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ABSTRACT

Recently, deep learning and machine learning approaches have
been widely employed for various applications in acoustics.
Nonetheless, in the area of sound field processing and recon-
struction, classic methods based on the solutions of the wave
equation are still widespread. Lately, physics-informed neu-
ral networks have been proposed as a deep learning paradigm
for solving partial differential equations that govern physi-
cal phenomena, bridging the gap between purely data-driven
and model-based methods. In this study, we exploit physics-
informed neural networks to reconstruct the early part of missing
room impulse responses in a uniform linear array. This method-
ology allows us to leverage the underlying law of acoustics, i.e.,
the wave equation, forcing the neural network to generate phys-
ically meaningful solutions given only a limited number of data
points. The results from real measurements show that the pro-
posed model achieves accurate reconstruction and performance
in line with state-of-the-art deep learning and compressive sens-
ing techniques while maintaining a lightweight architecture.

Keywords: physics-informed neural network, sound field recon-
struction, wave equation.

1. INTRODUCTION

Sound field reconstruction is fundamental in augmented and vir-
tual reality applications, where users can experience immersive
audio environments. To accurately characterize the acoustic
properties of a given environment, the acquisition of multichan-
nel signals is necessary. Room impulse responses (RIRs) cap-
tured with microphone arrays are particularly useful for this and
various tasks such as sound source localization [1, 2], separa-
tion [3,4], and sound field navigation [5–7]. In fact RIRs provide
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a model of the sound propagation between the acoustic source
and the microphone array within an environment.

The reconstruction of RIRs or sound field in general, has
been a subject of extensive research, leading to the develop-
ment of two primary categories of solutions: parametric and
non-parametric techniques. Parametric methods [7–12] rely on
simplified parametric models of the sound field to convey an ef-
fective spatial audio perception to the user. In contrast, non-
parametric methods [13–17] aim to numerically estimate the
acoustic field. Most of the available techniques in this class are
based on compressed sensing principles [18] combined with the
solutions of the wave equation [19], i.e., plane wave [20] and
spherical wave [17,21], the modal expansion [15] or the equiva-
lent source method (ESM) [16, 22].

A third category comprising deep learning emerged as an
alternative approach for sound field reconstruction and a wide
range of problems in the field of acoustics [23–27]. In [28], a
convolutional neural network (CNN) has been proposed for the
reconstruction of room transfer functions. However, as noted
in [28] the model is limited to low frequencies and the gener-
alization is constrained by the available data set. To overcome
the frequency and data set limitations, in [29], the authors pro-
posed a deep prior approach [30] to RIR reconstruction in time
domain. The deep prior paradigm [29] considers the structure of
a CNN as a regularization prior to learn a mapping from a ran-
dom input to the reconstructed RIRs of an Uniform Linear Array
(ULA). As a result, no extensive data set is required for training
since the optimization is performed over a single ULA.

Recently, in order to exploit the underlying physics of the
sound field, a physics-informed neural network (PINN) [31–33]
for sound field reconstruction has been introduced in [34]. The
main idea of PINN [31, 32] is to force the output of a network
to follow the partial differential equations (PDE) governing the
system under analysis. In particular, PDE computation is per-
formed exploiting the automatic differentiation framework un-
derlying the training procedure of neural networks. Follow-
ing the PINN approach, in [34] the authors augmented the loss
function used for training a CNN with the computation of the
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Figure 1. Example of RIRs H of a M = 32 microphones
ULA.

Helmholtz equation [34]. However, differently from standard
PINNs [31], the network provides as output an estimate of the
derivatives required to compute the Helmholtz equation instead
of relying on automatic differentiation. Moreover, the system
works at a fixed frequency (300Hz) and it has been tested only
on simulated data.

