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a b s t r a c t

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a funda-
mental role for making forecasts, simulating scenarios and evaluating the impact of pre-
ventive political, social and pharmaceutical measures. Optimal control theory represents a
useful mathematical tool to plan the vaccination campaign aimed at eradicating the
pandemic as fast as possible. The aim of this work is to explore the optimal prioritisation
order for planning vaccination campaigns able to achieve specific goals, as the reduction of
the amount of infected, deceased and hospitalized in a given time frame, among age
classes. For this purpose, we introduce an age stratified SIR-like epidemic compartmental
model settled in an abstract framework for modelling two-doses vaccination campaigns
and conceived with the description of COVID19 disease. Compared to other recent works,
our model incorporates all stages of the COVID-19 disease, including death or recovery,
without accounting for additional specific compartments that would increase computa-
tional complexity and that are not relevant for our purposes. Moreover, we introduce an
optimal control framework where the model is the state problem while the vaccine doses
administered are the control variables. An extensive campaign of numerical tests, featured
in the Italian scenario and calibrated on available data from Dipartimento di Protezione
Civile Italiana, proves that the presented framework can be a valuable tool to support the
planning of vaccination campaigns. Indeed, in each considered scenario, our optimization
framework guarantees noticeable improvements in terms of reducing deceased, infected
or hospitalized individuals with respect to the baseline vaccination policy.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In January 2020 the tremendous SARS-CoV-2 virus (the agent pathogen of the COVID19 disease) outbroke in the Chinese
province of Hubei, with epicenter the city ofWuhan. The first detected infections in Italy date back to the 21st February, when
two distinct cases have been detected in Veneto and Lombardy regions. From this point onward up to September 2022 more
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than 602 millions cases and 6.4 millions deaths have been recorded around the world according to the weekly reports
available from theWorld Health Organization (WHO) (World Health Organizatione Emergency Response Team, 2022), which
has declared the pandemic alert since March 2020. Since the severe symptomatology and highlyetransmissible nature of the
disease, Public Health Authorities of many countries have reacted tempestively in order to minimize the infectious risk
introducing Non-Pharmaceutical Interventions (so-called NPIs) such as the compulsory adoption of face-masks, hygienic
precautions, several measures for minimizing contacts, imposing smart-working whenever possible and sometimes with
different kinds of lockdown. In Italy, starting fromMarch 2020 to June 2020 a strict lockdown has been imposed at all levels.
Non-pharmaceutical Interventions have been a fundamental tool in order to minimize the spread of the virus and the
generation of more severe variants. However, the virus has overtaken such preventive measures, letting many different
variants arising, especially some of those particularly dangerous to be catalogued as Variants of Concern, VOC, by WHO:
B.1.617.2 (Delta), B.1.117 (Alpha), P.1 (Gamma) and B.1.1.529 (Omicron). NPIs have represented the sole tool for facing the
pandemic until December 2021, when the first vaccine has been approved by the American Food and Drugs administration
(FDA) and by the European Medical Agency (EMA). Starting from January 2021 until September 2022 six different vaccines
developed with different pharmaceutical techniques have been approved and employed in the Italian vaccination campaign:
Pfizer mRNABNT162b2 (Comirnaty), COVID-19 Vaccine Moderna mRNAe1273 (Spikevax), Vaxzevria, Jcovden, Nuvaxovid
(Novavax) and Valneva. Some of these vaccines require two administrations in order to acquire effectiveness against
transmission and severe symptoms. One of the main difficulties that Italian Public Health authorities had to face during the
planning stage of the vaccination campaign was the prioritization order across ages (at least for those for which the vaccine
administrations had been safely tested) and working categories, alongside with the choice of the suitable elapsing time
between subsequent administrations.

In this complex social and medical scenario, we set this work aiming at contributing to the knowledge acquired in the
mathematical epidemiology field. Mathematicians have been very responsive, e.g. (Bertuzzo et al., 2020; Chinazzi et al., 2020;
Gatto et al., 2020; Kuhl, 2021; Parolini et al., 2021). Typical mathematical approaches for modelling and forecasting scenarios
consider Compartmental (Bertaglia and Pareschi, 2021; Bertozzi et al., 2020; Capistr�an et al., 2022; Parolini et al., 2021;
Rozhnova et al., 2021; Viana et al., 2021) and Agent-Basedmodels (Gharakhanlou and Hooshangi, 2020; Kerr et al., 2021; Shamil
et al., 2021; Wolfram, 2020). The former approach adopts dynamical systems for modelling all the necessary features of the
disease, and can be easily adapted to available data for the calibration of the possibly many parameters involved. The latter,
instead, is particularly focused on capturing the behavior of and interactions among individuals in specific exposure contacts
(e.g. schools). In thiswork, we recast themain questions regarding the planning of the vaccination campaign in the framework of
the Optimal Control Theory (Kirk, 2004). Some recent works have already investigated the use of optimal control techniques
based on compartmental models, to act on the levels of NPIs to be implemented for minimizing infected (Araz, 2021; Lemecha
Obsu and Balcha, 2020; Tsay et al., 2020; Zamir et al., 2020) or deceased individuals (Perkins and Guido, 2020; Richard et al.,
2021), sometimes coupling the evolution of the states of infectiousness model with other opinion models as in (J Silva et al.,
2021). Other works have dealt with the optimal allocation of vaccines, based on SIR-like models as in the case of (Libotte
et al., 2020; Ziarelli, 2021) or taking into account the spatial heterogeneity (Lemaitre et al., 2022), as well as age-
dependencies (Shim, 2021). However, a detailed classification and comparison of vaccination policies reducing infections,
deaths or hospitalisations dependently on age is missing in the state-of-the-art. To the best of our knowledge, this is the first
work providing an accurate analysis on the optimization of age-specific vaccination campaigns for SARS-CoV-2 vaccines and
considering a state model that can be straight-forwardly calibrated with data that are commonly available in many countries.
This model has been developed in order to describe the main and fundamental features of the disease and the main charac-
teristics of the vaccination campaign, yet with a very moderate computational complexity. This is fundamental for the inter-
pretation of results and for tackling the main numerical issues. Indeed, the numerical complexity of our approach is similar to
that of an age-stratified SIR, with the advantage however of being completely adapted to the progression of COVID19 in Italy.

In particular, the present work displays optimally controlled vaccination policies under state constraints of an age-
stratified compartmental model in an abstract framework which is then applied to the specific Italian case study during
the first half of 2021, using real data available daily from the Dipartimento di Protezione Civile Italiana (Open acces DPC
dataset, 2020). An extensive campaign of numerical tests shows that the presented optimal control framework can repre-
sent a valuable tool to support, starting from real epidemiological data, the planning of vaccination campaigns aimed at
fulfilling specific goals (e.g. reduction of deceased, infected, hospitalized).

The outline of the paper is as follows. In Section 2 we illustrate the rationales behind the chosen compartmental model,
detailing the specific features that allow to describe the COVID19 context. Moreover, we introduce the mathematical
formulation of the optimal control problem and the main numerical technicalities. In Section 3 we apply the abstract
framework to the Italian scenario highlighting the versatility and the potentialities of the implemented computational ar-
chitecture. Lastly, in Section 4 the main conclusions deriving from the analysis are drawn.

2. Methods

In this section, we present the mathematical description of an optimal control problem aiming at the planning of a
vaccination campaign which is able to achieve specific goals. In general, an optimal control problem is built upon three
components: (1) the state problem, in our case the epidemiological model governing the transmission dynamics with the
daily vaccination rates in each as control variables; 2) a cost function to be minimized, in our case the number of deceased,
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infected or hospitalized individuals; 3) the set of constraints that the control must satisfy, in our case the limitations on
vaccine administration rate and the total vaccine stock. More precisely, in Section 2.1 we introduce the epidemiological
differential model governing the control problem, while in Section 2.2 we introduce the optimal control problem. Finally, we
provide details about the implemented numerical scheme in Section 2.3.

