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A B S T R A C T   

When studying, by using continuum-based approaches, liquefaction phenomena, granular flows and granular material reconsolidation, crucial is the correct 
modelling of the change in material behaviour due to water presence and force chains collapse. To this aim, in this paper, the authors outline a model based on an in- 
parallel scheme. Three stress contributions are defined: the one associated with force chains applied to the solid skeleton (the effective stress), the one related to 
particle collisions (dominating for large values of void ratios and when the system is agitated) and the liquid one (not necessarily isotropic for large deviatoric strain 
rates). The model is conceived to reproduce the material mechanical behaviour of granular media under three different regimes: solid like, fluid like and inertial. The 
transition from one regime to another, in the model, is governed by the evolution of two state variables: void ratio and granular temperature (a measure of the 
material agitation). In this paper, the saturated version of the multi-regime model, already conceived for dry granular materials, is proposed. Its capability of 
reproducing the material fluidization in undrained constant volume rheometer tests is illustrated by discussing the numerical results obtained by using a Material 
Point Method code.   

1. Introduction 

Simulating the mechanical behaviour of saturated granular media 
under general conditions still represents an open challenge in a wide 
range of geotechnical problems, relative to material liquefaction and 
reconsolidation. In this perspective, indeed, employing constitutive re-
lationships accounting for grain-grain and liquid-grain interaction 
mechanisms is crucial. In fact, according to the nature of microstructural 
interaction occurring in the medium, granular materials behave differ-
ently. Under quasi-static conditions, a sand behaves like a solid and can 
be idealized as a network of long-lasting force chains developing among 
grains (Calvetti & Emeriault, 1999). Under saturated conditions water 
can either be still (hydrostatic conditions) or can flow inside the porous 
medium, being this latter assumed to be still. Alternatively, the entire 
granular medium flows, large strain rates develop and the same material 
exhibits a “fluid-like” regime with grains colliding among each other 
(Calvetti et al., 2019). In this scenario, the grain-grain interaction is 
affected by the liquid presence, since additional dissipation mechanisms 
develop. The classic Terzaghi’s effective stress principle, holding in case 
of quasi static regimes, has to be redefined. 

According to the concept of “State of Matter”, matter in the solid 
state maintains a fixed volume and shape, matter in the liquid state 
maintains a fixed volume but not shape, while matter in the gaseous 

state varies in volume and shape. When materials under distinct phases 
are mixed to each other, like solid grains in air or water, the combined 
system, that is the resulting mixture, may behave like a solid (solid-like 
regime), a fluid (fluid-like regime) or a dynamic system (inertial 
regime). Models capable of dealing with different regimes, combining 
distinct phases, and simulating the transition processes leading from one 
regime to another are very rare in the literature, in particular those 
based on a rigorous thermodynamic interpretation of the mechanical 
processes occurring in the system. 

In case of saturated materials, discrete approaches, accounting for, at 
the micro scale, grain-grain interactions, can be adopted to tackle this 
task only if coupled with Computational Fluid Dynamics (CFD) (Leo-
nardi et al., 2014; Tsuji et al., 1993), simulating the role of liquid, also 
affecting the solid to solid interaction. For the solution of engineering 
boundary value problems, these approaches require computational costs 
not compatible with any industrial application. The alternative of dis-
regarding the presence of water, implementing lubrication equivalent 
forces (Wang et al., 2012; Chèvremont et al., 2020) acting on grains, 
seems to be reliable only under specific assumptions and under steady 
conditions (Ness & Sun, 2015). 

Investigating at the micro scale the interaction mechanisms under 
different regimes and during regime transitions and interpreting the 
system response in a continuum-based framework is not only important 
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for basic research, but also for many practical applications (for instance, 
flow-slides or soil-structure interaction when seismic liquefaction 
occurs). 

