
Runtime Management of Artificial Intelligence

Applications for Smart Eyewears

Abednego Wamuhindo Kambale, Hamta Sedghani, Federica Filippini,
Giacomo Verticale, Danilo Ardagna

October 31, 2023

Abstract

Artificial Intelligence (AI) applications are gaining popularity as they
seamlessly integrate into end-user devices, enhancing the quality of life.
In recent years, there has been a growing focus on designing Smart Eye-
Wear (SEW) that can optimize user experiences based on specific usage
domains. However, SEWs face limitations in computational capacity and
battery life. This paper investigates SEW and proposes an algorithm
to minimize energy consumption and 5G connection costs while ensur-
ing high Quality-of-Experience. To achieve this, a management software,
based on Q-learning, offloads some Deep Neural Network (DNN) computa-
tions to the user’s smartphone and/or the cloud, leveraging the possibility
to partition the DNNs. Performance evaluation considers variability in 5G
and WiFi bandwidth as well as in the cloud latency. Results indicate ex-
ecution time violations below 14%, demonstrating that the approach is
promising for efficient resource allocation and user satisfaction.

keywords Smart glasses, Smart Eye-Wear, Reinforcement Learning, Edge
Computing, Task offloading

1 Introduction

Nowadays Artificial Intelligence (AI) applications are ubiquitous. They are used
in different fields (e.g., healthcare, agronomy, entertainment, etc.) and have
produced promising results. For instance, in healthcare, AI algorithms help in
reducing the time taken for diagnosis and improving patient outcomes [1,2]. By
leveraging AI, farmers can make informed decisions to enhance crop performance
and minimize resource wastage [3]. Several companies are working to enable
different user devices (e.g., smartphones, smart glasses) and embedded systems
to run AI models to provide novel functionalities [4]. These AI applications are
often image-based and frequently process Deep Neural Networks (DNNs) with
many parameters. The ultimate goal in most cases is to provide applications
with real-time processing capabilities.

1

Despite the effort that has been devoted towards increasing the memory and
computational power of IoT and edge systems, there are still some limitations
regarding battery capacity and computational power when running complex AI
models on device [5, 6]. In some situations, it is possible to run all the DNN
layers on a device, while in other cases this is unfeasible due to computational
and memory constraints. In both scenarios, the battery capacity might be a
limitation that negatively impacts the user experience.

Some studies [7, 8, 9] have proposed DNN partitioning as an approach to
tackle the aforementioned problems. This technique consists of cutting the
DNN at different layers, so that different partitions can be executed on different
devices. The DNN partitioning provides different configurations among which
the system can switch to provide good performance. Smart Eye-Wears (smart
glasses) and virtual/augmented reality applications are a novel use case. The
Smart Eye-Wear (SEW) acquires information from its environment, runs a part
of the DNN, and offloads the remaining computation to the mobile phone and
the cloud. In this context, the problem is to determine which configuration to
run in each time-interval to guarantee a good user experience in response to
networks bandwidth or cloud latency variations.

This paper proposes a Reinforcement Learning (RL)-based runtime opti-
mization framework for distributing the computation of AI applications among
different computing devices, minimizing the energy and 5G network costs from
the user’s perspective and the end-to-end latency to guarantee a good user ex-
perience. We performed an evaluation of the proposed solution by considering
network bandwidth and cloud latency variability. Results indicate execution
time violations below 14%, demonstrating that the approach is promising for
efficient resource allocation and user satisfaction.

This paper is organized as follows. Section 2 provides an overview of related
work on DNN partitioning, resource management, and computation offloading,
including studies that employ RL-based approaches. Section 3 describes the
scenario considered in this research. Section 4 defines the problem of enhancing
AI performance on SEW as a Markov Decision Process (MDP), providing also
its RL-based formulation. In Section 5, the experimental setup is presented,
and the results of the conducted experiments are discussed. Finally, Section 6
concludes the paper and presents future perspectives.