In this paper, we propose the use of a physics-informed ap-
proach for the reconstruction of the early part of RIRs. As a
matter of fact, the early part of RIRs provides relevant informa-
tion on the geometry of environment [35, 36] affecting the tim-
bre and localization of acoustic sources [37]. Therefore, accu-
rate reconstruction of the early part of RIRs [22, 38] is required,
while the late reverberation is typically modelled through its sta-
tistical characteristics [7, 8, 39]. In order to avoid frequency
limitations, we work in the time domain. We adopt a network
that takes as input the signal domain i.e., the time and posi-
tion of the microphone and provides as output an estimate of
the RIRs at the given coordinates. In order to improve the per-
formance exploiting prior knowledge on the signal domain, we
employed a network structure known as SIREN [40] trained us-
ing the PINN paradigm. We refer to the adopted approach to
as physics-informed SIREN (PI-SIREN). SIREN demonstrated
to be an effective architecture to learn neural implicit represen-
tations of different signals including audio and for solving the
wave equation (direct problem) [40]. However, the adoption of
SIREN has not been fully explored yet for solving time-domain
inverse problems in the field of multichannel acoustic process-
ing or applying to real acoustic measurements. In this work, we
investigate the use of PI-SIREN for the reconstruction of early
parts of the RIRs acquired by an ULA. Results on simulations re-
vealed that in contrast to classical PINN, PI-SIREN is a suitable
architecture for RIR reconstruction. In addition, we compare the
reconstructions of PI-SIREN on real data with respect to state-
of-the-art solutions based on compressed sensing [41] and deep
learning [29] showing improved reconstruction of the early parts
of the RIRs in two of the three considered rooms.

2. PROBLEM STATEMENT

2.1 RIR data model

Let us consider an acoustic source located in r′ = [x′, y′, z′]T

and a set of M microphones acquiring the generated sound field.
Assuming linear acoustics and absence of noise, the sound pres-
sure at the mth sensor can be defined as

p(rm, t) = h(t, rm, r′) ∗ s(t), m = 1, . . . ,M, (1)

where p(rm, t) is the time-domain sound pressure at time instant
t and location rm, s(t) is the signal emitted by the source and ∗
denotes the linear convolution operation. The term h(t, rm, r′)
in (1) refers to the RIR between the source in r′ and the sen-
sor at rm. In general, RIR provides a description of the sound
propagation in the environment from a source to a receiver and
due to (1), it completely characterizes the spatial properties of
the sound field. In ideal conditions with unbounded domain, the
RIR is given by the well-known Green’s function [19] which is
a particular solution of the inhomogenous wave equation [19]

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= δ(r − r′, t), (2)

where δ is the Dirac delta function and c is the speed of sound in
air.

In this work, we consider the RIRs of an ULA and the loca-
tion of each mth microphone is given by the distance d between
two consecutive sensors as rm = [xa, (m− 1)d, za]

T . The val-
ues of xa and za are the same for all the sensors in the ULA.
It follows that the maximum frequency for aliasing-free sound
field acquisition in the ULA is limited by the distance d through

Fmax =
c

2d
. (3)

In practice, we organize the acquired RIRs in a N × M matrix
defined as

H = [h1, . . . ,hM ], (4)

where hm ∈ RN×1 is the vector containing the N -length sam-
pled RIR of the mth microphone. In Fig. 1, an example of RIRs
acquired by a ULA is shown.

2.2 RIR reconstruction problem

We assume that a limited subset, indexed as M̃, of the ULA
sensors M is available, and thus M̃ ⊆ M

(
|M̃| = M̃ < M

)
.

The goal of RIR reconstruction is to recover the missing data
exploiting the information available from RIRs in the observa-
tion points {rm̃}m̃∈M̃. Various techniques have been proposed
in the literature to address the spatial-sampling requirement for
reconstructing RIRs from an undersampled measurement set. In
general, this task can be interpreted in the framework of inverse
problems, and a solution to the problem can be found through
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the following minimization

θ∗ = argmin
θ

J (θ) =

E
(
f(θ, {rm̃}m̃∈M̃)−H({rm̃}m̃∈M̃))

)
,

(5)

where E(·) is a data-fidelity term, e.g., the mean squared error,
between the estimated data and the observations, and f(θ, r) is a
function that generates the estimated RIRs using the parameters
θ. The time dependency in (5) has been omitted for notational
simplicity. It is worth noting that in (5), the evaluation of f is
performed in the observation locations {rm̃}m̃∈M̃. However, f
must be able to provide a meaningful estimate also in location
that are different from the available ones. Therefore, the solu-
tion to the ill-posed problem (5) is constrained using regular-
ization strategies. Typical techniques include compressed sens-
ing frameworks based on assumptions about the signal model
such as plane and spherical wave expansions [13], ESM [22],
or the RIRs structure [41], as well as deep learning approaches
[28, 29].

