

DIPARTIMENTO DI MECCANICA POLITECNICO DI MILANO
via G. La Masa, 1 20156 Milano EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it
Rev. 0

On How Bit-Vector Logic Can Help Verify LTL-based Specifications

Mohammad Mehdi Pourhashem Kallehbasti, Matteo Rossiy, and
Luciano Baresiz

This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions
on Software Engineering. The final authenticated version is available online at:
http://dx.doi.org/10.1109/TSE.2020.3014394

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

This content is provided under CC BY-NC-ND 4.0 license

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
javascript:void(0)
javascript:void(0)
http://dx.doi.org/%5bDOI
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 1

On How Bit-Vector Logic Can Help Verify
LTL-based Specifications

Mohammad Mehdi Pourhashem Kallehbasti*, Matteo Rossi†, and Luciano Baresi‡

Abstract—This paper studies how bit-vector logic (bv logic) can help improve the efficiency of verifying specifications expressed in Linear
Temporal Logic (LTL). First, it exploits the notion of Bounded Satisfiability Checking to propose an improved encoding of LTL formulae into
formulae of bv logic, which can be formally verified by means of Satisfiability Modulo Theories (SMT) solvers. To assess the gain in
efficiency, we compare the proposed encoding, implemented in our tool Zot, against three well-known encodings available in the
literature: the classic bounded encoding and the optimized, incremental one, as implemented in both NuSMV and nuXmv, and the
encoding optimized for metric temporal logic, which was the “standard” implementation provided by Zot. We also compared the newly
proposed solution against five additional efficient algorithms proposed by nuXmv, which is the state-of-the-art tool for verifying LTL
specifications. The experiments show that the new encoding provides significant benefits with respect to existing tools.
Since the first set of experiments only used Z3 as SMT solver, we also wanted to assess whether the benefits were induced by the
specific solver or were more general. This is why we also embedded different SMT solvers in Zot. Besides Z3, we also carried out
experiments with CVC4, Mathsat, Yices2, and Boolector, and compared the results against the first and second best solutions provided
by either NuSMV or nuXmv. Obtained results witness that the benefits of the bv logic encoding are independent of the specific solver. Bv
logic-based solutions are better than traditional ones with only a few exceptions. It is also true that there is no particular SMT solver that
outperformed the others. Boolector is often the best as for memory usage, while Yices2 and Z3 are often the fastest ones.

Index Terms—Formal Methods, Linear Temporal Logic, Bounded Satisfiability Checking, Bit-Vector Logic.

F

1 INTRODUCTION

Linear Temporal Logic [1] (LTL) plays a key role in
computer science. It has been used for the specification and
verification of (possibly safety-critical) programs [2], the
generation of test cases [3], the synthesis of controllers [4],
the formalization of notations (e.g., UML) [5], the run-time
verification of systems [6], and as planning formalism [7].
However, one of the key factors that still hamper the
widespread adoption of this formalism in practice is the
limited efficiency and scalability of verification tools.

While various techniques have used automata in the past
to formally verify LTL models [8], this work exploits the
notion of Bounded Satisfiability Checking (BSC) [9], a variant
of Bounded Model Checking (BMC) [10]. BSC requires that
LTL formulae be suitably translated into formulae of another
decidable logic, such as propositional logic, that precisely
capture ultimately periodic models of the original formulae
of length up to a bound k. Produced formulae are then fed
to a solver for the target logic (e.g., a SAT or SMT solver) for
verification (up to bound k).

To tackle efficiency, this article presents bit-vector logic
(bv logic) as means to encode LTL formulae and speed-up
their verification. This logic allows SMT solvers to exploit the
representation of the different temporal values of variables
as vectors and to carry out simplifications and optimizations

*Corresponding author. Department of Computer Engineering, Univer-
sity of Science and Technology of Mazandaran, Behshahr, Iran. E-mail:
pourhashem@mazust.ac.ir
†Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy. E-mail:
matteo.rossi@polimi.it
‡Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingeg-
neria, Milano, Italy. E-mail: luciano.baresi@polimi.it
Part of the work was carried out while the first author was at Politecnico di
Milano.

at word (vector) level. Our initial work [11] demonstrated
the feasibility of the approach, proposed an initial encoding,
and demonstrated it was able to scale better than the “usual”
Boolean-based ones by exploiting Z3 [12] as SMT solver.

This paper moves a step forward and generalizes the
outcome. It first proposes a new bv logic-based encoding,
which significantly improves the original one [11]. Besides
highlighting the novel aspects, we implemented it as addi-
tional plug-in of our bounded satisfiability checker Zot [13].
Its architecture helped us implement different encodings as
independent plug-ins and carry out the experiments more
easily. To assess the efficiency gain we carried out a first set
of experiments, reported in Section 4, to compare the new
encoding against solutions already proposed by Zot and
by NuSMV [14] and nuXmv1 [16], which are the de-facto
standard for bounded verification of LTL specifications (we
did not consider tools like SPIN [17] because they employ
other, different verification techniques).

We used Zot for reusing the old bv logic-based encod-
ing [11] and the “standard” LTL encoding [9]. We also
used both NuSMV and nuXmv to try with three “classical”,
Boolean logic-based encodings available in the literature:
(i) the classic bounded encoding [18]; (ii) the optimized
encoding [19], and (iii) the improved and incremental
version [12], [20]. We also exploited nuXmv for five ad-
ditional verification algorithms that both adopt diverse
verification techniques and exploit specific optimizations
to solve particular problems.

1nuXmv is an extension of NuSMV that comes with strong SAT-
based algorithms as well as SMT-based verification techniques integrated
with MathSAT5 [15].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 2

Obtained results show that the new solution, imple-
mented as Zot plug-in and based on Z3, is almost always
the fastest option and consumes less memory. The most
significant exception is the verification of the Fischer protocol,
where the k-live solution proposed by nuXmv is the best
because it is able to subsume the UNSAT result without
necessarily iterating up to the maximum bound. Our experi-
ments also suggest that this solution (k-live) only works well
with a few small models.

The second set of experiments we carried out aimed
to assess whether efficiency benefits were independent of
the particular SMT solver used —Z3 in the initial set of
experiments. This is why we exploited Zot one more time
to implement plug-ins and compare the top five solvers in
recent SMT competitions [21]: Boolector [22], Yices2 [23],
Mathsat [15], CVC4 [24], and Z3.

In this paper we focus on the verification of LTL speci-
fications, which are finite-state models. The bv logic-based
encoding presented here has also been used to improve the
efficiency of the verification technique of infinite-state models
presented in [25]. We do not present this work in this paper
for the sake of brevity.

All these experiments helped us reject the claim that the
gain was mainly due to the efficiency of Z3, and clearly
highlight the benefits of the bv logic encoding. Obtained
results witness that the benefits are independent of the
specific solver. Bv logic-based solutions are better than
traditional ones with only a few exceptions. There is however
no specific solver that outperformed the others. Boolector is
often the best as for memory usage, while Yices2 and Z3 are
often the fastest options.

To summarize, this article extends the work initially
presented in [11] with: (i) an improved, and more efficient,
bv logic encoding of LTL formulae; (ii) a new and more
thorough set of experiments to compare the efficiency of our
Zot- and Z3-based solution against the best Boolean logic-
based approaches and additional algorithms (provided by
nuXmv); and (iii) a wider comparison to assess the impact
of different SMT solvers on the efficiency of the proposed
solution.

The rest of this article is organized as follows. Section 2
introduces LTL, briefly sketches logic-based system verifi-
cation, and describes the existing bounded Boolean-based
encoding for LTL. Section 3 explains the improved bv logic-
based encoding for LTL and highlights the differences with
respect to the original one [11]. Section 4 describes the tools
we used for evaluation, the experiments we carried out, and
the results we obtained. Section 5 surveys related approaches
and Section 6 concludes the article.

2 PRELIMINARIES

2.1 Linear Temporal Logic

LTL [1] is a widely-used specification logic. In this article,
we focus on the version with both future and past tem-
poral operators: although past operators do not increase
the expressiveness of the logic, they are advantageous for
compositional reasoning [26]. In addition, LTL with past
operators is exponentially more concise than its future-only
counterpart [27].

An LTL formula φ is defined over a set of atomic
propositions AP by means of the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Xφ | Yφ | φUφ | φSφ

where p ∈ AP , ¬ and ∧ have the usual meaning, X and
U are the “next” and “until” future operators, and Y
(”yesterday”) and S (”since”) are their past counterparts.
Complex formulae are composed of sub-formulae: for exam-
ple, pUX(p ∧ q) comprises p, q, p ∧ q, and X(p ∧ q).

The semantics of LTL is given in terms of infinite
sequences of sets of atomic propositions, or words. A word
π : N→ 2AP assigns to every instant of the temporal domain
N the (possibly empty) set of atomic propositions that hold
in that instant. We can think of a word as an infinite sequence
of states π = s0s1s2 . . ., where each state is labeled with the
atomic propositions that hold in it. We say that a word π
satisfies formula φ at instant i, written π, i |= φ, if φ holds
when evaluated starting from instant i of π. The following
is the usual formal semantics of the satisfiability relation for
LTL:

π, i |= p ⇔ p ∈ π(i) for p ∈ AP
π, i |= ¬φ ⇔ π, i 6|= φ
π, i |= φ1 ∧ φ2 ⇔ π, i |= φ1 and π, i |= φ2
π, i |= Xφ ⇔ π, i+ 1 |= φ
π, i |= Yφ ⇔ i > 0 and π, i− 1 |= φ
π, i |= φ1Uφ2 ⇔ ∃j ≥ i s.t. π, j |= φ2

and ∀n s.t. i ≤ n < j : π, n |= φ1
π, i |= φ1Sφ2 ⇔ ∃j ≤ i s.t. π, j |= φ2

and ∀n s.t. j < n ≤ i : π, n |= φ1

We say that a word π satisfies formula φ when it holds at
the first instant of the temporal domain, i.e., when π, 0 |= φ
holds. In this case we will sometimes write π |= φ. A word π
that satisfies φ is a model for φ.

Starting from the basic connectives and operators, it is
customary to introduce the other traditional Boolean con-
nectives (∨,⇒, ...), and temporal operators as abbreviations.
In particular the “eventually in the future” (F), “globally in
the future” (G) and “release” (R) operators (and their past
counterparts “eventually in the past” P, “historically” H and
“trigger” T) are defined as follows: Fφ = >Uφ, Gφ = ¬F¬φ,
φ1Rφ2 = ¬(¬φ1U¬φ2), Pφ = >Sφ, Hφ = ¬P¬φ, and
φ1Tφ2 = ¬(¬φ1S¬φ2).

LTL is then often used to model (complex) systems and
the properties they must comply with,in a so-called descriptive
approach [28]. If formulae S and φ describe system and
property to be checked, respectively, satisfiability checking
can help prove if φ holds (or fails) for S, since a formula
is valid iff its negation is unsatisfiable [28]. S ⇒ φ, which
captures the fact that property φ holds for S, can be proven
valid if its negation (S ∧ ¬φ) is shown to be unsatisfiable,
otherwise a trace that satisfies S ∧ ¬φ would witness the
failure of property φ for system S.

