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Abstract—Software-intensive systems include enterprise sys-
tems, IoT systems, cyber-physical systems, and industrial control
systems where software plays a vital role. In such systems, the
software is increasingly responsible for autonomous decision-
making. However, trust can be hindered by the black-box nature
of these systems, whose autonomous decisions may be confusing
or even dangerous for humans. Thus, explainability emerges as
a crucial non-functional property to achieve transparency and
increase the understanding of the systems’ behavior, fostering
their acceptance in our society.

This paper introduces a conceptual framework for eliciting
explainability requirements at different granularity levels. Each
level is associated with a set of meta-requirements and means for
instantiating the framework within a system to make it capable
of producing explanations in a given application domain. We
illustrate our conceptual framework using a running example
from the robotics domain.

Index Terms—Explainability, explainable software systems,
explainability requirements

I. INTRODUCTION

The pervasiveness of software-intensive systems in our daily
activities makes our lives increasingly influenced by software-
based decisions. This, together with the growing complexity
of software, calls for understandable and trustworthy software
behavior. However, the widespread adoption of Artificial In-
telligence (AI) technologies and black-box Machine Learning
(ML) often makes the system behavior completely opaque,
making it difficult to understand how decisions are taken and
their dependability. This lack of transparency can potentially
lead to a lack of human trust in the results of software systems.

In this context, explainability, that is, the ability to provide
human-interpretable explanations, can be seen as a way to
achieve transparency and increase awareness of the system’s
behavior. This awareness, combined with guarantees about
the correctness and quality of the system’s behavior, can
lead to the creation of trust in software systems. However,
there is still a limited understanding of systematic engineering
methods that can generate valuable explanations for human
stakeholders.

This paper builds upon the idea initially introduced by Köhl
et al. [15], and also adopted in [9], [10], where explainability is

treated as a non-functional requirement. We present a concep-
tual framework defining explainability requirements in terms
of phenomena to be explained (the explananda), interpretable
and measurable factors of the observed phenomena, the con-
text in which such phenomena are observed, and recipient
stakeholders of the explanation. Furthermore, we introduce
increasing levels of explainability that a system may offer. The
framework also comprises a general notion of explainability
metric, which is used to formulate the problem of determining
the satisfaction of explainability requirements: more precisely,
the metric captures the measurable condition the system should
fulfill to meet the corresponding explainability level in a
specific application domain.

To promote the engineering of explainability requirements,
defining a reference framework for explainability is a crucial
first step towards a shared language, reusable structures, and
established practices. In line with such a vision, the proposed
conceptual framework aims at also providing guidelines to
software and requirements engineers for developing explain-
able software-intensive systems in a given application domain.
The framework is complemented by a set of meta-requirements
and means to be engineered within a system to make it capable
of producing explanations. We illustrate the applicability of
the proposed framework by instantiating its main concep-
tual aspects in a Human-Machine-Teaming (HMT) [3], [19]
application scenario where service robots assist patients and
hospital staff during daily operations.

The proposed framework leverages our preliminary work
[3], [7] evaluating the feasibility of a software system for
producing human-interpretable explanations in specific appli-
cation domains. Specifically, in [7], we introduce our idea
of explainable self-adaptation for endowing a self-adaptive
system capable of providing human-understandable explana-
tions for successful and unsuccessful adaptations in critical
scenarios. In [3], we present an emerging idea for generating
dependability-related explanations and partially evaluate it on
the estimation of success/failure of service robot missions
in the HMT domain [2]. We also conducted preliminary
feasibility experiments in selected domains. In this respect, the



Fig. 1. High-level representation of the operational layout for the illustrative
example. The agents (patient, nurse, doctor, and robot) are represented in their
starting positions.

novel contributions of this paper are summarized as follows:
• a conceptual general framework for explainability elici-

tation, comprising the notion of explainability, levels of
explainability, and a metric to assess the satisfaction of
explainability requirements;

• the instantiation of the main concepts of the framework
to a system example from the robotics domain;

• the identification of a set of meta-requirements and means
associated with our framework to be engineered and
incorporated within a target software system to make it
(self-)explainable.

