes), the
blue dashed line on the center of Figure 3, corresponds
to mid-term actions that happen when the user interacts
again with the interface, e.g., after they have watched an
episode of a series or a movie. The user will likely look
for content related to the previously watched one (e.g., if
binge watching, the user will likely watch the following
episode of the series). Consequently, it can be assumed
that the intent of the user remains the same and therefore
the session has not changed.

• Long-term actions: The third peak (≈ 23 hours), the
yellow dashed line on the right of Figure 3, corresponds
to long-term actions, e.g., the user coming back to the
service after some time (days or weeks). Interestingly,
this distribution is peaked around 24h indicating that
many users come back to the service after one day (e.g.,
the user interacts with the OTT at around the same time,
which may be an effect of their daily routine).

Note that the distributions of clicks and views is different.
In particular, the distribution of views is bi-modal and
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FIGURE 3. Distribution of the gap between subsequent clicks (in blue) and views (in green) considering all users. Notice that the x-axis is
in log-scale.

FIGURE 4. Number of sessions sorted by their length, i.e., the number of actions they contain, and the relative quantile box plot.

almost coincides with the mid-term and long-term action
distributions. Furthermore, the temporal distribution between
views is already contained in the distribution between clicks,
i.e., almost every view is preceded by at least one click, but
not the other way around. Since the goal is to obtain sessions
composed by subsequent view events, a reasonable threshold
to split sessions is approximately 4 hours, corresponding to
the lowest point of the distribution between the mid-term and
long-term components (green continuous line in the figure).
Note that this threshold is larger than what is commonly used
in other domains; e.g., typical values are around 30 minutes
for e-commerce and music [13]. This difference can be
explained because VoD consumption takes more time than
music or e-commerce, so it is reasonable to use larger
inactivity thresholds.

The resulting dataset contains 19.5M sessions of varying
length, between 2 and more than 100 user actions. Sessions

may contain repeated items if the user both clicked and
viewed the same item. If the session contains both a view and
a click for an item, the click event is removed. The view event
over the click has been retained because views are a stronger
positive signal.

D. SESSION DATA ANALYSIS
This Section analyzes the resulting session dataset. Figure 4
shows the number of sessions sorted according to their
increasing length represented as the number of actions they
contain. It is possible to see that session length follows
a power-law distribution. Most sessions are very short in
length, with a median length of 2 actions. This means that
users typically browse few items before choosing what to
watch. There are longer sessions, likely in correspondence
with sessions where users browsed the catalog more exten-
sively, or when the user watched several episodes of the same
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FIGURE 5. Number of sessions per user sorted by more active users, i.e., from the most active users to the less active, and the relative
quantile box plot.

FIGURE 6. Mean session length per user. On the left the mean and standard deviation, on the right the mean session length quantile box
plot.

series (i.e., binge watching). Finally, there are some outliers
with a few sessions being longer than∼100 actions, probably
due to bot traffic or platform tests.

Figure 5 shows the number of sessions per user. While
there’s a large number of users with few (1-2 sessions), most
users have between 3 and 11 sessions in the 6-month period
covered by this dataset. Again, there are outliers with more
than 100 sessions.

Figure 6 shows the average session length per user.
Coherently with the previous findings, most users have,
on average, less than 10 events per session. However, some
users have sessions with a very high average number of
actions, more than 50 or even 100. The Figure allows to
identify clearly some outliers, that is users that have a high
number of anomalously long sessions. These users are outside
of the typical user behavior.

E. SESSION FILTERING
Based on the previous analysis, there exist some sessions
that are either too short or likely generated by bots or test

users. The session data is further processed to retain only the
sessions that meet the following criteria:
• The minimum length of a session is 2 events.
• The average number of events per session of a user is
less than 50.

The first criterion discards sessions of length 1 which
are not interesting for intent-based recommendation. The
second criterion aims at discarding bots or test users who
systematically have a huge number of interactions per
session. There are 206 users that did not comply with this
rule, which is a negligible amount with respect to the overall
number users in the final the dataset. After this further data
cleaning, the number of sessions drops from 19.5M to 11.3M.

