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On an uncountable family of graphs whose spectrum
is a Cantor set

Matteo Cavaleri, Daniele D’Angeli, Alfredo Donno, and
Emanuele Rodaro

Abstract. For each p � 1, the star automaton group GSp is an automaton group which can be
defined starting from a star graph on p C 1 vertices. We study Schreier graphs associated with
the action of the group GSp on the regular rooted tree TpC1 of degree p C 1 and on its bound-
ary @TpC1. With the transitive action on the n-th level of TpC1 is associated a finite Schreier
graph �pn , whereas there exist uncountably many orbits of the action on the boundary, represented by
infinite Schreier graphs which are obtained as the limits of the sequence ¹�pn ºn�1 in the Gromov–
Hausdorff topology. We obtain an explicit description of the spectrum of the graphs ¹�pn ºn�1.
Then, by using amenability of GSp , we prove that the spectrum of each infinite Schreier graph
is the union of a Cantor set of zero Lebesgue measure, which is the Julia set of the quadratic map
fp.z/D z

2 � 2.p � 1/z � 2p, and a countable collection of isolated points supporting the Kesten–
Neumann–Serre spectral measure. We also give a complete classification of the infinite Schreier
graphs up to isomorphism of unrooted graphs, showing that they may have 1, 2 or 2p ends, and that
the case of 1 end is generic with respect to the uniform measure on @TpC1.

Dedicated to Rostislav Grigorchuk on the occasion of his 70th birthday

1. Introduction

Schreier graphs are very popular in automaton group theory. In fact, they describe in
a very natural way the action of an invertible automaton on words over an alphabet or,
equivalently, on a regular rooted tree. This relates algebraic properties of the automaton
group with combinatorial properties of the corresponding Schreier graphs. This paper can
be framed into the exciting research field involving groups acting by automorphisms on
rooted trees. Many papers have been devoted to these topics in the last decades: the inter-
ested reader can refer to the following list of works (and bibliography therein) for more
details [11, 14, 16, 17, 22].

Every automaton group acts by automorphisms on the rooted tree T . The action on
finite levels is described by finite Schreier graphs. Going deeper and deeper in the tree,
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one is led to the study of the dynamical system .G; @T; �/ carrying the measure � invari-
ant under the action of the group G on the boundary @T . One orbit of this action (i.e.,
a Schreier graph) can be seen as an infinite rooted graph obtained as the limit of a sequenceAdded “the”

before “limit”
throughout the
paper. Please
check

of finite rooted Schreier graphs in the Gromov–Hausdorff topology. Finite and infinite
Schreier graphs have been investigated from a combinatorial point of view in various con-
texts (e.g., [10,13]). Classifications of infinite Schreier graphs have been studied in several
papers (see [4, 5, 8, 9, 21] for further discussions about this topic).

In this setting, another problem is of considerable interest: the study of the spectral
properties of Schreier graphs associated with an automaton group. The determination
of the spectrum of the Markov operator associated with a graph is, in general, a very
difficult task, and only a few examples are known for families of graphs. This analy-
sis is very important in the theory of random walks on groups and in geometric group
theory. It is remarkable that the first examples of graphs whose spectrum is a Cantor
set of Lebesgue measure zero, or the union of a Cantor set with a countable set of iso-
lated points, have been obtained in the frame of Schreier graphs generated by automaton
groups [1]. In this context, the self-similar form of the generators reflects into the block
structure of the adjacency matrix and in some special cases, an appropriate manipula-
tion allows to find recursive formulae for the determination of the spectrum [15, 18–20].
This method produces the sequence of spectra corresponding to finite levels, and this
sequence approximates the spectrum corresponding to the boundary action. It is worth
mentioning here that such approximation approach might also fail. In the case of the
so-called Basilica group, the situation seems to be more complicated and the renormal-
ization of the infinite graph instead of the finite approximation is used (see [6] for more
details).

In the present work, we want to study the two problems introduced above for the
Schreier graphs associated with an infinite family of automaton groups. More precisely,
this paper can be seen as a natural continuation of the paper [7], where we defined a par-
ticular class of automaton groups, called graph automaton groups: starting from a graph
G D .V; E/, we defined an invertible automaton AG and then considered the associated
group GG , whose generators are in a one-to-one correspondence withE, and which acts by
automorphisms on the regular rooted tree of degree jV j. The automaton AG is bounded,
so that the group GG is amenable. Under the hypothesis jEj � 2, we showed that GG is
a self-replicating group which is weakly regular branch over its commutator subgroup G 0G ;
moreover, it contains elements of finite order and has a number of torsion relators com-
ing from directed cycles in G. It turns out that right-angled Artin groups project onto the
corresponding group obtained from the graph by this construction, which shows by the
way that right-angled Artin groups have amenable self-replicating weakly branch quo-
tients. We also studied in [7] some properties of finite Schreier graphs associated with GG
when G is a path graph or a cycle.

In the present paper, we consider a special class of graph automaton groups, obtained
from a graphG which is a star. We call such groups star automaton groups. The star graph
on pC 1 vertices, consisting of a central vertex of degree p and p leaves, is denoted by Sp .
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Schreier graphs associated with the action of GSp on the regular rooted tree TpC1 and its
boundary @TpC1 are the main object of research of this paper.

In Section 2, we recall the construction of graph automaton groups, together with the
notion of finite and infinite Schreier graphs. We also recall some basic facts about the Ihara
zeta function, both for a finite regular graph and for an infinite graph obtained as the limit
of a sequence of finite regular graphs; in particular, we focus on its integral representation
by means of the Kesten–Neumann–Serre (KNS) spectral measure.

Section 3 is devoted to spectral computations for finite and infinite Schreier graphs
associated with the group GSp . In Section 3.1, all the details for the case p D 3 are given.
We construct the adjacency matrices of the finite Schreier graphs: by using the Schur com-
plement technique, we find a recursive description of their characteristic polynomials in
terms of a quadratic map in Theorem 3.2. In Theorem 3.4, the spectra of these matrices are
explicitly described. Then, using amenability of the group GS3 , we prove in Theorem 3.7
that the spectrum of any infinite Schreier graph associated with GS3 is the union of a Cantor
set of zero Lebesgue measure, which is the Julia set of the quadratic map, and a countable
collection of isolated points supporting the KNS spectral measure. The knowledge of the
KNS spectral measure is then used to obtain an integral representation of the Ihara zeta
function. The results obtained for the case p D 3 are extended to the general case of any
star graph Sp , and they are presented in Theorems 3.8, 3.9, and 3.10 of Section 3.2.

Section 4 is devoted to the investigation of topological and isomorphism properties of
Schreier graphs associated with GSp . The topological investigation developed for the finite
case in Section 4.1 is preliminary to the results obtained in Section 4.2 in the infinite case,
where we are able to classify, up to isomorphism of unrooted graphs, all infinite orbital
Schreier graphs. We show that the limit graphs may have 1, 2 or 2p ends. In Theorem 4.16,
we give an explicit classification of infinite Schreier graphs of GSp in terms of infinite
words in ¹0; 1; : : : ; pº, by characterizing the elements of the boundary of the tree TpC1
belonging to a graph with 1, 2, or 2p ends, showing that there exist uncountably many
1-ended and 2-ended orbits, but exactly one 2p-ended orbit. Moreover, the case of 1 end
is generic with respect to the uniform measure on @TpC1. In Theorem 4.23, we provide
necessary and sufficient conditions for two elements of @TpC1 to belong to isomorphic
infinite Schreier graphs. In particular, we prove that there exists one isomorphism class
of 2p-ended graphs, consisting of one orbit; there exist uncountably many isomorphism
classes of 2-ended graphs, each consisting of 2p graphs; there exist uncountably many
isomorphism classes of 1-ended graphs, each consisting of uncountably many graphs.
Finally, each isomorphism class is proven to have zero measure in Corollary 4.24.

2. Preliminaries

In this preliminary section, we recall some basic definitions and properties of automaton
groups and their Schreier graphs, focusing on the special class of automaton groups, called
graph automaton groups, which has been introduced by the authors in [7]. We also recall
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the notion of KNS spectral measure and Ihara zeta function, which will be investigated in
Section 3 in the case of star automaton groups.

2.1. Graph automaton groups and Schreier graphs

Let us start by recalling the basic definition of automaton.

Definition 2.1. An automaton is a quadruple A D .S;X; �; �/, where

(1) S is the set of states;

(2) X D ¹1; 2; : : : ; kº is an alphabet;

(3) �WS �X ! S is the transition map;

(4) �WS �X ! X is the output map.

The automaton A is finite if S is finite, and it is invertible if, for all s 2 S , the transfor-
mation �.s; �/WX!X is a permutation ofX . An automaton A can be visually represented
by its Moore diagram: this is a directed labeled graph whose vertices are identified with
the states of A. For every state s 2 S and every letter x 2 X , the diagram has an arrow
from s to �.s; x/ labeled by xj�.s; x/. A sink id in A is a state with the property that
�.id; x/ D id and �.id; x/ D x for any x 2 X .

An important class of automata is given by bounded automata [23]. An automaton is
said to be bounded if the sequence of numbers of paths of length n avoiding the sink state
(along the directed edges of the Moore diagram) is bounded.

For each n � 1, let Xn denote the set of words of length n over the alphabet X and
putX0 D ¹;º, where ; is the empty word. Then the action of A can be naturally extended
to the infinite set X� D

S1
nD0X

n and to the set X1 D ¹x1x2x3 : : : W xi 2 Xº of infinite
words over X .

For a state s 2 S , we denote by As the transformation �.s; �/ of X� [X1. Given the
invertible automaton A, the automaton group generated by A is by definition the group
generated by the transformations As for s 2 S , and it is denoted by G.A/. In the rest of
the paper, we will often use the notation s instead of As . Notice that the action of G.A/
on X� preserves the sets Xn for each n.