For the sake of simplicity, let us introduce a simple
running example used throughout the paper to materialize
the main concepts. A synchronous shift-register returns every
received bit after a delay of two time instants. This system
can be specified by the LTL formula S : G(in ⇔ XXout),
which states that in holds at the current time instant iff out
will hold at the second time instant from now. Consider
property P1 : FG¬in, which asserts that there is a time

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 3

instant in the future at which in stops occurring; one can
easily show that P1 does not hold for S by producing a
counterexample in which in occurs infinitely often. This
can be proven by checking the satisfiability of formula
S ∧ ¬P1, which leads to a counterexample. On the other
hand, property P2 : FG¬in ⇒ FG¬out, which states that,
if in ceases to occur after a certain point in time, then out
eventually ceases to occur, holds for S. Indeed, there is not a
single trace of S in which P2 is falsified, which means that
S ∧ ¬P2 is unsatisfiable.

2.2 Bounded Satisfiability Checking

Bounded Satisfiability Checking (BSC) is a well-known
satisfiability checking technique. It is based on the idea
of translating a temporal logic formula ψ into a formula
of propositional logic that represents infinite, ultimately
periodic models of ψ—i.e., sequences of states of the form
π = s0s1 . . . sl−1(slsl+1 . . . sk)ω , where k is a parameter
called the bound of the model. As discussed in Section 2.1,
then, if one wants to validate the specification of a system
S against property φ using a BSC approach, the formula to
be translated is S ∧ ¬φ, and one must look for an ultimately
periodic sequence of states π = s0s1 . . . sl−1(slsl+1 . . . sk)ω

of S that violates φ. If a counterexample that witnesses
the violation of the property exists, then the property does
not hold for S. If no counterexample of length up to k is
found, then the property holds for S provided that k is big
enough. For example, back to the running example, property
P1 does not hold for S because of the counterexample
π = {}{in}{}({in, out}{})ω , where we have an in at the
second time instant and from the forth time instant onwards
both in and out occur every other time instant forever.

BSC can be easily carried out by an SMT solver by
translating LTL formulae properly. The classic encoding
technique into propositional logic [18] represents states
s0 . . . sl . . . sk, and then the fact that the state after sk, say
sk+1, is in fact sl again. Hence, the bounded encoding
captures finite sequences of states of the form αsβs, where
α = s0s1 . . . sl−1, β = sl+1 . . . sk, and s = sl = sk+1.

The encoding is defined as Boolean constraints over so-
called formula variables |[ψ]|i. These are Boolean variables
that are used to represent the values of all subformulae of
the LTL formula to be checked for satisfiability at instants
0, 1, . . . k + 1. More precisely, given an LTL formula φ
and a bound k, the encoding introduces k + 2 formula
variables |[ψ]|0, |[ψ]|1, . . . |[ψ]|k+1 for each subformula ψ of
φ to capture whether ψ is true or not at the various instants
in [0, k + 1].

In addition, the encoding introduces k + 1 loop selector
variables l0, l1, . . . , lk, which are fresh Boolean variables such
that ll is true iff the loop starts at position l (hence, if ll is true,
then sl = sk+1); at most one of l0, l1, . . . , lk can be true. Other
Boolean variables are introduced for convenience: the k + 1
variables InLoopi, with 0 ≤ i ≤ k, are such that InLoopi
is true iff position i is in the loop (i.e., l ≤ i ≤ k). Finally,
variable LoopExists is true iff the desired loop exists.

Table 1 introduces the constraints that are imposed
on the Boolean variables introduced above to capture the
semantics of LTL formulae. Constraints |LoopConstraints|k
formalize the semantics of Boolean variables {li}i∈[0,k],

{InLoopi}i∈[0,k] and LoopExists (e.g., the existence of at
most one loop). In addition, as mentioned in [18], they
impose that the same atomic propositions that hold in state
sk also hold in state sl−1, which has been shown to improve
the efficiency of the satisfiability checking.

TABLE 1
Constraints defined to capture the semantics of LTL formulae.

|LoopConstraints|k
Base ¬l0 ∧ ¬InLoop0

1 ≤ i ≤ k (li ⇒ si−1 = sk) ∧ (InLoopi ⇔ InLoopi−1 ∨ li)
∧ (InLoopi−1 ⇒ ¬li) ∧ (LoopExists⇔ InLoopk)

|LastStateConstraints|k
Base ¬LoopExists⇒ ¬|[φ]|k+1

1 ≤ i ≤ k li ⇒ (|[φ]|k+1 ⇔ |[φ]|i)

|PropConstraints|k
φ 0 ≤ i ≤ k + 1

p |[p]|i ⇔ p ∈ π(i)
¬p |[¬p]|i ⇔ p /∈ π(i)

ψ1 ∧ ψ2 |[ψ1 ∧ ψ2]|i ⇔ |[ψ1]|i ∧ |[ψ2]|i
ψ1 ∨ ψ2 |[ψ1 ∨ ψ2]|i ⇔ |[ψ1]|i ∨ |[ψ2]|i

|TempConstraints|k for future operators
φ 0 ≤ i ≤ k

Xψ |[Xψ]|i ⇔ |[ψ]|i+1

ψ1Uψ2 |[ψ1Uψ2]|i ⇔ |[ψ2]|i ∨ (|[ψ1]|i ∧ |[ψ1Uψ2]|i+1)

ψ1Rψ2 |[ψ1Rψ2]|i ⇔ |[ψ2]|i ∧ (|[ψ1]|i ∨ |[ψ1Rψ2]|i+1)

|Eventualities|k
Base ψ1Uψ2 LoopExists⇒ (|[ψ1Uψ2]|k ⇒ 〈〈Fψ2〉〉k)

ψ1Rψ2 LoopExists⇒ (|[ψ1Rψ2]|k ⇐ 〈〈Gψ2〉〉k)
ψ1Uψ2 〈〈Fψ2〉〉0 ⇔ ⊥
ψ1Rψ2 〈〈Gψ2〉〉0 ⇔ >

1 ≤ i ≤ k ψ1Uψ2 〈〈Fψ2〉〉i ⇔ 〈〈Fψ2〉〉i−1 ∨ (InLoopi ∧ |[ψ2]|i)
ψ1Rψ2 〈〈Gψ2〉〉i ⇔ 〈〈Gψ2〉〉i−1 ∧ (¬InLoopi ∨ |[ψ2]|i)

|TempConstraints|k for past operators
φ 0 < i ≤ k + 1

Yψ |[Yψ]|i ⇔ |[ψ]|i−1

Zψ |[Zψ]|i ⇔ |[ψ]|i−1

ψ1Sψ2 |[ψ1Sψ2]|i ⇔ |[ψ2]|i ∨ (|[ψ1]|i ∧ |[ψ1Sψ2]|i−1)

ψ1Tψ2 |[ψ1Tψ2]|i ⇔ |[ψ2]|i ∧ (|[ψ1]|i ∨ |[ψ1Tψ2]|i−1)

|TempConstraints|k in the origin.
φ Base

Yψ ¬|[Yψ]|0
Zψ |[Zψ]|0

ψ1Sψ2 |[ψ1Sψ2]|0 ⇔ |[ψ2]|0
ψ1Tψ2 |[ψ1Tψ2]|0 ⇔ |[ψ2]|0

Constraints |LastStateConstraints|k define that the
subformulae of φ that hold in sk+1 are the same as those that
hold in state sl. This effectively defines that after state sk the
bounded trace loops back to state sl.

The subsequent constraints define the semantics of the
propositional connectives and of the temporal operators.
Constraints |PropConstraints|k capture the semantics of
propositional connectives. For example, they state that the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 4

value of |[p]|i and |[¬p]|i capture whether propositional letter
p holds at instant i or not. The definitions of |[ψ1 ∧ ψ2]|
and of |[ψ1 ∨ ψ2]| are straightforward. Note that the Boolean
encoding was defined for LTL formulae in Positive Normal
Form (PNF), that is, negations can only appear next to atomic
propositions. This can save some formula variables, but the
encoding can be easily generalized to formulae that are not
in PNF.

Constraints |TempConstraints|k define the semantics of
the temporal operators, both future (X, U and R) and past
ones (Y, S and T). The semantics of U and R is defined
through their standard fixpoint characterization and through
the introduction of the set of constraints |Eventualities|k.

The latter constraints are used to ensure that, if ψ1Uψ2

holds in sk, then ψ2 occurs infinitely often, that is, it occurs
somewhere in the loop. Similarly, if ψ1Rψ2 occurs in sk,
then either ψ2 holds throughout the loop, or at some point
of the loop ψ1 holds. 〈〈Fψ2〉〉i and 〈〈Gψ2〉〉i are auxiliary
variables required for capturing these constraints. 〈〈Fψ2〉〉i
holds if position i belongs to the loop and ψ2 holds in at least
one position between l and i. Accordingly, 〈〈Fψ2〉〉k means
that ψ2 holds somewhere in the loop. Therefore, constraint
LoopExists ⇒ (|[ψ1Uψ2]|k ⇒ 〈〈Fψ2〉〉k) does not allow
ψ1Uψ2 to hold at k, if ψ2 does not occur infinitely often.
Similarly, 〈〈Gψ2〉〉k holds iff ψ2 holds everywhere in the loop.
Then, constraint LoopExists ⇒ (|[ψ1Rψ2]|k ⇐ 〈〈Gψ2〉〉k)
forces |[ψ1Rψ2]|k to hold if ψ2 holds from position l on.

Similar constraints define the semantics of the past
operators Y, S and T, which is symmetrical to their future
counterparts. We also define operator Z, which is necessary
for formulae in PNF, which is simply a variant of Y such
that Zψ holds in 0 no matter ψ. Since the temporal domain is
mono-infinite (i.e., it is infinite only towards the future),
there is no need to impose eventuality constraints over
past operators. However, we must define the value of past
operators in the origin 0 (constraints |TempConstraints|k
in the origin).

Finally, given an LTL formula φ, its Boolean encoding
φB is given by the conjunction of the constraints in
sets |LoopConstraints|k, |LastStateConstrants|k,
|PropConstraints|k, |TempConstraints|k, and
|Eventualities|k, plus the statement that φ holds in
the origin, i.e. |[φ]|0.

2.3 Bit-Vector Logic

A bit-vector is an array whose elements are bits (Booleans).
In bit-vector logic (bv logic), the size of a bit-vector (number
of bits) is finite, and can be any nonzero number in N.
We use the notation ←−x [n] for the bit-vector ←−x with size
n, or simply ←−x when the size is not important or can be
inferred from the context. Furthermore,←−x [i]

[n] stands for the
ith bit in the bit-vector ←−x , where bits are indexed from
right to left. Accordingly, ←−x [n−1]

[n] is the leftmost and most

significant bit, and←−x [0]
[n] is the rightmost and least significant

bit. For constants we use the notation ←−c [n], which is the
two’s complement representation of integer c over n bits. For
example,

←−−2[4] is 1110.
Bv logic offers a wide range of operators. The two

core operators are concatenation and extraction. Concatenation:

←−x [n] :: ←−y [m] is a bit-vector←−z [n+m], such that←−z [0] = ←−y [0]

and ←−z [m+n−1] = ←−x [n−1]. For example, 111 :: 0 = 1110.
Extraction:←−x [j:i] is a bit-vector←−z [j−i+1], where←−z [0] =←−x [i]

and←−z [j−i] =←−x [j], which can be defined through concatena-
tion as←−x [j:i] = ::ik=j x[k]. For example, 1100[2:0] = 100.