2.1. Mathematical model

We introduce a deterministic age-stratified compartmental model embodying the main features of SARS-CoV-2 trans-
mission and vaccination campaign, cf. (Ivorra et al., 2020; Parolini et al., 2022; Ram and Schaposnik, 2021). More precisely, we
consider (see also the flowchart in Fig. 1) the following system of DDEs on the time interval I ¼ (0, Tf]8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_Si ¼ �b ri
X
k2NA

Si Cik Ik
Ni

� U1;i
Si

Si þ Iu;i
þ mRRi;

_Ii¼b ri
X
k2NA

ðSi þ sVVi þ sWWiÞ Cik Ik
Ni

� gIi;

_Ri¼ð1� fiðSi;Vi;WiÞ ÞgIi � UR;i � mRRi;

_Di¼ fiðSi;Vi;WiÞgIi;

_Vi¼�b ri
X
k2NA

sVVi Cik Ik
Ni

þ U1;i
Si

Si þ Iu;i
� U2;i;

_Wi¼�b ri
X
k2NA

sWWi Cik Ik
Ni

þ U2;i þ UR;i;

Sið0Þ ¼ Si;0; Iið0Þ ¼ Ii;0; Rið0Þ ¼ Ri;0;

Dið0Þ ¼ Di;0; Við0Þ ¼ Vi;0; Wið0Þ ¼ Wi;0;

ct2I; i2NA; (1)

where, as usual, each time dependent variable accounts for the number of individuals in different conditions with respect to
the disease: Susceptible (S), Infectious (I), Recovered (R), Deceased (D) due to complications related to SARS-CoV-2, Vacci-
nated with a first dose administered (V) and Vaccinated who have completed the vaccination cycle (W). Actually, each state is
split according to the index i 2 NA, where NA is the set of indexes identifying the different age-classes. The parameters
involved in the model are described in the following.

C Tf (days): final time of the simulation frame;
C b 2 (0, 1): transmission rate, depending on the implemented Non-Pharmaceutical Interventions (NPIs) and virus

transmissibility. It is assumed to be constant across all ages as in (Marziano et al., 2021);
C sV, sW 2 (0, 1): vaccine effectiveness on transmissibility after administration of first dose (the former) or completing

the cycle (the latter). It can be interpreted as the ratio of transmissibility between vaccinated individuals and unvac-
cinated ones. The value 0 means that the vaccine is fully effective, 1 totally ineffective;
Fig. 1. SIRDVW model flowchart. Schematic flowchart of each age-stratification of the adopted SIRDVW multi-age model. The colored fluxes account for new
infections and they explicitly embed interactions among age-classes.
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C qV, qW 2 (0, 1): vaccine effect on mortality after administration of first dose (the former) or completing the cycle (the
latter). It can be interpreted as the ratio of probability of getting severe symptoms between vaccinated individuals and
unvaccinated ones. The value 0 means that the vaccine is fully effective, 1 totally ineffective;

C IFRi: age-dependant Infection Fatality Rate;
C The fatality function fi(Si, Vi, Wi) changes accordingly to the immunological profile of the population, i.e. taking into

account the vaccination effect in reducing mortality:

fiðSi;Vi;WiÞ ¼

8><
>:

IFRi

�
Siðt � taÞ þ qVsVViðt � taÞ þ qWsWWiðt � taÞ

Siðt � taÞ þ sVViðt � taÞ þ sWWiðt � taÞ
�

t > ta

IFRi 0 � t � ta

(2)

where ta is the amount of days after the inoculation that we consider for reaching the complete vaccine effectiveness.
Heuristically, the fatality function reduces the fatality rate IFRi of a proper factor that takes into account the reduced prob-
ability of getting severe symptoms when vaccines have been inoculated (this effectiveness is ruled by the parameters qV, qW).

C Cik: i, k-th entry of the contact matrix, tracing back contacts between ages starting from the POLYMOD surveys
(Mossong et al., 2008);

C ri: susceptibilities to infection depending on age;
C g: recovery rate from the disease infection, which is maintained constant across ages. Since infectious individuals are

supposed to exit from the correspondent compartmentwith flux gIi, the parameter g is interpreted as the inverse of the
average time of recovery tR;

C Ni: Number of individuals in the i-th age stratification;
C mR: natural waning immunity rate, taking into account plausible reinfections coming from previously-recovered

individuals;
C Iu,i(t) ¼ (1 � d(t)) Ii(t), t 2 I: approximate number of undetected individuals whose age falls in the i-th stratification at

time t;
C U1,i, U2,i, UR,i: daily amount of administered first doses, second doses and doses administered to the i-th age-class,

respectively. The choice of these variables is coherent with actual implementation of the Italian vaccination
campaign: two consecutive doses to be administered for completing the vaccination cycle to Susceptible individuals,
one single administration to Recovered ones. To reduce the computational complexity of the model we assume that the
functions U1,i(t), U2,i(t), UR,i(t) are piecewise constant (constant on each week) and the weekly value of administrations
is supposed to be equally distributed among each day of the week.

Remark. Since the horizon of interest of our simulations is reasonably short, we neglect migratory effects, births and deaths
which are not COVID-related. Moreover, we neglect the possible presence of comorbidities fostering the onset of severe
symptoms leading to death. Finally, there are other implicit assumptions that is worth underlining: there is no genetic
mutation of the virus during the period of interest; vaccine effectiveness waning is not contemplated in the considered time
interval.

The differential problem (1) has been endowed with proper initial conditions for each of the considered age-state
compartment. Throughout this work, we consider time-invariant parameters except for the transmission rate b and the
detection rate d, which are assumed to depend on time. Especially for the transmission rate, which embodies many different
effects, carrying out a calibration process is of paramount importance when dealing with realistic scenarios. In Section S2 of
the Supporting Information one can find the calibration procedure employed for the Italian setting during the first half of
2021. On the other hand, more details about the choices of the parameters and the initial conditions can be retrieved in
Section S1 (Supporting Information).
2.2. The optimal control problem

In this section we assume the perspective of Public Health Authorities asking whether it is possible to plan an optimal
vaccination campaign in order to minimize some specific goals (total number of infected, deceased or hospitalized) and
understand possible priority orders among ageeclasses. Let us specify the main features of the Optimal Control Problem:

Control Variables. We assume that we could control theweekly amount of doses to be distributed among susceptibles and
individuals who already got a first dose, and each day of the same week we assume to distribute an equal amount of doses.
The control variables are
675
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0 � U1;iðtÞ; U2;iðtÞ � NweekðtÞ; ci2NA; t2 I: (3)
In particular,

�
U1;iðtÞ

�
i;
�
U2;iðtÞ

�
i; NweekðtÞ2P0

cd

(
f ðtÞ ¼

XNint

k¼0

ak1½Tk�1 ;Tk�ðtÞ; fTkgk�Nint
2R; ak2R; ct2I

)
; (4)

letting Nint2N the number of weeks and fTkgk�Nint
the set of first days of each week. In Section 3, unless otherwise specified

the piecewise constant function Nweek(t) has been obtained summing per-weeks the amount of actually administered doses in
Italy during the considered period. Moreover, for reducing the computational complexity of the control problem and to
adhere as much as possible with typical realistic scenarios (e.g. the Italian one), we assume that the numbers of administered
second doses are set equal to the number of first administrations with a time delay imposed by pharmaceutical properties of
the vaccine, i.e.

U2;iðtÞ ¼ U1;iðt� dwÞ; ct2
�
dw; Tf

�
; i2NA; (5)

where dw is the elapsing time among subsequent administrations.
Finally, the control variables need to fulfill a budget constraint imposed by the limited amount of available doses and due

to other potential sanitarian restrictions, such as the limited personnel and infrastructures. In particular, this constraint reads
as: cj ¼ 0, …, Nint � 1

X
i2NA

ZTjþ1

Tj

�
U1;iðtÞ þ U2;iðtÞ þ UR;iðtÞ

	
dt � min

�
NS;Nweek

�
Tj
		
; (6)

with NS is the budget limit due to sanitarian capabilities.
State Problem. The state problem is a revised version of (1) under assumption (5) on the administrations of first and

second doses. For each age class i 2 NA and given initial conditions, the problem at each time instant t 2 I reads as (1) in
which (5) has been plugged in. In a compact way, the state problem can be rewritten as

_xiðtÞ ¼ Fi
�
xðtÞ;xðt� taÞ;U1;iðtÞ;U1;iðt�dmÞ

	 ¼ fiðxðtÞ;xðt� taÞÞþ b̂ U1;iðtÞþb
�
U1;iðt�dmÞct2

�
0;Tf

i
; i2NA; (7)
with

xiðtÞ ¼

2
6666664

SiðtÞ
IiðtÞ
RiðtÞ
DiðtÞ
ViðtÞ
WiðtÞ

3
7777775
; xðtÞ ¼

2
66664
x1ðtÞ
x2ðtÞ
x3ðtÞ
x4ðtÞ
x5ðtÞ

3
77775; b̂ ¼

2
6666664

�1
0
0
0
1
0

3
7777775
and ~b ¼

2
6666664

0
0
0
0
�1
1

3
7777775
: (8)
This compact formwill be useful for the computation of the gradient to be adopted in the numerical optimization process.
Cost functionals. Assuming the perspective of policy makers, we consider three different cases.