The approaches proposed in the scientific literature by physicists and 
hydraulic engineers to simulate the mechanical behaviour of granular 
media (i) mainly focus on the fluid-like regime, (ii) are formulated under 
steady conditions, and (iii) interpret the mixture, in case of saturated 
matters, as a single-phase material (Bingham, 1922; GDR MiDi, 2004; 
Hunt et al., 2002; Jop et al., 2006). In this community, very popular is 
the so called μ-e-I rheology (Jop et al., 2006), according to which, under 
steady simple shear conditions, a relationship between stress level μ, 
void ratio e and inertial number I exists under dry conditions and has 
been numerically derived by performing DEM analyses (Chialvo et al., 
2012). According to this theory, high values of I correspond to agitated 
conditions, whereas small I values to quasi-static regimes. More 
recently, in case of deformable spheres, the e-I relationship has been 
shown by Redaelli & Di Prisco, 2019 and Redaelli et al., 2021 not to be 
bijective. To extend the range of applicability of the popular μ-e-I 
rheology to saturated materials, merging the work of Boyer et al., 2011 
and those of Jop et al., 2006, Trulsson et al., 2012 proposed, to account 
for the liquid viscosity η, the μ-e-I rheology to be modified by intro-
ducing a new inertial number K. Again, a unique relation is assumed to 
exist among K, μ and e. This approach has the advantage of being very 
simple but shares the same limitations of the original one. Additionally, 
due to its single-phase formulation, the model cannot fully reproduce 
the mechanical response of granular materials under static saturated 
conditions, since does not consider the liquid pore pressure static 
component (Redaelli et al., 2021). 

Alternatively, soil mechanics focuses on the solid-like mechanical 
behaviour of soils under quasi-static or cyclic loading and, in the 
geotechnical community, numerous are the constitutive models (Dafa-
lias & Manzari, 2004; Gajo & Muir Wood, 1999) (i) capable of suc-
cessfully predicting the material response under quasi-static conditions, 
but (ii) not adequate for simulating granular media when behaving like 
fluids. In the last decade, some attempts have been done to build a 
bridge between the two different approaches (Alaei et al., 2021; 
Baumgarten & Kamrin, 2019; Guo et al., 2021), testifying the interest of 
the subject in the geotechnical community. 

According to the authors, for a correct simulation of the mechanical 
behaviour of granular media under the different regimes and during the 
transition from one regime to another, crucial is the thermodynamic 
comprehension of the dissipative and storing mechanisms developing in 
the system (Berzi et al., 2011; Vescovi et al., 2013; Redaelli et al., 2016; 
Marveggio et al., 2022). This is the starting point of the model proposed 
by the authors, which combines kinetic theory of granular gasses and 
strain hardening elastic-plasticity. As is the previous versions of the 
same model, Marveggio et al., 2022 proposed a constitutive framework, 
based on the introduction of granular temperature (Savage, 1998) as 
additional state variable, describing the agitation of the granular system. 

In this paper, the model is modified to take saturated conditions into 
account. To this aim, the authors have considered crucial (i) adopting a 
two-phase mixture (2PM) approach (Soga et al., 2016) and (ii) coupling 
energetically liquid and solid phases, in agreement with the assumption 
of the original model. 

In this paper the theoretical formulation of the approach is outlined 
(Section 2), the model hypotheses discussed (Section 3), model pre-
dictions at material point level illustrated (Section 4), model imple-
mentation in a Material Point Method (MPM) code described (Section 5) 
and numerical results obtained by simulating constant volume rheo-
metric tests commented (Section 6). 

2. 2PM modified formulation 

As previously stated, in case of saturated granular materials, a gen-
eral model formulation accounting for two phases has to be based on the 
mixture theory (Truesdell & Toupin, 1960), suitable for accounting for 

interaction between solid and liquid phases. Following this approach, 
the saturated body can be represented as the superposition of two con-
tinua, i.e. solid particles (flowing in case solid fraction experiences a 
fluid like regime) and pore fluid. 

According to mixture theory approach in case of saturated granular 
media, three field equations are used for both granular and liquid phases 
(Hutter & Jöhnk, 2004): conservation laws of mass, momentum and 
energy. In common applications, only the first two equations are 
employed, whereas the last one disregarded. Due to the thermodynamic 
nature of the constitutive model proposed by the authors, in the 
formulation outlined here below, the energy conservation equation 
cannot be disregarded, since it plays a fundamental role in the solution 
of the problem and in the description of the evolution of the system. 

For the granular phase, identified by the subscript G, the mass bal-
ance reads: 

D
Dt

1
1 + e

ρP + ρP∇ •
1

1 + e
uG = 0 (1)  

where uG is the local mean velocity vector of the granular phase (uG =

〈up〉, where 〈〉 represents average at the Representative Elementary 
Volume (REV) scale and up the single grain particle velocity vector), ρP 

the solid density and e the void ratio. Moreover, D
Dt denotes the material 

derivative and is defined as: 

D
Dt

=
∂
∂t
+u • ∇ (2)  

where ∂
∂t is the local time derivative, u the velocity vector and ∇ the 

nabla operator. 
Concerning the liquid phase, identified by subscript L, the mass 

balance, disregarding any rate of mass growth term, reads: 