2 Related Work

With the usage of smart devices, AI applications are being integrated in almost
every aspect of life, but big challenges arise when they are deployed on resource-
constrained systems with limited computational and energy capacity. To solve
this issue, researchers have investigated the possibility of partitioning DNNs and
offloading resource-hungry computation to the edge or the cloud. Accordingly,
authors in [10] introduce Neurosurgeon, a collaborative edge-cloud computing
approach based on layer-granularity model partitioning, which deploys neural
networks to mobile devices and cloud servers and adapts the model partitioning

2

based on network bandwidth or energy consumption. Similarly, [11] proposes
an algorithm to find the optimal partitioning point at layer-granularity level in
multi-devices and multi-edge servers setup, considering the minimum cost for
each edge server corresponding to each mobile device. They used a partition
point retain algorithm to reduce the search spaces and run a procedure to find
the optimal partition point.

Furthermore, many researchers have intensively investigated resource man-
agement and task offloading to enable a fair distribution among different entities
and avoid paying high costs to guarantee reasonable performance. The study
in [12] presents a multi-user and multi-server setup and provides an adaptive
multi-objective algorithm to minimize the application power consumption, re-
sponse time, and cost by relying on a two-tier matching game to solve the
underlying resource management optimization problem. Differently from pre-
vious studies, [13] investigated DNN model partitioning and offloading schemes
for multiple users and developed an evolutionary pricing policy and a slot model
to plan the offloading of DNN subtasks efficiently.

Recently, RL has been widely used for runtime resource management, in-
tending to optimize a specific objective function that depends on the problem
definition and the application requirements. For instance, researchers in [14] de-
veloped a task-offloading algorithm based on deep reinforcement learning (DRL)
considering logical and data dependency between user application subtasks. The
algorithm considers a multi-user and multi-edge setup and adapts well to larger-
scale problems, but it ignores the server workload variation, even though a single
edge server serves multiple edge devices. Authors in [15] formulated the fog-
cloud task-offloading problem as an MDP, intending to optimize the average
resource utility considering different metrics: the task execution time, the total
service latency, the transmission electric power, and the task priority. They
used a DRL-based algorithm to solve the defined MDP.

RL-based resource management has also been expanded to Metaverse ap-
plications: authors in [16] proposed an approach to decompose the Metaverse
applications in subtasks that can run separately at different parts of the system
infrastructure. They also designed a DRL framework to capture the real-time
properties of Metaverse applications and learn an optimal policy to manage the
execution of those applications at different tiers to maximize the performance
of the entire Metaverse system.

In this work, we propose a three-tier DNN partition model at layer gran-
ularity and provide a Q-learning-based runtime offloading scheme considering
the variability in the 5G, WiFi throughput, and cloud latency. The novelty
of this work is that it solves the runtime management of the AI tasks from
the user’s perspective to enhance the SEW battery lifetime and reduce the 5G
cost, considering the variability at three different system levels while keeping
the end-to-end execution time within a reasonable range to ensure a good user
experience. To the best of our knowledge, this is the first paper addressing this
problem.

3

3 Reference Scenario

In this section, we present the reference scenario considered throughout our
work to evaluate the approach and the results that we will describe in the
next sections. We consider a simple setting where the SEW device runs an AI
application comprising a DNN that can perform AI tasks (object classification,
object detection, object tracking, etc.).

Figure 1: Performing AI task on the SEW, smartphone, and cloud.

The ultimate goal is to guarantee a good user experience by introducing AI
application execution time constraints. For instance, when considering a track-
ing application the application frame rate should not be lower than 30 frames
per second (fps) to guarantee enjoyability, thus the end-to-end execution time
should be lower than 33ms [17]. For Simultaneous Localisation And Mapping
(SLAM) applications, a frame rate of 15-30fps is acceptable [18] implying the
end-to-end execution time to lie between 33ms and 66ms.

Figure 1 presents the three main system entities, namely the SEW device,
the mobile phone, and the cloud server. We assume the SEW is based on
the next-generation Qualcomm System-on-Chip (SoC) and is connected to the
phone using WiFi 7, which also has a Qualcomm SoC (e.g., according to the
characteristics of the next Qualcomm SoCs, the smart glass will be based on the
Snapdragon AR2 chip while the mobile phone on Snapdragon 8 Gen 21). The
SEW device has a CPU, an AI neural engine to perform some computation, and
a battery with limited capacity power. The same applies to the mobile phone
(which includes a CPU and a GPU).