1.

ZTf

J DðxÞ ¼

X
i2NA 0

DiðtÞ2 dt; (9)
i.e. the number of total deceased individuals during the whole process.

2.

ZTf

J IðxÞ ¼

X
i2NA 0

IiðtÞ2 dt; (10)
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i.e. the number of total infected individuals during the whole process.

3.

X ZTf

J HðxÞ ¼

i2NA 0

HiðtÞ2 dt; (11)
i.e. the number of total hospitalized individuals during thewhole process. Indeed, one of themain issues to be faced during thefirst
waves of the pandemic was dictated by the limited amount of beds and medical equipment for individuals affected by COVID19
exhibiting severe symptoms, especially in Intensive CareUnits (ICU). However,weneed an explicit computation of the hospitalized
individuals as in (Marziano et al., 2021), since the SIRDVW does not provide directly the amount of hospitalized individuals as in
(Parolini et al., 2022). In our case, for each age class we determine the amount of hospitalized individuals as

HiðtÞ ¼ h kiIiðtÞ
�
Siðt � taÞ þ qVsVViðt � taÞ þ qWsWWiðt � taÞ

Siðt � taÞ þ sVViðt � taÞ þ sWWiðt � taÞ
�
; (12)

where ki is the age-dependent propensity for severe respiratory symptoms and h is an estimated fraction of hospitalized
individuals with respect to the amount of infected (values retrieved from (Marziano et al., 2021)).

We are now ready to formulate the problem of the optimal vaccination campaign as an optimal control problem.
Optimal Control Problem. Find the doses administrations Û1;i2P0

c ci2NA such that it minimizes the chosen cost func-
tional J X , i.e.�

Û1;i
�
i2NA

¼ arg min
fU1;igi2NA

2ℙ0
c

J XðxÞ; (13)

subject to the state problem (7) under the constraints (5) and (6).

2.3. Numerical procedure

To solve the optimal control problem (13) we employ an Inexact Projected Gradient Descent algorithm (Calamai andMor�e,
1987), where the inexactness stems from employing an inexact adjoint system. More precisely, following (Abraha et al., 2021;
G€ollmann et al., 2009; Rodrigues et al., 2018) we define the Hamiltonian function of the optimal control problems with the
aforementioned cost functionals, under the state problem 7, as

H XðtÞd
X
i2NA

X2
i ðtÞ þ piðtÞTFi

�
xðtÞ; xðt � taÞ;U1;iðtÞ;U1;iðt � dmÞ

	
; (14)

where X 2 {D, I, H} and pi is the adjoint vector referring to the i-th age class. This function can be explicitly rewritten:
H XðtÞ¼
P

i2NA

X2
i ðtÞ þp1i ðtÞ

 
�bri

P
k2NA

SiCik Ik
Ni

�U1;i
Si

Siþ Iu;i
þmRRi

!

þp2i ðtÞ
0
@bri

X
k2NA

ðSiþsVViþsWWiÞCik Ik
Ni

�gIi

1
A

þp3i ðtÞ
�ð1� fiðSi;Vi;WiÞÞgIi�UR;i�mRRi

	
þp4i ðtÞðfiðSi;Vi;WiÞgIi Þ

þp5i ðtÞ
0
@�bri

X
k2NA

sVViCik Ik
Ni

þU1;i
Si

Siþ Iu;i
�U2;i

1
A

þp6i ðtÞ
0
@�bri

X
k2NA

sWWiCik Ik
Ni

þU2;iþUR;i

1
A:

(15)
Consider t � ta and define the following auxiliary variables:

ZiðtÞdSiðt� taÞ; OiðtÞdViðt� taÞ; PiðtÞdWiðt� taÞ: (16)
Plugging it into (15) we obtain:
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H XðtÞ ¼
P

i2NA

X2
i ðtÞ þ p1i ðtÞ

 
� b ri

P
k2NA

Si Cik Ik
Ni

� U1;i
Si

Si þ Iu;i
þ mRRi

!

þp2i ðtÞ
0
@b ri

X
k2NA

ðSi þ sVVi þ sWWiÞ Cik Ik
Ni

� gIi

1
A

þp3i ðtÞ
��

1� IFRi
Zi þ sVqVOi þ sWqWPi

Zi þ sVOi þ sWPi

�
gIi � UR;i � mRRi

�

þp4i ðtÞ
�
IFRi

Zi þ sVqVOi þ sWqWPi
Zi þ sVOi þ sWPi

gIi

�

þp5i ðtÞ
0
@� b ri

X
k2NA

sVVi Cik Ik
Ni

þ U1;i
Si

Si þ Iu;i
� U2;i

1
A

þp6i ðtÞ
0
@� b ri

X
k2NA

sWWi Cik Ik
Ni

þ U2;i þ UR;i

1
A:

(17)
Hence, c i 2 NA the adjoint backward system (as illustrated in (Rodrigues et al., 2018)) reads as follows:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

_p1i ðtÞ ¼ �vH X

vSi
ðtÞ � I½0;Tf�ta�

vH X

vZi
ðt þ taÞ;

_
p2i ðtÞ¼�

vH X

vIi
ðtÞ;

_
p3i ðtÞ¼�

vH X

vRi
ðtÞ;

_
p4i ðtÞ¼�

vH X

vDi
ðtÞ;

_
p5i ðtÞ¼�

vH X

vVi
ðtÞ � I½0;Tf�ta�

vH X

vOi
ðt þ taÞ;

_p6i ðtÞ ¼ �vH X

vWi
ðtÞ � I½0;Tf�ta�

vH X

vPi
ðt þ taÞ:

(18)
with pi(Tf)|k ¼ �2 Xi(Tf) dk,X as final conditions, and

vH X

vZi
¼ �IFRi g Ii p

3
i 4z þ IFRi g Ii p

4
i 4z � ki h Ii 4z d

H
X ;

4z ¼ ðZi þ sVOi þ sWPiÞ � ðZi þ sVqVOi þ sWqWPiÞ
ðZi þ sVOi þ sWPiÞ2

(19)

vH X 3 4 H
vOi
¼ �IFRi g Ii pi 4o þ IFRi g Ii pi 4o � ki h Ii 4o dX ;

4o ¼ sVqV ðZi þ sVOi þ sWPiÞ � sV ðZi þ sVqVOi þ sWqWPiÞ
ðZi þ sVOi þ sWPiÞ2

;

(20)

vH X 3 4 H
vPi
¼ �IFRi g Ii pi 4p þ þIFRi g Ii pi 4p � ki h Ii 4p dX ;

4p ¼ sWqW ðZi þ sVOi þ sWPiÞ � sW ðZi þ sVqVOi þ sWqWPiÞ
ðZi þ sVOi þ sWPiÞ2

:

(21)
In light of the numerical evidence (see Section S4 in the Supporting Information) and in order to reduce the computational
complexity of the problem involving all age stratification, we employ an inexact version of the adjoint problem 18, which is
obtained from setting
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vH X

vZi
;
vH X

vOi
;
vH X

vPi
¼ 0: (22)
More precisely, the inexact adjoint system reads as follows

_
p
�
iðtÞ ¼ �vH X

vxi
ðtÞ; p�i

�
Tf
�
jk ¼ �2Xi

�
Tf
�
dk;X ci2NA (23)

where X2 {D, I, H} and ~pi is the inexact adjoint vector referring to the i-th age class. To lighten the notation and with a slight
abuse of notation, in the following we are going to denote by pi the solution of the inexact adjoint problem.