The remainder of the paper is organized as follows. In
Sec. II, we introduce an illustrative example in the healthcare
domain, including multiple service robots interacting with
doctors and patients. In Sec. III, we present our conceptual
framework for explainability requirements, including four lev-
els of explainability and corresponding meta-requirements.
In Sec. IV, we discuss existing tools that can be used to
engineer such meta-requirements. In Sec. V, we survey related
work. Finally, Sec. VI concludes the paper and outlines future
research directions.

II. ILLUSTRATIVE EXAMPLE

As an illustrative example for our conceptual framework, we
use a scenario from the healthcare domain, including multiple
service robots interacting with doctors and patients [16].
Figure 1 illustrates a high-level schema of the scenario’s
setting: a hospital ward with a doctor’s office serving as an
examination room, a patient waiting room, and storage rooms
with medical equipment. An assistive robot is deployed on the
floor to provide services requiring interaction with a human.
The specific sequence of services (i.e., the mission) shown
in Fig. 2 begins with the robot escorting a patient to the
waiting room. While the patient waits for the examination
room to be set up, an emergency occurs, causing the robot
and a healthcare professional (i.e., nurse agent in Fig. 1 and
2) to compete for the same medical kit (KIT1 in Fig. 1). The
outcome of the competition determines alternative plans. If the
robot retrieves the resource first, it delivers it to the doctor in
the examination room. Otherwise, the doctor leads the robot to
another storage room where it can enter only if in the presence
of authorized personnel to retrieve the required resource (KIT2

in Fig. 1). Once the examination room is set up, the robot
escorts the patient from the waiting room and assists the doctor
in administering the medication.

If the robot completes the mission successfully (i.e., the
robot completes all services in the sequence in Fig. 2),
we say the robot is dependable. Dependability and other
phenomena of interest, such as fatigue of the human agents
and the outcome of the competition, are typically affected
by uncertain and changing factors that shall be measured
during the mission [5], [6]. Thus, both the robot and the
human agents are equipped with sensors gathering information
about their current state; specifically measuring their position
inside the layout, the robot’s level of charge, and the humans’
level of muscular fatigue, which provides a measure of the
physical effort they are currently enduring. Furthermore, it
is also possible to infer from field data the frequency (also
referred to as their free will profile) with which humans ignore
instructions concerning the tasks they are carrying out in
coordination with the robot.

III. EXPLAINABILITY FRAMEWORK

This section provides the main concepts of the proposed
explainability framework. In particular, after preliminary defi-
nitions, we introduce the notion of explainability level and the
satisfiability of explainability requirements.

A. Basic Definitions

First, we provide a working definition of explainability for
the domain of software and requirements engineering. We
build upon the conceptual analysis by Köhl et al. [15] and
Chazette et al. [9], which, by leveraging results from psychol-
ogy and the cognitive sciences, propose to treat explainability
by measuring understanding for different stakeholders (system
engineers, target users, etc.). According to this conceptualiza-
tion, we consider as main elements that characterize an expla-
nation the following ones: (i) phenomena—or explananda—of
the system of interest, (ii) a set of factors (i.e., interpretable
and measurable aspects) of the observed explananda in a given
context,1 (iii) the recipient stakeholders of the explanation, and
(iv) the means for producing the explanation. More formally,
we define the notion of explanation as follows.

Definition 1 (Explanation): An explanation E for a given
explanandum X and a target group G of stakeholders is a piece
of information (or evidence) that makes the explanandum X
interpretable by G.

We hereafter refer to the notion of an explainable system
according to [15] as follows.

Definition 2 (Explainable system): A system S is explain-
able if, and only if, it is able by a means M to produce an
explanation E of an explanandum X for a target group G in
a certain operating context C.

The means M in Definition 2 may be provided by a domain
expert or an external system. Alternatively, the means M can
be integrated into the system of interest. In the latter case, the

1A context represents the environmental entities that interact with the
system and influence its behavior.



Fig. 2. Sequence of services constituting the mission for the illustrative example. The diagram highlights the alternative plans whose selection depends on
the outcome of the competition for KIT1.

TABLE I
LEVELS OF EXPLAINABILITY.

Level Description Meta-requirements

L1 No explanability: The system ignores any possible explanandum X .

L2 Recognition of explainability needs: The system is aware that an
explanandum X for stakeholders G exists. Thus, it collects knowledge
about the context C either passively or actively, by means that are
deliberately designed to increase explainability through exploration.

- MR 2.1: the context C shall be defined in terms of selected (independent/uncorrelated)
factors that are interpretable by G and may affect the explanandum X in the system’s
current mission. Each factor has its exposing agent, type, and domain.