D
Dt

e
1 + e

ρL + ρL∇ •
e

1 + e
uL = 0 (3)  

where ρL is the liquid density and uL is its velocity field vector. 
Considering gravity as the only source of external body load, the 

momentum balance equation for the granular phase is given by: 

1
1 + e

ρP
DuG

Dt
+∇ • σG +B+F −

1
1 + e

ρPg = 0 (4)  

while the one related to the liquid phase reads: 

e
1 + e

ρL
DuL

Dt
+∇ • σL − B − F −

e
1 + e

ρLg = 0 (5)  

In Equations (4) and (5), F stands for the interaction force vector be-
tween the two phases, and depends mainly on the relative velocity be-
tween the two phases (uG − uL, i.e. the drag force), while g is the gravity 
acceleration vector, whereas B stands for a buoyancy vectorial term, 
defined as: 

B =
1

1 + e
∇ • σL − ∇

1
1 + e

σL (6)  

In Equations (4) and (5) σG and σL are the stress tensors of the granular 
and liquid phase, respectively (the definition of such a buoyancy term 
overrides the eventual requirement of partial stress definition). The two 
stress contributions work in parallel: 

σ = σG + σL (7)  

If one disregards relative motion among the two phases, so that the 
macroscopic velocity of the liquid phase is assumed to coincide with that 
of the granular one (u = uG = uL), F in Equations (4) and (5) vanishes. 

Finally, the energy balance for the granular phase, disregarding any 
exchange of energy due to exchange of mass, is assumed by the authors 
as: 
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1
1 + e

ρP
DEG

Dt
+∇ • (σG • uG)+∇ • qG +ΓG +Λ+B • uG +F

• uG −
1

1 + e
ρGg • uG

= 0 (8)  

A similar equation can be exploited for the fluid phase: 

e
1 + e

ρL
DEL

Dt
+∇ • (σL • uL)+∇ • qL +ΓL − Λ − B • uL − F • uL −

e
1 + e

ρLg

• uL

= 0
(9)  

In Equations (8) and (9), EG and EL are the internal specific energies 
stored in granular and liquid phases, respectively, qG and qL stand for the 
fluxes of energy vectors, while their divergence represents the energy 
diffused by the granular and liquid phases, respectively. Finally, ΓG and 
ΓL, always non negative, are the rate of energy dissipation of granular 
and liquid phases, whereas Λ, according to the authors, is the rate of 
energy that the granular phase exchanges, due to microscale in-
teractions, with the liquid one. 

As is suggested by Marveggio et al. (2022): 

EG = EG,E +EG,k +EG,h (10)  

where EG,E are the elastic stored, EG,k the specific kinetic and EG,h the 
thermal energies, respectively. The specific thermal energy EG,h, in case 
of granular flows, according to Jaeger et al., 1996 and Aranson & 
Tsimring, 2006, is at least ten orders of magnitude lower than both EG,E 

and EG,k. Here below athermal materials are considered, so that: 

EG = EG,k +EG,E (11)  

EG,E is defined by the authors as: 

EG,E = EFC
G,E +ECOL

G,E , (12)  

being EFC
G,E the elastic energy stored by force chains and ECOL

G,E the colli-
sional elastic energy. Such a distinction, for the sake of simplicity, can be 
done once the dynamic interaction characteristic time duration (tc) is 
computed: ECOL

G,E is the elastic energy stored by all the particles experi-
encing collisions, that is interactions characterized by a force fluctuation 
period equal to tc. 

According to Savage (Savage, 1998): 

EG,k =
1
2
ρG

1
1 + e

〈|up • up|〉 (13)  

or: 

EG,k = EM
G,k +EF

G,k =
1
2
ρG

1
1 + e

|uG • uG| +
3
2
ρG

1
1 + e

T. (14)  

where EM
G,k is the REV kinetic energy, EF

G,k the fluctuating kinetic energy, 
T the granular temperature (Savage, 1998): 

T =
1
3
〈|ǔP • ǔP|〉 (15)  

whereas: 

ǔP = uP − uG (16)  

Finally, by linearly combining Equations (8) with the vector product of 
uG by Equations (4), and by assuming σG to be a symmetric tensor, we 
obtain: 

1
1 + e

ρP

D
(

EF
G,k + EG,E

)

Dt
− σG : ε̇G +∇ • qG +ΓG +Λ = 0 (17)  

where ε̇G is the strain rate tensor of the granular phase, defined as the 
symmetric part of the gradient of − uG. 