Arithmetic operators addition (+) and subtraction (−)
throw away the final carry bit and the resulting bit-vector has
the same size as the operands. Unsigned shift to the right/left
(�/�) throws away the rightmost/leftmost bit and inserts
zero from the left/right. For example, � 1100 = 0110 and
� 1100 = 1000. In general, �n ←−x (resp., �n ←−x) is the
operation that applies� (resp.,�) to←−x n times.

We also use bitwise operators like negation (!), conjunction
(&), disjunction (|), reduction or (⇑), and reduction and (⇓). The
reduction and operator is defined as ⇓ ←−x [n] = &n−1

i=0
←−x [i]

[n] (i.e.,
it is the “and” of all the bits in←−x). The size of the resulting
bit-vector is one. The bit corresponds to the minimum value
in ←−x ; in other words, it is equal to one if all the bits of the
bit-vector←−x are one, zero otherwise.

Bit-vectors (or parts thereof) can be compared using the
usual relational operators =, <, and formulae of bv logic can
be built using the usual Boolean connectives ¬, ∧.

3 BIT-VECTOR-BASED ENCODING

Before introducing our new bv logic-based encoding, we
want to motivate the choice of this logic.

The truth values of an LTL formula at the time instants
from 0 to k are a series of trues or falses, and the value at a
particular time instant is logically related to the values at the
other instants. If one adopted a Boolean encoding, each value
would be stored in an independent variable and the broader
view is disregarded. While a bit-vector is a collection of
Boolean values, the key difference lies in the way constraints
are managed. If they are asserted on a set of (independent)
Boolean values, the solver is blind to their interrelations and
no simplifications can be carried out at word level. In contrast,
when these values are stored in a single vector (word), SMT
solvers can apply simplifications and optimizations (more)
efficiently. Essentially, more information is provided to the
solver in the latter case.

While a thorough assessment of the impact of these
simplifications is out of the scope of this paper [29] (see
also Section 4 for our empirical results), we invite the
reader to focus on the trivially unsatisfiable LTL formula
((aUb∨¬aR¬b)Uc)∧¬Fc. By definition, aUb is equivalent
to ¬(¬aR¬b), which reduces aUb ∨ ¬aR¬b to >. Besides,
>Uc is another form of Fc, which reduces the LTL formula
to Fc ∧ ¬Fc, that is ⊥. These simplifications are not easy for
a solver, especially when the whole formula is asserted at the
Boolean level. Since only Z3 shows its intermediate steps, we
can report its behavior, but we argue it can be generalized.
Z3 simplifies the Boolean formula produced by the classic
Boolean encoding into another Boolean formula that then
must be solved. In contrast, the bv logic formula produced
by sbvzot is simplified and reduced to ⊥, and thus the result
is UNSAT, without solving any formula. With the Boolean
encoding, the solver computes the Boolean variables for time
instants i and i + 1, which are false, by resolving different
constraints. It is not aware that they both represent the same
sub-formula (⊥) at various time instants. In a bv logic-based

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 5

encoding, the solver knows that bit i and i+ 1 are zero, not
by solving constraints at bit level (Boolean values), but by
simplifying the formula at vector level since both bits are
parts of the same bit vector (⊥).

This example shows that bv logic can indeed enable
simplifications that Boolean logic does not. However, in
this specific example, since the formula is quite small, the
solving time is quite small. Section 4 witnesses that the bigger
formulae become, the higher the gain is.

3.1 sbvzot
bvzot is the first bv logic-based encoding for LTL we
developed [11], sbvzot (simple bvzot) is the new encoding
presented in this paper. sbvzot: (i) does not use binary arith-
metic operations (addition and subtraction), (ii) introduces as
many bit-vectors as the number of subformulae in a formula
(not only for its propositional letters), (iii) and adds “last
state constraints” for all operators (not only for past ones).
This encoding —which, from a purely syntactic point of view,
is usually more concise than bvzot— is the result of diverse
experiments that explored different tweaks and solutions.
sbvzot is overall the best one in terms of efficiency.

Similarly to the classic Boolean encoding of Section 2.2,
sbvzot uses bit-vectors to represent the truth value of each
subformula in time instants [0, k + 1]. More precisely, to
encode an LTL formula φ, for each subformula ψ of φ we
introduce a bit-vector,

←−
〈ψ〉[k+2] (i.e., of size k + 2), such that

←−
〈ψ〉[i][k+2], with i ∈ [0, k+1], captures the value of subformula
ψ at instant i2.

In addition to a bit-vector for each subformula ψ, we also
introduce a bit-vector,

←−−−
〈lpos〉[k+2], that contains (encoded in

binary) position pos of the loop in interval [0, k + 1] and a
bit-vector,

←−−−−−
〈inloop〉[k+2], where the bit at position i is 1 iff

the position i is inside the periodic part. For the sake of
uniformity, we encode ⊥ (false) as

←−
0 [k+2] (i.e., a sequence

of zeros) and > (true) as
←−−1[k+2] (i.e., a sequence of ones), so

the size of all bit-vectors used in the encoding is k + 2. Note
that, given a formula φ, and its vector

←−
〈φ〉,
←−
〈φ〉&!

←−
〈φ〉 = ⊥

and
←−
〈φ〉|!
←−
〈φ〉 = >.

To define the value of bit-vector
←−−−−−
〈inloop〉[k+2] we intro-

duce constraint
←−−−−−
〈inloop〉[k+2] =�pos ←−−1[k+2].

For example, Table 2 shows an exemplar trace, along
with

←−−−
〈lpos〉, and

←−−−−−
〈inloop〉, where we assume that k is 4 and

thus all bit-vectors have length 6 (k + 2). This trace comes
from a counterexample that shows P1 does not hold for S
in the running example. P1 states that, for all executions of
the system, at some point in stops occurring. This property
can be trivially falsified by the shown counterexample, in
which in occurs infinitely often, to be precise, every other
time instant from time instant 3. The first two rows are the
actual trace, and the rest shows how bit-vectors represent
their corresponding subformulae.

←−−−
〈lpos〉 equal to 000011

means that the solver was able to find a loop at position 3.
Consequently,

←−−−−−
〈inloop〉 is 111000, that corresponds to 111111

shifted to the left 3 (lpos) times. The table shows that in all

2Recall that
←−
ψ [0] is the right-most (least significant) bit in

←−
ψ , and←−

ψ [k+1] is the left-most (most significant) one.

TABLE 2
A counterexample that falsifies property P1 of the running example.

subformula bit-vector 5 4 3 2 1 0

in
←−−
〈in〉 1 0 1 0 1 0

out
←−−−
〈out〉 1 0 1 0 0 0

f1 : Xout
←−−−−
〈Xout〉 0 1 0 1 0 0

f2 : XXout
←−−−
〈Xf1〉 1 0 1 0 1 0

in⇔ XXout
←−−−−−−
〈in⇔ f2〉 1 1 1 1 1 1
←−−−
〈lpos〉 0 0 0 0 1 1
←−−−−−
〈inloop〉 1 1 1 0 0 0

bit-vectors that represent a subformula, the bit at position 3
(loop position, lpos) is equal to the one at position 5 (k + 1),
because of the last state constraint.

As mentioned in Section 2.2, constraints
|LoopConstraints|k, which impose the equality of
states sl−1 and sk, are introduced for optimization purposes,
but they do not affect the correctness of the encoding. Since
in our new encoding we assessed empirically they do not
have beneficial effects on the efficiency of the verification,
we did not use them, and |SBV LoopConstraints|k reduce
to the definition of bit-vector

←−−−−−
〈inloop〉.

For every subformula φ being replaced by a fresh bit-
vector, Table 3 introduces the sets of constraints in bv
logic that define the value of φ. |SBV PropConstraints|k
assume that the main connective in φ is a Boolean one.
|SBV TempConstraints|k, capture the semantics of tem-
poral operators.

TABLE 3
Constraints in bv logic that define the value of φ.

|SBVPropConstraints|k
φ bit-vector encoding

¬ψ
←−−−
〈¬ψ〉 = !

←−
〈ψ〉

ψ1 ∧ ψ2
←−−−−−−
〈ψ1 ∧ ψ2〉 =

←−−
〈ψ1〉&

←−−
〈ψ2〉

ψ1 ∨ ψ2
←−−−−−−
〈ψ1 ∨ ψ2〉 =

←−−
〈ψ1〉|

←−−
〈ψ2〉

|SBVTempConstraints|k
φ bit-vector encoding

Yψ
←−−−
〈Yψ〉 = �

←−
〈ψ〉

ψ1Sψ2 (
←−−−−−
〈ψ1Sψ2〉[k+1:1] = (

←−−
〈ψ2〉[k+1:1] |

←−−
〈ψ1〉[k+1:1] &

←−−−−−
〈ψ1Sψ2〉[k:0])) ∧ (

←−−−−−
〈ψ1Sψ2〉[0] =

←−−
〈ψ2〉[0])

Xψ
←−−−
〈Xψ〉[k:0] =

←−
〈ψ〉[k+1:1]

ψ1Uψ2 (
←−−−−−−
〈ψ1Uψ2〉[k:0] =

←−−
〈ψ2〉[k:0] |

←−−
〈ψ1〉[k:0] &

←−−−−−−
〈ψ1Uψ2〉[k+1:1])

∧(((
←−−
〈ψ1〉[k+1] |

←−−
〈ψ2〉[k+1] | !

←−−−−−−
〈ψ1Uψ2〉[k+1]) &

(!
←−−
〈ψ2〉[k+1] |

←−−−−−−
〈ψ1Uψ2〉[k+1])) = 1)∧

(
←−−−−−−
〈ψ1Uψ2〉[k+1] ⇒⇑ (

←−−
〈ψ2〉&

←−−−−−
〈inloop〉) = 1)

Yesterday. Given the semantics of formula Yψ, where
Yψ holds at i iff ψ holds at i − 1, the bit-vector for Yψ is
the one for ψ, but shifted “to the left” (from i− 1 to i, recall
that position 0 in bit-vectors is the rightmost one). Consistent
with the origin semantics of Yψ, the rightmost bit of�

←−
〈ψ〉

is 0.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 6

Since. The encoding of S is recursively defined
based on the fact that ψ1Sψ2 holds in i iff either
ψ2 holds in i or ψ1 holds in i and ψ1Sψ2 holds in
i − 1. This recursive definition can be captured by∧k
i=1(
←−
〈φ〉[i] ⇔ (

←−−
〈ψ2〉[i] ∨

←−−
〈ψ1〉[i] ∧

←−
〈φ〉[i−1])), that is equiv-

alent to
←−
〈φ〉[k+1:1] = (

←−−
〈ψ2〉[k+1:1] |

←−−
〈ψ1〉[k+1:1] &

←−
〈φ〉[k:0]).

Along with this constraint,
←−
〈φ〉[0] =

←−−
〈ψ2〉[0] is asserted to

make the encoding compliant with the origin semantics of
ψ1Sψ2.

Next. The encoding of formula Xψ is a bit-wise shift to
the right of bit-vector

←−
〈ψ〉, i.e., Xψ holds at i iff ψ holds at

i + 1. The constraint that bit
←−
〈φ〉[k+1] must be equal to the

one at the loop-back position is asserted in the “last state
constraints” that are presented later in this section.