- MR 2.2: the context C, defined in terms of selected interpretable and measurable factors,
shall be observable and measurable at runtime during the system operations.

- MR 2.3: a measurement of the factors of a context C shall be available when the
behavioral aspects of interest occur.

L3 Local explainability:
- Single agent (SA): The system provides an explanation E for an

explanandum X by considering a specific (punctual) operating context
C to make G able to understand how the relevant individual elements
of C influence X .

- Multiple agents (MA): The local explainability (L3) process is
realized by multiple cooperating agents that collectively achieve the
mission objectives. Each agent has a partial view of the operating con-
text C whose relevant elements are collected (and possibly analyzed)
in a decentralized manner.

- MR 2.1, 2.2, 2.3
- MR 3.SA.1: a tangible manifestation of the explanandum X shall be measurable at

runtime during the system operations.
- MR 3.SA.2: a local explanation E of an individual explanandum X shall be computed.

The explanation shall be expressed as the sum of the effects of the observable factors
in the context C.

- MR 3.MA.1: Each partial context C shall be measurable by the corresponding agent
participating in the mission.

- MR 3.MA.2: A local explanation E for X shall be computed by considering the factors
in all partial views.

L4 Global explainability:
- Single agent (SA): The system provides an explanation E for an

explanandum X by considering a varying operating context C to make
G able to understand the extent to which changes of relevant elements
of C influence X on average.

- Multiple agents (MA): Global explainability (L4) is realized by mul-
tiple cooperating agents collectively achieving the system’s mission
objectives. Each agent has only a partial view of the operating context
C whose relevant elements are collected (and possibly analyzed) in a
decentralized manner.

- MR 2.1, 2.2, 2.3, 3.1
- MR 4.SA.1: a global explanation E of the average behavior of the explanandum X

shall be computed. The explanation shall be expressed as the expected distribution of
X based on the factors in the context C.

- MR 4.MA.1: A global explanation E for X shall be computed by considering the
factors in all partial views.

system itself produces the explanations; thus, we say that the
system is self-explainable.

Definition 3 (Self-explainable system): A system S is self-
explainable if, and only if, the means M for producing the
explanation E is part of S.

Example 1 (Basic definitions): Consider our illustrative
example in Sec. II. The nurse participating in the mission
would like to be guided in making decisions in the future
since they may decide to drop the competition and focus on
other urgent tasks in case he/she has little chance of winning
under certain circumstances. In this case, the outcome of
the competition (e.g., the robot wins the competition with
a probability of 0.99) represents the explanandum X , while
the nurse is the target stakeholder G. Thus, the system S
implementing the robotic mission is explainable if there exists
a means M (either embedded into S or not) that produces
a human-interpretable explanation E that the nurse can use
to understand the main reason(s) for the observed outcome.
The explanation E includes the main factors that determine
the actual outcome. For instance, the speed and the starting

position of the two agents (robot and nurse), as well as the
charge level of the robot, may be important factors affecting
the competition. In this case, the actual value of these mea-
surable aspects yields the context C of the ongoing mission.

B. Explainability Levels

We here characterize the context C and means M , accord-
ing to different (increasing) levels of explainability. We take
inspiration from our previous classification [7] that identifies
levels of explainability of self-adaptive systems based, in turn,
on the guidelines introduced by the roadmap for robotics
in Europe [11]. This roadmap identifies various abilities of
autonomous robotics (but does not include explainability) and
defines levels for each of them as an instrument to perform
an evidence-based assessment of a system under a specific
lens. In this respect, a reference conceptual framework for
explainability may guide software engineers in the concrete
realizations of explainability software layers to be incorporated
within any software system to increase the reliability and
trustability of its automated/autonomous decision-making.



Table I lists and describes the devised levels of explain-
ability that a software system can feature in any application
domain. With this characterization, we introduce increasing
degrees of explainability, starting from absence to recognition
of the need and then from local to global explainability. Each
level, in this view, can be further refined taking into account
other relevant dimensions. As an illustrative example, we
consider how explainability is achieved (i.e., single-agent, or
multi-agent). Note that the framework is general, and other
dimensions may be added depending on the needs of the
application domain at hand.

Table I also includes a set of meta-requirements an explain-
able system should be able to satisfy to meet the corresponding
explainability level.