According to the so called parallel scheme (Berzi et al., 2011; Mar-
veggio et al., 2022; Redaelli et al., 2016; Vescovi et al., 2013), ΓG is 
assumed to be the sum of two contributions: 

ΓG = ΓFC +ΓCOL (18)  

where ΓFC is the rate at which energy is dissipated by enduring contacts, 
and ΓCOL the energy dissipated by collisions. 

Analogously: 

σG = σFC + σCOL (19)  

where subscripts “FC” and “COL” stand for “force chains” and “colli-
sional”, respectively. When the first term of Equation (19) prevails, the 
granular material is assumed to behave like a solid (quasi-static regime). 
On the other hand, when σCOL prevails, a stable contact network cannot 
develop and particles interact mainly by means of collisions. In this case, 
the material response can be assimilated to that of a fluid (collisional 
regime). 

Analogously, the flux of energy qG is written as: 

qG = qFC + qCOL (20)  

where qFC is related to development/collapse of force chains, charac-
terized by the mesoscale internal length (Clerc et al., 2021) whereas 
qCOL is associated with the fluctuating energy propagation, due to the 
particle kinetic energy locally transmitted at contacts, prevailing in the 
collisional regime. 

By substituting Equations (18), 19 and 20 in Equation (17) and by 
assuming Λ to be exchanged with the colliding particles only: 

1
1 + e

ρP

D
(

ECOL
G,E + ECOL

G,k

)

Dt
− σCOL : ε̇G +∇ • qCOL +ΓCOL +Λ = 0 (21)  

1
1 + e

ρP

D
(

EFC
G,E

)

Dt
− σFC : ε̇G +∇ • qFC +ΓFC = 0. (22)  

The term ∇ • qFC, representing the divergence of the flux of energy 
associated with the microstructural rearrangement of the solid skeleton, 
describes the non-locality of the quasi-static constitutive relationship 
(Aifantis, 1992; De Borst & Mühlhaus, 1992), interpreted according to 
gradient theory. 

As far as the liquid phase is concerned, analogously to what done for 
the granular phase, by linearly combining Equation (9) with the vector 
product of uL by Equations (5), and by assuming σL to be a symmetric 
tensor, we obtain: 

e
1 + e

ρL
DEL

Dt
− σL : ε̇L +ΓL − Λ = 0. (23)  

3. Constitutive modelling 

The main objective of multi-regime models consists in simulating the 
regime transition taking place in granular materials for large changes in 
both void ratio and strain rate. As was previously mentioned, the model 
by Marveggio et al., (2022) employees thermodynamics to describe the 
mechanical processes justifying fluidization/reconsolidation of granular 
assemblies under dry conditions. In particular, according to the model, 
when the granular phase behaves like a solid, EG is mainly stored elas-
tically (in force chains EFC

G,E), whereas when behaves like a fluid, EG is 
mainly stored as fluctuating energy (ECOL

G,E + ECOL
G,k ). When the material is 
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saturated, crucial is the description of the mechanisms responsible of the 
energy exchange between granular and liquid phases. 

In this perspective, an extension of effective stress principle to flu-
idized conditions is mandatory (Marveggio et al., 2023), since under 
these conditions ΓL is of the same order of magnitude of ΓG (in this case 
coinciding with ΓCOL): 

σ′ = σFC = σ − σCOL − σL (24)  

where both σCOL and σL are characterized by a not nil deviator. 
In this section, the main hypotheses of the model are briefly sum-

marized, but, for the sake of brevity, constitutive relationship equations 
are omitted. In Subsection 3.2, as far as the liquid phase is concerned, 
the expression employed by the authors for F as well as a synthetic 
expression for σL are reported. 

3.1. Granular contributions 

In Marveggio et al. (2022), the collisional contribution (σCOL in 
Equation (20) is obtained by adopting modified kinetic theories of 
granular gases (Berzi & Jenkins, 2015; Campbell, 2006; Garzó & Dufty, 
1999; Jenkins & Savage, 1983; Lun, 1991), in case of frictional and 
deformable particles. These theories do not account for angular mo-
mentum and fluctuating energy associated with rotational granular 
temperature but, to account for their effects, propose (Jenkins & Zhang, 
2002) to modify the coefficient of restitution. 