1https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-ar2-
gen-1-platform

4

The SEW acquires data from its surrounding environment and sends them to
the mobile phone. Periodically, the acquired data are sent to the mobile phone
with or without undergoing some initial processing, depending on the system
state (e.g., battery level, network quality). When the mobile phone receives
data from the SEW, it processes them through the DNN. The application exe-
cution might end at this stage if the mobile phone performs all the remaining
computations. However, as the SEW, the mobile phone might need to offload
some computations to the cloud depending on the system state, to satisfy the
system constraints and to enable a good user experience. In this case, the cloud
will perform all the remaining computations and return the results.

The system components communicate through different network domains.
The phone uses a 5G network to send data to the cloud server. This communi-
cation setup can considerably reduce the transfer delay between two connected
entities [19,20]. It is well-known that 5G mmWave systems provide large band-
width but are characterized by huge variability [21]. WiFi interference may also
occur when multiple devices exploiting it are operating on the same frequency,
leading to disruptions and variations in network throughput impacting the over-
all performance of WiFi-based systems and applications [22]. Cloud servers
also exhibit some performance variability due to their workload fluctuations,
which impacts servers queuing time and hence the AI application end-to-end la-
tency [23]. Our management system will take local decisions to cope with such
variability, but the cloud resource allocation is considered out of our control.

The DNN is characterized by different candidate partitioning points, and
this enables the SEW to execute all or part of its layers. Indeed, the SEW
can either execute the whole DNN locally or offload a part of the computation
according to the decision of a Reinforcement Learning (RL) agent running in
the phone, which considers the actual battery state and the available computing
power.

In this work, the RL agent on the mobile phone decides which DNN con-
figuration to run. We adopted the concept of configurations since the study
in [10] shows that only some partitioning points make sense from the point of
view of energy consumption and data transfers between the different system
components. The RL agent takes one action per minute or, if the time con-
straint is violated, one every 5s. The aim is to choose the configuration that
minimizes the energy consumption and the 5G connection cost while satisfying
the execution time constraints to guarantee a good user experience.

Let K denote the set of all candidate configurations. For simplicity, we
assume that every configuration κi ∈ K has three partitions, and we introduce a
new partition pi∅ to denote that nothing is executed. This establishes a clear link
between partitions and devices, so that, when the agent chooses a configuration,
we know directly which partition to execute on each layer. In particular, pi1 is
always executed on the SEW, pi2 on the mobile phone, and pi3 on the cloud server.
pij is pi∅ if nothing is executed on the device j. δidk represents the amount of

per-request data (in byte) sent between partitions, where δi12 indicates data sent
from the SEW to the smartphone and δi23 from the smartphone to the cloud.

5

If the execution occurs fully on the SEW, δi12 = δi23 = 0, and if everything is
offloaded to the cloud, δi12 = δi23 = δ0, where δ0 is the size of the input tensor.
With the knowledge of partition-device assignments, the latencies of executing
the partitions of configuration κi on the SEW, mobile phone, and cloud can
be denoted as ti1, t

i
2, t

i
3, respectively, and can be determined by profiling the

DNN [10].
The end-to-end execution time comprises the local execution time, the data-

transfer latency from the SEW to the smartphone, the smartphone execution
time, the data-transfer latency from the smartphone to the cloud, and the cloud
execution time. In this work, we will neglect the time needed to send back
the result as it is negligible compared to the execution time and data-transfer
latency. For instance, considering an object detection task, the data that are
sent back to the SEW are the labels of the objects, their bounding boxes, and
their class probabilities, whose sizes are negligible compared to the size of the
intermediate tensor that is sent.