It is a well-known fact that an automaton group can be regarded in a very natural
way as a group of automorphisms of the regular rooted tree Tk in which each vertex has
jX j D k children, via the identification of the kn vertices of the n-th level of Tk with the
set Xn. Similarly, the action on X1 can be regarded as an action on the boundary @Tk of
the tree, whose elements are infinite geodesic rays starting at the root of Tk . Notice that
the set X1 can be equipped with the direct product topology; it is totally disconnected
and homeomorphic to the Cantor set. We will denote by � the uniform measure on X1

or, equivalently, on @Tk .
The group G.A/ is said to be spherically transitive if its action is transitive on Xn for

any n. Let g 2 G.A/. The action of g on X� can be factorized by considering the action
on X and jX j restrictions as follows. Let Sym.k/ be the symmetric group on k elements.
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Then an element g 2 G.A/ can be represented as

g D .g1; : : : ; gk/�; (2.1)

where gi WD �.g; i/ 2 G.A/ and � 2 Sym.k/ describes the action of g on X . We say
that equation (2.1) is the self-similar representation of g. In the tree interpretation of
equation (2.1), the permutation � corresponds to the action of g on the first level of Tk ,
and the automorphism gi is the restriction of the action of g to the subtree (isomorphic
to the whole Tk) rooted at the i -th vertex of the first level. Finally, it is known that if the
automaton A is bounded, then the group G.A/ is amenable (see, e.g., [2]).

In [7], we introduced the following construction associating an invertible automaton
with a given finite graph.

Let G D .V;E/ be a finite graph, where V D ¹x1; : : : ; xkº is its vertex set and E is its
edge set. Let E 0 be the set of edges, where an orientation of each edge has been chosen.
Notice that elements in E are unordered pairs of type ¹xi ; xj º, whereas elements in E 0 are
ordered pairs of type .xi ; xj /, meaning that the edge has been oriented from the vertex xi
to the vertex xj .

We then define an automaton AG D .E
0 [ ¹idº; V; �; �/ such that

• E 0 [ ¹idº is the set of states;

• V is the alphabet;

• �WE 0 � V ! E 0 is the transition map such that, for each e D .x; y/ 2 E 0, one has

�.e; z/ D

´
e if z D x;

id if z ¤ xI

• �WE 0 � V ! V is the output map such that, for each e D .x; y/ 2 E 0, one has

�.e; z/ D

8̂̂<̂
:̂
y if z D x;

x if z D y;

z if z ¤ x; y:

In other words, any directed edge e D .x; y/ is a state of the automaton AG , and it has
just one transition to itself (given by �.e; x/) and all other transitions to the sink id. Its
action is nontrivial only on the letters x and y, which are switched since �.e; x/ D y

and �.e; y/ D x. It is easy to check that AG is invertible for any G and any choice of
the orientation of the edges. The graph automaton group GG is defined as the automaton
group generated by AG . In [7, Theorem 3.7], it is shown that, whenever jEj � 2, the
automaton AG is bounded, so that the group GG is amenable; moreover, GG is a self-
replicating group, and it is weakly regular branch over its commutator subgroup G 0G .

For any integer p � 1, let Sp D .Vp; Ep/ denote the star graph on p C 1 vertices. Let
us identify its vertex set Vp with the set ¹0; 1; 2; : : : ; pº, where 0 corresponds to the central
vertex, which is the only vertex of degree p, and the p leaves are identified with the vertex
subset ¹1; 2; : : : ; pº (see Figure 1 for the case p D 6).
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Figure 1. The star graph S6.

In this paper, we will deal with star automaton groups, which are automaton groups
obtained from Sp following the construction described above. The star automaton group
defined starting from the graph Sp will be denoted by GSp .

We conclude this subsection by recalling the definition of finite and infinite Schreier
graphs associated with an automaton group G.A/.

Definition 2.2. The n-th Schreier graph �n D .V�n ; E�n/ of the action of G.A/ on Tk ,
with respect to a symmetric generating set S , is the graph whose vertex set is Xn, where
two vertices u and v are adjacent if and only if there exists s 2 S such that s.u/D v. If this
is the case, the edge from u to v is labeled by s.

Notice that the Schreier graph �n is a regular graph of degree jS j on kn vertices and it
is connected for each n under the hypothesis of spherical transitivity. For each n � 1, let
�nC1W�nC1 ! �n be the map defined on V�nC1 as

�nC1.x1 : : : xnxnC1/ D x1 : : : xn:

This map induces a surjective morphism from �nC1 onto �n, which is a graph covering of
degree k. In the rest of the paper, we will denote byAn the adjacency matrix of the Schreier
graph �n: by definition, this is a symmetric square matrix of size kn whose rows (and
columns) sum to jS j. Since An is symmetric, all its eigenvalues are real: they constitute
the adjacency spectrum (or spectrum) of �n. Notice that the normalized adjacency matrix
of �n, which is given by 1

jS j
An, can be regarded as the transition matrix of the Markov

operator Mn associated with the simple random walk on �n.
For each n � 1, the Schreier graph �n is nothing but the orbital graph of the action

ofG.A/ on the n-th level of the tree Tk or, equivalently, on the set Xn. On the other hand,
it also makes sense to consider orbital graphs associated with the action of G.A/ on @Tk
or, equivalently, on the set X1. Since the action of G.A/ on X1 has uncountably many
orbits, there exist uncountably many distinct infinite Schreier graphs which are possibly
nonisomorphic. It is therefore interesting to investigate isomorphism properties of infinite
orbital Schreier graphs, regarded as unlabeled, unoriented, and unrooted graphs. We stress
the fact that the isomorphism problem for labeled oriented Schreier graphs is much easier
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since rooted graphs are isomorphic if and only if the stabilizers of their roots coincide,
so that unrooted graphs are isomorphic if and only if the corresponding stabilizers are
conjugate.

Now take an infinite word w D x1x2x3 : : : 2 X1 and denote by

wn D x1 : : : xn 2 X
n

its prefix of length n. It is known that the infinite Schreier graph �w describing the orbit
ofw is approximated, as a rooted graph .�w ;w/, by the sequence of finite Schreier graphs
.�n; wn/, in the space of rooted graphs of uniformly bounded degree endowed with the
Gromov–Hausdorff convergence, provided, for example, by the following metric: given
two rooted graphs .�1; v1/ and .�2; v2/, one puts

dist..�1; v1/; .�2; v2// D inf
° 1

r C 1
W B�1.v1; r/ is isomorphic to B�2.v2; r/

±
;

where B�i .vi ; r/ is the ball of radius r in �i centered in vi (see [19, Theorem 3]).
According to the theory developed, for instance, in [1], under the hypothesis of ame-

nability of the group G.A/, the spectrum of any infinite orbital Schreier graph � is
obtained as

spectrum.�/ D
1[
nD0

spectrum.�n/:

2.2. Ihara zeta function

In this section, we recall the definition of Ihara zeta function for a finite regular graph � ,
which is an analog of the Riemann zeta function. For more details, the reader is referred
to [20].

Definition 2.3. The Ihara zeta function ��.t/ for a finite regular graph � is the function

��.t/ D exp
� 1X
rD1

cr t
r

r

�
;

where cr is the number of closed, oriented loops of length r in the graph � .

It is also known that the Ihara zeta function of a finite regular graph � D .V� ; E�/ of
degree k satisfies the equation

��.t/ D .1 � t
2/�

k�2
2 jV� j det.1 � tkM C .k � 1/t2/�1;

where M is the Markov operator on � .
A notion of Ihara zeta function for an infinite rooted graph which is the limit of

a sequence of finite regular rooted graphs can be given. Let .�n; vn/ be a sequence of
finite rooted graphs regular of degree k converging to the limit graph .�; v/, and let Mn

be the Markov operator on �n whose transition matrix is the normalized adjacency matrix
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of �n. The eigenvalues �i;n of the operator Mn are said to be equidistributed with respect
to a measure � which has support in Œ�1; 1� if the sequence of counting measures

�n D

jV�n jX
iD1

ı�i;n

jV�n j
(2.2)

weakly converges to the measure �. Moreover, it is known that given a covering sequence
.�n; vn/ of finite k-regular graphs, with associated Markov operatorsMn, the eigenvalues
of Mn are equidistributed with respect to some measure �, which is called the Kesten–
Neumann–Serre (KNS) spectral measure of the limit graph � . In particular,

1

jV�n j
ln ��n.t/ D

1X
rD1

cr .�n/t
r

jV�n jr

D �
k � 2

2
ln.1 � t2/ �

1

jV�n j
ln det.1 � tkMn C .k � 1/t

2/:

When n goes to1, one gets

ln ��.t/ D lim
n!1

1

jV�n j
ln ��n.t/ D

1X
rD1

ecr t r
r
;

where ecr is the limit of the sequence cr .�n/
jV�n j

. Moreover, the KNS spectral measure is
uniquely determined by the Ihara zeta function ��.t/ according to the equation

ln ��.t/ D �
k � 2

2
ln.1 � t2/ �

Z 1

�1

ln.1 � tk�C .k � 1/t2/ d�.�/ 8t W jt j <
1

k � 1
:

We will apply this machinery in the setting of infinite orbital Schreier graphs, obtained as
the limits of sequences of finite Schreier graphs, for the star automaton group GSp .

3. Spectrum of Schreier graphs of the star automaton group GSp

This section is devoted to the computation of the spectrum of both finite and infinite
Schreier graphs associated with the action of the star automaton group GSp on the set
X� [ X1, where X D ¹0; 1; : : : ; pº, or equivalently, on the regular rooted tree TpC1
and on its boundary. Since the same argument holds for every p, we prefer to present the
explicit computation for the case p D 3 for the convenience of the reader; then we will
extend the claim to the general case.

3.1. The case p D 3

Consider the oriented star graph S3 on the four vertices ¹0; 1; 2; 3º depicted in Figure 2.
The automaton associated with such orientation of S3 is given in Figure 3.
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Figure 2. The oriented star graph S3. Figure 3. The automaton associated with the
graph S3 of Figure 2.