IV. NEXT-ITEM RECOMMENDATION EXPERIMENTS
The main goal of these experiments is to compare the
accuracy performance, on the newly created dataset specif-
ically, of the most common approaches for intent-based
recommendation in the next-item recommendation task,
that consists in predicting which is the item involved in
the next action performed by the user. In particular, the
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analysis focuses on session-based approaches, that represent
an effective branch of intent-based techniques for next-
item recommendation. Note that assessing the most accurate
approach in the general case is out of the scope of this work.

The first part of this Section focuses on the definitions of
session-based and session-aware recommendation reported in
literature, arguing about the main differences between them.
Then, a presentation of the most common algorithms for
session-based recommendation adopted in these experiments
follows. Finally, the entire evaluation procedure employed
for the experiments on the next-item recommendation task
is described in detail.

A. SESSION-BASED AND SESSION-AWARE
RECOMMENDATION
In session-based recommendation, the sequence of events
in the current session is the only information used by the
recommender to suggest items to the user. The underlying
assumption is that the intent of a user engaged in a session,
can bemined directly from the sequence of actions performed
so far in the session itself [30]. However, in many online
systems, including the one studied in this paper, it is also
possible to identify the users involved in the different sessions
(e.g., through a login procedure, cookies, etc.). This allows to
leverage also the taste of a user, inferred from past behavior,
when new recommendations are required. This scenario
is called session-aware recommendation: the recommender
system can be built based on a combination of long-term and
short-term interest models [30].

There is a significant amount of literature that has been
recently developed in the context of session-based and
session-aware recommender systems and a wide variety of
different approaches have been proposed. These can be
further classified into two main categories:
• Sequence-free models, that don’t take into account the
sequence of events in the current session (i.e., the events
in the session are treated as a set).

• Sequence-aware models, that explicitly model the
sequentiality in the user interactions.

In the next sections, the selection of approaches adopted in
the experiments is described more in detail.

B. SEQUENCE-FREE MODELS
Sequence-free models are usually less complex and hence
less computationally demanding than sequence-aware ones,
since they don’t require to model the sequential aspects
of the session, which can be extremely difficult and,
sometimes, domain dependent. However, several works have
empirically proved that the accuracy of these models is
competitive against that of sequence-aware techniques in the
session-based recommendation scenario [13], [32]. In these
experiments, two similarity-based models are considered as
representative for this family of recommenders.

In similarity-based models, sessions are first represented
into a session-item matrix. Each session is encoded into a

fixed-length vector, as shown in Figure 7, which values can
be:
• binary, if the intent is to keep track of whether in the
session there was an interaction with an item or not;

• counts, if the intent is to keep track of how many times
the user has interacted with an item in the session.

The binary encoding has been selected for our experiments,
as it represents a well suited choice. Indeed, as shown in
Section III-D, the average number of interactions in a single
session of the dataset is between 2 and 3. This means that
sessions are generally very short and that the repetitions of
an item are low and not very relevant.

Once the sessions have been encoded into their vector
form, the resulting session-item matrix can be processed
to extract information about items and sessions (e.g., co-
occurrence counts, or session similarities) in order to generate
recommendations. In this work, two well known nearest
neighbors approaches and a matrix factorization technique
that belong to the session-based recommendation literature
are compared: Session ItemKNN, ContextKNN and Session
BPR.

1) SESSION ITEMKNN
In this technique, the interactions contained in the session-
item matrix are modeled through item-to-item similarities.
The similarity between two items is defined as the shrinked
cosine between their occurrence vectors (i.e., the respective
columns in the session-item matrix). For each item, only the
k most similar neighbors are considered, while all the other
similarities are set to 0. The next-item recommendation for a
session is finally computed based only on the last item that
occurs in it: the model recommends the most similar items to
the one involved in the last interaction of the session. Note
that this approach discards the previous actions of the user in
the session. However, despite its simplicity, it works well in
practice [33], [34].

2) CONTEXTKNN
Differently from Session ItemKNN, this technique exploits
the similarity between sessions instead of the co-occurrence
patterns between items [32], [35]. This approach has been
originally described in the context of playlist generation [36]
and it is very similar to a user-based collaborative similarity
model where each session is treated as an independent
user profile. Given a session, the model recommends items
that frequently occur in the sessions that are most similar
to the given one. In the experiments, both cosine and
Jaccard similarity functions were considered. However, only
the results related to cosine similarity are shown in the
experimental section of this work, because cosine proved to
be the best performing similarity during the hyperparameter
optimization procedure.