4 Problem Definition

When the SEW runs an AI task, the decision agent determines whether this
should be fully executed on the SEW or if the execution of some DNN layers
should be offloaded to the smartphone or the cloud server. This is done by
choosing a DNN configuration. We can formulate this decision problem as the
minimization of the total processing cost:

min (αe+ c5G) τ (P1a)

subject to:

ltotal < Lmax, (P1b)

where e is the energy consumed by the SEW, computed as in [24], be-
ing the sum of the energy to run pi1 on the SEW (elocal =

∑|K|
i=1 zSEW µi

1 xi)
and the energy needed to transfer the tensor δ12 to the mobile phone (etr =∑|K|

i=1 θSEW δi12 xi/rWIFI7), zSEW is the electrical energy needed by the SEW to
perform one FLOP, and θSEW the electrical power required by its network in-
terface while sending data. µi

1 is the workload (in FLOP) of the partition pi1. x
i

equals 1 if the configuration κi is chosen and 0 otherwise. The cost c5G is given

by c5G =
∑|K|

i=1 g δi23 xi, where g is the cost for sending 1 byte of data from the
mobile phone to the cloud using the 5G connection. ltotal is the total execution

time, given by ltotal = lSEW + lphone+ lsp+ lpc+ lcloud where lSEW =
∑|K|

i=1 t
i
1 xi

and lphone =
∑|K|

i=1 t
i
2 xi represent the execution time of partition pi1 on the

SEW and pi2 on the mobile phone, respectively, lsp =
∑|K|

i=1 δ
i
12 xi/rWIFI7 and

lpc =
∑|K|

i=1 δ
i
23 xi/r5G are the time to transfer δ12 from SEW to the phone

and δ23 from the phone to the cloud. lcloud is the cloud execution time, which
depends on ti3 and the current workload on the cloud server.

6

The goal is to minimize the energy consumption e of the SEW and the 5G
connection cost c5G. In the objective function (P1a), α denotes the energy
unit price cost (measured in $/J), and τ is the control time period. This work
does not deal with the cost of the cloud service since we are trying to optimize
the parameters from the user’s perspective. The optimization of the overall
system will be the objective of future work. In the constraint (P1b), Lmax is
the maximum time latency that guarantees a good user experience.

We formulate the offloading problem as a discrete-time infinite-horizon MDP.
The easiest way to solve the MDP problem is to use dynamic programming, but
in some cases this is not possible due to the state space dimension or to the
fact that the system dynamics are unknown. Thus, we present an RL-based
approach to tackle the MDP.

An MDP can be defined by a 5-tuple ⟨S,A, P, c, γ⟩, where S represents the
(possibly infinite) set of all the possible states; A(s) denotes the finite set of all
possible actions in state s; P (s′|s, a) is the transition probability from a given
state s to a state s′ given an action a ∈ A(s); c(s, a, s′) is the immediate cost
when an action a is executed in state s and the system transits to state s′; and
γ ∈ [0, 1] is a discount factor that adjusts the importance of future costs.

We define the agent state as s = (rWIFI7, r5G, lSEW , lphone,
lcloud), where the data rates rWIFI7 and r5G, and the execution time in the
cloud lcloud are exogenous parameters that are not under the agent’s control.
Therefore, their variability is independent on the chosen actions and is simply
observed from the environment. Moreover, we assume that the phone is in light
load and there are no other tasks running on the phone and consuming resources.
On the other hand, the SEW and phone latencies, i.e., lSEW and lphone, change
according to the actions, but their value is known a priori: indeed, we can
estimate the execution times of the partitions executed on the SEW and the
smartphone for all the configurations.

If we discretize all the continuous variables with 10 values each, the state
space has a dimension in the order of 105.

The action consists in selecting a configuration. Therefore, the number of
actions equals the number of configurations, which we denote by |K|. Note that,
in some states, the agent may choose not to change the configuration selected
in the previous time window; we model this scenario by introducing an action η
that represents the do nothing choice. The set of all the possible actions A(s)
is hence given by A (s) =

{
a1, a2, . . . , a|K|} ∪ {η}.