To instantiate the abstract notions introduced in Table I,
we illustrate levels L3-L4 with two scenarios in our running
example from Sec. II. These scenarios include multiple mis-
sion agents, stakeholders, explananda (mainly related to the
dependability of the system mission and patient fatigue), and
different mission contexts (composed of different factors).

Example 2 (L3 local explainability, single agent for patient
fatigue): In case the patient is particularly vulnerable (e.g.,
unsteady health status), the doctor (G) may want to constantly
monitor the ongoing missions to spot specific (punctual)
combinations of patient-related factors that systematically lead
to (a tangible manifestation of) high stress (X). In this case,
the doctor understands the factors having the highest impact
(E) and, based on this, can steer the patient’s behavior to
reduce the overall level of fatigue. The factors characterizing
the patient yield the context (C) of this scenario. During
an ongoing mission, E may suggest to the doctor that an
inattentive free will profile is the primary cause of high stress.
In this case, the doctor can pay special attention and help the
patient stay focused.

Example 3 (L3 local explainability, multiple agents for
competition outcome): The nurse (G) wants to understand the
main characteristics of some of the agents—including robot(s)
and nurse(s)—that currently affect the outcome of the com-
petition to access the shared medical kit (X). Understanding
the positive/negative impact (E) of these characteristics can
influence future decisions of the nurse(s) as anticipated in
Example 1. In this case, the context C consists of the factors
describing the agents participating in the competition. For
example, the explanation E may reveal that high robot speed
reduces the chance for the nurse only under certain location
and charge level constraints.

Example 4 (L4 global explainability, single agents for
mission dependability): The doctor (G) wants to understand
which characteristics of his/her behavior (e.g., walking speed,
position) are important. The extent to which changes in
his/her nominal habits affect the likelihood (E) of a successful
mission (X); that is, the probability that the robot successfully
executes the whole sequence of services is higher than 0.9.
In this scenario, the partial view of the doctor on the whole
mission yields the context (C), that is, the subset of factors
describing his/her behavior. For example, E may suggest to

the doctor that specific locations in the shared space and too
high walking speed, combined with unsteady health status,
reduce the probability of success.

Example 5 (L4 global explainability, multiple agents for
mission dependability): The system administrator (G) wants
to understand what are the important configuration options
of the software components (e.g., minimum and maximum
distance) and how the interactions between them and the other
characteristics of the agents affect the likelihood (E) of satisfy-
ing the dependability requirements of the mission (X). Here,
context C comprises all factors, including those concerning
the controller configuration. For example, the explanation E
may suggest to the administrator that the maximum distance
configuration has almost no impact. At the same time, on
average, there is a linear dependency between maximum
fatigue and the likelihood of mission success.

To support achieving a certain explainability level illustrated
in the examples above, the system shall meet the corre-
sponding meta-requirements reported in Table I. It is worth
noting that meta-requirements are generic and do not refer
to a specific class of systems or domain. Therefore, meta-
requirements must be instantiated by defining the elements
X , G, C, and E according to the system of interest.

Example 6 (Meta-requirements for L3 local explainability,
multiple agents): Consider the explainability level 3, multiple
agents, instance introduced in Example 3. In this case, each
agent (nurse and robot) must be equipped with proper sensors
to sample the factors of interest, which determine the context
C of the ongoing mission. A local monitor can construct each
partial view collected from the corresponding agents. Then,
a local explainer component that represents the means M
aggregates the local views and produces E. In this example,
the explainer component receives the relevant data collected by
the local monitors to explain the outcome of the competition.
Namely, the explainer can receive data from all local monitors
except the doctor’s since the factors characterizing this latter
agent are irrelevant for X .

C. Satisfiability of explainability requirements

We focus here on the quantitative nature of an explanation
characterized by a certain explainability level.

Following the definitions given in Section III-A, we denote
an explanation E, at level Li, that concerns an explanandum
X , in a context C, for a stakeholder G, as E(Li, X,C,G). To
assess the quality of E, we introduce the notion of explain-
ability metric QE(M) ∈ M as a measure of the degree of
satisfaction of the explanation E(Li, X,C,G) using a means
M , where M is some suitable preorder (with an associated
ordering relation ⪯), which allows the comparison between
different values of QE(M).