In particular, the star automaton group GS3 is the group generated by the three auto-
morphisms having the following self-similar representation (see [7]):

a D .a; id; id; id/.01/; b D .b; id; id; id/.02/; c D .c; id; id; id/.03/: (3.1)

Moreover, one has

a�1 D .id; a�1; id; id/.01/; b�1 D .id; id; b�1; id/.02/; c�1 D .id; id; id; c�1/.03/:

Let us denote by an, bn, cn the permutation matrices of size 4n describing the action
of the automorphisms a, b, c, respectively, on the set ¹0; 1; 2; 3ºn, so that the adjacency
matrix An of the n-th Schreier graph �n is given by

An D an C a
�1
n C bn C b

�1
n C cn C c

�1
n :

From equation (3.1), we get

anC1 D

0BBB@
0 an 0 0

In 0 0 0

0 0 In 0

0 0 0 In

1CCCA ; bnC1 D

0BBB@
0 0 bn 0

0 In 0 0

In 0 0 0

0 0 0 In

1CCCA ; cnC1 D

0BBB@
0 0 0 cn

0 In 0 0

0 0 In 0

In 0 0 0

1CCCA ;
where In is the identity matrix of size 4n and 0 is the zero matrix of size 4n. Similarly,

a�1nC1 D

0BBB@
0 In 0 0

a�1n 0 0 0

0 0 In 0

0 0 0 In

1CCCA ; b�1nC1 D

0BBB@
0 0 In 0

0 In 0 0

b�1n 0 0 0

0 0 0 In

1CCCA ; c�1nC1 D

0BBB@
0 0 0 In

0 In 0 0

0 0 In 0

c�1n 0 0 0

1CCCA :
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Notice that

a1D a
�1
1 D

0BB@
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1CCA ; b1D b
�1
1 D

0BB@
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

1CCA ; c1D c
�1
1 D

0BB@
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

1CCA :
Therefore, the adjacency matrix of the Schreier graph �nC1 is

AnC1 D

0BBB@
0 an C In bn C In cn C In

a�1n C In 4In 0 0

b�1n C In 0 4In 0

c�1n C In 0 0 4In

1CCCA with A1 D

0BB@
0 2 2 2

2 4 0 0

2 0 4 0

2 0 0 4

1CCA :
We will make use of the following well-known result about determinant computation

via the Schur complement formula (see, for instance, [24]).

Lemma 3.1. Let M be a block matrix,

M D

�
A B

C D

�
;

where A has size k � k, B has size k � .n � k/, C has size .n � k/ � k, and D has size
.n � k/ � .n � k/. If D is nonsingular, one has

detM D detD � det.A � BD�1C/;

where the matrix M=D WD A � BD�1C is called the Schur complement of D.

Theorem 3.2. Let Pn.�/ be the characteristic polynomial of the adjacency matrix An of
the Schreier graph �n for each n � 1. Then

PnC1.�/ D .� � 4/
2�4nPn.f .�// (3.2)

with f .�/ D �2 � 4� � 6 and P1.�/ D .� � 6/.�C 2/.� � 4/2.

Proof. A direct computation gives P1.�/ D .� � 6/.�C 2/.� � 4/2.
Now put A0nC1 D AnC1 � �InC1, so that

PnC1.�/ D detA0nC1 D det

0BBB@
��In an C In bn C In cn C In

a�1n C In .4 � �/In 0 0

b�1n C In 0 .4 � �/In 0

c�1n C In 0 0 .4 � �/In

1CCCA :
In order to compute detA0nC1, we use the Schur complement technique, where

AD��In; B D
�
an C In bn C In cn C In

�
; C D

0@ a�1n C In
b�1n C In
c�1n C In

1A; DD .4� �/I3n:
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The Schur complement of the block D D .4 � �/I3n is given by

A0nC1=D D ��In �
�
an C In bn C In cn C In

�
�

1

4 � �
I3n �

0@ a�1n C In
b�1n C In
c�1n C In

1A
D ��In �

1

4 � �
.an C a

�1
n C 2In C bn C b

�1
n C 2In C cn C c

�1
n C 2In/

D

�
�� �

6

4 � �

�
In �

1

4 � �
An D

�2 � 4� � 6

4 � �
In �

1

4 � �
An:

Therefore, we have

detA0nC1 D detD � det.A0nC1=D/

D .4 � �/3�4
n

� det
��2 � 4� � 6

4 � �
In �

1

4 � �
An

�
D .4 � �/2�4

n

� det.An � .�2 � 4� � 6/In/:

This completes the proof.

Remark 3.3. Observe that, if we define �0 to be the graph consisting of a single vertex
endowed with three loops, so that it is a regular graph of degree 6 as the graph �n is for
each n � 1, then we have P0.�/D �� 6 and equation (3.2) still holds with nD 0, in fact,

P1.�/ D .� � 4/
2
� P0.f .�//

since P0.f .�// D �2 � 4� � 12 D .� � 6/.�C 2/.

In Figures 4 and 5, the Schreier graphs �n, for n D 1; 2; 3, associated with the group
GS3 are depicted. Vertices are labeled by words in ¹0; 1; 2; 3ºn.
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Figure 4. The Schreier graphs �1 and �2 associated with GS3 .
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Figure 5. The Schreier graph �3 associated with GS3 .

Theorem 3.4. For each n� 1, the following factorization of the characteristic polynomial
Pn.�/ holds:

Pn.�/ D .� � 6/ �

n�1Y
iD0

.f ıi .�/C 2/ �

n�1Y
iD0

.f ıi .�/ � 4/2�4
n�i�1

; (3.3)

where f ıi .�/D f .f .: : : f .�///„ ƒ‚ …
i times

. In particular, the adjacency spectrum of the graph �n is

¹6º t

� n�1[
iD0

f �i .�2/

�
t

� n�1[
iD0

.f �i .4//2�4
n�i�1

�
:

Proof. Let f .�/ D �2 � 4� � 6 as in Theorem 3.2. The factorization given in equa-
tion (3.3) can be proved by induction on n, using the recurrence´

PnC1.�/ D .� � 4/
2�4nPn.f .�//;

P1.�/ D .� � 6/.�C 2/.� � 4/
2

obtained in Theorem 3.2, and using the fact that

f .�/ � 6 D �2 � 4� � 12 D .� � 6/.�C 2/;
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which also implies that the iterated backward orbit of 6 under f can be written as

f �n.6/ D ¹6º t

� n�1[
iD0

f �i .�2/

�
8n � 1:

The claim about the adjacency spectrum follows.

Remark 3.5. The eigenvalues of An given in Theorem 3.4 can be described more explic-
itly. In particular, a direct computation gives

f �1.�2/ D ¹2˙ 2
p
2º; f �2.�2/ D

®
2˙

q
12˙ 2

p
2
¯
;

and, in general, it can be shown by induction that

f �n.�2/ D

²
2˙

s
12˙

r
12˙

q
� � � ˙ 2

p
2

³
; n � 1;

where the double sign˙ occurs n times. Similarly, one has

f �1.4/ D ¹2˙
p
14º; f �2.4/ D

®
2˙

q
12˙

p
14
¯

and in general

f �n.4/ D

²
2˙

s
12˙

r
12˙

q
� � � ˙

p
14

³
; n � 1;

where also in this case the double sign˙ occurs n times. In Figure 6, the histogram of the
spectrum of the Schreier graph �6 of the group GS3 (in logarithmic scale) is represented.

Lemma 3.6. Let a; b > 0, and let ¹anºn�1 be the sequence defined by recursion as´
a1 D

p
b;

anC1 D
p
aC an; n � 1:

If
p
b < 1

2
.1C

p
1C 4a/, then the sequence ¹anºn�1 is increasing and

lim
n!1

an D
1

2
.1C

p
1C 4a/:

Proof. It is easy to show by induction that the sequence ¹anºn�1 is increasing and bound-
ed, so that it admits a finite limit `. By squaring, one can see that such a limit ` must
satisfy the equation `2 � ` � a D 0, whose solutions are ` D 1˙

p
1C4a
2

. The solution
corresponding to the sign � cannot be accepted, since it must be ` > 0, and we get the
claim.
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Figure 6. The histogram of the spectrum of the Schreier graph �6 of the group GS3 .

Theorem 3.7. The spectrum of each infinite Schreier graph � of GS3 is the closure of the
set of points

¹4º [

´
2˙

s
12˙

r
12˙

q
� � � ˙

p
14„ ƒ‚ …

n times

; n � 1

µ
:

This set is the union of a Cantor set of zero Lebesgue measure which is symmetric about 2
and a countable collection of isolated points supporting the KNS spectral measure �,
which is discrete and which has value 1

2�4n
at the points whose definition involves n radi-

cals, for n � 1, and value 1
2

at the point 4.

Proof. Since the group GS3 is amenable, the spectrum of each infinite Schreier graph �
of GS3 is given by

¹6º t

� 1[
iD0

f �i .�2/

�
t

� 1[
iD0

f �i .4/

�
:

Let us investigate the dynamics of the quadratic map f .�/ D �2 � 4� � 6. As f 0.�/ D
2�� 4, the unique critical point of f is �0 D 2. Therefore, the critical value f .2/ D �10
is the unique value of x such that the equation f .�/ D x has a double root.

Now observe that Lemma 3.6 returns the limit value 4 for a D 12. It follows that,
for each n, the spectrum of �n is contained in the interval Œ�2; 6�. Now, it is easy to
check that

f �1Œ�2; 6� D Œ�2; 2 � 2
p
2� [ Œ2C 2

p
2; 6� � Œ�2; 6�:
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Since the critical value �10 62 f �1Œ�2; 6� � Œ�2; 6�, it follows that, for any value of x in
Œ�2; 6�, the entire backward orbit f �i .x/ is still contained in Œ�2; 6� and the sets f �i .x/,
for each i � 0, consist of 2i distinct real numbers. Moreover, it is known that, for such x,
the sets f �i .x/ are mutually disjoint for i � 0, provided x is not a periodic point (a point x
is periodic if f k.x/ D x for some positive integer k).