Until. Similar to S, the encoding of U is also
defined recursively. ψ1Uψ2 holds in i iff either ψ2

holds in i or ψ1 holds in i and ψ1Uψ2 holds in
i + 1. This recursive definition can be captured by∧k
i=1(
←−
〈φ〉[i] ⇔ (

←−−
〈ψ2〉[i] ∨

←−−
〈ψ1〉[i] ∧

←−
〈φ〉[i+1])), that is

equivalent to
←−
〈φ〉[k:0] = (

←−−
〈ψ2〉[k:0] |

←−−
〈ψ1〉[k:0] &

←−
〈φ〉[k+1:1]).

Based on the recursive definition of U at posi-
tion k + 1, two constraints should hold. First, if←−−−−−−
〈ψ1Uψ2〉[k+1] holds, then either

←−−
〈ψ1〉[k+1] or

←−−
〈ψ2〉[k+1]

hold; this constraint, which in the following we indi-
cate as Constraint1, can be represented in bv logic
as (!

←−−−−−−
〈ψ1Uψ2〉[k+1]|(

←−−
〈ψ1〉[k+1] |

←−−
〈ψ2〉[k+1])) = 1. Second,

if
←−−
〈ψ2〉[k+1] holds, then

←−−−−−−
〈ψ1Uψ2〉[k+1] also holds, i.e.,←−−

〈ψ2〉[k+1] ⇒
←−−−−−−
〈ψ1Uψ2〉[k+1] holds. Therefore, a bv logic repre-

sentation of this constraint (which we indicate in the follow-
ing as Constraint2) can be (!

←−−
〈ψ2〉[k+1]|

←−−−−−−
〈ψ1Uψ2〉[k+1]) = 1.

The second and third lines of the encoding are essentially a
conjunction of Constraint1 and Constraint2 expressed in
bv logic.

If no additional constraints are imposed on the semantics
of operator U,

←−
〈φ〉 can be true throughout the periodic part

(i.e., sβ in αsβs) without any position within it in which
←−−
〈ψ2〉

is true. For example, if we suppose that k = 2,
←−−−
〈lpos〉 = 0001,←−−−−−

〈inloop〉 = 1110,
←−
〈ψ〉2 = 0001, and

←−
〈ψ〉1 = 1111. According

to the previous constraint (and the “last state constraint”
introduced below),

←−
〈φ〉 = ψ1Uψ2 can be either 0001 or

1111, but the latter value is not correct. In the classic
encoding, this is fixed through the introduction of constraints
|Eventualities|k (see Section 2.2). To avoid this problem, we
add a constraint that asserts that

←−
〈φ〉[k+1] is true only if

there is at least one position in the periodic part where ψ2 is
true, that is, ψ2 holds infinitely often. More precisely, we add
constraint

←−
〈φ〉[k+1] ⇒⇑ (

←−
〈ψ〉2&

←−−−−−
〈inloop〉) = 1 to the encoding

of operator U. Consequently, incorrect values are ruled out,
and in fact in the previous example

←−
〈φ〉 cannot be 1111, since

⇑ (0001&1110) = 0.
The “last state constraints”

(|SBV LastStateConstraints|k), which must be added for
all subformulae ψ of φ (including propositional letters), state
that
←−
〈ψ〉[lpos] =

←−
〈ψ〉[k+1].

Then, given an LTL formula φ, the complete bit-vector-
based encoding, called φsbv, is given by:

I |SBV LastStateConstraints|k;

II |SBV LoopConstraints|k to capture the definition of←−−−−−
〈inloop〉;

III The constraints that define each sub-
formula (|SBV PropConstraints|k and
|SBV TempConstraints|k);

IV Constraint
←−
〈φ〉[0] = 1, where

←−
〈φ〉 is the bit-vector defined

based on its subformulae.
For example, if we consider formula ¬Xp ∨ (qUYp),

its complete encoding (¬Xp ∨ (qUYp))sbv is given by the
following formula:

I
←−
〈p〉[lpos] =

←−
〈p〉[k+1] ∧

←−
〈q〉[lpos] =

←−
〈q〉[k+1]∧

←−−−
〈Yp〉[lpos] =

←−−−
〈Yp〉[k+1] ∧

←−−−
〈Xp〉[lpos] =

←−−−
〈Xp〉[k+1]∧

←−−−−−
〈qUYp〉[lpos] =

←−−−−−
〈qUYp〉[k+1]∧

II
←−−−−−
〈inloop〉 =�lpos ←−−1∧

III (
←−−−
〈Yp〉 =�

←−
〈p〉)∧

(
←−−−−−
〈qUYp〉[k:0] =

←−−−
〈Yp〉[k:0] |

←−
〈q〉[k:0] &

←−−−−−
〈qUYp〉[k+1:1])∧

(
←−−−−−
〈qUYp〉[k+1] ⇒⇑ (

←−
Yp&

←−−−−−
〈inloop〉) = 1)∧

(
←−−−
〈Xp〉[k:0] =

←−
〈p〉[k+1:1]) ∧ (

←−−−−
〈¬Xp〉 = !

←−−−
〈Xp〉)∧

(
←−−−−−−−−−−−−
〈¬Xp ∨ (qUYp)〉 =

←−−−−
〈¬Xp〉|

←−−−−−
〈qUYp〉)∧

IV
←−−−−−−−−−−−−
〈¬Xp ∨ (qUYp)〉[0] = 1

Similar to the classic Boolean encoding, the semantics
of the other temporal operators is defined from the basic
ones as abbreviations. In fact, based on our experiments,
in the case of sbvzot, introducing direct encodings for the
derived temporal operators—as done in bvzot—does not
impact on the efficiency of the encoding, therefore we simply
define the following: Fφ = >Uφ, Gφ = ¬F¬φ, φ1Rφ2 =
¬(¬φ1U¬φ2), Pφ = >Sφ, Hφ = ¬P¬φ, and φ1Tφ2 =
¬(¬φ1S¬φ2).

As for bvzot, we also add constraint
←−
〈φ〉 =�

←−
〈ψ〉|←−1 to

capture the semantics of φ = Zψ, in order to support PNF
formulae (see Section 2.2).

3.1.1 Correctness and Complexity
We show the correctness of the encoding by proving a
pair of results. First, we show that, when the encoding
of a formula φ is satisfiable, the original formula is also
satisfiable (soundness of the encoding); then, we prove that, if
an ultimately periodic model of φ exists, then the encoding is
satisfiable, provided that a sufficiently long bound k has been
defined (which shows, to a certain extent, the completeness of
the encoding).

To help the reader follow the proofs presented in this
section, we exemplify some relevant cases through pictures
showing some example bit-vectors and corresponding LTL
models.

Theorem 1. Let φ be an LTL formula, and let k ∈ N be the
bound for the encoding φsbv. If formula φsbv is satisfiable,
then there is a model π = αs(βs)ω of φ such that k+ 1 =
|αsβ|.

Proof: To show the result, we first define how α, s and
β are defined from the bit-vectors satisfying φsbv, and then
we show that π |= φ holds.

Figure 1 provides a graphical depiction of the correspon-
dence between bit-vectors related to atomic propositions
and words. Notice that, in all figures shown in this section,
bit-vectors are depicted with the least significant bit on the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 7

0 k k+1lpos

s β

k+1

0 1 0 0 0 1 0

0 1 2 3 4 5 6

p p∅ ∅ ∅ ∅ ∅ p∅ ∅
…

lpos+2(k-lpos+1)

π

α s

⟵
⟨p⟩

Fig. 1. Example of model π built from bit-vector
←−
〈p〉.

left, instead of on the right, to facilitate the correspondence
with words. Recall that lpos is the loop-back position in
π (where the first position in the bit-vector is 0), so we
define |α| = lpos and |β| = k − lpos, and the length of the
loop is k − lpos + 1. Word π : N → 2AP is defined in the
following way: (i) for all i ∈ N such that i ≤ k holds, then
p ∈ π(i) (where p ∈ AP) if, and only if,

←−
〈p〉[i] = 1 holds; (ii)

for all i such that i > k, then p ∈ π(i) holds if, and only
if, p ∈ π(j) also holds, where j is the unique value such
that lpos ≤ j ≤ k holds and there exists m ∈ N such that
i = j +m(k − lpos+ 1) holds.

To show that π |= φ holds we prove, by induction on
the structure of formula φ, that: (i) for all i ∈ N such that
i ≤ k holds, then π, i |= φ holds if, and only if,

←−
〈φ〉[i] = 1

holds; and (ii) for all i such that i > k, π, i |= φ holds if,
and only if,

←−
〈φ〉[j] = 1 also holds, where, as above, j is the

unique value lpos ≤ j ≤ k such that there is m ∈ N such
that i = j +m(k − lpos+ 1) holds.

The base case φ = p, with p ∈ AP , is trivial from the
definition of π.

If φ = ¬ψ, by definition we have that, for all i ≤ k,
π, i |= φ holds if, and only if π, i 6|= ψ, which, by induction,
holds if, and only if,

←−
〈ψ〉[i] = 0; by the definitions of Table

3, this occurs if, and only if,
←−
〈φ〉[i] = 1 holds. The cases for

i > k and for the propositional connectives ∧ and ∨ are
similar.

If φ = Xψ, then π, i |= φ if, and only if, π, i + 1 |= ψ.
Figure 2 exemplifies this case. If i < k (say, i = 2 in Figure 2),
then by induction hypothesis

←−
〈ψ〉[i+1] = 1 holds and, by the

definitions of Table 3,
←−
〈ψ〉[i+1] =

←−
〈φ〉[i] = 1 holds. If i = k,

then i + 1 = k + 1 = lpos + (k − lpos + 1) (that is, j =

lpos and m = 1); then, by induction hypothesis,
←−
〈ψ〉[lpos] =

1 holds and, by constraints |SBV LastStateConstraints|k
and Table 3,

←−
〈φ〉[k] =

←−
〈ψ〉[k+1] =

←−
〈ψ〉[lpos] = 1. If i > k, we

separate the case where i 6= k +m(k − lpos+ 1) (e.g., i = 7
in Figure 2, where k = 5 and k − lpos + 1 = 3) from the
one where i = k + m(k − lpos + 1) (e.g., i = 8 in Figure
2), which are shown in a similar manner as cases i < k and
i = k above.

If φ = Yψ, π, i |= φ holds if, and only if, i > 0 and
π, i− 1 |= ψ. If i = 0, then by definition π, 0 6|= φ; by Table
3,
←−
〈φ〉[0] = 0 (recall that the bit of index 0 is the right-most

one, and the unsigned left shift operation � inserts a 0
to the right), which shows the desired result. If 0 < i ≤

0 k k+1lpos

s β

0 1 0 1 0 1 1

0 1 2 3 4 5 6

ψ
…

π

α s

¬ψ ¬ψ ψ ψ ψ¬ψ ψ ¬ψ

1 0 1 0 1 1 0

ϕ ϕ ϕ ϕ ϕ

ψ

ϕ

⟵
⟨ψ⟩
⟵
⟨ϕ⟩

Fig. 2. Exemplification of case φ = Xψ.

k holds, then by induction hypothesis
←−
〈ψ〉[i−1] = 1 holds

and, by the definitions of Table 3,
←−
〈ψ〉[i−1] =

←−
〈φ〉[i] = 1

holds. If i > k, we separate the cases i = lpos + m(k −
lpos + 1) and i 6= lpos + m(k − lpos + 1). The latter is
shown in a similar manner as case 0 < i ≤ k above. If
i = lpos + m(k − lpos + 1), then i − 1 = k + (m − 1)(k −
lpos+ 1), so, by induction hypothesis,

←−
〈ψ〉[k] = 1 holds; then,

by constraints |SBV LastStateConstraints|k and Table 3,←−
〈φ〉[lpos] =

←−
〈φ〉[k+1] =

←−
〈ψ〉[k] = 1 holds.