They assume (i) for σCOL a nonlinear dependence on e, T and ε̇ij, (ii) e 
evolving according to Equation (1) and (iii) T with Equation (21). Any 
increase in T at constant e and any decrease in e at constant T cause an 
increase in both σCOL and stress ratio. According to modified kinetic 
theories, at steady state, once e and deviatoric strain rate tensor are 
assigned, state of stress and T can be derived. According to Redaelli & di 
Prisco (2019), for T→0, this steady state tends to the well-known critical 
stationary state. Such an hypothesis is fundamental for conceiving a 
coherent in-parallel constitutive model. The additional term Λ in 
Equation (21) (Subsection 3.2), representing the exchange in energy 
between granular and liquid phases, describes the influence of pore 
water in affecting the collisional mechanical response: this additional 
dissipating term, reducing the T value, affects σcol. The expressions 
chosen for ECOL

G,E , EF
G,k, σCOL, qCOL and ΓCOL (Equation (21) are fully 

detailed in Marveggio et al. (2022). 
As far as the force chains related term is concerned (σFC in Equation 

(22), a local (qFC = 0) quasi-static rate-independent elastic–plastic 
constitutive relationship with an anisotropic strain hardening is 
employed (Marveggio et al., 2022). Even in this case, fundamental is the 
definition of the critical state locus, employed in the model as an 
attractor. With respect to the original formulation proposed by Mar-
veggio et al., 2022, as was already done in Marveggio et al. (submitted), 
the critical state locus shape in the deviatoric plane is here assumed to 
coincide with Lade-Duncan, instead of Matsuoka-Nakai, criterion. 
Dilatancy is assumed not to depend on ασ (Lode angle) and to be gov-
erned by a function depending on both void ratio and stress level, 
nullifying when critical state locus is reached, whereas in the deviatoric 
plane the flow rule is associated. 

The size of the closed shaped yield locus (Nova, 1988; di Prisco et al., 
1993) is ruled by a hardening variable rc. The complete fluidization of 
the material, corresponding to the nullification of enduring contacts, is 
described by the nullification of rc. Indeed, from a thermodynamic point 
of view, the yield locus size is a measure of the energy that force chains 
may store elastically. According to the model, rc reduces for negative 
values of ε̇vol

pl (where ε̇vol
pl is the volumetric contribution of the plastic 

strain rate tensor ε̇pl). The nullification of rc may take place, for instance, 
independently of the imposed strain rate, during constant volume tests, 
if the imposed void ratio is sufficiently large (loose conditions), or, 
during constant pressure tests, independently of the initial void ratio, if 

the strain rate imposed is sufficiently high. In this latter case the increase 
in T, owing to the in-parallel scheme (Eq. (18)), indirectly causes a 
negative value for ε̇vol

pl . 
To account for strain-induced anisotropy, the axis χ (a back-stress 

second order tensor) of the yield function is assumed to rotate. χ de-
scribes at the macro scale the directional characteristics of the micro 
structure and, for large deviatoric strains, tends to χ̂ , assigned this latter 
for any ασ . When fluidization takes place rc nullifies but χ stops evolving. 
According to this hypothesis, supported by numerical DEM results 
(Redaelli & di Prisco, 2021), the directionality of the microstructure is 
not erased by solid skeleton disruption, since even grain collisions are 
not disordered but aligned in agreement with the strain rate imposed. 

3.2. Liquid contribution 

Under saturated conditions, the presence of water gives rise to two 
additional dissipative terms (Equations (7) and (8): term − F • (uL − uG)

represents the dissipation of energy associated with drag forces and with 
a difference in the mean value of the two phase velocities, ΓL is the 
dissipation term surviving even if uG = uL, associated with (i) ε̇L, (ii) ǔP 
and (iii) the fluctuating velocity of water. 

The authors adopt the following expression for the drag force: 

F = −
η0

κL

e
1 + e

(uL − uG), (25)  

where η0 is the liquid molecular viscosity, while κL the solid intrinsic 
permeability, computed and updated as a function of the void ratio 
according to (Ergun, 1952): 

κL = A2d2

[

180
1
e2 + 18

e2

(1 + e)3

(

1 + 1.5
̅̅̅̅̅̅̅̅̅̅̅

1
1 + e

√ )]− 1

, (26)  

where A is a sphericity parameter (equal to 1 in case of ideal assemblies 
of spheres) and d the particle diameter. 

According to Equation (23), ΓL may be evaluated once σL and Λ are 
defined. 

In the model employed by the authors: σL is assumed to linearly 
depend on the deviatoric part of ε̇L: 

σL = uwI+ 2ηε̇d
L, (27)  

where uw is the isotropic pore pressure, depending on liquid mass and 
linear momentum balances, but not on the liquid volume (the liquid is 
assumed to be incompressible), nor on the granular phase agitation, η is 
the macroscopic viscosity, assumed to be isotropic and not coinciding 
with the liquid molecular viscosity η0, whereas Λ is expected to be 
defined as a function of T, since it represents the part of fluctuating 
energy of grains transferred to the liquid, and there dissipated. 