In our case, the forward orbit of 4 under f goes to1, so that 4 is not a periodic point
and the sets f �i .4/ are mutually disjoint for i � 0. On the other hand, since f .6/ D 6,
so that 6 is a fixed point for f , the point �2 is not periodic and the sets f �i .�2/ are
mutually disjoint for i � 0. In particular, it follows that the number of distinct eigenvalues
of the graph �n is

1C 2

n�1X
iD0

2i D 2nC1 � 1 for each n � 1:

Recall now that a periodic point x of f is repelling if jf 0.x/j > 1. Since f .6/ D 6 and
f 0.6/ D 8 > 0, the point 6 is a repelling fixed point for the polynomial f . As the Julia
set J of f is the closure of the set of repelling periodic points of f , then 6 2 J . Now, by
the total invariance of J , the backward orbit ¹6º t .

S1
iD0 f

�i .�2// of 6 is in J [12].
On the other hand, the value 4 is not in the Julia set, since its forward orbit goes to1,

and therefore the set
S1
iD0.f

�i .4// is a countable set of isolated points that accumulates
to the Julia set J . It follows that the spectrum of � is given by

1[
iD0

f �i .4/;

where, for each i , the set f �i .4/ has been described in Remark 3.5. Notice that the Julia
set J of f is a Cantor set since the map f is conjugate via the map F.z/ D z C 2 to the
quadratic map

z 7! z2 � 12;

that is, .F �1 ı f ı F / D z2 � 12, and �12 < �2 (see [12, Section 3.2]). Recall that
the KNS spectral measure � is the limit of the counting measures �n defined for �n
as in equation (2.2). We also know that in the spectrum of �n, each eigenvalue in ¹6º t
.
Sn�1
iD0 f

�i .�2// has multiplicity 1, whereas each eigenvalue in f �i .4/ has multiplicity
2 � 4n�i�1 for each i . Now

lim
n!1

2 � 4n�i�1

4n
D

1

2 � 4i
for each i � 0:

Being
P1
iD0

2i

2�4i
D 1, the KNS spectral measure is discrete and concentrated at these

eigenvalues.

The Ihara zeta function �n.t/ of the Schreier graph �n of GS3 satisfies the equation

�n.t/ D .1 � t
2/�2�4

n

det.1 � tAn C 5t2/�1;
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where An is the adjacency matrix of �n. When passing to the limit, the following integral
presentation holds:

ln ��.t/ D �2 ln.1 � t2/ �
Z 1

�1

ln.1 � 6t�C 5t2/ d�.�/ 8t W jt j <
1

5
;

where � is the KNS spectral measure and � runs over the normalized spectrum of � .
In our case, for each t such that jt j < 1

5
, we get

ln ��.t/ D � 2 ln.1 � t2/ �
1

2
ln.1 � 4t C 5t2/

�
1

2

1X
iD1

1

4i
ln

 
1 � t

 
2˙

s
12˙

r
12˙

q
� � � ˙

p
14„ ƒ‚ …

˙ i times

!
C 5t2

!
:

3.2. The general case

Let p � 1 be an integer number. The aim of this subsection is to generalize what we have
seen in the previous subsection for the graph S3 to the more general context of a star
graph Sp on p C 1 vertices. We will not give all the details presented in the case p D 3.

The star automaton group GSp is the group generated by p automorphisms ei ,
i D 1; : : : ; p, having the following self-similar representation:

ei D .ei ; id; : : : ; id/.0i/ for each i D 1; : : : ; p: (3.4)

Notice that

e�1i D .id; : : : ; id; e�1i„ƒ‚…
.iC1/-th place

; id; : : : ; id/.0i/ for each i D 1; : : : ; p:

The group GSp acts on the rooted tree TpC1. The n-th level of such a tree consists
of .p C 1/n vertices, identified with the set of words of length n over the alphabet
¹0; 1; : : : ; pº. As a consequence, the n-th Schreier graph is a regular graph of degree 2p
on .pC 1/n vertices, and its adjacency matrix An is a symmetric matrix of size .pC 1/n.
We will adopt the notation �pn to denote the n-th Schreier graph associated with the action
of GSp . The following theorem holds.

Theorem 3.8. Let Pn.�/ be the characteristic polynomial of the adjacency matrix An of
the Schreier graph �pn of the group GSp for each n � 1. Then

PnC1.�/ D .� � 2.p � 1//
.p�1/.pC1/nPn.fp.�//

with fp.�/ D �2 � 2.p � 1/� � 2p and P1.�/ D .� � 2p/.�C 2/.� � 2.p � 1//p�1.

Moreover, one can still define �p0 to be the graph consisting of a single vertex endowed
with p loops. In this way, one has P0.�/ D � � 2p, and the equation

P1.�/ D .� � 2.p � 1//
p�1
� P0.fp.�//;

is still satisfied.
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Theorem 3.9. For each n � 1, the following factorization of the characteristic polyno-
mial Pn.�/ holds:

Pn.�/ D .� � 2p/ �

n�1Y
iD0

.f ıip .�/C 2/ �

n�1Y
iD0

.f ıip .�/ � 2.p � 1//.p�1/.pC1/
n�i�1

;

where f ıip .�/ D fp.fp.: : : fp.�///„ ƒ‚ …
i times

.

In particular, the adjacency spectrum of the graph �pn is

¹2pº t

� n�1[
iD0

f �ip .�2/

�
t

� n�1[
iD0

.f �ip .2.p � 1///.p�1/.pC1/
n�i�1

�
:

Proof. The proof proceeds as in Theorem 3.4 and uses the fact that

f �np .2p/ D ¹2pº t

� n�1[
iD0

f �ip .�2/

�
;

because �2 � 2.p � 1/� � 4p D .� � 2p/.�C 2/.

In Figures 7 and 8, the Schreier graphs �2n , for n D 1; 2; 3; 4, associated with the
group GS2 are depicted. Vertices are labeled by words in ¹0; 1; 2ºn.
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Figure 7. The Schreier graphs �2n associated with GS2 , for n D 1; 2; 3.
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Figure 8. The Schreier graph �24 associated with GS2 .

Theorem 3.10. Let p � 2. The spectrum of each infinite Schreier graph �p of GSp is the
closure of the set of

¹2.p � 1/º [

´
p � 1˙

s
p2 C p ˙

r
p2 C p ˙

q
� � � ˙

p
p2 C 2p � 1„ ƒ‚ …

n times

; n � 1

µ
:

This set is the union of a Cantor set of zero Lebesgue measure which is symmetric about
p � 1 and a countable collection of isolated points supporting the KNS spectral mea-
sure �, which is discrete and which has value p�1

.pC1/nC1
at the points whose definition

involves n radicals, for n � 1, and value p�1
pC1

at the point 2.p � 1/.

Proof. The proof proceeds as in the case p D 3. The spectrum of �p is given by

¹2pº t

� 1[
iD0

f �ip .�2/

�
t

� 1[
iD0

f �ip .2.p � 1//

�
;

with fp.�/ D �2 � 2.p � 1/� � 2p. A direct computation gives, for n � 1,

f �np .�2/ D

´
p � 1˙

s
p2 C p ˙

r
p2 C p ˙

q
� � � ˙

p
p2 � 1

µ
;

f �np .2.p � 1// D

´
p � 1˙

s
p2 C p ˙

r
p2 C p ˙

q
� � � ˙

p
p2 C 2p �1

µ
;
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where the double sign˙ occurs n times. By using Lemma 3.6, it is easy to check that, for
each n, the spectrum of �pn is contained in the interval Œ�2; 2p�. Here, the countable set of
isolated points that accumulates to the Julia set J of fp is the set

S1
iD0.f

�i
p .2.p � 1///.

Notice that the Julia set J of fp has the structure of a Cantor set since the map fp is
conjugate via the map Fp.z/ D z C .p � 1/ to the quadratic map

z 7! z2 � p.p C 1/;

and �p.p C 1/ < �2 for every p � 2.

The Ihara zeta function �n.t/ of the Schreier graph �pn satisfies the equation

�n.t/ D .1 � t
2/�.p�1/.pC1/

n

det.1 � tAn C .2p � 1/t2/�1;

where An is the adjacency matrix of �pn . When passing to the limit, the following integral
presentation holds:

ln��p .t/D�.p� 1/ ln.1� t2/�
Z 1

�1

ln.1� 2pt�C .2p� 1/t2/d�.�/ 8t W jt j<
1

2p �1
;

where � is the KNS spectral measure and � runs over the normalized spectrum of �p .
In particular, we obtain for each t such that jt j < 1

2p�1
,

ln ��p .t/ D � .p � 1/ ln.1 � t2/ �
p � 1

p C 1
ln.1 � 2.p � 1/t C .2p � 1/t2/

�
p � 1

p C 1

1X
iD1

1

.p C 1/i

� ln
�
1 � t

�
p � 1˙

r
p2 C p ˙

q
� � � ˙

p
p2 C 2p � 1

�
C .2p � 1/t2

�
:

Remark 3.11. In Theorem 3.10, we have supposed p � 2. In fact, for p D 1, the star S1
is the path graph P2 on 2 vertices. The associated star automaton group GS1 is the group
acting on the binary rooted tree T2 generated by the automorphism a having the self-
similar representation

a D .a; id/.01/;

which is isomorphic to the group Z and which is classically known as adding machine.
For each n � 1, the n-th Schreier graph �1n is a cycle on 2n vertices. Moreover, one has
f1 D �

2 � 2, and the Julia set of this quadratic map is the whole interval Œ�2; 2�.
The case p D 2 corresponds to the path graph P3 on 3 vertices. The associated star

automaton group GS2 is known as tangled odometer, and it is the group acting on the
rooted ternary tree T3 generated by the automorphisms a and b having the following self-
similar representation:

a D .a; id; id/.01/; b D .b; id; id/.02/:
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It is worth mentioning that GS2 can be also obtained as the iterated monodromy group
of the polynomial �z

3C3z
2

. This case has been investigated in [7], where the family of
groups associated with the path graph Pk , for every k � 2, has been treated in detail.
Notice that, for p D 2, our spectral results recover the ones given for this group in [17,
Theorem 6.3].