3) SESSION BPR
It is a matrix factorization model in which sessions and items
are represented by vectors of latent factors. This model uses
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FIGURE 7. Example of session encoding as fixed-length vectors and generation of the session-item matrix.

FIGURE 8. Graphical representation of the architecture of GRU4Rec.

Bayesian Pairwise Ranking loss to learn to rank items in
a session. Note that matrix factorization cannot be directly
applied to session-based recommendations, since it is not
possible to learn latent representations for sessions that are
not available during the training phase. It follows that during
recommendation each session is represented by the average
of the representations of the items involved in the interactions
that compose it [1], [13].

C. SEQUENCE-AWARE MODELS
Sequence-aware models are more powerful than the
sequence-free counterparts. They can adapt next-item
recommendations for a session depending on the actual
sequence of events. Contrarily to sequence-free approaches,
two sequences composed by exactly the same items that
appear in different order can result in different recom-
mendations. These models have been recently proven to
largely outperform every other approach in the session-based
recommendation task [1], [13]. Among them, Recurrent
Neural Networks (RNN) have shown to be particularly
adapt for this task, thanks to their ability to model
sequential data. In this work, the focus is on two well
known state-of-the-art approaches based on Recurrent Neural
Networks: GRU4Rec [1] and its more recent evolution
H-GRU4Rec [2].

1) GRU4Rec
GRU4Rec is the implementation of the session-based,
sequence-aware model proposed in [1]. It is a Recurrent
Neural Network that takes as input the one-hot encoding
of the active item in a session, and provides as output,
for each item, the likelihood of being the next in the
session. The prediction is based on both the input item
and the state of the network, that represents the historical
information about the current session and depends on the
sequence of items that occur in the interactions that preceded
the actual one in the session. Gated Recurrent Unit [37]
layers are employed, in order to deal with the vanishing
gradient problem that afflicts common RNN units. The
implementation of GRU4Rec that was adopted had one
single GRU layer composed by 100 neurons, and was
trained using parallel mini-batches, as suggested in [1].
A graphical representation of the model architecture is
shown in Figure 8. All the different losses proposed by the
original authors (i.e., BPR, TOP1, BPR-max and TOP1-max)
were tested, and BPR-max was selected, since it provided
the highest accuracy. A popularity proportional probability
was employed to select negative item samples in the BPR
optimization procedure. In particular, the popularity of each
item was exponentiated by a factor, and divided by the sum
of all the transformed popularities, in order to soften the
differences between very popular items and niche ones. The
exponent factor was treated as a hyperparameter of the model
and optimized accordingly.

2) H-GRU4Rec
H-GRU4Rec is the session-aware recommendation technique
proposed in [2]. The aim of themodel is to improveGRU4Rec
by adding the ability to track the evolution of the user interests
over time. This is performed adding a user-level GRU layer
to the session-level GRU layer already present in GRU4Rec,

VOLUME 10, 2022 14787



C. Bernardis et al.: From Data Analysis to Intent-Based Recommendation

FIGURE 9. Graphical representation of the architecture of H-GRU4Rec.
Differently from GRU4Rec, an additional GRU layer is in charge of keeping
track of user interests over time, across user sessions.

in order to model information across user sessions. When
a new session for a certain user is provided as input, the
state of the user-level GRU layer is used as initial value for
the state of the session-level GRU layer. Then the state of
the session-level evolves as in GRU4Rec and its final state
(i.e., the state of the GRU layer after all the items of the
session have been given as input to the network) is used to
update the state of the user-level GRU. The implementation
of H-GRU4Rec that was employed had one user-level GRU
layer and one session-level GRU layer, both composed
by 100 neurons, and was trained using user-parallel mini-
batches, as suggested in [2]. As for GRU4Rec, BPR-max
proved to be the best performing among the different losses
that were tested. The same popularity proportional approach
for negative sampling proposed for GRU4Rec was adopted.
The architecture of the implementation of H-GRU4Rec is
shown in Figure 9.

D. OTHER MODELS
Besides sequence-related methods, some common baselines
are considered.
• Global Pop is a non-personalized recommendation
model. It recommends the itemswith the highest number
of interactions. [1]

• User Pop is a semi-personalized technique that recom-
mends the items with which the user engaged in the
session has the highest number of interactions. It is based
on the assumption that users will likely repeat actions
done in the past [2].