In view of the above discussion, the main steps of the Inexact Projected Gradient Descent algorithm are hereafter
summarized.

- Choice of the initial guess. Set the initial guess of the control functions.
- Optimization cycle. Fix a number of maximum iterations and at each iteration perform the following steps.
1. Solve the direct problem with the current control variable;
2. Solve the inexact time-reverse inexact adjoint problem (23);
3. Compute the descending direction for the numerical optimization scheme:

dU1;Di
ðtÞ ¼ �

�
piðtÞT b̂þpiðt þ dmÞT ~b1½0;T�dm�

�
; ct2I: (24)
In the sequel we briefly motivate this choice. Following the KKT conditions (Wright and Nocedal, 1999), define the
Lagrangian function

L h

�
x; _x;

�
U1;i

�
i2NA

;p
�
¼
X
i2NA

L h;i
�
xi; _xi;U1;i;pi

	
; (25)

where,
L h;i
�
xi; _xi;U1;i;pi

	 ¼ Z
T

0

XiðtÞ2 dt þ
ZT
0

pT
i ðtÞ

�
fiðx; tÞ þ b̂ U1;iðtÞ þ b

�
U1;iðt � dmÞ � _x

�
dt: (26)
Compute the gradient of the Lagrangian at the continuous level in order to compute a descending direction for the optimal
control algorithm. We obtain

DU1;i
L h;i

�
dU1i

	 ¼ DVU1;i
L h;i; dU1;i

E
L2ð0;TÞ

¼
D
pið,ÞT b̂ þ pið,þ dmÞTb

�
I½0;T�dm�; dU1;i

E
L2ð0;TÞ

: (27)
Indeed,

DU1;i
L h;i

�
dU1;i

	 ¼ lim
ε/0

L h;i
�
U1;i þ ε dU1;i

	� L h;i
�
U1;i

	
ε

¼

¼ lim
ε/0

1
ε

 ZT
0

XiðtÞ2 dt �
ZT
0

X2
i ðtÞdt þ

ZT
0

piðtÞT _xiðtÞdt �
ZT
0

piðtÞT _xiðtÞ dt

þ
ZT
0

pT
i ðtÞ fðx; tÞ dt �

ZT
0

pT
i ðtÞ fðx; tÞdt

þ
ZT
0

piðtÞT b̂ U1;iðtÞ þ εpiðtÞT b̂ dU1;iðtÞ � piðtÞT b̂
U1;iðtÞ dt
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þ
ZT
0

piðtÞTb
�
U1;iðt � dmÞ þ εpiðtÞTb

�
dU1;iðt � dmÞ � piðtÞTb

�
U1;iðt � dmÞ dt

!

¼
ZT
0

piðtÞT b̂
dU1;iðtÞ dt þ

ZT
0

piðtÞTb
�
dU1;iðt � dmÞdt

¼
ZT
0

piðtÞT b̂
dU1;iðtÞdt þ

ZT
dm

piðtÞTb
�
dU1;iðt � dmÞdt

¼
ZT
0

piðtÞT b̂
dU1;iðtÞ dt þ

ZT�dm

0

piðt þ dmÞTb
�
dU1;iðtÞ dt

¼
D
pið,ÞT

b̂ þ pið,þ dmÞTb
�
I½0;T�dm�; dU1;i

E
L2ð0;TÞ

¼
D
VU1;i

L h;i; dU1;i

E
L2ð0;TÞ

:

(28)

� 	

Plugging (24) into (27) ensures DU1;i

L h;i dU1;Di
<0 which implies, in view of (7), that (24) is a descent direction for the

cost functional J X .

4. Update the control variables at the current step as in the Projected Gradient Descent method with Armijo adaptive
learning step:

Unew
1;i ¼ P

�
Uold
1;i � a dU1;i

�
(29)

whereP stands for the projection operator on the space of admissible controls (i.e. satisfying the constraints). At the discrete
level, all the constraints are linear, therefore we applied the Shalev-Schwarz method (Shalev-Shwartz and Singer, 2006) for
linear projection over a d-dimensional simplex.

Stopping criterion. The algorithm stops when the difference between two successive values of the cost functional is lower
than a fixed tolerance tol.

3. Results

In this section we present and discuss the numerical results of the solution of the optimal control problem (13) in the
context of the Italian third epidemic wave of SARS-CoV-2 (first half of 2021) corresponding to the beginning of the vaccination
campaign. We are aware of the main limitations of the considered model (see Section 2.1), hence we do not intend to propose
a critical retrospective analysis of the actual implemented vaccination policy. More realistically, we aim at: (1) extracting the
main differences between the optimal solutions obtainedminimizing different cost functionals (2) highlighting the structural
features (e.g. in terms of age stratification); of the obtained vaccination strategies. In the following, the population is split in
five compartments depending on age:

NA ¼ fð0÷19Þ; ð20 ÷39Þ; ð40 ÷59Þ; ð60 ÷79Þ; ð80þÞg: (30)

we set the optimization process in the period from February 12th, 2021, to June 1st, 2021, i.e.we consider 15 weeks. However,
we carried out a calibration process of the model parameters in the six months starting on January 1st, 2021. The first month
of the Italian vaccination campaign has been neglected in the optimization framework since it has been devoted to the
immunisation of the sanitarian personnel. In this period the vaccination priority order has been dictated by a very specific
political choice, impossible to be embodied in our age-stratified compartmental model that does not take into account for
working classes. All the choices on the parameters, the results of the calibration process and the sensitivity analyses on the
reproduction number can be found in Sections S1 and S2 (Supporting Information). We recover the initial conditions of each
compartment by running a direct simulation of (7) starting on January 1st, 2021 and ending on February 12th, 2021. Indeed,
the assumption of initializing to 0 all the vaccination states is reasonable on January 1st, 2021, and it helps in limiting un-
certainty on the initial conditions to the other states (see Section S2). The implemented code is available in the dedicated
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GitHub repository (MOX Laboratory at Politecnico di Milano epiMOX research Group, 2022). Both the state and the adjoint
problems have been solved employing a Runge-Kutta method of order 4, with a time step of 1 day. The gradient of the
Hamiltonian function with respect to each state variable, necessary in (23), has been retrieved through automatic differen-
tiation. In all our simulations the tolerance of the optimization iterative scheme has been fixed to 5e-4.

Each analysis is supported by quantitative results as the evolution of the cost functional, the optimized control variables by
age-stratification and the discrepancies in terms of deceased, infected and hospitalized between the simulated optimal so-
lution and the simulated solution with the starting policy. The discrepancies (with sign) are measured as follows.

1. Daily Variation of Infected. LI : N/R

LIðdÞ ¼
X
i2NA



Ii;IC
�
d �



Ii;OC

�
d; cd � Ndays; d2N: (31)

where Ii,IC is the vector of daily infected belonging to the i-th age class, obtained from the solution of the state problem (7)
where the daily amount of administered doses is set equal to the value actually administered in Italy. The vector Ii,OC contains
the same type of informations computed by solving (7) with the optimal vaccination campaign coming from the solution of
(13).

2. Daily Variation of Hospitalized. LH : N/R

LHðdÞ ¼
X
i2NA



Hi;IC

�
d �



Hi;OC

�
d; cd � Ndays; d2N: (32)

where Hi,IC is the vector of daily hospitalized of the i-th age class of the solution of the state problem (7) with vaccination
imposed as the vaccinations actually implemented in Italy, and Hi,OC is the amount of hospitalized computed with the optimal
control variables.

3. Daily Variation of Deceased. LD : N/R

LDðdÞ ¼
X
i2NA



Di;IC

�
d �



Di;OC

�
d; cd � Ndays; d2N: (33)

where Di,IC represents the vector of daily deaths of the i-th age class of the solution of the state problem (23) with vaccination
imposed as the vaccinations actually implemented in Italy, Di,OC is the respective counterpart computed with the optimal
control variables;

The results are organized as follows. In Sections 3.1-3.3 we present and discuss the optimal solutions obtained by mini-
mizing deceased, infected and hospitalized, respectively. In Section 3.4 we explore the impact on the optimization of the
vaccination policy of different choices for the initial guess, while in Section 3.5 we explore the impact of different constraints
on the available amount of doses to be administered during the period of interest.