4. Schreier graphs of star automaton groups

In this section, we give a complete classification of the infinite Schreier graphs associ-
ated with the star automaton group GSp . By complete classification we mean the follow-
ing: we have already remarked that, given an infinite sequence w D x1x2x3 : : : 2 X

1,
one can define the rooted graph .�w ; w/ as the limit of the sequence of rooted graphs
.�n;x1 : : :xn/. Now we can forget the root and consider the corresponding (unrooted) infi-
nite Schreier graph. We want to describe the isomorphism classes of such infinite graphs
arising from the action of the star automaton group on X1. In what follows, given a sub-
graph ‚ of �pn , we denote by ‚w the set of vertices obtained by appending the word
w 2 X� [ X1 to the vertices of ‚. When it is clear from the context, with abuse of
notation, we identify a set of vertices of a graph with its induced subgraph. The geodesic
distance (or distance for short) between the vertices u, v is denoted by d.u; v/.

Definition 4.1. (1) Two infinite sequences � D x1x2x3 : : : and � D y1y2y3 : : : in X1

are cofinal if there exists k 2 N such that xn D yn for any n � k.

(2) Two sequences ¹xiºi2N and ¹yiºi2N of integers are compatible if there exist
l; h 2 N such that xlCn D yhCn for any n 2 N.

In other words, two infinite words over X are cofinal if they differ only for prefixes
of equal length. In this case, we write � � �. The cofinality is an equivalence relation,
and we denote by Cof.�/ the equivalence class of words cofinal to � . Two sequences
are compatible if they coincide after removing from them some initial terms (possibly
a different number of them). Notice that also being compatible is an equivalence relation.
We want to stress the fact that two compatible words differ for prefixes which do not have
to be of the same length.

4.1. Finite Schreier graphs

From now on, we fix a star Sp and use the same representation from Figure 2. In this case,
X D ¹0; 1; : : : ; pº, where 0 is the vertex of degree p. We denote by ei the (directed) edge
connecting 0 to i 2 ¹1; : : : ; pº, so that ei D .ei ; id; : : : ; id/.0i/ (see equation (3.4)). We
will denote by �pn the n-th Schreier graph of the group GSp .

Observe that the generator ei of GSp acts like an adding machine on the set ¹0; iº�.
More precisely, when we let it act on a vertex of type 0tjw, with j ¤ 0; i and jwj D
n � t � 1, we obtain a cycle of length 2t whose vertex set is the whole set ¹0; iºtjw.
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Figure 9. The Schreier graph �33 .

Let us denote by C in the (maximal) cycle of length 2n labeled by ei for i D 1; : : : ; p.
Notice that the maximal cycles in �pn are exactly those generated by the ei ’s and contain-
ing 0n.

Example 4.2. In Figure 9, which represents the Schreier graph �33 , the three maximal
cycles have length 8. With respect to (3.1), one has e1 D a, e2 D b, e3 D c. In particular,

• the cycle C 13 , containing the adjacent vertices 000 and 111, is obtained by letting a act
on the vertex 000;

• the cycle C 23 , containing the adjacent vertices 000 and 222, is obtained by letting b act
on the vertex 000;

• the cycle C 33 , containing the adjacent vertices 000 and 333, is obtained by letting c act
on the vertex 000.

Lemma 4.3. If u, v are adjacent vertices in �pn , then the vertices uw and vw are adjacent
in �p

nCjwj
for any w 2 X� with the only exception, for i D 1; : : : ; p, given by ¹u; vº D

¹0n; inº and w starting with 0 or i .



22 M. Cavaleri, D. D’Angeli, A. Donno, and E. Rodaro

Proof. It is enough to notice that if u, v are adjacent vertices in �pn , then there exists i
such that ei .u/ D v, i.e., a directed path in the generating automaton labeled by u and v
and starting from the state ei . Such a path must either end up in the sink (when ¹u; vº ¤
¹0n; inº) or end up in ei (when ¹u; vº D ¹0n; inº). In the first case, we can append to u
any w 2 X� in such a way that ei .uw/ D vw. In the second case, if w starts with a letter
j ¤ 0; i , the path labeled by 0nj and ei .0nj / D inj ends up in the trivial state. Hence
also in the case ¹u; vº D ¹0n; inº and w not starting by 0, i , one has that uw and vw are
adjacent in �p

nCjwj
.

Remark 4.4. Lemma 4.3 implies that any cycle C in �pn labeled by ei and different
from C in appears .pC1/k times in the Schreier graph �p

nCk
, with vertices Cw for any

w2Xk . The same can be said for cycles of the formC inv where v does not start with 0 or i .

From Lemma 4.3, we deduce that, passing from �
p
n to �pnC1, each cycle in �pn is

preserved just by adding to all its vertices the same letter k 2 X except for some of the p
maximal cycles C in. In fact, C inj with j ¤ 0; i also corresponds to a subgraph in �pnC1 that
is a copy of C in, whereas C in0 and C ini correspond to the two halves of the new maximal
cycle C inC1 of �pnC1.

Example 4.5. Look at Figures 4 and 5, where p D 3. We have that the maximal cycle C 12
in �32 produces the cycles C 12 2 and C 12 3 of length 4 in �33 , which are attached to the ver-
tices 002 and 003, respectively. On the other hand, the cycles C 12 0 and C 12 1 do not appear
in �33 , but they constitute the two halves of the maximal cycle C 13 (the edge connect-
ing 001 and 111 and the edge connecting 000 and 110 do not appear, whereas two new
edges connecting the vertices 001 and 110, and the vertices 000 and 111, appear).

Recall that a cut-vertex of a graph is a vertex whose deletion increases the number
of connected components of the graph (see, for instance, [3]). Following [7, Proposi-
tion 4.7], we have that 0u is a cut-vertex in �pn for any u 2 Xn�1. In particular, 0n is
a cut-vertex. Notice that, by removing 0n from �

p
n , we obtain p connected components

that we call petals. More precisely, the vertex 0n belongs to the maximal cycle C in, for
each i D 1; : : : ; p, and the connected component containing this maximal cycle generated
by ei is called the i -th petal. One can show that the i -th petal consists of the set of vertices
ending with a suffix i0k , for k D 0; 1; : : : ; n� 1. See, for instance, Figure 9, representing
the Schreier graph �33 , where the 1-st petal is highlighted in the upper part of the graph.

All other vertices of �pn , those beginning with i ¤ 0, have p � 1 loops corresponding
to the actions of the generators ej , with j ¤ i (we consider loops as cycles of length 1).
In the remaining part of the paper, we will consider also such vertices as cut-vertices.
In particular, it follows that �pn has a cactus structure. In particular, the following lemma
holds.

Lemma 4.6. The vertex 0n is a cut-vertex belonging to C in for any i D 1; : : : ; p. Any
vertex v 2 ¹0; iºn n ¹0nº is a cut-vertex belonging to C in and to other p � 1 cycles labeled
by ej , with j ¤ i , whose size is 2k if v D 0kiv0, with 0 � k � n � 1.
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Definition 4.7. Let �pn be n-th Schreier graph of the group GSp . Let i 2 ¹1; : : : ; pº. The
n-decoration D i

n is the subgraph of �pn obtained by removing from �
p
n the i -th petal.

Notice that D i
n contains 0n and is connected. Basically, it is the union of the petals

different from the i -th one together with the vertex 0n. Moreover, D i
n and D

j
n are isomor-

phic graphs for any i , j . When we are not interested in the specific decoration, but just in
its structure, we only write Dn.

From Lemmas 4.3 and 4.6, it follows that D i
niw induces a subgraph in �p

nC1Cjwj

which is a copy of D i
n via the map viw 7! v. In particular, D i

ni is attached to the ver-
tex 0ni of the maximal cycle C inC1 generated by ei in �pnC1. From this, it follows that D i

ni

is a subgraph of D
j
nC1 for every j ¤ i . When we want to highlight the fact that its struc-

ture comes from the n-th level, we say that such subgraph of �pnC1 is an n-decoration
of C inC1. By using an analogous argument, we deduce that the subgraphs D i

ni i and D i
ni0

inside �pnC2 are n-decorations attached to C inC2 at the vertices 0ni i and 0ni0. By iterat-
ing this argument, we can conclude that, for every u 2 ¹0; iºm, the subgraph D i

niu is an
n-decoration in �pnCmC1 attached to C inCmC1 at the vertex 0niu. Hence in �pn , we have
attached to C in:

• the decoration D i
n at the vertex 0n;

• one .n � 1/-decoration given by D i
n�1i at the vertex 0n�1i ;

• 2k copies of an .n � k � 1/-decoration given by D i
n�k�1

iu at the vertex 0n�k�1iu,
with k D 1; : : : ; n � 1 for every u 2 ¹0; iºk .

Here, by 0-decoration we mean a vertex with p � 1 loops attached. In Figure 9, represent-
ing the Schreier graph �33 , the 2-decoration D2

22 and one 1-decoration given by D2
123 are

depicted, attached to the vertices 002 and 023, respectively.

Remark 4.8. Notice that the vertex 0kiv0 of C in has attached the k-decoration D i
k
iv0.

Proposition 4.9. Let �in be the nontrivial automorphism of C in fixing 0n. Then for any
v 2 C in, the vertices v and �in.v/ have attached decorations that are isomorphic. In par-
ticular, �in.v/ is the only vertex of C in satisfying d.0n; v/ D d.0n; �in.v//.