In particular, given a means M and a minimum explain-
ability quality threshold ϵ ∈ R+ chosen by stakeholder G, the
explanation E(Li, X,C,G) satisfies the stakeholder’s expecta-
tion if the quality of the explanation QE(M) is greater than the
given threshold. More precisely, we define the explainability
requirement RE as follows.
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Fig. 3. High-level schema of our explainability framework.

Definition 4 (Explainability requirement RE): The explana-
tion E(Li, X,C,G) at a level Li, derived for an explanandum
X , in a context C for stakeholders G, shall have quality greater
than a threshold ϵ ∈ R+ established by G:

QE(M) ≥ ϵ

Example 7 (Explainability metric): Consider again the sce-
nario introduced in Example 3. The elements X , G, and C
are the outcome of the competition, the nurse stakeholder,
and the set of factors characterizing the nurse and the service
robot, respectively. For instance, the quality metric QE for
explanation E can be constructed using a Likert scale [17]
(e.g., 1 to 5). In this case, the nurse is asked to evaluate
a sample of explanations produced by the local explainer
component M . The nurse gives a quantitative value on a
subjective matter, that is, the quality level of the explanations
is either low or high according to his/her perception. For
instance, the means M satisfies the requirement if the average
score exceeds the selected threshold (e.g., ϵ = 4).

Alternatively, a quality metric QE can be constructed us-
ing multiple explainer components inspired by uncertainty
estimation based on ensembling [20]. In this case, multiple
explanations E can be generated for a single context C.
By calculating the variance σ of these explanations,2 an
approximation of QE can be obtained since higher variance
yields higher uncertainty and, consequently, lower usefulness
of E. Thus, the ensemble satisfies the requirement if 1− σ is
higher than the selected threshold (e.g., ϵ = 0.9).

IV. ENGINEERING EXPLAINABILITY

In Table I (right-hand side), we identify and describe the
meta-requirements to be engineered to make a target sys-
tem (self-)explainable. These meta-requirements are associated
with the level of explainability to meet up to L4. Several
suitable tools shall also be selected and implemented to
engineer such meta-requirements. We here discuss some of
them as they emerge from the current state of practice and the
literature.

2Note that σ represents the spread between explanations. This measure
shall be carefully defined according to the nature of E. Indeed, E may have
a complex structure rather than a simple numeric value.

To implement MR 2.1 and MR 2.2 the system must be
made context-aware, i.e., endowed with a context manager
or dedicated middleware responsible for sensing and dealing
with context changes. Sensing also implies the capability
of measuring with appropriate metrics the context factors
of interest at intervals or continuously and persisting such
values into a shared knowledge base for future reference, as
stated by MR 2.3. Such sensing infrastructure may adopt a
request/response messaging pattern (pull or push mode) to up-
date data in the knowledge base or an event-driven architecture
with publish/subscribe interaction pattern to allow efficient
measuring. To realize MR 3.SA.1, an analyzer component
shall compare event data against patterns in the knowledge
base to diagnose symptoms for an explanandum X and then
store the signs for future reference in the knowledge base.
Predictive models (e.g., neural network regressors/classifiers)
can be trained/tested to forecast a certain explanandum X
based on the context factors. The predictions can then be
explained using state-of-the-art model-agnostic interpretable
ML techniques, thus realizing MR 3.SA.2 and MR 4.SA.1
using local and global techniques, respectively [18].

Global explanations describe the average behavior of a given
model. Partial Dependence Plot [18] (PDP) is an example
of a global model-agnostic method that shows the marginal
effect that selected features have on the predicted outcome
of a model. Local explanations, such as those produced by
Local Interpretable Model-agnostic Explanation [18] (LIME),
explain each individual prediction. The so-built model has
the local fidelity property; that is, it represents a good ap-
proximation of local predictions, but it does not have to
be a good global approximation. These methods may be
complemented with distributed communication techniques for
realizing collective explainability as stated by MR 3.MA.1,
MR 3.MA.2, and MR 4.MA.1. In this case, the Event Sourcing
pattern3 can be adopted whereby explanations are determined
and possibly reconstructed on demand by storing all messages
exchanged among agents over publish/subscribe topics related
to a specific explanation. Persisting these messages would
enable a complete history of context changes and explanations
over time.