η ∕= η0, since the presence of immersed grains produces three effects:  

(i) the liquid streamlines deviation from their original path in 
proximity of grains;  

(ii) the lubrication effect, occurring when two or more particles 
approach each other and the liquid in the region in between is 
squeezed out, due to the increase in its local pressure;  

(iii) the water damping of granular fluctuating motion. 

η − η0 represents, therefore, a liquid-granular coupling term and is 
assumed to depend on e only, since turbulences are disregarded. The 
liquid mechanical response is assumed to be isotropic and Newtonian, 
with η only depending on void ratio, as in Vescovi et al. (2020). 

As was previously mentioned, Λ is expected to be defined as a 
function of T since it represents the part of fluctuating energy of grains 
transferred to the liquid, and there dissipated. Since the dissipation 
approach defined in Vescovi et al. (2020) for steady simple shear 
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conditions holds also in evolving and general condition, also the 
expression of Λ coincides. 

4. Model discussion: undrained triaxial test results 

In this section, at the REV scale, the capability of the model of 
reproducing regime transition is illustrated. In particular, two undrained 
standard triaxial compression tests on fully saturated loose sand speci-
mens are numerically simulated. Both specimens are characterized by an 
initial void ratio e0 = 0.70, an initial isotropic consolidation of 50 kPa 
and an initial pore water pressure of 50 kPa. The constitutive parameters 
employed are taken from Marveggio et al (2022). Two different devia-
toric strain rates are imposed: ε̇d= 1 s− 1 andε̇d = 10 s− 1. 

In Fig. 1, the numerical results, obtained by imposingε̇d = 1 s− 1 

(Fig. 1a) andε̇d = 10 s− 1 (Fig. 1b), are plotted in the deviatoric stress q 
versus deviatoric strain plane. The (i) quasi-static, (ii) collisional and 
(iii) liquid q contributions are made explicit in the0.10 < εd < 0.12 
range (note that axis scales are also magnified). Initially, the mechanical 
response is almost entirely dominated by the quasi-static contribution. 
As a matter of fact, the two curves of Fig. 1a and 1b practically coincide. 
Forεd > 0.05, the quasi-static contribution (black line in Fig. 1) becomes 
nil due to the material fluidization. The residual deviatoric stress (green 
line), orders of magnitude smaller, is given by the sum of collisional (red 
line) and water (blue line) contributions. Forε̇d = 1 s− 1 (Fig. 1a), the two 
contributions are almost equivalent (Newtonian regime, that is q∝γ̇), 
while forε̇d = 10 s− 1 (Fig. 1b) the collisional one is dominating 

(Bagnoldian regime, that is q∝γ̇2) and the residual value of q is two 
orders of magnitude larger. 

A more detailed description of the results obtained by using this 
model under drained conditions are in Marveggio et al., (2022, 2023, s. 
d.). 

5. Numerical implementation in a MPM code 

The constitutive model has been implemented in the open-source 
dynamic explicit MPM code ANURA3D, a software developed since 
2008 to numerically simulate large deformations and 
soil–water–structure interaction problems (ANURA 3D, 2023). 

The Material Point Method extends the traditional solution scheme 
of a Finite Element Method (FEM), allowing material points (MPs), 
acting as Lagrangian integration points and in which the material mass 
is lumped, to flow within a fixed Eulerian mesh, discretizing this latter 
spatial domain. 

In Marveggio et al. (submitted), the dry version of the constitutive 
model was implemented adopting a single point formulation (Fern et al., 
2019). In this paper, two distinct sets of MPs are instead used for the 
material discretization. According to the authors, when regime transi-
tion takes place and phase separation is expected, the use of the double 
point formulation according to mixture theory, although more compu-
tational consuming (Fern et al., 2019), is mandatory. Each phase, 
separately represented by two different sets of Lagrangian MPs, moves 

Fig. 1. Undrained standard triaxial compression test results: a)ε̇d = 1 s− 1, b)ε̇d = 10 s− 1.  
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independently and its mass remain constant: the conservation of both 
solid and liquid mass is a priori satisfied (Fern et al., 2019). On the other 
hand, the linear momentum balance is enforced separately on the two 
phases, by considering buoyancy and drag interactions (Fern et al., 
2019). 