The system dynamic is stochastic; hence, the transition probability matrix
is unknown and cannot be determined for the moment. We associate a cost
c(s, a, s′) to each triple state-action-next state. This embeds the energy cost
ce (s, a) = αe, the 5G connection cost c5G (s, a), and the penalty cex (s, a, s

′)
we pay for violating the execution time requirement (Constraint (P1b)). In a
given time slot, if the agent chooses an action different from η, the system must
be reconfigured, which induces some time overhead. Therefore, we introduce
a configuration penalty ccfg defined as ccfg = ⊮{a̸=η}, meaning that we pay a
penalty equal to 1 every time the chosen action is different from η, 0 otherwise.
Similarly, the cost cex (s, a, s

′) incurred when the system violates the execution

7

time constraint can be simply defined as cex (s, a, s′) = ⊮{ltotal> Lmax}.
We combine the different costs using a simple additive weighting approach [25],

defining c(s, a, s′) as:

c
(
s, a, s′

)
= ωe

ce
emax

+ ωcon
c5G

c5G,max
+ ωexcex + ωcfg ccfg

where ωe, ωcon, ωex and ωcfg are non-negative weights summing up to 1.
emax and C5G,max are the normalization parameters for the energy consumption
and the cost of the 5G connection, respectively.

As the system dynamic is unknown, it is impossible to solve this MDP using
traditional dynamic programming. Hence, we propose a model-free Q-learning
approach to tackle this problem. The agent stores the Q-functionQ(s, a), which
is an estimate of the expected long-term costs that result from the execution
of an action a in a state s. The agent uses these estimates to decide which
action to take at the next step. When taking an action, the agent observes the
current costs and updates these estimates over time, thus improving its policy.
Q-learning simply uses sample averages to estimate the optimal Q-function. We
consider an ε-greedy action selection approach that, at each step τ , chooses
the greedy action (i.e, aτ =a∈A(sτ) Q(sτ , a)) with probability 1 − ε, exploiting
its knowledge of the system (exploitation), whereas it picks a random action
with probability ε to enhance its knowledge of the application (exploration).
Q(sτ , aτ) is updated at the end of time step τ as shown in Algorithm 1.

Algorithm 1 Epsilon-greedy Q-learning algorithm

Require:
States S
Actions A
Cost function C
Learning rate lr ∈ [0, 1]
Discount factor γ ∈ [0, 1]
Epsilon ε ∈ [0, 1]
procedure QLearning(S, A, C, lr, γ, ε)

Initialize Q : S ×A→ R arbitrarily
Start in state s ∈ S
while Q has not converged do

Choose action using ε-greedy policy
a← ε-greedyAction(S, A, ε)
s′ ← Observe state after a ▷ Observe the new state
c← C(s, a, s′) ▷ Incur the cost
Q(s′, a)← (1− lr)Q(s, a) + lr(c+ γmin

a′
Q(s′, a′))

s← s′

end while
return Q

end procedure

The ε-greedy policy guarantees the exploration of sub-optimal actions with
low probability, while choosing the optimal action for a given state most of the
times.

8

5 Experimental Analysis

The performance evaluation of the RL agent is conducted under a scenario fea-
turing network bandwidth variability and cloud performance fluctuation. Sec-
tion 5.1 presents the experimental setup, while Section 5.2 provides the experi-
mental results obtained under these settings.

5.1 Experimental setup

We selected YOLOv5 as a representative model of DNN for SEW applications.
It employs a Convolutional Neural Network (CNN) as its backbone and includes
additional operations in its neck and head to enable object detection. Further-
more, we accommodated the constraints of SLAM applications, which require
an end-to-end execution time spanning from 33ms to 66ms [18].

We partitioned and profiled YOLOv5 to get the execution of different par-
titions on the smart glasses, the mobile phone, and the cloud. To obtain rea-
sonable values, the profiling of the DNN was conducted using real user-side
hardware, specifically the Jetson TX22 device. The execution times on the edge
side were obtained by running the docker containers on a desktop PC. Profiling
highlighted that the end-to-end execution ranges between 500ms and 1000ms
for most of the configurations, which is far away from the SEW application
requirements. This is a limitation of the currently available hardware; since we
assume that faster CPUs and GPUs will be available in the short future, we
normalized the processing times of the computational layers to comply with the
application execution time requirement and took six configurations to perform
the experiments.

Table 1 presents the parameters of those configurations. The first three
configurations represent the case where the whole DNN runs on the SEW, the
phone, or the cloud, respectively. In the fourth and the fifth configurations, the
workload is distributed on the three devices and every device executes a part of
the DNN. The last configuration represents the scenario where the workload is
distributed between the phone and the cloud.