3. PROPOSED METHOD

In this work, we aim at solving the RIR reconstruction problem
(5) in order to provide an estimate of the ULA RIRs as

Ĥ = f
(
θ∗, {rm}m∈M

)
, (6)

where the function f(·) represents a neural network. In partic-
ular, we adopt the structure of a SIREN [40] neural network.
SIREN proved to be an effective architecture for learning the
so-called neural implicit representations of different classes of
signals, including audio signals. The proposed model has the
structure of a multilayer perceptron (MLP) with sinusoidal acti-
vation functions, for which the ith layer can be expressed as

ϕi(xi) = sin
(
ω0x

T
i θi + bi

)
, (7)

where xi, θi, and bi are the input vector, the weights and the
biases of the ith layer, respectively, while ω0 is an initialization
hyper-parameter [40]. The adopted SIREN architecture is thus a
composition of L layers

f (θ,x) = (ϕL ◦ ϕL−1, . . . , ϕ1) (x), (8)

where x is the input of the network while θ is the set of learn-
able parameters. Following the paradigm of neural implicit rep-
resentations, the SIREN model takes as input the signal domain,
namely the sensor position rm and the time instant t and pro-
vides as output an estimate of the RIR ĥ(t, rm). Hence, the role
of the network is to provide a parameterized representation of
the signals through the parameters of the MLP. Essentially, dur-
ing the training, the neural network overfits the available signals
becoming an alternative implicit representation of the RIRs.

Although we can fit the available RIRs through SIREN, reg-
ularization strategies are required in order to provide meaningful

results in different points of the domain i.e., to estimate the miss-
ing RIRs.

Here, we consider training SIREN using the PINN approach,
denoting the solution as PI-SIREN. Using as the target for the
training the reconstruction of the observation only, there is no
guarantee that the solution follows the physical law of the un-
derlining problem, namely the wave equation [19]. PINN are
forced to learn solutions that follows the PDE of the underlying
physics in order to obtain improved results. This approach ex-
ploits the prior knowledge on the system in order to regularize
the estimation of the neural network. Therefore, we adopted the
following loss function for training PI-SIREN which includes a
physics-informed term as

L =
1

M̃

∑
m̃∈M̃

∥ĥm̃ − hm̃∥22+

λ
1

M

M∑
m=1

∥∥∥∥∥ 1

c2
∂2ĥm

∂t2
−∇2ĥm

∥∥∥∥∥
2

2

,

(9)

where ∥·∥2 is the ℓ2 norm, the first term of the summation rep-
resents a distance between the prediction and the available data,
while the second term corresponds to the PDE loss given by the
wave equation and weighted by parameter λ. While the first
part of (9) makes the network fit the observation, the PDE term
constraints the output to follow the wave equation. The use of
the PDE loss results in a regularized solution since the output
conforms with the underlying physical equation. Once trained,
PI-SIREN can be used to obtain the RIRs at the missing and
available positions of the ULA simply feeding the network with
the locations rm, m = 1, . . . ,M , and the different time instants
t.

4. NUMERICAL EXPERIMENTS

4.1 Setup

We evaluate the performance of PI-SIREN for RIR reconstruc-
tion on both simulated and measured data from [41]. We con-
sidered an ULA of M = 100 microphones with distance
d = 2.02 cm which gives a maximum frequency (3) Fmax =
8.489 kHz. The simulated RIRs have been computed at sam-
pling rate 8 kHz using the image source technique [42] for a
shoe-box room of dimensions 6m × 4m × 3m and reverber-
ation time T60 = 0.5 s. For this work we limit the analysis to
the first 20ms of the RIRs which corresponds to the early part
(direct and early reflections) of the impulse response.