Due to the constitutive model formulation assumptions, only the 
energy balance associated with collisional terms and their coupling due 
to the liquid presence must be solved (Eq. (7)). To this aim, as was in 
Marveggio et al., (submitted), T is added as a material variable to the 
solid MPs only. T is linearly mapped to the node for the MPM solution 
scheme, while, as is done for linear momentum balance, a forward Euler 
approach is used for time integration during the core FEM-like solution 
scheme. For the sake of stability, the remap procedure from nodes to 
MPs is obtained by referring to mass-averaged quantity, as it is done in 
ANURA3D also for node to MP velocity remapping procedure which 
refers to momentum transfer. The convergence to the numerical solution 
is obtained by a suitable combination in terms of time discretization 
(due to the explicit nature of the integrating algorithm), mesh refine-
ment and material points discretization (Wilson et al., 2021). 

6. MPM numerical simulation of undrained constant volume 
rheometer tests 

In this section, the previously mentioned ANURA3D numerical code, 
in which the multi-regime model is implemented, is employed to 
simulate the mechanical response of a saturated loose sand (initial void 
ratio eo = 0.818) tested in a rheometer (Rin = 0.08m, Rout = 0.11m) at 
constant volume and under undrained conditions (Fig. 2a). The total 
volume of the mixture (water plus solid fraction) as well as fluid and 
solid masses are imposed to be constant during the test. The constitutive 
parameters employed are listed in Tables 1, 2 and 3, and η0 =

0.001Pa • s, since the material is saturated with water. The test is per-
formed by imposing a velocity to the outer ring of the apparatus (Fig. 2b) 
and by keeping zero the inner ring velocity. Owing to the symmetry of 
the boundary conditions imposed, the problem is numerically solved 
under plane strain conditions (εz = ε̇z = 0). The test is characterized by 
three phases: (i) under drained condition the specimen is initially iso-
tropically consolidated (in this phase external lateral walls are 
substituted by a static condition, σ̇r = σ̇z), (ii) subsequently both 
external lateral and upper static conditions are substituted by kinematic 
constrains (vr(r = Rout) = 0, vz = 0) and vθ(r = Rout) = vθ(t) = a • t, 
where a is a constant defining the outer ring acceleration, (iii) 
vr(r = Rout) = vz = 0, vθ(t) = vmax

θ . Here in the following, different vmax
θ 

values and one a = 333 m
s2 are considered (Table 4). The results shown in 

Figs. 3-6 concern phases (ii) and (iii). 
Since the volume of the specimen, solid and water masses are 

imposed to be constant and water almost incompressible (real liquid 
stiffness is used in the code), during the test the pore water pressure 
remains constant. Nevertheless, when the material fluidizes (analo-
gously to what already illustrated in Section 4), the presence of water is 
fundamental in affecting the mechanical behaviour of the mixture, since 
the water dissipates energy and influences the evolution of granular 
temperature. 

From a macroscopic point of view, in Fig. 3, the material fluidization 
is illustrated in terms of (i) solid fraction stress path (shear stress τ vs 
normal stress σG, calculated by averaging along θ and r), (ii) τ-γ (where γ 
is the shear strain, averaged along θ and r), (iii) final values of τ and 
averaged shear strain rate γ̇ (the three points refer to the three tests of 
Fig. 3a and 3b). In Fig. 3a and 3b the peak in τ and the strong reduction 
in both τ and σG, testifying the material fluidization, are evident. 
Apparently, the radial velocity imposed slightly affects the numerical 
results. The dependence of τ on the velocity imposed at steady condi-
tions is instead evident in Fig. 3c: the increasing trend is due to the role 
of granular temperature. 

The numerical results allow also to describe both the distribution of 
strains within the numerical specimen and the specimen homogeneity. 
For the sake of brevity, only numerical results concerning tests 1 and 3 
(Table 4) are illustrated. As is evident in Fig. 4, the value of γ along r (the 
values of γ are averaged along θ and represented for four time instants in 
test 1 and three time instants in test 3) is not constant, as was expected in 
case of uniformity. Initially, strains mainly develop in the inner zone 

Fig. 2. Scheme of performed rheometer tests: a) front and b) above views and 
c) steady state imposed velocity profile. 

Table 1 
List of micro-mechanical input data for the constitutive model.  

ρp [kg/m3] dp [m] Ep [MPa] μp [ − ] εn [ − ]

2600  0.002 300  0.3 1  

Table 2 
List of calibrated constitutive model parameters governing the collisional 
response.  

em [ − ] ecc [ − ] ece [ − ]

1.5  0.715  0.73  

Table 3 
List of calibrated constitutive model parameters governing the strain hardening plastic response.  