If φ = ψ1Uψ2, then π, i |= φ holds if, and only if, either
π, i |= ψ2 holds, or both π, i |= ψ1 and π, i + 1 |= ψ1Uψ2

hold. This case is exemplified in Figure 3. Consider the case
i ≤ k. If π, i |= ψ2 holds (in which case π, i |= φ also holds,
as for i = 1 in Figure 3), by induction hypothesis

←−−
〈ψ2〉[i] = 1

holds and, by the definitions of Table 3,
←−
〈φ〉[i] = 1 also

holds. Otherwise, if π, i |= ψ1 does not hold (in which case
π, i |= φ does not hold, as for i = 2 in Figure 3), by induction
hypothesis

←−−
〈ψ1〉[i] = 0 holds and, by Table 3,

←−
〈φ〉[i] = 0

holds. If, instead, π, i |= ψ1 holds (and π, i |= ψ2 does not
hold), then π, i |= φ holds if, and only if, π, i+ 1 |= ψ1Uψ2

holds; in addition, in this case, by Table 3 we have that←−
〈φ〉[i] =

←−
〈φ〉[i+1] holds. We separate two cases: i < k and

i = k. If i < k (e.g., in position i = 3 in Figure 3), the
previous considerations apply also at position i+ 1, and we
iterate them (notice that π, i′ 6|= ψ2, π, i′ |= ψ1,

←−−
〈ψ2〉[i

′] = 0,←−−
〈ψi〉[i

′] = 1 and
←−
〈φ〉[i′] =

←−
〈φ〉[i′+1] all hold for all positions

i ≤ i′ < k in which we iterate the reasoning). If i = k, we
have that π, k |= φ holds if, and only if, π, k + 1 |= ψ1Uψ2

holds; also,
←−
〈φ〉[k] =

←−
〈φ〉[k+1] holds by Table 3. We show that

either
←−
〈φ〉[k+1] = 0 and π, k 6|= φ both hold, or

←−
〈φ〉[k+1] = 1

and π, k |= φ do.

• If
←−
〈φ〉[k+1] = 0 holds then, by constraints

|SBV LastStateConstraints|k,
←−
〈φ〉[lpos] = 0 also

holds. Then, by Table 3,
←−−
〈ψ2〉[lpos] = 0 holds and

at least one of
←−−
〈ψ1〉[lpos] and

←−
〈φ〉[lpos+1] is also

0. If
←−−
〈ψ1〉[lpos] is 0, then, by inductive hypothesis,

π, k + 1 6|= ψ2 and π, k + 1 6|= ψ1 hold (notice that
k + 1 = lpos + (k − lpos + 1)), hence π, k 6|= φ

also holds. If, instead,
←−−
〈ψ1〉[lpos] is 1, then

←−
〈φ〉[lpos] =←−

〈φ〉[lpos+1] = 0, and we iterate the reasoning until
either there is lpos < i′ ≤ k such that

←−−
〈ψ1〉[i

′] is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 8

0, or we conclude that for all lpos ≤ i′ ≤ k both←−−
〈ψ2〉[i

′] = 0 and
←−−
〈ψ1〉[i

′] = 1 hold (this is the case
exemplified in Figure 3). In both cases, by inductive
hypothesis we conclude that π, k 6|= φ holds (notice
that if, as in Figure 3, throughout interval [lpos, k]←−−
〈ψ2〉 is 0 and

←−−
〈ψ1〉 is 1, then by inductive hypothesis

ψ1 holds forever after k, but ψ2 never does, so φ does
not hold).

• If, instead,
←−
〈φ〉[k+1] = 1 holds, then, by Table 3,←−−

〈ψ1〉[k+1] = 1, or
←−−
〈ψ2〉[k+1] = 1 hold. In the latter

case, by inductive hypothesis, π, k+ 1 |= ψ2 holds, so
π, k |= φ also holds. In the former case, by constraints
|SBV LastStateConstraints|k, both

←−−
〈ψ1〉[lpos] = 1

and
←−
〈φ〉[lpos] = 1 hold. By the constraints of Table 3,←−−

〈ψ2〉[lpos] = 1 or
←−−
〈ψ1〉[lpos]&

←−
〈φ〉[lpos+1] = 1 hold. The

case
←−−
〈ψ2〉[lpos] = 1 (which is the same as

←−−
〈ψ2〉[k+1] =

1) was handled previously. If
←−−
〈ψ1〉[lpos]&

←−
〈φ〉[lpos+1] =

1 holds, then we iterate the reasoning. By constraint
(
←−−−−−−
〈ψ1Uψ2〉[k+1] ⇒⇑ (

←−−
〈ψ2〉&

←−−−−−
〈inloop〉) = 1) of Table

3, there must be an index lpos ≤ i′ ≤ k such that←−−
〈ψ2〉[i

′] = 1 holds. Then, by inductive hypothesis
π, i′ |= ψ2 and π, i′ + (k − lpos+ 1) |= ψ2 hold (and
π, j |= ψ1 for all k ≤ j ≤ i′ + (k − lpos + 1)), so
π, k |= φ also holds.

0 k k+1lpos

s β

0 1 0 0 0 0 0

ψ2
…

π

α s

¬ψ2 ¬ψ2 ¬ψ2 ¬ψ2 ¬ψ2 ¬ψ2¬ψ2 ¬ψ2 ¬ψ2

0 1 0 0 0 0 0

ϕ

0 0 0 1 1 1 1

0 1 2 3 4 5 6

¬ψ1¬ψ1 ψ1 ψ1 ψ1 ψ1 ψ1ψ1 ψ1 ψ1

⟵
⟨ψ2⟩
⟵
⟨ϕ⟩

⟵
⟨ψ1⟩

Fig. 3. Exemplification of case φ = ψ1Uψ2 when
←−
〈φ〉[k+1] = 0 holds.

Case i > k, with i = j + m(k − lpos + 1) is similar to
the previous one, when one considers index j (for which
lpos ≤ j ≤ k holds) in place of i.

If φ = ψ1Sψ2, then π, i |= φ holds if, and only if, either
π, i |= ψ2 holds, or both π, i |= ψ1 and π, i − 1 |= ψ1Sψ2

hold, provided that i > 0 holds. Notice that π, 0 |= φ holds
if, and only if, π, 0 |= ψ2 also holds. The proof for the case
i ≤ k is similar to the one for subformula ψ1Uψ2, with
the simplification given by the fact that, at position 0, the
truth of ψ1Sψ2 is the same as that of ψ2. The proof for
the case i > k, with i = j + m(k − lpos + 1), is similar
to the case i ≤ k, using lpos ≤ j ≤ k instead of i. One
only needs to consider that, if

←−
〈φ〉[lpos] = 1 holds (which,

by constraints |SBV LastStateConstraints|k, entails that←−
〈φ〉[k+1] = 1 also holds), and if

←−−
〈ψ1〉[i

′] = 1 and
←−−
〈ψ2〉[i

′] = 0

hold for all lpos ≤ i′ ≤ k then, by inductive hypothesis,
π, t |= ψ1 and π, t 6|= ψ2 hold for all lpos ≤ t ≤ i. However,
since

←−
〈φ〉[lpos] = 1 holds, using a similar reasoning as in the

case of subformula ψ1Uψ2, one can show that there must be
a position 0 ≤ j′ < lpos such that

←−−
〈ψ2〉[j

′] = 1 holds, and for
all j′ < t′ < lpos also

←−−
〈ψ1〉[t

′] = 1 holds. Then, by inductive
hypothesis, π, t′ |= ψ1 holds for all j′ < t′ < lpos, π, j′ |= ψ2

holds, and π, i |= φ finally holds.
Finally, from the fact that

←−
〈φ〉[0] = 1, we have that π, 0 |=

φ holds, that is, formula φ is satisfiable.
In the following result, given a formula φ we indicate

by δ(φ) the nesting depth of past operators Y and S. More
precisely, if φ = p (with p ∈ AP), then δ(φ) = 0; if φ = ¬(ψ)
or φ = Xψ, then δ(φ) = δ(ψ); if φ = ψ1 ∧ ψ2, φ = ψ1 ∨ ψ2,
or φ = ψ1Uψ2, then δ(φ) = max(δ(ψ1), δ(ψ2)); if φ = Yψ,
then δ(φ) = δ(ψ) + 1; finally, if φ = ψ1Sψ2, then δ(φ) =
max(δ(ψ1), δ(ψ2)) + 1. For example δ(YYp) = 2. We have
the following result.

Theorem 2. Let φ be an LTL formula, whose depth of past
operators is δ(φ). Let π = αs(βs)ω be a model of φ and
k+1 = |α(sβ)δ(φ)+1|; then, φsbv is satisfiable, with bound
for the encoding φsbv equal to k.

Before proving the result let us remark that, in this case,
we are considering a bound k that is long enough to encode
a sufficient number of iterations of the loop sβ (as evidenced
by the condition k + 1 = |α(sβ)δ(φ)+1|). This is due to the
presence of past temporal operators Y and S, which entail
that δ(φ) > 0 holds; for a formula φ that does not include
past temporal operators (for which δ(φ) = 0 holds), the result
could be proved with simply k + 1 = |αsβ|. For example,
consider formula φ̄ = GF(YYp) whose depth is δ(φ̄) = 2.
Word π = pω is a model for φ̄, but we need to encode at least
3 iterations of the loop to make φ̄sbv satisfiable.

Proof: To prove the result, we first define the values
of the bit-vectors that appear in formula φsbv, and then we
show that they satisfy the formulae of the encoding. More
precisely, for every subformula ψ of φ, for every position
0 ≤ i ≤ k + 1, we define that

←−
〈ψ〉[i] = 1 if, and only if,

π, i |= ψ. Notice that, since we are requiring that k + 1 =
|α(sβ)δ(φ)+1| holds, we are essentially considering model π
to be π = α′s(βs)ω , where α′ = α(sβ)δ(φ). Hence, we define
lpos = |α′| (i.e., bit-vector

←−−−
〈lpos〉 is the binary encoding, over

k + 2 bits, of value |α′|), so that position lpos corresponds
to the start of the δ(φ) + 1-th iteration of the loop in π.
Finally, we define

←−−−−−
〈inloop〉[i] = 1 if, and only if, i ≥ lpos.

Figure 4 shows an example of bit-vector and parameters
lpos, k defined from a word π = αs(βs)ω , in the case where
subformula ψ is a propositional letter and the depth is 2.
Notice that, in the shown example, word π is a model for
formula φ̄ = GF(YYp).