The proposed PI-SIREN architecture is composed of L = 5
layers of 256 neurons in which the last layer is linear. The net-
work has a total of 198401 trainable parameters. The initializa-
tion frequency ω0 in (7) is set to 15 for the first layer, while as
in [40] ω0 = 30 for the hidden layers. The network is trained for
2000 iterations using Adam optimizer with learning rate equal to
10−4. The weight parameter in (9) has been experimentally set
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Figure 2. (a) Simulated RIRs H. (b) The observation Hm̃ of M̃ = 33 microphones employed as input for the networks.
The reconstructions obtained using PI-SIREN (c), SIREN (d) and PINN (e).

to λ = 5 · 10−15. Similarly to [29, 41], we evaluate the recon-
struction performance in terms of the normalized mean square
error (NMSE) between the reconstructed data and the reference
RIRs defined as [41]

NMSE
(
Ĥ,H

)
= 10 log10

1

M

M∑
m=1

∥ĥm − hm∥2

∥hm∥2 , (10)

where ĥm is the mth RIR estimate provided by the recon-
struction technique. The observations are computed considering
M̃ = {20, 33} microphones randomly selected as in [41], which
corresponds to 1/5 and 1/3 of available sensors, respectively.

4.2 Results

In order to assess the effectiveness of the proposed PI-SIREN
methodology in terms of architecure and training strategy, we
evaluate the reconstruction performance on simulated data. We
compare the reconstruction of PI-SIREN with respect to a classi-
cal PINN architecture [31] and SIREN trained without the wave
equation term in the loss function (9). The PINN shares the same
structure of PI-SIREN in terms of layers and parameters, how-
ever tanh is adopted as nonlinear function of the neurons. In
Fig. 2, the RIRs H along with the observation Hm̃ with M̃ = 33
and the obtained reconstructions are reported.

From Fig. 2(e), we can observe that PINN fails to recon-
struct the RIRs, obtaining a NMSEPINN = 14.5 dB. The
adoption of the sinusoidal activation function in SIREN (see
Fig. 2(d)) determines an improved reconstruction performance
with NMSESIREN = −7.1 dB. Inspecting Fig. 2(d), we can
observe that SIREN reconstructs the direct path and the early re-
flections in ĤSIREN, filling the missing channels. It follows that
SIREN provides an effective implicit representation of the con-
sidered signals thanks to the use of the sinusoidal nonlinearity.
In [43], the authors show how a two-layers SIREN can be related
to a discrete cosine transform (DCT) of the signal. In the con-
text of this work, the consideration in [43] can be loosely inter-
preted in terms of a real-valued plenacoustic representation [44]

Room Balder Freja Munin
Mic. 20 33 20 33 20 33

NMSE [dB]
CS -5.87 -11.47 -5.89 -11.01 -7.52 -15.25
DP -5.52 -11.44 -4.68 -9.21 -8.98 -16.03

PI-SIREN -6.26 -11.74 -5.65 -10.61 -10.00 -16.17

Table 1. NMSE of the considered techniques at different
downsampling conditions for the three rooms.

of the RIRs. Nonetheless, the reconstruction in Fig. 2(d) con-
tains noisy components and the estimated wave fronts at some
of the missing locations are incoherent. In Fig. 2(c), the output
of PI-SIREN is depicted. It is possible to note that, differently
from the basic SIREN, PI-SIREN is able to estimate the RIRs
more accurately, coherently reconstructing the wave fronts at the
missing locations. The reconstruction of PI-SIREN achieves a
NMSEPI−SIREN = −11.2 dB which is lower with respect to
both SIREN and the PINN. Through the physics-informed loss
function in (9), in fact, the output of the network is forced to con-
form with the physical prior of the wave equation. Therefore, the
adoption of the physics-informed loss function in PI-SIREN al-
lows us to obtain an improved performance.

4.3 Experimental results

We evaluate the performance of PI-SIREN on real RIRs mea-
sured in three rooms [41] and we compare the estimated recon-
struction with respect to the compressed sensing method (CS)
in [41] and the deep prior (DP) methodology of [29]. The
employed ULA consists of M = 100 sensors with distance
d = 3 cm. The rooms are named “Balder”, “Freja” and “Munin”
and the estimated reverberation times T30 are 0.32 s, 0.46 s and
0.63 s, respectively.