3.1. Minimization of deceased

In this section we optimize the vaccination campaign (i.e. the administration doses by ages) with respect to the total
amount of deceased caused by SARS-CoV-2 infections, cf. (9):

J DðxÞ ¼
X
i2NA

ZTf
0

DiðtÞ2 dt:
The initial guess is chosen equal to the vaccination campaign actually implemented at the national level. In particular, from
the DPC data (Open access DPC dataset vaccinations, 2021) we reconstruct the vaccination policies of first doses applied in
Italy split by age-classes and we average the respective values on a weekly basis as shown in Fig SF.3 (Supporting Infor-
mation). From Fig. 2 we notice that during the optimization process the cost functional has a descending behaviour corre-
sponding to a reduction in terms of deceased of nearly 498 individuals at the final time. The algorithm stops after 951
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iterations reaching the desired tolerance.Fig. 3 compares the amount of first doses administered in the optimal solution with
the ones administered in the initial policy, while Fig. 4 shows the percentage repartition of doses across ages in the initial
policy and in the optimal solution. In Fig. 3 we report the weekly total initial doses assigned to each age-stratification
retrieved by data available from Dipartimento di Protezione Civile Italiana (dashed line) and obtained from the solution of
the optimal problem (solid line). As one can notice from both Figures, the optimal strategy to minimize deceased suggests to
increase the amount of doses to the over 80s while reducing the amount of doses to the other age classes. In particular, the
younger is the age class, the higher is the relative amount of the reduction of doses. These results are not completely un-
expected since they point out how the strategy to minimize deceased is to administer vaccinations to the elderly as much as
possible (the highest increment in a week is of more than 150 thousands doses). Indeed, the over 80s represent the most
fragile in terms of probability to contract the infection in a severe and, consequently, fatal way (see the values of the IFRi in
Table ST1 in the Supporting Information). Moreover, Fig. 4 compares the percentage repartition across age-classes of the
vaccinations of the initial with the ones of the optimal policy. Notice that the optimal policy addresses to the over 60s from the
69% to the 88% of doses in each week, whilst the same quantity ranges from 43% to 81% with the initial policy.

However, as one can expect, this is not the best solution in terms of other quantities of interest such as infected and
hospitalized. Indeed, from Figs. 5e7 it turns out that the optimal solution obtained from the minimization of deceased
produces an increase in terms of infected and hospitalized especially at the final time (red curves assess a negative Variation
of Infected and Hospitalized, while green curve assess a positive Variation of Deceased, cf. (31)e(33).

3.2. Minimization of infected

In this section we present the results of the optimal vaccination policy minimizing infected individuals during the whole
time frame (cf. (10)):

J IðxÞ ¼
X
i2NA

ZTf
0

IiðtÞ2 dt:
In Fig. 8 we report the history of the cost functional in terms of the number of iterations: we observe a reduction of the
number of infected individuals from 58.5 thousands (initial value) to 55.5 thousands (final value). The optimization process
stops after 405 iterations.

From Figs. 9 and 10 we can extract the main features, in terms of age-class dose repartition, of the optimal vaccination
campaign for minimizing infected. The reduction implied by the cost functional is guided by an unattended decrease in the
amount of doses to the youngest and to the oldest age-classes against an increase of the amount of doses in the (20 ÷ 59) age-
class. This result can be interpreted in light of the contact matrix weighted by the age-dependant susceptibility to the virus
(Fig. 11). This matrix has been computed multiplying each column of the POLYMOD contact matrix by the age-dependant
susceptibilities ri. In this way each row takes into account the absolute amount of high-infection-risk contacts that one in-
dividual belonging to a specific age class has with individuals belonging to the others. Then, its values has been normalized
through the maximum norm. In particular, the two rows corresponding to the age classes (20 ÷ 39) and (40 ÷ 59) achieve the
highest values, meaning that individuals ageing (20 ÷ 59) are the ones having the highest probability of transmitting the virus
heterogeneously across ages. Fig. 10 highlights how almost the totality of the delivered doses has to be administered at these
age classes to the detriment of (0 ÷ 19), (60 ÷ 79) and (80þ) classes. One may notice that the entry ((0 ÷ 19), (0 ÷ 19)) in the
Fig. 2. Cost functional evolution for the case of minimization of deceased. Evolution of the cost functional during the optimization process. X-axis reports the
iterations of the scheme.
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Fig. 3. Optimal control variables minimizing deceased. Weekly amount of doses delivered for each age-stratification.

Fig. 4. Age-distribution of doses in the optimal policy minimizing deceased. Percentage repartition of doses across ages in the optimal solution (left) and in the
initial policy (right).

Fig. 5. Absolute value of the Variation of Deceased measure (LD).
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weighted contact matrix is also relatively high with respect to the others, even though vaccinations to this age-stratification
are not promoted by the optimal controlled solution.

Finally, let us notice that, similarly to the previous section, also in this case the optimal solution obtained by minimizing
infected does not necessarily imply the minimization of deceased. Indeed, without protecting from the illness those who are
more prone to severe outcomes, this optimal solution prescribes an increase in terms of deaths of more than 1750 units. On
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Fig. 6. Absolute value of the Variation of Infected measure (LI).

G. Ziarelli, L. Dede’, N. Parolini et al. Infectious Disease Modelling 8 (2023) 672e703
the other hand, hospitalized, which are strictly linked to the infected individuals, are correspondingly reduced even though
their reduction was not directly contemplated directly in the definition of the cost functional (see Figs. 12e15).

3.3. Minimization of hospitalized

In this section we collect the results of the optimal vaccination policy obtained by minimizing hospitalized individuals
during the period of interest (cf. (11)):

J HðxÞ ¼
X
i2NA

ZTf
0

HiðtÞ2 dt:
After 1947 iterations the algorithm stops satisfying the prescribed stopping criterion. During the whole time horizon, the
amount of hospitalized is reduced by 55.3 thousands individuals. This is an important remark, since during the first two
waves of COVID19 epidemic one of the greatest issues was dealing with the limited amount of ICUs (Intensive Care Units) in
hospitals and the extremely high level of beds occupancy due to people with respiratory symptoms linked to SARS-CoV-2.
Reducing hospitalized individuals is one of the main objectives to be taken into account assuming a social perspective.
Fig. 16 shows which is the optimal strategy to reduce the amount of hospitalized individuals. It is suggested to increase the
amount of doses to administer to the age stratification (20 ÷ 59), without neglecting the administrations to the over 60s, but
reducing the administrations to the (0 ÷ 19). Indeed, the age-classes to which an higher absolute amount of doses has to be
provided are the ones more prone to host the virus in a more severe way. This policy is confirmed by Fig. 17 representing the
age repartition of doses.

Lastly, we note that the optimal solution that reduces the most the amount of hospitalized individuals during the whole
time frame is actually a solution increasing the amount of deceased (see Figs. 18e20). Indeed, in the optimal policy the
amount of doses delivered to the most fragile people (the elderly) is slightly reduced with respect to the ones administered in
the initial guess. Moreover, even thoughwe have reduced the total amount of hospitalized, this solution does not improve the
amount of infected with respect to the solution reducing the infectious in the interval of interest (Fig. 9). Although the total
amount of infected in this solution is increased with respect to the one minimizing infectious, the value of hospitalized is
lower due to the different repartition of infected across ages (notice that in (11) the infected belonging to different age-classes
are weighted differently by age).

3.4. Optimal solution with different initial guesses

As the optimal control problem (13) is solved via a Projected Gradient Descent method, the solution is typically a local
minimum and it is influenced by the specific choice of the initial policy. In view of this remark, in the present section we
investigate the dependence on the chosen initial policy of the solution of (13). Particularly, we compare the results obtained in
the previous sections (where the initial guess was set equal to the actual implemented national vaccination campaign) with
the ones obtained starting from a different initial guess. The new initial guess that has been considered as starting policy is the
homogeneous allocation of doses proportionally to the populosity of each age stratification. Specifically, let Nweek(d) be the
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Fig. 7. Absolute value of the Variation of Hospitalized measure (LH).

Fig. 8. Cost functional evolution for the case of minimization of infected. Evolution of the cost functional during the optimization process. X-axis reports the
iterations of the scheme.