First of all, constraints |SBV LoopConstraints|k trivially
hold by construction. Similarly for constraint

←−
〈φ〉[0] = 1, since

by definition π, 0 |= φ holds.
The constraints of Table 3 (|SBV PropConstraints|k)

also obviously hold. Consider, for example, a subformula
ψ = ¬ψ′. By definition, π, i |= ψ holds if, and only if,
π, i |= ψ′ does not hold. By construction, then, for all
0 ≤ i ≤ k + 1,

←−
〈ψ〉[i] = 1 holds if, and only if,

←−−
〈ψ′〉[i] = 0.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 9

0 k k+1lpos’

s β

0 1 2 3 4 5 6 7 8

…
π

α s

0 0 1 0 1 0 1 0 1

p∅ ∅ ∅ p ∅ p ∅ p ∅ p

lpos

ss β

α’

β

⟵
⟨p⟩

Fig. 4. Example of bit-vector ←−p built from word π in a case where the
depth δ is 2.

Consider now the constraints |SBV TempConstraints|k
of Table 3. It is easy to see that, if ψ = Xψ′ holds, constraint←−
〈ψ〉[k:0] =

←−−
〈ψ′〉[k+1:1] also holds. In fact, by definition,

π, i |= ψ holds if, and only if, π, i + 1 |= ψ′ does. Then, by
construction, for all 0 ≤ i ≤ k,

←−
〈ψ〉[i] = 1 holds if, and only if,←−−

〈ψ′〉[i+1] = 1 holds. Similarly if ψ = Yψ′; in this case, by def-
inition π, 0 6|= ψ holds, and in fact constraint

←−
〈ψ〉 = �

←−−
〈ψ′〉

imposes that
←−
〈ψ〉[0] = 0 holds due to the � operator. The

constraints of case ψ = ψ1Uψ2 also hold. Indeed, by defini-
tion π, i |= ψ holds if, and only if, either π, i |= ψ2 holds, or
both π, i |= ψ1 and π, i+ 1 |= ψ1Uψ2 hold. By construction,
then, constraint

←−
〈ψ〉[i] =

←−−
〈ψ2〉[i] |

←−−
〈ψ1〉[i] &

←−
〈ψ〉[i+1] holds for

all 0 ≤ i ≤ k. At position k + 1, either π, k + 1 |= ψ holds,
or π, k+ 1 6|= ψ holds. If π, k+ 1 |= ψ holds, by construction←−
〈ψ〉[k+1] = 1 holds, which means that (!

←−−
〈ψ2〉[k+1] |

←−
〈ψ〉) = 1

also holds. In addition, since π, k + 1 |= ψ holds, either
π, k + 1 |= ψ2 holds, or π, k + 1 |= ψ1 does, which
assures that (

←−−
〈ψ1〉[k+1] |

←−−
〈ψ2〉[k+1] | !

←−
〈ψ〉) = 1 holds

by construction. In addition, since π = α′s(βs)ω and
k + 1 = |α′sβ| (so k + 1 is the position of the second s
in α′sβs), π, i′ |= ψ2 must hold for some lpos ≤ i′ ≤ k,
or ψ2 would never be true throughout suffix (βs)ω , so
ψ would not hold at position k + 1. Then, constraint←−
〈ψ〉[k+1] ⇒⇑ (

←−−
〈ψ2〉&

←−−−−−
〈inloop〉) = 1 holds by construction.

If π, k + 1 6|= ψ holds, (
←−−
〈ψ1〉[k+1] |

←−−
〈ψ2〉[k+1] | !

←−
〈ψ〉) = 1

holds by construction. In addition, π, k + 1 |= ψ2 cannot
hold, so constraint (!

←−−
〈ψ2〉[k+1] |

←−
〈ψ〉[k+1]) = 1 holds. The

proof for the constraints of case ψ = ψ1Sψ2 is similar (notice
that π, 0 |= ψ holds if, and only if, π, 0 |= ψ2 does).

To conclude the proof, we need to show that constraints
|SBV LastStateConstraints|k hold. To this end we first
prove—by induction—something stronger. Let us call lpos′

the position of the first loop in π = α(sβ)ω , as depicted
in Figure 4—that is, lpos′ = |α| (recall that, instead, by
construction lpos is the position of the δ(φ) + 1-th loop in π;
also, notice that k − lpos + 1 = |sβ| holds). We show that,
for each subformula ψ of φ, whose depth of past operators
is δ(ψ), for all position lpos′ + δ(ψ)(k − lpos + 1) ≤ i ≤
lpos′ + (δ(ψ) + 1)(k − lpos+ 1)− 1, π, i |= ψ holds if, and
only if, π, i+m(k−lpos+1) |= ψ, for allm ∈ N. For example,
with reference to Figure 4 (where lpos′ = 2, k− lpos+1 = 2),
subformula YYp, whose depth is 2, holds (resp., does not
hold) at position 6 (resp., 7), and at all positions 6+m2 (resp.,
7 +m2); similarly, subformula Yp, whose depth is instead 1,

does not hold (resp., holds) at position 4 (resp., 5), and at all
positions 4 +m2 (resp., 5 +m2)
The base case ψ = p (with p ∈ AP) is trivial, since by
definition π(i) = π(i + m(k − lpos + 1)) for all i ≤ lpos′.
The inductive cases for propositional connectives and for
future temporal operators are straightforward. For example,
if ψ = ψ1Uψ2, then there is i′ ≥ i such that π, i′ |= ψ2

holds, and π, i′′ |= ψ1 holds for all i ≤ i′′ < i′. By inductive
hypothesis, since δ(ψ) ≥ δ(ψ1) and δ(ψ) ≥ δ(ψ2) hold, this
holds if π, i′+m(k− lpos+1) |= ψ2 holds, and π, i′′+m(k−
lpos+ 1) |= ψi holds for all i ≤ i′′ < i′, which corresponds
to π, i+m(k − lpos+ 1) |= ψ holding.
If ψ = Yψ′, then π, i |= ψ holds if, and only if, π, i− 1 |= ψ′

holds. Since δ(ψ) > δ(ψ′) holds, then i > lpos′ + δ(ψ′)(k −
lpos + 1) holds so, by inductive hypothesis, π, i − 1 |= ψ′

holds if, and only if, π, i− 1 +m(k − lpos+ 1) |= ψ′ holds,
which in turn corresponds to π, i + m(k − lpos + 1) |= ψ
holding.
If ψ = ψ1Sψ2, then there is i′ ≤ i such that π, i′ |= ψ2

holds, and π, i′′ |= ψ1 holds for all i′ < i′′ ≤ i. If i′ ≥ lpos′ +
(δ(ψ)−1)(k−lpos+1) holds then, since both δ(ψ)−1 ≥ δ(ψ1)
and δ(ψ) − 1 ≥ δ(ψ2) hold, by inductive hypothesis both
π, i′ + m(k − lpos + 1) |= ψ2 and π, i′′ |= ψ1 hold for all
i′ + m(k − lpos + 1) < i′′ ≤ i + m(k − lpos + 1), which
entails that π, i + m(k − lpos + 1) |= ψ holds. If, instead,
i′ < lpos′ + (δ(ψ)− 1)(k − lpos+ 1) holds, then π, i′′ |= ψ1

holds for all lpos′ + (δ(ψ)− 1)(k − lpos+ 1) ≤ i′′ < lpos′ +
δ(ψ)(k − lpos + 1), which, by inductive hypothesis since
δ(ψ) > δ(ψ1) holds, entails that π, ī |= ψ1 holds for all ī ≥ i′;
hence, π, i+m(k − lpos+ 1) |= ψ holds for all m ∈ N.

Since, obviously, δ(φ) ≥ δ(ψ) for all subformulae ψ
of φ, and since, by construction, k + 1 > lpos′ + (δ(φ) +
1)(k − lpos+ 1)− 1 holds, then, for all subformulae ψ of φ,
π, k + 1 |= ψ holds if, and only if, π, lpos |= ψ holds, which
by construction entails that |SBV LastStateConstraints|k
hold.

Concerning the size of the encoding φsbv, it is easy to see
that, since we introduce a bit-vector constraint of constant
size for each subformula ψ of φ, the total size is O(n), with
n the number of subformulae of φ—notice that the number
n of subformulae of φ is, in the worst case, O(l), with l the
length of the formula, defined for example as the number of
connectives and temporal operators appearing in φ (at worst,
each subformula appears only once in φ).

4 EXPERIMENTAL EVALUATION

This section summarizes how we evaluated the efficiency of
the encoding presented in this paper by comparing it against
different state-of-the-art tools. Most of the experiments
exploit our checker Zot, which is an extensible Bounded
Model/Satisfiability Checker written in Common Lisp. More
precisely, Zot is capable of performing bounded satisfiability
checking of formulae written both in LTL (with past opera-
tors) and in the propositional, discrete-time fragment of the
metric temporal logic TRIO [30], which is equivalent to LTL,
but more concise. The user feeds Zot with the specification
to be checked and selects the plugin and the time bound (i.e.,
the value of bound k) to be used to perform the verification.
Zot encodes the received specification in a target logic (e.g.,
propositional logic, or bv logic) and provides the result to a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 10

solver that is capable of handling the target logic. The result
obtained by the solver is parsed back and presented to the
user in a textual representation.

To assess the new encoding, we selected five benchmark
specifications, two from the literature and two from our
previous work. We wanted to work with complex specifi-
cations to better highlight the strengths and weaknesses of
each tool. What follows is a brief presentation of the five
case studies, but we refer the reader to cited literature for
more details. These studies employ a BSC approach, that is,
they use temporal logic to describe both the system under
verification and the properties to be checked (Section 2.2).

Kernel Railway Crossing (KRC). This problem is fre-
quently used for comparing real-time notations and tools [31].
A railway crossing system prevents vehicles from crossing
the railway while trains are passing through it by controlling
a gate. A temporal logic-based version of the KRC problem
was developed in [9] for benchmarking purposes. It only
considers one track, trains can only move in a direction,
and uses an interlocking system. We experimented with two
sets of time constants that allow different degrees of non-
determinism, denoted as krc2 and krc3 in our experiments.
The level of non-determinism is increased by using bigger
time constants—e.g., the time a train takes to go through
the railway crossing—that increase the number of possible
combinations of events in the system. We also carried out
formal verification with two properties of interest: a safety
property that says that as long as a train is in the critical
region the gate is closed (P1); and a utility property that
states that the gate must be open when it is safe to do so (i.e.,
the gate should not be closed when unnecessary), where the
notion of “safe” is captured through suitable time constants
(P2).

Fischer’s protocol. It is a classic algorithm for granting
exclusive access to a resource that is shared among many
processes. Fischer’s protocol is a typical benchmark for veri-
fication tools capable of dealing with real-time constraints.
The version we used is taken from [9]. It includes 4 processes,
and the delay that a process waits after sending a request,
which is the key parameter in the protocol, is 5 time instants.
We then formally verified a safety property that states that
it is never the case that two processes are simultaneously
in their critical sections (P1). We identify the models of this
case study through prefix fischer.

Ping Application. Corretto3 is the toolset we developed to
perform formal verification of UML models [5]. Corretto takes
as input a set of UML diagrams and produces their formal
representation through temporal logic formulae. In our tests
we used the example diagrams introduced in [5] (a Class
Diagram, an Object Diagram, and a Sequence Diagram with
various combined fragments), which describe the behavior
of an ping application that pings two servers and then sends
queries to the server that responds first. The model comprises
a loop, and we performed tests on two versions of the system,
called sdserverl2, and sdserverl3, where the number
of iterations in the loop is 2 and 3, respectively. Property P1
states that the search request is always sent to the server that
replies earlier.