Table 1: DNN configuration parameters

Configuration parameters

2*Config 2*δ12(MB) 2*δ23(MB) Partition 1 Partition 2 Partition 3

latency(ms) µ(MFLOPs) latency(ms) µ(MFLOPs) latency(ms) µ(MFLOPs)

1 0 0 40 17382 0 0 0 0

2 1.2 0 0 0 30 17382 0 0

3 1.2 1.2 0 0 0 0 6 17382

4 6.25 2.4 15 2987 15 7048 4 7347

5 2.4 2.4 20 5988 8 6432 2 4962

6 1.2 4 0 0 15 8042 4 9340

2https://developer.nvidia.com/embedded/jetson-tx2

9

Table 1, outlines the selected experiment configuration parameters. The ta-
ble includes information such as the sizes of transferred data δ12 and δ23 (in
MB) from the SEW to the phone and from the phone to the cloud, respectively.
Latency (measured in ms) and workload (measured in MFLOPs) for each parti-
tion on their respective devices are also presented. As already mentioned, The
first three configurations depict exclusive DNN operation on the SEW, phone,
or cloud. In the fourth and fifth setups, workload distribution across all three
devices is demonstrated, where each handles a section of the DNN. The last con-
figuration showcases workload division between the phone and the cloud. The
table also provides the latency (in ms) and the workload (in MFLOPs) of each
partition when running on specific device. The interesting characteristics of the
SEW in the experiments are the electrical energy zSEW it needs to perform one
FLOP and the electrical power θSEW required by the network interface while
sending data. According to results in [24], zSEW can be roughly estimated to
8 pJ/FLOP for the Snapdragon SoC 855 and θSEW is set to 700mW which
is the average value of the power consumption of the network interface during
data-intensive tasks like video streaming and upload or web browsing.

(a) Snapshot of the 5G trace
from 0 to 11,000 steps

(b) Snapshot of the WIFI7
trace for 3,000 steps

(c) Snapshot of the cloud la-
tency for 3,000 steps

Figure 2: Traces used for the experiments as sources of variability to the system

The RL agent implements the Q-learning algorithm with an ε-greedy policy.
We tried different values for ε, and we finally fixed ε = 0.02 for all the experi-
ments. We investigated the agent behavior with a learning rate that is initialized
to 1 and decays exponentially with the number of training steps. The action
space of the agent comprises the 6 actions that correspond to the selection of
each of the 6 configurations, plus η (DoNothing). The discount factor γ was set
to 0.99 in all experiments, and we considered an MDP with an infinite horizon.
For each experiment, we run the agent for a total of 250000 steps. We set Lmax

to 50 ms, while the weights we used are ωex = 0.9, ωe = 0.06, ωcon = 0.02 and
ωrcfg = 0.02, privileging the execution time metric.

Finally, we considered real traces [21,26] for WiFi6 and 5G. The 5G dataset
includes 11024 rows, and the uplink throughput values range between 0 and
230.75 Mbps. As an experiment takes 250000 steps to complete, we replayed the
trace after 11024 steps and, to avoid the periodicity in the trace, we performed
some operations as random shifts, insertion of random noise (± 10% of the value
at time step t) and the inversion of the trace in its middle. Figure 2a provides
a snapshot of the 5G trace for the first 11000 time steps.

10

The WiFi6 trace was collected from a simulator considering a scenario with
nine access points placed at a center of a region of 10× 10 meters, each serving
up to five devices. For each device, the WIFI6 dataset includes overall 3000
rows. We scaled up all the values between 0 and 1500 Mbps to approximate the
preconized WiFi7 throughput, and replayed the trace similarly to the 5G data.
Figure 2b provides a snapshot of the WiFi7 trace for 3000 steps.

To emulate the behavior of real-world applications, we treated the cloud
server as an M/M/1 queue, where incoming requests follow a Poisson distribu-
tion according to a widely used assumption in cloud and edge literature [27].
The cloud latency trace was obtained by drawing the cloud execution time from
exponential distributions whose mean values depend on the chosen DNN con-
figuration, according to the values reported in Table 1. A snapshot of the cloud
latency trace corresponding to running the third configuration for the first 3000
time steps is given in Figure 2c. Note that, in all experiments, we compute the
reward as the negative of the cost.