• Session Pop is a semi-personalized approach that
recommends the items that have the highest number
of interactions in the session itself. It is based on the
assumption that users will likely repeatedly inspect the
same items within a session. [1]

• Collaborative ItemKNN is the traditional nearest neigh-
bors, item-based approach with cosine similarity [3].
The algorithm builds user profiles using the respective
view events during the training period and item sim-
ilarities are computed based on these profiles. Given
a session, the most similar items to those in the user
profile and those he watched during the session are
recommended.

TABLE 3. Statistics of the splitted data.

E. EVALUATION PROCEDURE
In order to evaluate different intent-based approaches,
this section defines the dataset partitioning, the evaluation
protocol and the evaluation metrics.

1) DATA PARTITIONING
In order to retain the temporal ordering between interactions
a temporal data partitioning is used, commonly found in
the literature [1], [2], [38]. Specifically, given a partitioning
timestamp, all the sessions that started before that timestamp
are assigned to the training set and the remaining ones to the
test set. The training set is further divided into a training and
validation set to be used for hyperparameter optimization.
Note that a session is never split. A session that begins before
the splitting timestamp and ends after it, it is considered as a
training session.

a: EVENTS PER DAY
The distribution over time of the number of events per date
and day of the week are shown in Figure 10 and Figure 12.
There is a relatively small volume of events in the first
2 weeks, then it drastically increases. The volume of events is
then stable for the following 6 weeks, then it starts to increase
and stays above 300k events per day for most of the remaining
weeks. The volume of events drops quite notably in the last
3 weeks of the observed period. As one would expect, there
are many more events during weekends than weekdays.

b: DAILY ACTIVE USERS
The distribution of daily active users is reported in Figure 11,
it can be seen that it is coherent with the number of events per
day (see Figure 10).

Following this analysis, the data of both the first 2 weeks
and the last 3 weeks is discarded, because of the differences
in distribution of events in these periods highlighted before.
The dataset is split in the following way:
• Training: the first 17 weeks (from week 2 to 18)
• Validation: the following 2 weeks (week 19 and 20)
• Testing: the last 2 weeks (week 21 and 22)

This splitting strategy allows to keep about the 80% of all
the events for the training set, the 10% for the validation
and another 10% for the test set. The characteristics of each
partition are shown in Table 3.

2) EVALUATION PROTOCOL AND METRICS
The evaluation of the models is performed under the
next-event prediction task [13]. For each event in a session,

14788 VOLUME 10, 2022



C. Bernardis et al.: From Data Analysis to Intent-Based Recommendation

FIGURE 10. Number of events per day.

FIGURE 11. Number of active users per each day.

FIGURE 12. Number of events per day of the week.

the algorithm tries to predict the item involved in the next
event in the session, generating recommendation lists of fixed
length (i.e., the cutoff). Results are reported with traditional
information retrieval metrics such as Recall and MRR at
three different cutoffs, 1, 5 and 20. Formally, given the set
of all the users U , the set Pu of relevant recommendations for
u ∈ U , and the ordered setRk

u of the top-k recommendations
generated for u ∈ U , the two metrics are defined
as:

Recall@k =
1
|U |

u∑
U

|Pu ∩Rk
u|

|Pu|

FIGURE 13. Steps of the evaluation under the next-item prediction
scenario, given a test session.

MRR@k =
1
|U |

u∑
U

1
min

i∈Pu∩Rk
u

rank(Rk
u, i)

where rank(Rk
u, i) is the function that returns the position of

item i in the recommendation listRk
u generated for user u, and

k represents the cutoff at which the metrics are computed.
Figure 13 exemplifies the evaluation protocol for a given

test session where each event is represented by an identifier.
At each step of the evaluation, the sequence of events in blue
is used to predict the immediately next item, in green. The
evaluation metrics computed at each step are averaged to
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FIGURE 14. Parallel coordinate plot for GRU4Rec hyperparameter tuning. Recall@20 on the validation set is reported as metric score.
A negative sampling probability distribution too similar to the item popularity distribution, an excessively small number of negative
samples, and the hyperbolic tangent as activation function result in a degradation of accuracy. Small batch sizes, small learning rate and a
high number of negative samples prove to be the best choices.

compute the performance of the recommender over the whole
test session. The evaluation metrics of each session are then
averaged.