Fig. 9. Optimal control variables minimizing infected. Weekly amount of doses delivered for each age-stratification.
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total amount of doses that have been distributed during the week at which day d belongs. Then, the initial guess of the
amount of doses to be distributed each day of the week correspondent to d can be computed as
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Fig. 10. Age-distribution of doses in the optimal policy minimizing infected. Percentage repartition of doses across ages in the optimal solution (left) and in the
initial policy (right).
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Uð0Þ
1;i ðdÞ ¼

NweekðdÞ
7 ðdaysÞ

Ni

N
¼ NweekðdÞ

7
NiP

k2NA

Nk
; cd2I; i2NA: (34)
Fig. 21 shows the comparison between infected individuals generated by the optimal policy starting from the DPC-
oriented policy (DPC-IG) and the one from the homogeneous doses initial guess (Homogeneous-IG). Instead, Fig. 22 dis-
plays the comparison of deceased between the two optimal solutions minimizing deceased, and lastly, Fig. 23 the trends of
hospitalized when optimizing hospitalizations. The states have been simulated in a supplemental interval of 40 days,
considering the calibrated values of the transmission rates and assuming that no first-dose administrations are allocated to
each age class after the June 1st, 2021, this in order to have fair comparison among the solutions. The optimal policies
retrieved in each case, together with their specific initial guesses (dashed lines), are presented in Figs. 24e26. For the solution
optimizing the number of infected individuals, one can notice from Fig. 21 that the two solutions overlap almost completely
during the whole time interval. However, the respective policies in Fig. 24 do not coincide: they both tend to allocate more
than the 80% of the weekly available doses to individuals of age comprised between 20 and 59, neglecting completely the
doses to administer to the older and the younger age-classes. However, the two solutions are actually different starting from
April to the end of the simulation considering the doses to allocate to the (60 ÷ 79) years old. Hence, the solution starting with
the DPC-based initial guess stops at a local minimumwith non-zero administrations to this age-class; this is probably due to
the influence of the chosen initial guess. On the other hand, the solutions minimizing deceased agree in administering more
doses to the (80þ) category, as we previously commented in Section 3.1 (see Fig. 25), although the curves of the optimal
policies keep the same trend of the initial guesses which are different from the two simulations. The (Homogeneous-IG)
optimal solution starts from a value of total deceased of 106244 and reduces deceased to the optimal value of 102657, whilst
the other starts with an IG value of 103000 up to 102213 deceased. Therefore, the trend suggested by the initial policy
proportional to the populosity of the compartment generate an higher reduction of deceased with respect to the initial guess,
although the DPC-oriented one reaches an improved optimal value in terms of absolute amount of deceased. Finally, the
solutions for the minimization of hospitalized (Figs. 23 and 26) concur in increasing the amount of doses to the (20 ÷ 59)
accordingly to the specific trend of the initial guess, and decreasing allocations corresponding to the other age-classes (see
Figs. 19-20 ).

However, the optimal policy starting from homogeneous initial guess allocates more doses to the over 80 with respect to
the initial guess. This is not unexpected since individuals belonging to this age-class are the ones more prone to contract the
disease in its most severe form, and so they require hospitalization more often than the other age-states. Hence, in the
hospitalized-reduction case the social interactions responsible for the spread of infections and age-dependent frailties are
two fundamental components that do not prevail with each other and have to be both taken into account during the
administration process.

Summarizing, starting from different initial guesses, the optimal solutions return the same minimization values when
minimizing infected and hospitalized, while there is a significant difference of about 444 deaths in the case of minimizing
deceased. On the other hand, in all cases the optimal policies are different confirming the local nature of the optimization
method used (PGD) and the impact of the initial guess. However, the increasing and decreasing trends by age of the vaccine
doses in the optimal solutions are preserved in the case of minimization of the infected and the deceased, while for the
hospitalized the doses to the elderly are different between the two solutions (increasing doses for the homogeneous solution
with respect to the initial policy and decreasing the same amount for the solution starting with the DPC-oriented policy).
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Fig. 11. Normalized contact matrix weighted by age-dependant susceptibilities ri.

Fig. 12. Absolute value of the Variation of Deceased measure (LD).

Fig. 13. Absolute value of the Variation of Infected measure (LI).
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Fig. 14. Absolute value of the Variation of Hospitalized measure (LH).
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3.5. Optimal solution subject to different initial reproduction numbers

In this sectionwe consider different scenarios where the constraints on the specific amount of doses administered in Italy
in the first half of 2021 has been relaxed. In addition, we fixed the transmission rate during the whole time frame, the value
having been selected so to deal with paradigmatic values of the initial reproduction numbers (i.e. smaller, slightly larger,
larger than 1). Specifically, the right-hand side in constraint (6) is a constant function of time, imposed at the constant value of
Nweek ¼ 2.1 millions doses per week, which is plausible approximation of the average amount of doses administered in Italy
when the sanitarian capacity has reached its maximum. Moreover, following the scenario-analyses proposed in (Giordano
et al., 2021), we fix the transmission rate during the whole time frame at three different values in order to achieve three
different initial reproduction numbers, i.e. R0 ¼ f0:72;1:01;1:30g. In this way we consider optimal policies in presence of a
minor epidemic (Case 1, R0x0:7), at the bifurcation value (Case 2, R0;x1) and in presence of a major outbreak (Case 3, R0;

x1:3). The values of the transmission rate corresponding to the three reproduction numbers have been computed from the
definition of the initial reproduction number for the SIRDVW model, that is

R0d
b

g
: (35)
Each scenario has been simulated starting from three different initial guesses, representative of possible different ap-
proaches to the vaccination campaign.

C IG1: each age class receives the proportion of total doses correspondent to the proportion of population of the same
age-class on the total, i.e.

Uð0Þ
1;i ðdÞ ¼

1
2

Nweek

7 ðdaysÞ
Ni

Nt
¼ Nweek

14
NiP

k2NA

Nk
; cd2I; i2NA: (36)
The total amount of doses are halved between first and second administrations. This explains the coefficient 12 appearing in
(36) (and in (37)).

� IG2: the amount of doses assigned to each age-class are proportional to the correspondent Infectious Fatality Rate, i.e.
688



Fig. 15. Cost functional evolution for the case of minimization of hospitalized. Evolution of the cost functional during the optimization process. X-axis reports the
iterations of the scheme.

Fig. 16. Optimal control variables minimizing hospitalized. Weekly amount of doses delivered for each age-stratification.

Fig. 17. Age-distribution of doses in the optimal policy minimizing hospitalized. Percentage repartition of doses across ages in the optimal solution (left) and in
the initial policy (right).
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Uð0Þ
1;i ðdÞ ¼

1
2

Nweek

7 ðdaysÞ
IFRi
IFRt

¼ Nweek

14
IFRiP

k2NA

IFRk
; cd2I; i2NA; (37)
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Fig. 18. Absolute value of the Variation of Deceased measure (LD).
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C IG3: we deal with a total amount of first doses administrations as a square wave with phase equal to three weeks and
peak equal to the total weekly amount of doses. In each age class we distribute the amount of doses proportionally to
the populosity as in IG1, i.e.