5.2 Experimental results

The plots presented in Figure 3 illustrate the outcomes obtained after training
the agent over 250000 steps. Figure 3a displays the agent reward over time
and the moving average of violations computed with a window of 1000 steps.
These plots are averages of 10 experiments conducted in parallel. During the
initial steps, the agent reward is not optimal, as it lacks knowledge of the system
dynamics. This observation is further reinforced by Figure 3b, which depicts the
execution time violations for different intervals. During the initial 2000 steps,
a higher number of violations is evident, as the agent actively explores the
configurations space to acquire system knowledge. During this phase, it selects
configurations, including those associated with significant costs. Additionally,
the reward improves with time, and after 50000 steps we can observe that the
agent has successfully learned an effective policy to maximize its reward. On
average, the violations incurred during the 250000 steps amount to 13.8%.

The plots in Figure 3c depict the energy consumption of the SEW, normal-
ized between 0 and 1, in different time intervals. The agent is observed to effec-
tively help the SEW save energy over the course of training, which is beneficial
to enhance the SEW battery lifespan. Based on the conducted experiments, the
agent demonstrates adaptability to system configurations. Moreover, the agent
exhibits the ability to save energy intermittently, which is advantageous for the
SEW performance.

6 Conclusion

In this paper, we designed an agent using the Q-learning method to manage at
runtime the execution of an AI application running on a SEW, a local smart-
phone, and possibly on cloud. Taking advantage of the DNN partitioning mech-
anism, the RL agent chooses the appropriate DNN configuration to enhance

11

(a) Reward and cumulative violation.

(b) Execution time and violation at different time steps interval.

(c) Normalized energy consumption at different time steps.

Figure 3: Experimental results with variation in the 5G, WIFI throughputs & Cloud
latency and decaying learning rate. The energy is normalized considering the maxi-
mum energy consumption of the SEW.

12

the SEW battery lifetime while guaranteeing better quality-of-experience and a
maximum tolerable latency. We investigated the behavior of the RL agent with
different sources of variability, such as 5G and WiFi throughput, and cloud
latency. The results show that our RL agent manages to learn the optimal
policy.

Future work might use HyperOpt, a bayesian tool for hyperparameter opti-
mization, to find the optimal hyper-parameter configuration, implement other
RL algorithms and compare them with the current results. Moreover, we will
consider a more real situation for the phone under heavier load and concurrently
executing multiple tasks leading to fluctuations in its execution time. Finally,
in order to assess the real performance, the trained agent will be evaluated in a
real-world environment where the parameters change dynamically.

Acknowledgment

This work has been sponsored by the EssilorLuxottica Smart Eyewear Lab.

References

[1] F. D’Ascenzo, O. De Filippo, G. Gallone, and et al. Machine learning-based
prediction of adverse events following an acute coronary syndrome (praise):
a modelling study of pooled datasets. The Lancet, 397:199–207, 01 2021.

[2] S. D. Raj and Karthiban. Applications of artificial intelligence in health-
care. In International Conference on Computer Communication and Infor-
matics (ICCCI), pages 1–2, 2022.

[3] E. Elbasi, N. Mostafa, and Z. AlArnaout. Artificial intelligence technology
in the agricultural sector: A systematic literature review. IEEE Access,
11:171–202, 2023.

[4] W. Yao. The application of artificial intelligence in the internet of things.
In International Conference on Information Technology and Computer Ap-
plication (ITCA), pages 141–144, 2019.

[5] J. Coelho and L. Nogueira. Enabling processing power scalability with
internet of things (iot) clusters. Electronics 2022, Vol. 11, Page 81, 11:81,
12 2021.

[6] O. Debauche, S. Mahmoudi, and A. Guttadauria. A new edge computing
architecture for iot and multimedia data management. Information 2022,
Vol. 13, Page 89, 13:89, 2 2022.

[7] J. Karjee, P. Naik S, and K. Anand. Split computing: Dnn inference parti-
tion with load balancing in iot-edge platform for beyond 5g. Measurement:
Sensors, 23:100409, 10 2022.