A further experiment was done to take into account
the availability window of each item. The evaluation was
performed by excluding the items that were no longer
available when the recommendation was required. However,
there were not relevant differences between this and the
original evaluation procedure, so, for brevity, only the results
obtained without the availability filter are reported.

V. EXPERIMENTAL RESULTS
The results of the experiments are shown in the following
sections. First, the hyperparameter optimization procedure
is described in detail. Second, the accuracy results of the
different algorithms presented in Section IV are reported and
discussed. Finally, two analyses that assess the efficacy of
session-aware and RNN-based models in exploiting within
and across session information are performed.

A. HYPERPARAMETER TUNING
Recent works [39], [40] show that properly tuned simple
baselines can outperform even more complex models in
various recommendation tasks. These findings emphasize the
importance of an appropriate selection of hyperparameters
values, in order to get fair and reliable comparisons among
different approaches. Indeed, it is known from literature
that different values of hyperparameters can dramatically
impact the performance of a model and using non-optimal
values will lead to underestimating its quality, and resulting
in a meaningless comparison. It follows that tuning a
model’s hyperparameters to obtain its best performance is a
fundamental step in any evaluation procedure.

Two different optimization approaches were used for
these experiments. For non-RNN based methods, a simple

grid-search on the most important hyperparameters was
employed. RNN based methods, instead, are deep learning
approaches based on neural networks, that, compared to
simpler techniques, have a wider range of fine grained
hyperparameters to tune, where small variations of the values
can lead to substantial changes in performance. For this
reason, they are traditionally more sensitive to the choices
of the hyperparameters and require a more thorough tuning
process. Therefore, an extensive hyperparameter search on
those models based on 100 iterations of random search
was performed [41]–[43]. Due to the computational cost
of such methods, the hyperparameter optimization was
done on a subsampled training and validation dataset. Both
were obtained by retaining only 50% of the users, chosen
uniformly at random.

As expected, all methods exhibited some variability in
the search space, with simpler models being more stable in
their performance across the various combinations of the
hyperparameters. In Figure 14 and 15 a detailed parallel
coordinate plot of the hyperparameter tuning procedure
of, respectively, GRU4Rec and H-GRU4Rec is shown.
The models are evaluated on the validation set, using the
Recall@20 as reference metric. In both scenarios, there
are specific values of some parameters that degrade the
performance of the model. For example, the selection of
the hyperbolic tangent as activation function of the last
layer usually leads to a poor accuracy of the model. The
same occurs with small amounts of negative samples and
a negative sampling probability too close to the popularity
distribution. However, it is interesting to notice that overall
the performance is affected by the global combination of
the hyperparameters values instead of single parameters,
except those mentioned above. This confirms that finding the
optimal configurations for these two techniques is not an easy
task and requires special attention.
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FIGURE 15. Parallel coordinate plot for H-GRU4Rec hyperparameter tuning. The metric reported is Recall@20 computed on the validation
set. Similarly to GRU4Rec, a negative sampling probability distribution too similar to the item popularity distribution, an excessively small
number of negative samples, and the hyperbolic tangent as activation function result in a degradation of accuracy. Also in this case, small
batch sizes, small learning rate, ELU as activation function and a high number of negative samples prove to be the best choices.

It is also important to point out that the results of
the hyperparameter search for RNN-based models is an
extremely time-consuming process and the results are tightly
bound to the training data, which can be seen as a strong
limitation to the actual implementation in a production
environment of such models. Nevertheless, showing the peak
performance achievable by these complex models is a very
valuable contribution, in the light of the possible future
enhancements in hyperparameter search procedures that will
potentially alleviate these issues.

B. NEXT-ITEM RECOMMENDATION ACCURACY
Table 4 shows the accuracy performance of the tested
algorithms in the next-item recommendation task, according
to Recall and MRR at 20. The results highlight that
popularity-based baselines perform poorly on this dataset.
User Pop, which has the highest degree of personalization
among the popularities in the pool, since it looks at the past
behavior of the considered user, is the best performing one.
Anyway its performance is easily overtaken by all the other
competing methods.