β [ − ] γ [ − ] δ1 [ − ] δ2 [ − ] θcc [ − ] θec [ − ] θψ [ − ] cpc [ − ] cpψ [ − ] Bp [ − ] ξψ [ − ] a [ − ]

0.5  4.1 1  0.8  0.157  0.201  0.5 15 10  0.001  1.75  0.178  

Table 4 
Test IDs with imposed final tangential 
velocity.  

ID test vmax
θ [m/s]

1  0.033 
2  0.33 
3  3.3  
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(grey and yellow lines in Fig. 4a, and grey line in Fig. 4b), whereas 
subsequently shear strain rate mainly develop in the external zone. This 
mechanism takes place since initially the material behaves like a solid 
and deforms mainly in the inner zone, where, due to the radial geom-
etry, shear stresses are larger; subsequently, the material behaves like a 
fluid and the energy provided to the system by the external ring motion 
is mainly dissipated by the external zone of the numerical specimen. 

Fluidization in the specimen is therefore testified by the velocity 
distribution along r (Fig. 4c) changing with time. Although for different 
time instants, the same change in velocity distribution is evident in 
Fig. 4d for larger vmax

θ . 
Finally in Figs. 5 and 6, for two different time instants, the distri-

bution in the numerical specimen of both rc (Section 3.1) and porosity n 

is illustrated. Initially, rc is not nil in all the domain, (Fig. 5a-b) and the 
material is behaving like a solid. The inner region stresses are larger than 
the external ones and the internal crown of the rheometer slightly 
compact. The outer region, due to the almost incompressibility of the 
fluid, ensuring a constant mean value of porosity, slightly dilates 
(Fig. 6a-b) to counterbalance the inner region compaction. At time in-
stants c) and d), the material is fluid-like in the external crown (Fig. 5c 
and 5d), confirming what observed with reference to the velocity pro-
files of Fig. 4c-d. In the external crown, due to the material agitation and 
to the increase in T, the material experiences a further increase in 
porosity and specimen heterogeneity is magnified. 

Fig. 3. Tests 1–3: averaged quantities measured during the test in a) τ − σ and b) τ − γ planes and steady-state measurements in τ − γ̇ plane.  

Fig. 4. Test 1 and 3: radial distribution of shear strain (a, b) and velocity (c, d) for different instants of time. Dashed line indicates the ideal velocity profile in case of 
uniform velocity distribution. 
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7. Conclusions 

In this paper, the problem of numerically simulating regime transi-
tion processes in granular media is tackled. The authors introduce a new 
version of a multi regime model, already employed to reproduce the 
mechanical behaviour of dry granular specimens, suitable for taking the 
presence of water within the pores into consideration. Original is also 

the implementation of the model into a double-phase-double-point 
Material Point Method numerical code. 

The constitutive model is based on a thermodynamic interpretation 
of the mechanisms governing at the micro-scale the interaction among 
grains and water and is tailored on mixture theories. According to the 
model, the regime transition is mainly governed by two scalar variables: 
the material porosity and the granular temperature (a measure this latter 
of the agitation state of the system). The model is inspired to kinetic 
theories of granular gasses and local critical state elastic-plasticity. In 
the new version proposed in this paper, the energy exchange between 
solid and liquid phases has been taken into account by introducing an 
additional coupling term in the energy balance equation. The role of 
energy balance equation is also crucial in the implementation of the 
model in Material Point Method code, since this latter also accounts for 
energy fluxes. 

The role of strain rate in affecting the mechanical behaviour of 
granular materials is emphasized by simulating standard compression 
undrained triaxial tests performed on a loose sand specimen. When the 
material behaves like a solid, until effective mean pressure does not 
nullify, the deviatoric strain rate imposed does not modify the material 
response. On the contrary, at liquefaction, larger values of deviatoric 
strain rate are associated with larger values of stress deviator. When the 
deviatoric strain rate is sufficiently large, the mixture experiences the 
transition to Newtonian to Bagnoldian regime. 

Finally, the authors discuss, by numerically simulating an undrained 
constant volume rheometer test, the uniformity/homogeneity of the 
specimen before and after liquefaction. The problem is tackled by using 
the material point method numerical code and by performing the same 
test at three different angular velocities. This particular test in employed 
to maintain a pore water pressure constant in the specimen, but to 
quantify the role of water in affecting the mechanical response of the 
material. The authors show that material liquefaction is associated with 
a marked non uniform distribution of porosity, velocity and shear strain 
rate. 
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