13

[8] A. Parthasarathy and B. Krishnamachari. Partitioning and placement of
deep neural networks on distributed edge devices to maximize inference
throughput. In ITNAC, pages 239–246. IEEE, 2022.

[9] N. Y. Yen, C. Yang, and C. Tsung. Partitioning dnns for optimizing dis-
tributed inference performance on cooperative edge devices: A genetic al-
gorithm approach. Applied Sciences 2022, Vol. 12, Page 10619, 12:10619,
10 2022.

[10] Y. Kang, J. Hauswald, C. Gao, and et al. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. ACM SIGPLAN Notices,
52:615–629, 4 2017.

[11] Z. Liao, W. Hu, J. Huang, and et. al. Joint multi-user dnn partitioning and
task offloading in mobile edge computing. Ad Hoc Networks, 144:103156,
2023.

[12] P. Wang, K. Li, B. Xiao, and K. Li. Multiobjective optimization for joint
task offloading, power assignment, and resource allocation in mobile edge
computing. IEEE INTERNET OF THINGS JOURNAL, 9, 2022.

[13] M. Gao, R. Shen, L. Shi, and et al. Task partitioning and offloading in
dnn-task enabled mobile edge computing networks. IEEE Transactions on
Mobile Computing, 22(4):2435–2445, 2023.

[14] B. Gong and X. Jiang. Dependent task-offloading strategy based on deep
reinforcement learning in mobile edge computing. Wireless Communica-
tions and Mobile Computing, 2023:1–12, 01 2023.

[15] V. Jain and B. Kumar. Qos-aware task offloading in fog environment using
multi-agent deep reinforcement learning. Journal of Network and Systems
Management, 31(1):7, 2023.

[16] N. H. Chu, D. N. Nguyen, D. T. Hoang, and et al. Dynamic resource allo-
cation for metaverse applications with deep reinforcement learning. In 2023
IEEE Wireless Communications and Networking Conference (WCNC),
pages 1–6, 2023.

[17] W. Luo, J. Xing, A. Milan, and et al. Multiple object tracking: A literature
review. Artificial Intelligence, 293:103448, 2021.

[18] R. Gomez-Ojeda, F. A. Moreno, D. Zuñiga-Noël, and et al. Pl-slam: A
stereo slam system through the combination of points and line segments.
IEEE Transactions on Robotics, 35:734–746, 6 2019.

[19] R. Dangi, P. Lalwani, G. Choudhary, and et al. Study and investigation
on 5g technology: A systematic review. Sensors, 22, 1 2022.

[20] C. Deng, X. Fang, X. Han, and et al. Ieee 802.11be-wi-fi 7: New challenges
and opportunities. IEEE Communications Surveys and Tutorials, 22:2136–
2166, 7 2020.

14

[21] A. Narayanan, X. Zhang, R. Zhu, and et al. A variegated look at 5g in
the wild: Performance, power, and qoe implications. In ACM SIGCOMM,
page 610–625, 2021.

[22] T. Pulkkinen, J. K. Nurminen, and P. Nurmi. Understanding wifi cross-
technology interference detection in the real world. In IEEE 40th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages
954–964, 2020.

[23] D. Ardagna, G. Casale, M. Ciavotta, and et al. Quality-of-service in cloud
computing: modeling techniques and their applications. J. Internet Serv.
Appl., 5(1):11:1–11:17, 2014.

[24] Z. Towfic, D. Ogbe, J. Sauvageau, and et al. Benchmarking and testing of
qualcomm snapdragon system-on-chip for jpl space applications and mis-
sions. In IEEE Aerospace Conference (AERO), pages 1–12, 2022.

[25] K. P. Yoon and C. Hwang. Multiple attribute decision making: an intro-
duction. Sage publications, 1995.

[26] F. Wilhelmi. [ITU AI/ML Challenge 2021] Dataset IEEE 802.11ax Spatial
Reuse, September 2021.

[27] U. Tadakamalla and D. A. Menascé. Autonomic resource management for
fog computing. IEEE Transactions on Cloud Computing, 10(4):2334–2350,
2022.

15

	Introduction
	Related Work
	Reference Scenario
	Problem Definition
	Experimental Analysis
	Experimental setup
	Experimental results

	Conclusion