Proof. The vertices of C in can be identified with the numbers 0; : : : ; 2n � 1 by using the
binary expansion (from the left to the right) of such numbers by identifying i with 1.
Notice that the automorphism �in is a reflection around the axis connecting 0n and 0n�1i
and it acts in such a way that v C �in.v/ � 0 mod 2n. In particular, if u D 0kiv, with
k 2 ¹0; 1; : : : ; n � 1º, then �in.u/ D 0kiv0, where v0 is the word obtained from v by
switching any 0 to i and vice versa. By Remark 4.8, such vertices have attached the same
.n � jvj � 1/-decoration. The claim follows.

Any vertex of �pn is a cut-vertex belonging to p different cycles. If the vertex u belongs
to the i -th petal of �pn , then there is a unique path of cycles, connecting u to C in. The first
cycle in this path is the one containing u in the direction of C in. Notice that the path of
cycles is not defined for 0n. From now on, we do not consider this vertex.
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We denote by P u
n D ¹P

n
1 .u/; : : : ; P

n
mu
.u/º the path of cycles associated with u 2 �pn .

Notice that P nmu.u/ is C in if u belongs to the i -th petal. Moreover, we denote by Lu
n D

¹Ln1.u/; : : : ; L
n
mu
.u/º the set of the lengths of the cycles in P u

n , i.e., Lni .u/ is the length
of the cycle P ni .u/. In what follows, with a small abuse of notation, we identify the
graph P ni .u/ with its vertex set.

Example 4.10. Looking at the graph �33 in Figure 9, we have L121
3 D ¹2; 4; 8º; L201

3 D

¹4; 8º; L130
3 D ¹2; 8º.

Given a word u 2 Xn n ¹0nº, we can write u D 0ka1u1a2u2 : : : atut , where 0 �
k � n � 1, ai 2 ¹1; : : : ; pº, ai ¤ aiC1 and ui 2 ¹0; aiº�. We call this writing the decom-
position of u.

Lemma 4.11. Let u 2 Xn n ¹0nº, and let uD 0ka1u1a2u2 : : : atut be its decomposition.
Then

(1) mu D t ;

(2) P n1 .u/ D C
a1
ju1jCkC1

a2u2 : : : atut , P n2 .u/ D C
a2
ju1jCju2jCkC2

a3u3 : : : atut ; : : :,
P ni .u/ D C

aiPi
`D1 ju`jCkCi

aiC1uiC1 : : : atut , . . ., P nmu.u/ D C
at
n ;

(3) Lu
n D ¹2

ju1jCkC1; 2ju1jCju2jCkC2; : : : ; 2
Pi
`D1 ju`jCkCi ; : : : ; 2nº.

Proof. We proceed by induction on the value of t in the decomposition of u.
If t D 1, then u D 0ka1u1 and such vertex belongs to C a1

juj
and the claim is true.

Let t D `C 1, so that u D 0ka1u1a2u2 : : : a`u`a`C1u`C1. Notice that the vertices u
and v D 0kC1Cju1ja2u2 : : : a`u`a`C1u`C1 belong to the same cycle C a1

kC1Cju1j
a2u2 : : :

a`u`a`C1u`C1, whose length is 2kC1Cju1j. Notice that the index t of the decomposition
of v equals `. By using the inductive hypothesis and the uniqueness of the path of cycles,
one can show the asserts.

Proposition 4.12. Let w D x1x2 : : : 2 X
1 n ¹01º, and consider the sequence of sets

¹P x1:::xn
n ºn�1. Then jP x1:::xn

n j � jP
x1:::xnxnC1
nC1 j. Moreover, limn jP

x1:::xn
n j<1 if and only

if w is cofinal to a word in ¹0; iº1 for some i 2 X .

Proof. Suppose that wn D x1 : : : xn ends with a suffix i0k for some k � 0 and i 2
¹1; : : : ; pº, so that it belongs to the i -th petal. Then, by using Lemma 4.11, passing
from �

p
n to �pnC1 we have two possible situations:

(1) If xnC1 2 ¹0; iº, the index t of the decomposition of wn and wnC1 is the same.

(2) If xnC1 ¤ 0; i , the index t of the decomposition of wnC1 increases by one with
respect to that of wn.

The length of the path of cycles remains the same if and only if we add, after some prefix
ofw ending with a suffix i0k , only letters from the alphabet ¹0; iº, for some i . In particular,
it follows that, in the second case, we have a nested path of cycles associated with the
prefixes wn of w.
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Notice that the analogous statement clearly holds by substituting P by L.

Remark 4.13. Lemma 4.11 and Proposition 4.12 imply that P x1:::xn
n and P

x1:::xnxnC1
nC1

are such that either they have the same size (and in this case they differ just for the last
cycle that has length 2n in one case and 2nC1 in the other case) or the path P

x1:::xnxnC1
nC1

contains one cycle more than P x1:::xn
n that is its subset. In particular, the length of the path

of cycles associated with uD 0ka1u1a2u2 : : : atut is t . Any time we read a new letter ai ,
the sequence increases by one.

Remark 4.13 implies that one can define the path of cycles associated with w D
x1x2 : : : 2 X

1 as the limit of P x1:::xn
n . The same can be said for the sequence of the

lengths. We denote them by Pw D ¹Pw1 ;P
w
2 ; : : :º and Lw D ¹Lw1 ;L

w
2 ; : : :º, respectively.

Moreover, we can also define the decomposition of an infinite word uD 0ka1u1 : : :2X1.

4.2. From finite to infinite Schreier graphs

We start this section with the following result that is standard in this setting.

Lemma 4.14. Let w 2 X1. If w 2 Cof.01/ [ � � � [ Cof.p1/, then the orbit of w un-
der GSp coincides with Cof.01/ [ � � � [ Cof.p1/. Otherwise, the orbit of w under GSp
coincides with Cof.w/.

Proof. Notice that the only infinite paths in the generating automaton, that do not fall into
the sink, are those labeled by 01ji1 starting at ei , with i 2 ¹1; : : : ; pº (in particular,
all the words i1’s are in the orbit of 01). This implies that the action of GSp changes
infinitely many letters only on words of type w D i1, with i 2 ¹0; 1; : : : ; pº. Therefore,
if w 2 Cof.01/ [ � � � [ Cof.p1/, its orbit is contained in Cof.01/ [ � � � [ Cof.p1/;
similarly, if w 62 Cof.01/ [ � � � [ Cof.p1/, one has that its orbit is contained in Cof.w/.
In order to show the opposite inclusions, we use that GSp is self-replicating and spherically
transitive (see [7]). In particular, given u and w cofinal, there exist prefixes un, wn of
length n such that u D unv and w D wnv. By transitivity, there exists g 2 GSp such that
g.wn/ D un. Let g.w/ D unv0. Since GSp is self-replicating, there exists g0 2 GSp such
that g0.unv0/ D unv. Then g0g.w/ D u, so that u belongs to the orbit of w.

The particular structure of the Schreier graphs allows to keep trace of the dynamic of
an infinite word u.

Lemma 4.15. Let u 2X1 with decomposition uD 0ka1u1 : : : 2X1, then P ui \P
u
iC1D

¹0kCiC
Pi
jD1 juj jaiC1uiC1 : : :º.

Proof. Take n such that n > k C i C 1 C
PiC1
jD1 juj j, and let un be the prefix of u of

length n such that u D unu0. Notice that if P uni \ P
un
iC1 D ¹wº, then P ui \ P

u
iC1 D wu

0.
This means that we can study the intersection of cycles in �pn for n large enough. A new
cycle appears whenever we read a letter aiC1 ¤ ai . In this case, un becomes an element
of D

ai
n aiC1. In particular, the last two cycles are connected in 0kCiC

Pi
jD1 juj jaiC1.
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Using the previous results, we are ready to prove the following classification theorem.
We recall that an end for an infinite graph � is an equivalence class of rays that remain in
the same connected component whenever we remove a finite subgraph from � . An infinite
graph � is said to be k-ended if it contains exactly k ends. Equivalently, � is k-ended if the
supremum of the number of connected infinite components of � , when a finite subgraph
is removed from � , equals k. For each w 2 X1, let us denote by �pw the infinite Schreier
graph of the group GSp containing the vertex w, that is, the graph describing the orbit of
w 2 @TpC1 under the action of GSp . Put Ek D ¹w 2 X1 W �

p
w is k-endedº.

Notice that, using the spherical transitivity of GSp , one can show that any invariant
measurable subset of X1 must have measure 0 or 1 (see [16]).

Theorem 4.16. Let v 2 X1. Then �pv is either 2p-ended, or 2-ended, or 1-ended. In
particular,

(1) E2p D Cof.01/ [ Cof.11/ [ � � � [ Cof.p1/ and consists of one orbit.

(2) E2 D .
Sp
iD1

S
w2¹0;iº1 Cof.w// nE2p and consists of uncountably many orbits.

(3) E1 D X1 n .E2p [E2/ and consists of uncountably many orbits.

Moreover, �.E1/ D 1.

Proof. (1) The vertex 0n belongs to C in for any n � 1 and for every i 2 ¹1; : : : ; pº.
When n goes to infinity, the length of C in goes to infinity giving rise to 2 rays that can
be disconnected by removing the vertex 01. The same can be said for the other cycles
containing 0n, and this implies that �p01 is at least 2p-ended. Any other vertex of �p01
belongs to some decoration Dk for some k 2 N, that is, a finite graph attached to exactly
one of the 2p rays described above. This implies that �p01 is 2p-ended. Moreover, it fol-
lows from Lemma 4.14 that �p01 D Cof.01/ [ Cof.11/ [ � � � [ Cof.p1/. This shows
that Cof.01/[Cof.11/[ � � � [Cof.p1/�E2p . The claim will follow from the remain-
ing part of the proof.