Nsw;dosesðtÞ ¼
�
Nweek t2½21 ð2kÞ;21 ð2kþ 1ÞÞck2ℕ; 0 � t � Tf ;
0 t2½21 ð2kþ 1Þ;21 ð2ðkþ 1Þ ÞÞck2ℕ; 0 � t � Tf ;

Uð0Þ
1;i ðdÞ ¼ Nsw;dosesðdÞ

Ni

Nt
; cd2I; i2NA:

(38)

The amount of second doses is analogously a square wave in counter phase with respect to the amount of first doses.
Firstly, we compare the solutions employing the initial guess IG1. As for the minimization of infected (refer to Figs. 27 and

30) the optimal solutions concur in reducing the amount of administrations to the oldest (over sixties) and to the youngest
(under twenties) age-classes. Moreover, as far as the initial reproduction number increases, the amount of administrations
decreases. However, the amount of doses tends to increase with time as far as the outbreak runs out. In presence of a severe
outbreak (Case 3, R0 ¼ 1:3), the optimal vaccination roll-out indicates to administer over the 60% of doses to the (20 ÷ 39)
age-classes, and the remaining part to the (40 ÷ 59), leading to the same conclusions of Subsection 3.2. However, the amount
of doses allocated to the (20 ÷ 39) decreases with the depletion of the epidemic. In this case, with the optimal administrations
the solution reaches a peak of infected which is dampened of approximately the half with respect to the initial guess, and it is
advanced of nearly 23 days (see Fig. 27). Instead, considering the minimization of deceased (Figs. 28 and 31) the optimal roll-
out suggests to decrease the administrations to the (0 ÷ 19) and increase the amount of administrations to the oldest ones.
However, in case of a sever outbreak a significant amount of allocations is associated to the (20 ÷ 39) and to the (40 ÷ 59),
meaning that in this case it is difficult to contain the amount of deaths without reducing the spread of the disease carried out
by the socially active population. This result is unexpected, since the amount of doses distributed to those age-stratifications
deficits the allocations to the most fragile, i.e. the over eighties. The optimal solutions related to the severe outbreak allows to
reduce deaths in the initial solution of nearly 23 thousands units in the major outbreak case, 8 thousands in the bifurcation
one and almost 1.8 thousands in the case of a minor outbreak. Concerning the minimization of hospitalized (Figs. 29 and 32)
in the three cases the optimal vaccination campaigns agree in allocating the majority of available doses to the (20 ÷ 59) and to
the elderly as in Subsection 3.3. However, the administrations to the most socially active population (20 ÷ 59) increases with
the initial reproduction number. With the optimal solution the evident peak of hospitalizations of the initial guess in the case
of amajor outbreak is anticipated of nearly twenty days, whilst in the case of a minor outbreak the different vaccination policy
does not lead to significant reduction in the curve of hospitalizations.

We now consider the initial guess IG2. As a general remark, we expect that policies maximizing the amount of doses to
those who are more likely to contract the disease with severe symptoms, as the IFR-based initial guess IG2, is closer to the
solution minimizing deceased with respect to the former. We first focus on the case of minimization of infected (see Figs. 33
and 36), and we notice that the optimal policies consists in diminishing the amount of doses to the over sixties, increasing the
(20 ÷ 59)'s allocations, and that the growth (respectively reduction) amounts depends on the respective value of the initial
reproduction number. Indeed, administrations to the (20 ÷ 59) age classes increase as far as the reproduction number grows.
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Fig. 19. Absolute value of the Variation of Infected measure (LI).

Fig. 20. Absolute value of the Variation of Hospitalized measure (LH).

Fig. 21. Evolution of infected of the two solutions obtained minimizing infected starting from the two distinct initial guesses.
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Fig. 22. Evolution of deceased of the two solutions obtained minimizing deceased starting from the two distinct initial guesses.

Fig. 23. Evolution of hospitalized of the two solutions obtained minimizing hospitalized starting from the two distinct initial guesses.

Fig. 24. Weekly amount of doses delivered for each age-stratification in the solutions minimizing infected starting from DPC-IG and Homogeneous-IG.
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Fig. 25. Weekly amount of doses delivered for each age-stratification in the solutions minimizing deceased starting from DPC-IG and Homogeneous-IG.

Fig. 26. Weekly amount of doses delivered for each age-stratification in the solutions minimizing hospitalized starting from DPC-IG and Homogeneous-IG.

Fig. 27. Evolution of infected prescribing the initial and the optimal vaccination policies minimizing infected starting from IG1 with three different R0 .
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In the case of a severe outbreak with the optimal solution we attain an early peak of nearly 20 days, and also the value at the
peak has been lowered up to 451 thousands. On the other hand, the optimal allocation of doses forminimizing deaths tends to
increase the amount of first doses to the (20 ÷ 59) to the detriment of the over sixties. Indeed, in the initial policy admin-
istrations to individuals in the (20 ÷ 39) and (40 ÷ 59) age-classes have been almost completely neglected due to the
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Fig. 28. Evolution of deceased prescribing the initial and the optimal vaccination policies minimizing deceased starting from IG1 with three different R0 .

Fig. 29. Evolution of hospitalized prescribing the initial and the optimal vaccination policies minimizing hospitalized starting from IG1 with three different R0 .
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proportionality of doses with the fIFRigi. The only optimal solution which significantly decreases the amount of deceased is
the one related to the severe outbreak (reduction of nearly 4330 deaths). Lastly, for what concerns the optimal adminis-
trations forminimizing hospitalizations (see Figs. 34e38) the solution confirms that a sufficient amount of doses (almost 68%)
has to be allocated to the (20 ÷ 59). In this way, for the case of a major outbreak there is the possibility of anticipating and
reducing the peak of nearly twomonths. Actually, in the case of a minor outbreak the algorithm hardly moves from the initial
guess, which seems to be almost optimal.

Finally, we run the numerical tests employing the initial guess IG3. From Figs. 39e41 we notice that all the optimal
vaccination campaigns regardless of cost functionals tend to retain the squarewave behavior of the initial guess. However, the
absolute amount of doses is different depending on the cost functional and on the value of the initial reproduction number.
Specifically, the optimal policy obtained from the minimization of infected suggests to allocate more doses to the (20 ÷ 59),
and in the case of a severe outbreak to privilege administrations to the (20 ÷ 39) with almost 700 thousands doses weekly (see
Fig. 39). On the other hand, the optimal solution from the minimization of deceased increases the amount of administrations
to the most fragile, and even to the (20 ÷ 39) in the case of a major outbreak, in agreement with what has been previously
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Fig. 30. Weekly amount of doses delivered for each age-stratification in the solutions minimizing infected starting from IG1 and considering the three different
outbreaks.

Fig. 31. Weekly amount of doses delivered for each age-stratification in the solutions minimizing deceased starting from starting from IG1 and considering the
three different outbreaks.
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remarked (Fig. 40). Finally, the optimal vaccination campaign for minimizing hospitalisations counsels to administer more
doses to the over eighties and to the (20 ÷ 59), as far as the initial reproduction number grows. The solution minimizing
hospitalized individuals is the one closer to the initial policy with respect to the other cases starting with the initial square
wave policy (see Figs. 42e44 ).

In Table 1 we report, for different values of R0 and for different choice of the initial guess, the reductions of infected,
deceased and hospitalized individuals with respect to the corresponding value obtained from the initial guess. We notice that
as far as the reproduction number increases the projected gradient method is able to retrieve optimal policies corresponding
to relevant improvement in the compartments to be minimized.
4. Discussion and conclusions

During epidemic waves, similar to the COVID19 pandemic, preventive medical and non-pharmaceutical interventions can
significantly improve the epidemiological scenario, e.g. reducing the amount of infections or the associated deaths in case of
severe illness. In particular, vaccinations for SARS-CoV-2 have confirmed their fundamental role played both in alleviating
transmission effects and in easing severe symptoms. When the resources are stockpiled, it is of paramount importance to
consider the complexity of the scenario where the problem is set, for instance embodying spatial or social heterogeneities. In
this work, we presented an epidemic age-stratified compartmental model and formulated an optimal control problem for
obtaining the vaccine distributions across ages, with the aim of minimizing specific goals. The model governing the optimal
control problem is an age-stratified model, where the six compartments are split into five age-classes. It incorporates all the
necessary features to effectively deal with the COVID19-vaccination campaign, and it can consistently incorporate the
available data from DPC (Open acces DPC dataset, 2020, 2021). We decided to model the age dependency since the different
reactions to the disease and the vaccine efficacy are mainly dependent on age for several diseases, including COVID19. Hence,
it is natural to establish a vaccination plan on the basis of age. For instance, the Italian vaccination plan in 2021 was geared
695



Fig. 32. Weekly amount of doses delivered for each age-stratification in the solutions minimizing hospitalized starting from starting from IG1 and considering the
three different outbreaks.

Fig. 33. Evolution of infected prescribing the initial and the optimal vaccination policies minimizing infected starting from IG2 with three different R0 .
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towards age distribution, giving special priority to the frailest individuals, the elderly, and to those presenting comorbidities.
Following the Pontryagin-KKT approach, we derived the optimal control formulation in order to minimize infectious,
deceased or hospitalized caused by the disease. Finally, we detailed the iterative numerical strategy (the projected gradient
method) employed for the solution of the minimization problem.