In Table 4.2, the NMSE obtained for the different rooms are
reported. As expected, when a lower number of sensors M̃ = 20
is available the reconstruction performance is reduced for all the
considered techniques. The performance of the three methods is
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Figure 3. Reconstruction of the RIRs of Munin room using M̃ = 20 available sensors. (a) The measured RIRs H. The
reconstructions are obtained using the proposed model ĤPI−SIREN (b), DP [29] (c) and CS [41] (d).

in line for all the considered scenarios. However, the proposed
PI-SIREN is able to achieve lower NMSE in Balder and Munin
rooms for both the adopted undersampling conditions. Interest-
ingly, the best reconstruction performance is achieved for room
Munin for every method. This room has the highest T30, but
as notices in [41], the density of early reflections is lower with
respect to the other rooms, making the reconstruction less chal-
lenging. CS obtained the lowest NMSE in room Freja. How-
ever, the difference with respect of the proposed model is limited
to 0.24 dB and 0.4 dB for the M̃ = 20 and M̃ = 33 scenarios,
respectively.

In Fig. 3, the reconstructions of H for room Munin given
M̃ = 20 microphones are reported. The reference RIRs are
depicted in Fig. 3(a). Inspecting the reconstruction in Fig. 3,
we can note that all the three methods managed to reconstruct
the main structure of the RIRs. However, the reconstruction pro-
vided by CS presents an underestimation of the RIRs at the miss-
ing locations which are seen as light vertical stripes in Fig. 3(d).
Instead HPI−SIREN and HDP have a similar performance with a
lower reconstruction error (NMSEPI−SIREN = −10 dB) for the
proposed model compared to DP (NMSEDP = −8.89 dB).

5. CONCLUSION

In this work we proposed the use of PINNs for the reconstruc-
tion of early part of RIRs. The devised architecture consists of a
SIREN neural network trained exploiting the physics-informed
neural network framework. This allows us to impose the gov-
erning wave equation to the solution of the RIR reconstruction.
The results show that the SIREN architecture itself provides an
implicit representation of the data. Moreover, the adoption of
the physics-informed training demonstrated to improve the re-
construction performance. We investigated the application of
the proposed model on real data, showing competitive results
with state-of-the-art techniques based on compressed sensing
and deep learning. The proposed technique is appealing since

it synergistically exploits the flexibility of deep learning and the
prior knowledge of physics. We foresee the future of this work
concerning the network design and the modeling of the whole
RIRs that can improve the performance and the applicability
with respect to the current results.
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[35] I. Dokmanić, Y. M. Lu, and M. Vetterli, “Can one hear
the shape of a room: The 2-d polygonal case,” in Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 321–324, IEEE, 2011.

[36] F. Antonacci, J. Filos, M. R. Thomas, E. A. Habets, A. Sarti,
P. A. Naylor, and S. Tubaro, “Inference of room geome-
try from acoustic impulse responses,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 10,
pp. 2683–2695, 2012.

[37] T. Gotoh, Y. Kimura, A. Kurahashi, and A. Yamada, “A con-
sideration of distance perception in binaural hearing,” THE
JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN,
vol. 33, no. 12, pp. 667–671, 1977.

[38] B. Alary and A. Politis, “Frequency-dependent directional
feedback delay network,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pp. 176–180, IEEE, 2020.

[39] A. Lindau, L. Kosanke, and S. Weinzierl, “Perceptual eval-
uation of model-and signal-based predictors of the mixing
time in binaural room impulse responses,” Journal of the Au-
dio Engineering Society, vol. 60, no. 11, pp. 887–898, 2012.

[40] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wet-
zstein, “Implicit neural representations with periodic activa-
tion functions,” Advances in Neural Information Processing
Systems, vol. 33, pp. 7462–7473, 2020.

[41] E. Zea, “Compressed sensing of impulse responses in rooms
of unknown properties and contents,” Journal of Sound and
Vibration, vol. 459, p. 114871, 2019.

[42] E. A. Habets, “Room impulse response generator,” Technis-
che Universiteit Eindhoven, Tech. Rep, vol. 2, no. 2.4, p. 1,
2006.

[43] F. Pistilli, D. Valsesia, G. Fracastoro, and E. Magli, “Signal
compression via neural implicit representations,” in Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 3733–3737, IEEE, 2022.

[44] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic func-
tion and its sampling,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 10, pp. 3790–3804, 2006.