3https://github.com/deib-polimi/Corretto

On Board Radar System. Corretto was also used in
the EU-funded project MADES for the verification of two
example Radar Systems, one on board the airplane and a
ground-based one, provided by two industrial partners. In
our tests, we used the on board system, and more precisely
a component that carries out the delivery of the flight data
from the environment to the User Interface (UI) of the pilot.
Such a delivery is performed by a number of periodic tasks.
The UML model (whose corresponding LTL formalization
is identified by prefix txt4 in our experiments) comprises
a Class Diagram with five clocks, five Sequence Diagrams,
and five State Machine Diagrams. The model identified by
prefix txt8 is similar, but larger, as it includes four more
tasks—hence four more Sequence Diagrams and as many
State Machine Diagrams. The different Sequence Diagrams
illustrate how the data are read and processed by the different
periodic tasks.

Human Robot Collaboration. This model (which is taken
from [32]) formalizes the main elements a collaborative
robotic system: a robot, a physical working area, a human
operator, and a job executed by both the human and the robot.
The model also includes definitions of hazardous physical
contacts between the human and the robot based on the
definitions of a few adopted ISO standards. Whenever the
state of the model conforms with one of those definitions, a
risk value that belongs to set {0,1,2} is assigned to the relevant
hazard based on its attributes to estimate its harmfulness.
Then, a risk reduction measure is activated when risk is 1 or
2 in order to reduce it to 0 in an acceptable amount of time.
We use prefix hrc to identify the models of this case study.

4.1 Efficiency of the encoding
To evaluate the efficiency of sbvzot, we implemented it as
new Zot plugin and ran a first set of experiments to check
the aforementioned benchmark by means of different tools.
These first experiments exploit, in addition to sbvzot, the
meezot and bvzot Zot plugins presented in [9] and [11], re-
spectively: meezot implements an optimized encoding of LTL
formulae into propositional logic, while bvzot implements
our first bv logic-based encoding.

We also ran both NuSMV and nuXmv to test their
implementations of the classic bounded encoding (bmc) [18],
the corresponding optimized encoding (sbmc) [19], and its
incremental version (sbmcinc4) [33]. We also used nuXmv
for five additional, significant verification algorithms that
mainly differ in the way they check LTL properties. coisat
employs an incremental cone of influence reduction [34] to
eliminate unrelated variables with respect to a given property.
The flags used in the command specify that a SAT engine
is used for both verification and trace execution. coismt is
the same as coisat, but it uses an SMT engine. klive performs
a K-Liveness algorithm with the IC3 engine, and produces
a counterexample using the bmc algorithm. Note that this
algorithm also checks the completeness bound. For example,
at a given point it may conclude that the LTL formula is
UNSAT and there is no need to check for larger bounds.

4While running this verification procedure we did not activate the
completeness checking option since it often slows the verification down,
as shown in [33].

https://github.com/deib-polimi/Corretto

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 11

msatcoi employs an SMT-based incremental cone of influence.
msat is an SMT-based incremental sbmc.

Note that NuSMV, nuXmv and Zot also support other
encodings for LTL/TRIO; we have chosen to show the results
for the ones above because further experiments, not reported
here for the sake of brevity, shown them to be, on average, the
fastest ones for the tools. We also use S and X before the labels
identified above to distinguish between NuSMV and nuXmv.
To compare the performance of the different algorithms, we
built a simple translator to convert specifications written
in the Zot input language—such as those used in [9] and
[5]—into the SMV language (the input language of NuSMV
and nuXmv).

All experiments5 were carried out on a Linux desktop
machine with a 3.4 GHz Intel R© CoreTM i7-4770 CPU and 16
GB RAM. In all cases we performed two kinds of checks. First,
we took the temporal logic formula φS describing the system,
and we simply checked for its satisfiability. This allowed
us to determine whether the specification is realizable or
not. As a second type of check, we also considered the logic
formula φP that captures the property of interest, and we
fed the verification tool with formula φS ∧¬φP to determine
whether the property holds for the system or not. We also
experimented with different bounds k to analyze how the
tools behave when k is increased.

Since NuSMV and nuXmv adopt a BMC (Bounded Model
Checking) approach, we fed them with an empty system
model (for which any trace is possible), together with either
¬φS or ¬(φS ∧ ¬φP) as property to check [35]. Indeed, a
BMC tool that receives a property ψ to be verified, first builds
¬ψ, then looks for a trace that satisfies ¬ψ. As a consequence,
by feeding it ¬φS (resp., ¬(φS ∧¬φP)) as a property, the tool
looks for a trace satisfying φS (resp., φS ∧¬φP), just like our
tool does.

Table 4 shows the time (T) in seconds and memory (M)
in MBs consumed in each of the experiments we performed6.
Column Model concatenates the name of the particular
model with the verification type (either SAT or property
checking) and the maximum bound. For example, the first
row (krc2Sat_30) shows time/memory consumption of
each tool for the simple satisfiability checking of model krc2
with the maximum bound k = 30. The two subsequent
rows (krc2P1_60 and krc2P1_90) are the results for the
verification of property P1 with maximum bound k = 60
and k = 90, respectively. The last row (Solved Instances) is
the percentage of solved verification problems (models) by
each tool on the five benchmarks. To help the reader rank
the tools at a first glance, cell background colors indicate the
best , second best , and third best tools.

For each experiment, we set a maximum bound k and
the tools iteratively (possibly incrementally) tried to find an
ultimately periodic model αβω where the length of αβ is
1, 2, . . . , k. As soon as a model is found, the search stops,
and the model is output; if no model is found for any bound

5We used version 2.6 of NuSMV and version 1.1.1 of nuXmv. The
SAT and SMT solvers used with Zot were, respectively, MiniSat version
2.2 and Z3 version 4.8. The code for all the experiments is available,
along with all Zot plugins, from the Zot repository [13].

6Interested readers can refer to the Zot repository [13] for the
complete and detailed data about the experiments.

up to k, the search stops at k and the formula is declared
unsatisfiable.

All the runs reported in Table 4 had a time limit of 1 hour
and a memory limit of 10GB RAM; that is, if the verification
has taken longer than 1 hour or occupied more than 10GB
of RAM, it would have been stopped. Hence, the possible
outcomes of a run are satisfiable, unsatisfiable, out of time
(TO), and out of memory (MO). In addition, in some cases
the tool stopped because of heap exhaustion (HE) while
pre-processing the specification to produce the encoding.

Table 4 suggests that the combination of sbvzot/Z3 is
not the fastest for 6 models, but altogether it only needs 53
more seconds to perform the verification of those 6 models.
sbvzot, however, is the fastest for the remaining 28 models
and saves two hours in those experiments.

As Table 4 shows, among the algorithms implemented in
NuSMV and nuXmv, X-sbmcinc is the one with the highest
number of solved instances and mostly the one with the
lowest memory consumption, whereas X-sbmc is the fastest
on average. Indeed, X-sbmcinc solved 10 more models than
X-sbmc; however, if one considers only the models on which
both encodings are applicable, X-sbmc is usually faster than
X-sbmcinc. Note that in the case of Fischer’s protocol X-klive
is the most efficient encoding, but overall it was able to solve
only 11 models out of 34 (32%). All in all, we can conclude
that the experimental results show a promising ability of
sbvzot to scale as the size of the specification and the time
bound increase.

We also carried out some additional experiments with
the idea of letting sbvzot reach the 3600-second time
limit. Figure 5 shows what happened for txt4P1, txt8P1,
sdserverl2P1, and sdserverl3P1. sbvzot reached the
limit at bounds 241 and 228 for sdserverl2P1 and
sdserverl3P1, respectively, and at bounds 115 and 105
for txt4P1 and txt8P1, respectively. These values witness
that the boundaries are very application-specific and give an
idea of what the limits of sbvzot are.

0

600

1200

1800

2400

3000

3600

30 60 90 120 150 180 210 240 270

Ti
m
e	
(s
)

Bound
txt4P1 txt8P1 sdserverl2P1 sdserverl3P1

Fig. 5. Excerpts of how sbvzot behaves given a one-hour time window.

4.2 Independence of the SMT solver

One might claim that efficiency of our tool comes mainly
from the underlying SMT solver (Z3), rather than from the
encoding itself. To reject this claim, we examined the top five
solvers in SMT competitions [21] in recent years, and thus,
besides Z3 (version 4.8), we selected four additional SMT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 12

TABLE 4
Time/memory comparison over the five benchmarks.

T M T M T M T M T M T M T M T M T M T M T M T M T M T M
krc2Sat_60 2 130 13 144 25 245 48 988 159 2108 24 906 147 2048 169 2750 17 777 58 108 18 777 178 1740
krc2P1_60 2 143 40 176 349 498 282 4988 651 3903 158 4525 589 3823 805 7046 367 3226 788 264 392 3226 2541 4225
krc2P1_90 95 175 649 213 1897 665 2108 5665 482 9533 2160 5449 1118 264
krc2P2_60 18 145 40 176 549 501 362 4979 739 3937 227 4500 641 3853 906 7194 457 3433 457 3384 2600 4329
krc2P2_90 704 212 875 215 2924 9757
krc3Sat_60 7 153 35 177 134 506 292 4888 1319 6552 172 4498 1346 6347 1419 9330 85 2364 85 2364 1504 6317
krc3P1_60 19 166 56 207 629 850 2927 9639 2814 9235 265 5660 244 5660
krc3P1_90 102 151 565 261
krc3P2_60 18 169 60 218 566 988 2953 9369 466 5904 441 5904
krc3P2_90 229 187 392 259
fischerSat_30 4 128 12 155 19 182 77 1531 4 153 7 298 24 1467 2 159 7 302 12 406 11 462 4 73 12 462 9 219
fischerP1_30 2 128 10 156 19 197 88 1656 5 160 4 306 24 1588 2 162 5 313 8 427 8 475 1 58 8 475 3 203
fischerP1_60 8 140 38 186 145 378 66 557 13 539 13 519 11 536 43 1006 52 1825 0 58 52 1801 11 389
fischerP1_90 19 155 86 217 457 554 58 1185 24 768 34 1076 24 758 131 1799 179 4711 1 58 179 4711 23 624
hrcSat_20 14 462 116 855 235 1599 271 1015 265 1955 94 1591 132 999 126 1924 204 1970 212 1503 721 1537 212 1503 162 1550
hrcP1_30 144 1110 995 2066 1235 5607 260 921 1053 5202 231 4047 415 5015 1432 7390 930 1934 1434 7463 342 3907
hrcP1_60 596 1931 921 7651 835 7356 1801 2536 1646 7856
hrcP1_90 1832 2809
txt4Sat_20 5 186 17 303 89 524 55 1543 62 1445 1826 9750 26 1189 58 1416 65 1621 30 886 30 886 56 929
txt4P1_30 18 236 85 425 373 1078 194 4650 137 2293 101 3612 128 2204 158 2885 112 2293 112 2299 77 1527
txt4P1_60 114 338 623 737 435 3993 411 3880 618 6824 289 3440
txt4P1_90 325 455 931 5840 885 5494 618 5769
txt8Sat_20 9 226 29 416 197 762 114 2369 96 1797 52 1859 88 1784 116 2041 68 1271 66 1271 115 1215
txt8P1_30 26 294 121 561 418 1078 431 7269 210 2844 189 5555 226 2777 245 3658 237 3545 239 3463 143 2080
txt8P1_60 150 460 1868 1015 665 5125 630 4862 1044 8741 532 4768
txt8P1_90 528 661 1421 7591 1352 7068 1229 8460
sdserverl2Sat_50 11 212 87 547 115 603 145 2130 8 367 32 1104 104 1794 4 310 31 1085 32 1156 60 823 848 344 60 823 45 655
sdserverl2P1_60 169 649 1204 1244 572 9444 420 3910 256 6899 396 3816 621 4464
sdserverl2P1_90 407 840 3059 1797 945 5598 883 5320 1806 8160
sdserverl2P1_120 791 1136 1929 7521 1790 7097
sdserverl3Sat_50 16 255 135 558 269 832 1119 6254 17 639 55 1332 819 4984 9 517 50 1324 56 1466 102 1340 108 1340 79 924
sdserverl3P1_60 203 692 1401 1516 551 4414 324 7631 726 4190 829 4968
sdserverl3P1_90 474 924 1216 6442 1128 6070 1682 9014
sdserverl3P1_120 896 1249 2232 8388 2081 8049