Collaborative ItemKNN outperforms simple semi-
personalized baselines in both metrics as expected, confirm-
ing the results extensively reported in the literature [39].
However, this collaborative method falls short in next-item
recommendation performance with respect to all the other
algorithms. The main reasons for its poor performance are
two. The first is that this algorithm considers only viewed
items, which represent a small fraction of all user interactions,
therefore a lot of information is lost. The second is that
the evaluation protocol favors algorithms that can update
their output frequently and dynamically, depending on user
actions. Collaborative ItemKNN, instead, updates the user’s
profile and the respective recommendations only when a new

view event occurs, and it does not adapt to user activity within
the session.

Session BPR obtains much better results with respect
to Collaborative ItemKNN thanks to its superior ranking
capabilities, but it cannot attain the performance of Session
ItemKNN. The main problem of the model is that it is not
fully asymmetric, since the item representations are treated
differently between training and testing. During training,
this model considers sessions equivalently to users in a
common matrix factorization approach and learns their latent
representations. However, during the recommendation phase
the model has to deal with sessions that were not available
during the training process, and the model has not learnt
their representations. It follows that new sessions must be
represented with the average of the representations of the
items that compose them [1], which is surely a sub-optimal
solution.

Similarity-models are among the most competitive meth-
ods. Both of them largely outperform all the other non
session-based recommenders and achieve an accuracy close
to deep learning models’ one. In particular, ContextKNN
outperforms all the other item-based variants in terms of
Recall, while attaining an MRR similar to Session ItemKNN.
This result highlights the importance of the information
contained in the examined session. Even if most of the
sessions are composed by a small number of interactions,
as shown in Section III-D, exploiting their content leads to
sensible improvements in accuracy, also with simple methods
like Session ItemKNN and ContextKNN. The last evident
result is that RNN-based methods outperform all non-deep
learning based alternatives, independently from the metric
or the cutoff applied. However, the comparison between
GRU4Rec and H-GRU4Rec is quite interesting and requires
a more detailed analysis and discussion.
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FIGURE 16. Accuracy performance of the different approaches in the next item recommendation task. On the horizontal axis, different cutoffs are
reported. On the vertical axis, the absolute value of the specified metric is shown. Only competitive session-based approaches are included in the
comparison.

TABLE 4. Comparison of the algorithms’ performance @20 in the
next-item recommendation task.

In Figure 16, the best performing session-based methods
at different cutoffs are confronted. Popularity based methods
and Collaborative ItemKNN are not reported, because they
did not obtain competitive results. Interestingly, H-GRU4Rec
obtains superior Recall with respect to GRU4Rec, especially
at longer cutoffs, while the latter gets a slightly better MRR
overall and a slightly higher Recall@1. Combining these two
results, it is clear that the correctly predicted items in the
recommendation lists generated by GRU4Rec are usually
ranked higher than those generated by H-GRU4Rec, while
H-GRU4Rec is able to oftener include the desired item in
its recommendations. A deeper investigation over this small
margin between RNN-based methods is conducted in the
following sections.

In summary, it is evident the advantage of session-based
models over traditional recommendation methods (Popu-
larity, Item-based collaborative filtering) in predicting the
sequence of future user actions. A further step is represented
by sequence-aware over sequence-free techniques, while
there is not an evident winner between session-based and
session-aware methods, since their accuracies are very close.
In particular, deep learning methods outperform similarity
based ones in this scenario by a good margin. However,
the improvements come at a non negligible cost. From an
industrial point of view, similarity based models present

far less challenges than the RNN counterparts. They are
simple to implement and maintain, the optimal point in the
hyperparameter space is easier to find and their training time
is quite low. Moreover, in their kNN variants, they also scale
well with the amount of data available. Deep learningmodels,
instead, are computationally expensive and time consuming
and require an appropriate tuning of the hyperparameters.
They also have multiple technical challenges that obstacle
their implementation and their adaptation to large scale
and online scenarios. However the large improvement in
performance they provide can justify the engineering effort
needed to introduce them in a production system.

C. WITHIN SESSION ANALYSIS
In Figure 17, the performance evolution of session-based
techniques in function of the length of the session is shown.2

In other words, how the accuracy of the recommendations
changes as the user interacts with the system is analyzed,
taking into account the evaluation methodology adopted,
described in Section IV-E. Recall@20 is shown in the left
plot, while MRR@20 is shown in the right one.