After the introduction to the abstract mathematical framework, we adapted the optimal control problem to the Italian
national level during the first six months of 2021, in order to provide guidelines to orient the vaccination campaign in this
particular setting. It is worth remarking that the present study is not meant as a retrospective analysis of the actually
implemented vaccination planning during COVID19 emergency, rather as a validation of a mathematical support tool to be
possibly adopted in future emergency scenarios. The underlying assumption over the whole study is that there is no vaccine
hesitancy, i.e. people are not mistrustful of the vaccine.

A first set of optimal vaccination problems has been solved by employing as initial guess for the minimization algorithm
the vaccination campaign actually implemented in Italy during the first six months of 2021. The resulting optimal vaccination
policies for reducing the amount of infected individuals suggest to administer more doses to people ageing (20 ÷ 59), reducing
the other age-classes. This result can be explained in light of the contact matrix weighted by age-dependent susceptibility,
and assessing that individuals in these age-classes are the ones more active from a social perspective. However, this strategy
differs from the one aimed at minimizing the number of deceased individuals, which indeed requires to increase the amount
of doses for the over eighties, who are the ones more prone to contract the disease in a more severe way. Finally, the solution
minimizing the hospitalized individuals tends to increase the amount of doses to the age-class (20 ÷ 59) as in theminimizing-
infected case.
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Fig. 34. Evolution of deceased prescribing the initial and the optimal vaccination policies minimizing deceased starting from IG2 with three different R0 .

Fig. 35. Evolution of hospitalized prescribing the initial and the optimal vaccination policies minimizing hospitalized starting from IG2 with three different R0 .
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The second set of simulations aimed at studying the impact of the initial guess for the minimization scheme on the results
of the optimal control problem. In particular, we compared the vaccination policies from the previous set of experiments with
the policies obtained by employing an initial guess that allocates to each age class an amount of doses proportionally to the
numerousness of each age-compartment. In this case, we qualitatively obtained the same guidelines for the vaccination policy
that we obtained in the first set of experiments, though the dependence of the solution on the initial guess (typical of
gradient-based methods) clearly stands.

The last set of simulations explored the optimal vaccination policy under different levels of severity of the outbreak. In
particular we assumed to deal with constant total amount of delivered doses in each week and constant value of the
transmission rate, this latter dictating the severity of the outbreak. In this context, the introduced optimization framework
was able to achieve significant improvements with respect to the initial policies especially in themajor outbreak case, i.e.with
a higher value of the initial reproduction number. Moreover, the optimally controlled solutions prescribe different optimal
policies considering the different reproduction rates, though, as expected from the non-convex nature of the minimization
problem, the output of the optimization algorithm depends on the choice of the initial guess.
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Fig. 36. Weekly amount of doses delivered for each age-stratification in the solutions minimizing infected starting from IG2 and considering the three different
outbreaks.

Fig. 37. Weekly amount of doses delivered for each age-stratification in the solutions minimizing deceased starting from IG2 and considering the three different
outbreaks.

Fig. 38. Weekly amount of doses delivered for each age-stratification in the solutions minimizing hospitalized starting from IG2 and considering the three
different outbreaks.
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The present work is not devoid of limitations. First, the employed optimization framework can be adopted only once the
story of the total amount of vaccinations has been previously fixed. A possible approach could be to leverage on Model
Predictive Control theory (Rawlings and Risbeck, 2017), allowing to adapt the optimal trajectory with new updates coming
directly from new available data. A second limitation is related to our epidemiological model that only considers age-
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Fig. 39. Evolution of infected prescribing the initial and the optimal vaccination policies minimizing infected starting from IG3 with three different R0 .

Fig. 40. Evolution of deceased prescribing the initial and the optimal vaccination policies minimizing deceased starting from IG3 with three different R0 .
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dependency, neglecting working categories and without distinguishing the different exposure contexts in which contacts
happen and that present different transmission risks. This reflects in the contact matrix and in the transmission rates, that
could be consequently adapted and modified. Another weak point relies in the amount of assumptions that has been made in
terms of the control variables, such as the imposition of second doses on the basis of the firsts after a fixed amount of time.
This hypothesis can be easily relaxed, at the expense of increasing the computational complexity of the algorithm, by allowing
second doses to be independent control variables, and by adding an additional timing constraint between the control vari-
ables. Anyway, our assumption is in accordancewith the vaccination policies implemented in several countries which decided
to prescribe the second doses after a fixed number of days from the first inoculation. Finally, we focus on the uncertainty of
the data adopted as a reference during the optimization process or during the calibration phase. Despite the data provided by
the Italian Dipartimento di Protezione Civile can be straightforwardly analyzed and interpreted, and are available on a daily
basis, they are obviously affected by uncertainty arising from the Italian narrow testing campaign, from reporting delays, the
diffuse general mistrust in testing and other common sources of errors. In particular, data have no specifications on the
characteristics about ages and comorbidities of most severe cases in hospitals, such as in ICUs and they do not specify on the
prevalence of asymptomatic and symptomatic cases. The latter information could be fundamental in order to keep
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Fig. 41. Evolution of hospitalized prescribing the initial and the optimal vaccination policies minimizing hospitalized starting from IG3 with three different R0 .

Fig. 42. Weekly amount of doses delivered for each age-stratification in the solutions minimizing infected starting from IG3 and considering the three different
outbreaks.

Fig. 43. Weekly amount of doses delivered for each age-stratification in the solutions minimizing deceased starting from IG3 and considering the three different
outbreaks.
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Fig. 44. Weekly amount of doses delivered for each age-stratification in the solutions minimizing hospitalized starting from IG3 and considering the three
different outbreaks.

Table 1
Amount of saved infected, deceased and hospitalized individuals with respect to the corresponding value obtained from the initial guess (for different values
of the initial reproduction number and for different choice of the initial guess).

IG1 IG2 IG3

Minimizing J IAverage infected saved R0 ¼ 0:72 5623 8711 2003
R0 ¼ 1:01 29902 53140 20080
R0 ¼ 1:30 158184 388583 147602

Minimizing J DTotal Deceased saved R0 ¼ 0:72 2175 30 250
R0 ¼ 1:01 6051 469 1732
R0 ¼ 1:30 22671 4330 21156

Minimizing J HAverage hospitalized saved R0 ¼ 0:72 1767 325 57
R0 ¼ 1:01 7602 11242 1423
R0 ¼ 1:30 42444 116299 39598

G. Ziarelli, L. Dede’, N. Parolini et al. Infectious Disease Modelling 8 (2023) 672e703
uncertainty under control, since the pattern of asymptomatic infections is the one that mainly contributes to herd immunity
as well as to transmission of infections (Subramanian et al., 2021). One last cause of the uncertainty on the parameters is the
difficulty in unquestionably attributing the broad spectrum of symptoms caused by COVID-19 to the disease itself. As a
consequence of the previous discussion, wide uncertainty regions for both deceased and infected come out after the Bayesian
MCMC calibration stage (see Section S1 for quantitative measures). We try to maintain under control the uncertainty
propagating on the parameters by calibrating themodel only on the amount of certified deaths ascribed to COVID19, which is,
in our opinion, the most reliable datum. One possible strategy to address the issue of uncertainty is to handle model pa-
rameters using the posterior distributions reconstructed through the MCMC and to treat the optimization problem as a
Stochastic Optimal Control problem. From a numerical perspective, optimization can be managed using the robust versions
SA or SAA algorithms introduced in (Nemirovski et al., 2009).

In conclusion, this work introduced an optimal control framework to deal with the optimal allocations of vaccines against
SARS-CoV-2 under different scenarios of epidemic transmission and vaccine availability. We have tested the proposed
framework both in a realistic scenario (vaccination campaign in Italy in the period January 1st, 2021 to June 1st, 2021) and in
artificial ones, paradigmatic of different level of severity of the outbreak. In all these contexts we analyzed the mechanisms
interlacing our optimal age-prioritization allocation, the social interaction between age classes and the susceptibilities to
infection depending on age. On one hand, we concluded that to achieve themaximum effectiveness (in terms of minimization
of deceased, infected or hospitalized) requires non-trivial age prioritization vaccination strategies. On the other hand, besides
inherent limitations, the proposed optimal control framework represents a useful tool to provide a benchmark for comparing
different vaccine roll-out strategies.
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