Example 8 (Engineering L3 local explainability, multiple
agents): Figure 3 illustrates a possible high-level workflow and
the main elements involved in realizing the explainability level
5 in Example 3. The two agents involved in this scenario (i.e.,
nurse, robot) have proper sensors that gather data to monitor
the context factors composing C. The sensors publish the data
to the topic associated with the corresponding agent with a
Local Monitor component in charge of creating a partial view
of the context and then publish the partial view to the topic
C. All the partial views are then aggregated, and the entire
history of C is stored in the Knowledge component using
event sourcing. As illustrated in Fig. 3, the scenario has a
Predictor and a model-agnostic interpretable ML component.
These elements represent the means M used to produce

3https://martinfowler.com/eaaDev/EventSourcing.html

https://martinfowler.com/eaaDev/EventSourcing.html


the explanations E. In this example, the predictor receives
the context factors and produces the expected result of the
competition as output. Then, a LIME explainer can produce
local explanations through an interpretable surrogate model.
For instance, an explanation E may reveal that considering
the current location of the agents, the robot speed is the most
critical context factor in reducing the chance for the nurse
actor.

V. RELATED WORK

In recent years, explainability, seen as the ability to provide
a human with understandable explanations of the results pro-
duced by AI and ML algorithms, has become an essential
aspect of designing tools based on these techniques [1],
especially in critical areas such as healthcare [26]. Even if
explainability is a term coined in the area of AI, interest
in it is also growing in the software engineering and re-
quirement engineering communities [9], [25]; researchers in
these communities have proposed, for example, explainable
analytical models for predictions and decision-making [25],
explainable counterexamples [14], explainable quality attribute
trade-offs in software architecture selection [4], the analysis of
explainability as a non-functional requirement and its trade-
off with other quality attributes [9], [15] and in relation to
human-machine teaming [3]. Work describing the theoretical
basis of explainability, exploiting concepts from philosophy,
psychology, and sociology can be found, for example, in [8],
[21], [22], [24].

Another research direction on which a lot of work has
focused recently concerns the definition of metrics and prop-
erties for explainability [12], [21], [23]. The proposed metrics
could be complex and tightly related to a specific method.
The explanation methods can be categorized as attributive
and counterfactual [23]. The former category produces metrics
or visualizations based on importance scores or weights; the
latter, instead, allows for the investigation of other possibil-
ities through the modification of the prediction function. A
discussion of different aspects of explanations is presented
in [12], where aspects like the goodness of explanation, user
understanding and satisfaction, and the impact of human
curiosity are considered key measurement factors. A different
approach for eXplainable AI (XAI) is presented in [21], where
four metrics are proposed based on the difference between
the expected and actual performance, the number of rules
produced by the explanation, the number of features used to
generate that explanation and the stability of the explanation.

With respect to the existing work, in this paper, we introduce
increasing levels of explainability and a global satisfaction
metric for system explainability and provide guidelines for
engineering explainability.

VI. CONCLUSION

This paper addresses the problem of providing meaningful
explanations of software-based decisions and shapes a con-
ceptual framework for explainability elicitation. We provide

increasing levels of explainability and a metric for quantita-
tively measuring a system’s explainability at a certain level.
These abstract concepts have been instantiated using human-
machine teaming scenarios where explanations are highly de-
manding since a failure in decision-making can lead to severe
consequences. We also envision a set of meta-requirements and
means that could help software and requirements engineers in
developing (self-)explainable software-intensive systems in a
given application domain.

As future work, we plan to investigate several human-
centered factors that may impact the quality of an expla-
nation and its underlying production process. We also plan
to elaborate further on the introduced explainability metric
by defining a quality model to help evaluate the quality of
explanations depending on explainability-related attributes in
a system [13]. Some applications (e.g., autonomous driving
and clinical diagnosis) introduce considerably more risks than
others (e.g., language translation and web searches) regarding
error occurrences. Some applications are expected to deliver
immediate decisions in near-real-time, whereas others may
respond in a lazy fashion. Finally, specific applications can be
highly autonomous, while others may require human supervi-
sion. All these differences could constitute a set of attributes’
values for applications, for which we can define suitable
explainability strategies according to their specificity.

We plan to instantiate the proposed framework in different
application domains (e.g., human-machine teaming) and dif-
ferent target systems (e.g., service robots). We are currently
developing a software architectural solution integrated with
the target system and capable of providing stakeholders with
human-interpretable explanations based on user-specified ex-
plainability requirements.
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