One of the most important and evident results is that
Session ItemKNN, GRU4Rec and H-GRU4Rec have very
similar trends. The Recall clearly improves as the session
evolves. The MRR, instead, has a spike with very short
sessions, composed by 2 or 3 interactions, then stabilizes for
medium long sessions and finally slightly drops for very long
sessionswithmore than 10 interactions. However, it is evident
that deep learning models outperform Session ItemKNN
independently from the session length, that confirms that
these models can leverage the information gathered during
the session by effectively representing the intent of the user.

On the other hand, ContextKNN obtains similar perfor-
mance compared to complex RNN-based models at the very
beginning of the session, but quickly loses track as the
session evolves. The performance drop can be explained

2Session BPR is omitted, because it did not obtain competitive results
compared to other session-based algorithms, as shown in Table 4.
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FIGURE 17. Performance @20 of session-based approaches per session length. Non competitive techniques are omitted.

with two insights. The first is that while short sessions
are several and can easily repeat themselves, since the
combinations are fewer, it is hard to find similar sequences
for long sessions and consequently provide reliable and
coherent recommendations. The second is that they do
not take into account the positional importance of the
interactions. Intuitively, the latest interactions before the
required prediction should be the most important to take into
account when providing a recommendation, an information
not exploited by ContextKNN. This insight is confirmed by
the performance of Session ItemKNN, that simply taking into
account the item involved in the single latest interaction is
able to outperform ContextKNN in longer sessions.

Another interesting detail that can be captured from the
plots in Figure 17, is the difference in the Recall and MRR
between GRU4Rec and H-GRU4Rec. It has been already
highlighted in Figure 16 and Table 4 that while H-GRU4Rec
has better Recall, especially at higher cutoffs, GRU4Rec
outperforms its counterpart in terms of MRR. In Figure 17
the superiority of H-GRU4Rec over GRU4Rec in terms of
Recall is evident and confirms the summary results. On the
contrary, GRU4Rec shows better MRR for short sessions,
while H-GRU4Rec performs better with longer ones, partially
contrasting the results reported in Section V-B. It’s worth
noting that most of user sessions are short, as extensively
discussed in Section III-D. Therefore, the traditional accuracy
metrics are strongly skewed towards the beginning of each
sequence, failing at capturing the difference between the two
approaches with longer sessions.

D. ACROSS SESSION ANALYSIS
As last experiment, the difference in performance between
GRU4Rec and H-GRU4Rec depending on the number of
sessions in the user profile is analyzed. In Section IV-C,
it has been pointed out that the main difference between
GRU4Rec and H-GRU4Rec is that the latter is also able
to infer and exploit the taste of a user, based on the
previous sessions. The intent of this experiment is to assess if
H-GRU4Rec is actually able to combine short and long

term information about a user in order to improve its
recommendation accuracy.

In Figure 18, the performance of the two deep learning
based methods at different numbers of available sessions for
a user is shown. Clearly the gap between H-GRU4Rec and
GRU4Rec grows with the number of sessions, indicating that
H-GRU4Rec can effectively leverage past user sessions for
user profiling and that this type of information can benefit
the performance of the model. However, it is interesting to
notice that GRU4Rec achieves a better MRR on cold-start,
or anonymous, users (i.e., users that have no referable past
sessions in the system) while H-GRU4Rec has a slightly
higher Recall. Another evident aspect highlighted by the plots
is the descending trend in accuracy, accompanied with higher
variance in the performance, that both the techniques show.

VI. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS
This study addresses the entire pipeline required to build a
recommendation model on a real-world dataset. The study is
however done only on a specific case of a VoD service, hence
the findings and guidelines reported should be considered in
this perspective.

Regarding the data preprocessing phase, inferring sessions
is a particularly important step. The analysis done to choose
an appropriate idle time relied on the clear user behavior
emerging from the clicks, i.e., short, mid and long-term
actions. This was partially due to some highly regular
patterns, e.g., 24-hour peaks, that may be of particular
importance in the VoD domain but may not be present in
others. In those cases, it may be more difficult to choose
an appropriate idle time and more advanced strategies may
be advisable. Furthermore, while the strategy based on idle
time is simple and effective, it may be too rigid and unable
to effectively capture more nuanced user behaviors. For
example, it cannot capture rapid changes in user intent. If two
sessions are separated by a shorter time distance than the idle
time, they will be merged even if the user interacted with the
system with a different intent. Due to this, for some domain
it may not be an advisable strategy.
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FIGURE 18. Performance @20 of GRU4Rec and H-GRU4Rec per number of sessions available for a user.