(2) Let w D x1x2 : : : be cofinal to u 2 ¹0; iº1 n .Cof.01/ [ Cof.i1// for some
i 2 ¹1; : : : ; pº. By Proposition 4.12, the path of cycles associated with w is finite. More-
over, d.w; u/ < 1. This implies that there exists N 2 N such that mu D N , and so
Pmu.x1 : : : xn/ D PN .x1 : : : xn/ D C

i
n for every n large enough. The length of C in is 2n

and goes to infinity. Hence w belongs to a decoration attached at u to an infinite double
ray, and so �pw is 2-ended. Finally, Lemma 4.14 implies that each orbit coincides with
a cofinality class.

(3) Any w 2 X1 n .
Sp
iD1

S
w2¹0;iº1 Cof.w// gives rise to an infinite path of cycles

which is by construction unique. It follows that �pw is 1-ended. Also in this case, Lem-
ma 4.14 implies that each orbit coincides with a cofinality class.

For the last claim, first observe that E2p is countable and so �.E2p/ D 0. In order to
prove that �.E2/ D 0, we notice that

E2 �

p[
iD1

[
n�0

Xn¹0; iº1:
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Let i 2 ¹1; : : : ; pº. Let us show that �.¹0; iº1/ D 0. A direct computation gives

�.¹0; iº1/ D 1 � .p � 1/

1X
jD1

2j�1

.p C 1/j
D 0:

It follows that

�.E2/ � p

1X
nD0

.p C 1/n�.¹0; iº1/ D 0:

Therefore,
1 D �.E1/C �.E2/C �.E2p/ D �.E1/:

In words, we can say that E2 consists of infinite words containing, after any arbi-
trary finite prefix long enough, both the letters 0 and i , for one fixed i 2 ¹1; : : : ; pº, and
only them. On the other hand, the set E1 consists of infinite words containing, after any
arbitrary finite prefix, at least two letters in ¹1; : : : ; pº.

Remark 4.17. Theorem 4.16 can be directly proven by using the techniques developed
in [5].

Now we pass to the study of isomorphism classes for the infinite Schreier graphs
¹�
p
wºw2X1 .
Let w D x1x2 : : : 2 X1. Recall that .�pw ; w/ is the rooted graph obtained as the limit

of the finite rooted graphs .�pn ; x1 : : : xn/ in the Gromov–Hausdorff topology. Once we
get .�pw ; w/, we forget the root and consider the infinite graph �pw . Given u; v 2 X1, we
ask when �pu and �pv are isomorphic.

Observe that the vertices belonging to E2p give rise to one isomorphism class since
they belong to the same orbit (the one containing 01). Moreover, it is clear that graphs
with different number of ends cannot be isomorphic.

We start with the following result. Recall that, given w D x1x2 : : : 2 X
1, we have

denoted by Lw the limit of the sequence of the lengths of the cycles which constitute the
path of cycles P x1:::xn

n for n!1.

Lemma 4.18. (1) Let u; v 2 E1 with v 2 �pu . Then the sequences Lu and Lv are com-
patible.

(2) Let u; v 2 E1 such that �pu is isomorphic to �pv . Then the sequences Lu and Lv

are compatible.

Proof. Let us start by proving the first claim. The sequences of cycles associated with u
and v must eventually coincide. This exactly means that after some possibly different
initial paths, the sequences must join. This implies that the sequences of the lengths of
these cycles are compatible.

For the second claim, notice that if �pu is isomorphic to �pv , then there exist w 2 �pv
and an isomorphism �W �

p
u ! �

p
v such that �.u/ D w. This implies that Lu D Lw .
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Sincew 2 �pv , claim (1) implies that Lv and Lw are compatible. This concludes the
proof.

Wheneverw 2E1, there is also a sequence of vertices ¹w.n/ºn2N defined byw.0/Dw
and ¹w.i/º D Pwi \ P

w
iC1. If w D 0ka1u1 : : : aiui : : : with ai 2 ¹1; : : : ; pº, ui 2 ¹0; aiº�

and ai ¤ aiC1, then from Lemma 4.15 w.i/ D 0kCiC
Pi
jD1 juj jaiC1uiC1 : : : Moreover,

we define the sequence of distances ¹dwn ºn2N such that dwi D d.w.i � 1/; w.i//.

Proposition 4.19. Let u;v 2E1 such that ¹dun ºn2N and ¹d vn ºn2N are compatible, then Lu

and Lv are compatible.

Proof. Let u D 0ka1u1 : : : aiui : : : with ai 2 ¹1; : : : ; pº, ui 2 ¹0; aiº�, ai ¤ aiC1 and
vD 0mb1v1 : : : bivi : : :with bi 2 ¹1; : : : ;pº, vi 2 ¹0;biº�, bi ¤ biC1, and suppose that Lu

and Lv are not compatible. Then, for every h; l � 0, there exist infinitely many n 2 N
such that Lu

hCn
¤ Lv

lCn
. By Lemma 4.11, this is equivalent to say

2
PhCn
`D1 ju`jCkChCn ¤ 2

PlCn
`D1 jv`jCmClCn (4.1)

for infinitely many n 2 N. Put q D k C hC nC 1C
PhCnC1
jD1 juj j. Notice that, by virtue

of Lemma 4.15,

duhCnC1 D d.u.hC n/; u.hC nC 1//

D d.0kChCnC
PhCn
jD1 juj jahCnC1uhCnC1 : : : ; 0

qahCnC2uhCnC2 : : :/

D d.0kChCnC
PhCn
jD1 juj jahCnC1uhCnC1; 0

q/:

In other words, the distance du
hCnC1

can be computed within the finite Schreier graph �pq .
The last distance relies to vertices belonging to the same cycle (the maximal cycleC ahCnC1q )
and can be explicitly computed: suppose that uhCnC1 D x1 : : : xjuhCnC1j, where xi 2
¹0; ahCnC1º. Put t D k C hC nC

PhCn
jD1 juj j. Then, by using the adding machine struc-

ture, one has
duhCnC1 D min

°
2t C

X
i Wxi¤0

2tCi ; 2t C
X
i WxiD0

2tCi
±
:

Analogously, if s D mC l C nC
PlCn
jD1 jvj j and vhCnC1 D y1 : : : yjvlCnC1j, where yi 2

¹0; blCnC1º, one has

d vlCnC1 D min
°
2s C

X
i Wyi¤0

2sCi ; 2s C
X
i WyiD0

2sCi
±
:

In any case, 2t is the smallest addend of du
hCnC1

, and 2s is the smallest addend of d v
lCnC1

.
Since by equation (4.1) it must be 2t ¤ 2s , we get du

hCnC1
¤ d v

lCnC1
for infinitely many

n. The claim follows.

Proposition 4.20. Letw;v 2E1. Then �pw is isomorphic to �pv if and only if the sequences
¹dwn ºn2N and ¹d vn ºn2N are compatible.
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Proof. Suppose that �pw and �pv are isomorphic. Then there exists z 2 �pv such that
.�
p
w ; w/ and .�pv ; z/ are isomorphic as rooted graphs. Since the paths of cycles associ-

ated with w and z coincide, we have dwn D d
z
n for every n � 0. Therefore, ¹d zn ºn2N and

¹d vn ºn2N are compatible, because z 2 �pv and so the paths of cycles of z and v must join.
The claim follows.

Vice versa, first suppose that dwn D d
v
n for every n 2 N. Then by adapting the proof

of Proposition 4.19, we deduce that Lw D Lv . We want to define an isomorphism
�W�

p
w ! �

p
v . First of all, put �.w/ D v. Notice that w.1/ (resp. v.1/) is the only ver-

tex of Pw1 (resp. P v1 ) that is attached to a cycle isomorphic to Pw2 (resp. P v2 ). Moreover,
the cycles Pw2 and P v2 are isomorphic by assumption. Since d.w;w.1//D d.v; v.1//, we
can put �.w.1// D v.1/. By iterating the same argument for each n, we deduce that it
must be �.w.n// D v.n/ for any n � 0. It follows that �.Pwn / D P

v
n for every n. Since

such cycles have the same size, they have attached subgraphs that are isomorphic. This
implies that � can be extended to an isomorphism between �pw and �pv .

If the sequences ¹dwn ºn2N and ¹d vn ºn2N are compatible, then there exist i , j such that
dwiCn D d

v
jCn for every n 2 N. Define �.w.i C n// D v.j C n/ for each n. Notice that

�
p
w n ¹w.i/º contains one infinite connected component which is isomorphic to the only

infinite one of �pv n ¹v.j /º. The remaining parts of the two graphs �pw and �pv are finite
subgraphs attached to the isomorphic cycles PwiC1 and P vjC1, and so they are isomorphic.
This gives an isomorphism between �pw and �pv .

Pay attention to the fact that there are infinite sequences u;v 2X1 such that LuDLv ,
but �pu and �pv are not isomorphic.

Example 4.21. Consider the vertices uD .1002/1 and vD .1012/1. The paths of cycles
associated with u D .1002/1 and v D .1012/1 are the same. However, by using Propo-
sition 4.20, one can check that there is no isomorphism between the graphs �pu and �pv ,
since u.n/ and v.n/ belong to two cycles of the same length, but

d.u.n/; u.nC 1// ¤ d.v.n/; v.nC 1//

for each n.