Choosing both the domain or the different strategy to
infer sessions would also impact how sessions are filtered.
For example, in the VoD domain it is expected the user
will interact with a limited number of relatively long items
while in other scenarios, e.g., music-on-demand or news
recommendation, the number of items the user consumes is
much higher and therefore so is the expected session length.

This work has shown a number of choices that can
be made in the preprocessing of the data, all of them
based on arguments pertaining the domain, user behavior
analysis and the limitations of the available data, e.g., the
so called dangling paused /ended that do not refer to a
preceding started event. These choices affect the final dataset
by approximating certain types of user behavior as well
as removing data sources or inferring signals based on
incomplete or noisy information. An open research question
is to see how those choices affect the recommendation quality
different families of models, e.g., session-free and session-
aware. In particular, whether certain preprocessing steps
could penalize or advantage a specific family of models.
A particularly interesting questionwould be to assess whether
currently used research dataset were preprocessed in such a
way as to introduce unwanted biases that would affect the
significance of the results obtained.

A further limitation of this study is that, while the
importance of good data cleaning and processing from an
industrial perspective is discussed at length, other aspects
of recommendations in online systems like training times,
memory consumption and recommendation time are not
studied, and could be considered in future works.

Another open research question, from the point of view
of the practical applicability of a model touches two
particularly important and interconnected aspects pertain the
robustness of the recommendation models to newly added
data as well as their sensitivity to the hyperparameters.
Although offline evaluation in research papers is usually
done with a static dataset, in a real case the data is not
static, rather it changes continuously over time as new
interactions are collected. This is known as the dataset shift
problem [44], [45]. It is desirable for a recommendation

model to be robust to new data and able to use it effectively,
without needing to be retrained often, which can be a very
time consuming process. Another desirable property is for
the models to be relatively robust to the choice of their
hyperparameters. A model that is robust can be retrained
on newly gathered data with the same hyperparameter
configuration for a while before a new hyperparameter search
step becomes necessary, while a model that tends to be
unstable may need new hyperparameter searches very often,
severely increasing the overall computational cost.

Other future directions might also include replicating
this study in the same domain by other industrial actors
or using different industrial datasets, thus enriching the
recommenders’ knowledge base in VoD recommendations.
Moreover, this work can be compared with others performed
in other domains, in order to establish similarities and
differences in recommendations, user modeling, biases, and
restrictions that might occur.

VII. CONCLUSION
In this work, a comprehensive study of the entire process
between raw data collected from an online service and
session-based recommendations has been presented.

First, the dataset used, which was collected from an
industrial source for a period of 6months, has been described.
The industrial source is an Over-The-Top Media service that
provides VoD content via the internet. The dataset contained
user clicks, views, and ratings of VoDs but had no information
on users’ sessions; thus, the main challenges faced were
the intense cleaning, processing, and feature engineering
processes required. The effects of short, mid, and long-term
actions in the dataset, and how they were used to infer
sessions, have been presented and discussed, which is an
important aspect of this work. Lastly, topics of interest
regarding this dataset have been discussed, such as biases
from existing recommenders and expiring items, i.e., those
who could be interacted with at training time but could not
be recommended afterwards due to expired licenses.

In the second part of the paper, the accuracy of several
intent-based recommenders on the new dataset has been
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compared. It has been shown that, for the next-item
recommendation task, the best performing algorithms were
two Deep Learning algorithms, namely GRU4Rec and
H-GRU4Rec. This trend was also consistent with different
metrics and cutoff lengths, and deeper analysis confirmed
that GRU4Rec and H-GRU4Rec were the most accurate
algorithms also for all session lengths. Lastly, it has been
shown that H-GRU4Rec is better than GRU4Rec at capturing
and exploiting user tastes based on previous sessions,
combining short and long-term information about the user.
It has been also highlighted that Recall and MRR dropped
for both recommenders when the number of sessions per
user increased, indicating that older information actually
decreased recent recommendations’ accuracy.
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