For every i; j 2 ¹1; : : : ; pº, let us define the map �i;j WX ! X as

�i;j .k/ D

´
k if k ¤ i;

j if k D i:

In particular, the map �i;j fixes 0 for any i , j ; moreover, �i;i is the identity map. Given
w D x1x2 : : : 2 X

� [X1, we define �i;j .w/ D �i;j .x1/�i;j .x2/ : : :
Given u 2 ¹0; iº� [ ¹0; iº1, we denote by u0 the word obtained from u by switching 0

to i and vice versa. For a given element u 2 X1 cofinal to a word in ¹0; iº1, having the
form u1iu2, where iu2 is the maximal suffix of u in ¹0; iº1, we put u D u1iu02.
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Example 4.22. Let w D 0ka1u1a2u2a3u3 : : : with ai 2 ¹1; 2; : : : ; pº, ui 2 ¹0; aiº� and
aiC1 ¤ ai as usual. We have

dw1 D d.w;w.1//; dw2 D d.w.1/; w.2//;

dw3 D d.w.2/; w.3//; dw4 D d.w.3/; w.4//

with

w.1/ D 0kC1Cju1ja2u2 : : : ; w.2/ D 0kC2Cju1jCju2ja3u3 : : : ;

w.3/ D 0kC3Cju1jCju2jCju3ja4u4 : : : ; w.4/ D 0kC4Cju1jCju2jCju3jCju4ja5u5 : : :

Now consider the vertex v D 0ka1u01a2u2a3u3 : : : with u01 obtained from u1 by switch-
ing 0 to a1 in u1 and vice versa (see Figure 10). Notice that w.n/ � v.n/ for each n � 1,
since w and v belong to the same cycle. It follows that Pw D P v , so that Lw D Lv .

w � w.0/

v

Pw1

Pw2
Pw3

Pw4

Pw5

w.1/

w.2/

w.3/

w.4/

Figure 10. The path of cycles of the word w of Example 4.22.

Finally, a comparison between the decompositions of w and v ensures that dw1 D
d.w;w.1// D d v1 D d.v; v.1//, so that we also have dwn D d

v
n for each n � 1.

Theorem 4.23. (1) There is one isomorphism class of 2p-ended graphs consisting of
the graph �p01 .

(2) Let u; v 2 E2, Then �pu is isomorphic to �pv if and only if either v � �i;j .u/ or
v � �i;j .u/ for some i; j 2 ¹1; : : : ; pº. In particular, there are uncountably many
isomorphism classes of 2-ended graphs, each consisting of 2p graphs.

(3) Let u; v 2 E1 with u D 0ka1u1a2u2 : : : aiui : : :, ai 2 ¹1; : : : ; pº, ai ¤ aiC1 and
ui 2 ¹0; aiº

�. Then the graph �pu is isomorphic to the graph �pv if and only if
v � 0kb1v1b2v2 : : : bivi : : : where, for any i 2 N, bi 2 ¹1; : : : ; pº, jvi j D jui j,
bi ¤ biC1 and either vi D �ai ;bi .ui / or vi D �ai ;bi .ui /

0. In particular, there
are uncountably many isomorphism classes of 1-ended graphs, each consisting
of uncountably many graphs.
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Proof. (1) The first statement is clear by Theorem 4.16.
(2) Let u 2 E2. Then by Theorem 4.16, there exists i 2 ¹1; : : : ; pº such that u D

u1iu2, where iu2 is the maximal suffix of u in ¹0; iº1. This implies that u belongs to
a decoration isomorphic to Dju1j and attached at 0ju1jiu2 to the corresponding infinite
double ray. Notice that, in view of the decomposition of u, the graphs �pu and �p

�i;j .u/
are

isomorphic. Such isomorphism maps the decoration attached at 0ju1jiu2 to the isomorphic
one attached at 0ju1j�i;j .iu2/. This isomorphism maps the vertices of the infinite double
ray eti .0

ju1jiu2/ to etj .0
ju1j�i;j .iu2// for each t 2 Z. Similarly, the graphs �pu and �p

�i;j .u/

are isomorphic, and the isomorphism maps 0ju1jiu2 to 0ju1j�i;j .iu2/. It follows that the
vertices of the infinite double ray eti .0

ju1jiu2/ are mapped to e�tj .0ju1j�i;j .iu2// for each
t 2 Z, as one can deduce from Proposition 4.9. Finally, by using Lemma 4.14, it is easy
to show that if v is either cofinal to �i;j .u/ or cofinal to �i;j .u/, then �pu is isomorphic
to �pv .

Vice versa, suppose u D x1x2 : : : D u1iu2 and v D y1y2 : : : D v1jv2, where iu2 is
the maximal suffix of u in ¹0; iº1 and iv2 is the maximal suffix of v in ¹0; j º1. Assume
that �pu and �pv are isomorphic through � in such a way that �.u/ D v. Then � must
induce an isomorphism of the finite rooted graphs .�pn ; x1 : : : xn/ and .�pn ; y1 : : : yn/
for each n. Take n large enough so that n > ju1j C 1. By Proposition 4.9, the graphs
.�
p
n ; x1 : : : xn/ and .�pn ; y1 : : : yn/ are isomorphic if and only if either jyju1jC2 : : : yn D

�i;j .ixju1jC2 : : : xn/ or jyju1jC2 : : : yn D j�i;j .xju1jC2 : : : xn/
0. The claim follows.

(3) First let v D 0kb1v1b2v2 : : : bivi : : :, where for any i 2 N, bi 2 ¹1; : : : ; pº, jvi j D
jui j, bi ¤ biC1 and either vi D �ai ;bi .ui / or vi D �ai ;bi .ui /

0. We claim that d vn D d
u
n for

any n 2 N. Recall that

d vn D d.v.n � 1/; v.n//

D d.0kC
Pn�1
jD1 jvj jbnvn : : : ; 0

kC
Pn
jD1 jvj jbnC1vnC1 : : :/

D d.0kC
Pn�1
jD1 jvj jbnvn; 0

kC
Pn
jD1 jvj j/:

From the proof of Proposition 4.19, it follows that the value of d vn only depends on the
position of the 0’s and bn’s in vn, and so it is independent from the specific bn. By assump-
tion, k C

Pn
jD1 jvj j D k C

Pn
jD1 juj j, and by Proposition 4.9, the vertex v satisfies

d vn D dun if vi D �ai ;bi .ui / or vi D �ai ;bi .ui /
0. This implies that �pv and �pu are iso-

morphic (as rooted graphs). Finally, Lemma 4.14 implies that if v0 is cofinal to v, then
�
p
v D �

p
v0 and so �pv0 is isomorphic to �pu .

Vice versa, suppose v D 0mb1v1b2v2 : : : bivi : : : with bi 2 ¹1; : : : ; pº, bi ¤ biC1 and
vi 2 ¹0; biº

�. First notice that Lemma 4.18 implies that if u; v 2 E1 are such that �pu is
isomorphic to �pv , then the sequences Lu and Lv must be compatible. By Lemma 4.11,
this is equivalent to say that there exist l , h such that

jvlCi j D juhCi j 8 i � 1 and mC l C

lX
jD1

jvj j D k C hC

hX
jD1

juj j: (4.2)
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Moreover, Proposition 4.20 implies that also the sequences ¹dun ºn2N and ¹d vn ºn2N must
be compatible. As before, one has

d vlCi D d.v.l C i � 1/; v.l C i//

D d.0kClCi�1C
PlCi�1
jD1 jvj jblCivlCi : : : ; 0

kClCiC
PlCi
jD1 jvj jblCiC1vlCiC1 : : :/

D d.0kClCi�1C
PlCi�1
jD1 jvj jblCivlCi ; 0

kClCiC
PlCi
jD1 jvj j/:

Then, using equation (4.2), one can check that this quantity equals du
hCi

if and only if,
for any i � 1, there exists bi 2 ¹1; : : : ; pº such that either vlCiC1 D �ai ;bi .uhCiC1/ or
vlCiC1 D �ai ;bi .uhCiC1/

0. The claim follows.

For a given w 2 X1, put

Iw D ¹z 2 X
1
W �pz and �pw are isomorphicº:

Corollary 4.24. For every w 2 X1, one has �.Iw/ D 0.

Proof. Notice that, by virtue of Theorem 4.16, if w 2 E2p or w 2 E2, then �.Iw/ D 0.
Therefore, we can restrict our attention to the case w 2 E1. Let w D 0ka1u1 : : :, and let
us consider its decomposition. By Theorem 4.23, we have Iw D

S
u2E 0w

Cof.u/, where

E 0w D ¹z 2 X
1
W .�pz ; z/ and .�pw ; w/ are isomorphic as rooted graphsº:

In particular, the claim follows if we prove that �.E 0w/D 0. By claim (3) of Theorem 4.23,
in order to measure E 0w , we first must remove from X1 all subsets of type 0tmX1, with
t � k � 1 andm ¤ 0. Then in 0kX1 we remove the subset 0kC1X1. After that consider
the subsets 0kaX1 with a 2 ¹1; : : : ; pº. In each of these p subsets of X1, all subsets
of type 0kavX1 must be removed, for any v of length u1, except for the two v’s giving
rise to isomorphism. After that, for each of the remaining rays, we proceed as before,
according to the decomposition of w: the subsets of type 0kavbX1 with b 2 ¹0; aº must
be removed. By iterating this argument, a direct computation gives

�.E 0w/ D 1 � p

kX
jD1

1

.p C 1/j
�

1

.p C 1/kC1
� p

.p C 1/ju1j � 2

.p C 1/ju1jCkC1
� 2

2p

.p C 1/ju1jCkC2

� 2p.p � 1/
.p C 1/ju2j � 2

.p C 1/ju1jCju2jCkC2
� 2

4p.p � 1/

.p C 1/ju1jCju2jCkC3

� 4p.p � 1/2
.p C 1/ju3j � 2

.p C 1/ju1jCju2jCju3jCkC3
� � � � :

We can rearrange the sum as follows:

�.E 0w/ D 1 � p

kX
jD1

1

.p C 1/j
�

1

.p C 1/kC1
�

p

.p C 1/kC1
C
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�

1X
mD1

h 2mp.p � 1/m�1

.p C 1/ju1jC���CjumjCkCm
�

2mC1p.p � 1/m�1

.p C 1/ju1jC���CjumjCkCmC1

�
2mp.p � 1/m

.p C 1/ju1jC���CjumjCkCmC1

i
D 0C

1X
mD1

2mp.p � 1/m�1

.p C 1/ju1jC���CjumjCkCmC1
Œ.p C 1/ � 2 � p C 1� D 0:
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