Solved Instances

TO

TO

TO

MO

MO

MO

MO

TO

MO

MO

TO

MO

MO

MO

MO MO

MO

MO

MO TO TO

MO

TO
HE

HE

MO

MO

MO

MO
TO
MO

MO

MO

sbvzot bvzot meezot S-bmcinc S-sbmc

TO MO TO

X-klive X-msatcoi X-msat

TO

MO MO TO

TO

TO

S-sbmcinc X-bmcinc X-sbmc X-sbmcinc X-coisat X-coismt

TO

MO

TO

HE MO MO TO

MOHE MO MO MO

HE TO MO MO

MO MO MO

TO TO
MO

MO

TO

HE

MO

MO

100% 79% 50% 14% 50% 85%

MO

HE MO MO MO TO TO TOMO MO

TO

TO

TOMO MOTO

52% 73%17% 58% 88% 52% 52% 32%

Tool
Model

solvers. Boolector [22] (version 3) supports the quantifier-
free theories of fixed-size bit vectors and arrays. This SMT
solver won first place in divisions QF_ABV (main and
application track), QF_BV (main track) and QF_UFBV (main
and application track) in the 2018 SMT competition [36].
Yices2 [23] (version 2.6) decides the satisfiability of formulae
that contain uninterpreted function symbols with equality,
real and integer arithmetic, bit vectors, scalar types, and
tuples. It also supports nonlinear arithmetic, and has its
own specification language (apart from SMT languages).
Mathsat [15] (version 5.5) supports equality and uninter-
preted functions, linear arithmetic, and bit vectors. It also
provides additional features like extraction of unsatisfiable
cores, generation of models and proofs, and the ability
of working incrementally. CVC4 [24] (version 1.6) is an
automatic theorem prover for SMT problems. It supports
first-order formulae in a large number of theories and
combinations thereof. CVC4 is intended to be an extensible
SMT engine.

Table 5 compares the five implementations of sbvzot, that
is, based on the five SMT solvers, against the first two best
options provided by NuSMV or nuXmv. If no data is reported
for NuSMV/nuXmv, these tools were not able to complete
the verification process within the given time/memory limit.
Again, cell background colors follow the same convention
as before to ease the comprehension of the table. When one
considers sbvzot in general, that is, with any underlying
SMT solver, it is, on average, 2 times faster and 8 times more
memory-efficient than the best algorithms of NuSMV and
nuXmv (column 1st best).

4.3 Lessons Learned

The results above allow us to draw some conclusions on the
effectiveness of sbvzot, and on the kinds of problems for
which it seems particularly well suited.

We noticed a trade-off, at the level of the SMT solver,
between the use of bit-blasting, which transforms bit-vector
constraints into Boolean constraints, and the simplifications
that can be obtained by using bit-vector arithmetic. For ex-
ample, bvzot exploits greater simplifications at the bit-vector
level because the encoding heavily depends on arithmetic
operators (binary addition in the encoding of U and S). This
results in more complex, heavier-to-handle Boolean formulae
produced after bit-blasting. sbvzot mainly employs bit-wise
operators, instead of bit-vector level arithmetic, and the
Boolean formulae that are ultimately solved after bit-blasting
are easier to handle. Although there are some simplification
gains at the bit-vector level, the trade-off seems to favor
bit-blasting over arithmetic simplification.

We also want to highlight that when we use MathSAT
with our encoding, and NuSMV, that uses MathSAT itself, our
use of MathSAT is actually faster. This is another evidence
of how the use of bv logic and our encoding help verify
(complex) LTL specifications.

5 RELATED WORK

There are essentially two approaches to the problem of
satisfiability checking of LTL formulae: bounded and com-
plete ones. This paper pursues a bounded approach, and
Section 4 compares sbvzot against similar ones, and in
particular those presented in [18], [19], [20], [33] and [9].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 13

TABLE 5
sbvzot, with the five SMT solvers, against the two bests results produced by NuSMV/nuXmv on the five benchmarks.

T M T M T M T M T M T M Tool T M Tool
krc2Sat_60 6 139 4 155 3 131 2 114 2 130 17 777 X-coismt 18 777 X-msatcoi
krc2P1_60 22 166 21 219 75 159 14 132 2 143 158 4525 X-sbmc 282 4988 S-sbmc
krc2P1_90 109 238 98 311 506 194 71 150 95 175 482 9533 X-sbmc 1118 264 X-klive
krc2P2_60 24 163 36 224 119 164 26 135 18 175 227 4500 X-sbmc 362 4979 S-sbmc
krc2P2_90 579 761 657 349 383 187 704 212 2924 9757 X-sbmc ----- ----- -----
krc3Sat_60 16 169 13 230 9 172 6 136 7 153 85 2364 X-coismt 85 2364 X-msatcoi
krc3P1_60 31 187 35 311 77 201 17 150 19 166 244 5660 X-msatcoi 265 5660 X-coismt
krc3P1_90 140 265 151 425 800 212 95 138 102 151 ----- ----- ----- ----- ----- -----
krc3P2_60 34 194 46 312 72 207 27 158 18 169 441 5904 X-msatcoi 466 5904 X-coismt
krc3P2_90 263 454 460 438 2452 231 268 158 229 187 ----- ----- ----- ----- ----- -----
fischerSat_30 5 140 3 136 2 123 3 117 4 128 2 159 X-sbmc 4 73 X-klive
fischerP1_30 4 139 3 141 1 122 2 114 2 128 1 58 X-klive 2 162 X-sbmc
fischerP1_60 15 159 15 177 6 145 8 128 8 140 0 58 X-klive 11 389 X-msat
fischerP1_90 35 184 47 226 21 171 20 140 19 155 1 58 X-klive 23 624 X-msat
hrcSat_20 25 461 15 534 7 388 11 341 14 462 94 1591 X-bmcinc 132 999 X-sbmc
hrcP1_30 273 940 159 1095 73 929 123 771 144 1110 231 4047 X-sbmcinc 260 921 S-sbmcinc
hrcP1_60 1831 1575 716 2031 452 1620 797 1360 596 1931 835 7356 X-sbmcinc 921 7651 S-sbmcinc
hrcP1_90 2137 3227 2449 2506 2226 1937 1832 2809 ----- ----- ----- ----- ----- -----
txt4Sat_20 18 244 9 237 4 193 6 171 5 186 26 1189 X-sbmc 30 886 X-coismt
txt4P1_30 63 315 25 324 10 264 19 218 18 236 77 1527 X-msat 101 3612 X-sbmc
txt4P1_60 333 484 141 588 95 433 127 343 114 338 289 3440 X-msat 411 3880 X-sbmcinc
txt4P1_90 1176 650 427 943 446 646 432 459 325 455 618 5769 X-msat 885 5494 X-sbmcinc
txt8Sat_20 29 312 13 306 6 244 11 206 9 226 52 1859 X-sbmc 66 1271 X-msatcoi
txt8P1_30 115 408 44 428 14 341 31 271 26 294 143 2080 X-msat 189 5555 X-sbmc
txt8P1_60 789 650 217 917 144 602 206 471 150 460 532 4768 X-msat 630 4862 X-sbmcinc
txt8P1_90 2830 929 647 1528 630 875 666 632 528 661 1229 8460 X-msat 1352 7068 X-sbmcinc
sdserverl2Sat_50 23 306 18 280 8 218 10 193 11 212 4 310 X-sbmc 8 367 S-sbmc
sdserverl2P1_60 254 912 339 1114 255 817 232 598 169 649 256 6899 X-sbmc 396 3816 X-sbmcinc
sdserverl2P1_90 736 1273 895 1842 782 1277 566 811 407 840 883 5320 X-sbmcinc 945 5598 S-sbmcinc
sdserverl2P1_120 1270 1671 1818 2921 1511 1641 1196 1070 791 1136 1790 7097 X-sbmcinc 1929 7521 S-sbmcinc
sdserverl3Sat_50 37 369 19 346 10 262 17 233 16 255 9 517 X-sbmc 17 639 S-sbmc
sdserverl3P1_60 414 1014 387 1224 310 918 272 649 203 692 324 7631 X-sbmc 551 4414 S-sbmcinc
sdserverl3P1_90 858 1467 1013 2077 1001 1428 644 917 474 924 1128 6070 X-sbmcinc 1216 6442 S-sbmcinc
sdserverl3P1_120 1478 1836 2125 3208 1907 1817 1360 1199 896 1249 2081 8049 X-sbmcinc 2232 8388 S-sbmcinc

Solved Instances

Total T (s)
Total M (MB)

NuSMV and nuXmvsbvzot
Z3

TO

CVC4 Mathsat Yices2 Boolector 1st best 2nd best

100%

17694 24385 16702 12387 13978 105568
14907

88%

TO

5090

91%

1225912853 9348 8556 6922
117575

97% 100% 97% 100%

Tool

Model

Common complete techniques include automata-based and
tableaux-based approaches. An exhaustive evaluation of
several techniques and tools (including some that are not
based on translation to Büchi automata or on bounded
approaches) for LTL satisfiability checking can be found
in [37]. Although, given their difference in nature, we did not
not compare our tools against complete ones, in this section
we also provide a brief overview of the latter.

As for automata-based approaches (e.g., SPIN [17]),
Rozier and Vardi [38] carried out a comparison of satisfi-
ability checkers for LTL formulae based on the translation
of LTL formulae into Büchi automata. Rozier and Vardi [39]
also propose a novel translation of LTL formulae into
Transition-based Generalized Büchi Automata, inspired by
the translation presented in [40]. Such automata are used by
SPOT [41], which is claimed to be the best explicit LTL-to-
Büchi automata translator for satisfiability checking based
on the experiments carried out in [38]. Li et al. [42] present
a novel on-the-fly construction of Büchi automata from LTL
formulae that is particularly well suited for finding models
of LTL formulae when they exist.

In tableau-based approaches, the LTL formula is analyzed
on a tableau—that is, a set of nodes. The root node is labeled
by the main LTL formula, and it is repeatedly decomposed
based on the tableau rules that create successors labeled by a
set of formulae. The LTL formula is satisfiable if, and only if,
there exists at least one successful branch. Goranko et al. [43]
report on the implementation and experimental evaluation of
two well-known tableau-based approaches: Wolper’s multi-
pass, LTL tableau presented in [44], and Schwendimann’s

one-pass LTL tableau procedure presented in [45], with an
evident superior performance to the latter.

Reynolds [46] introduces a novel traditional-style, one-
pass, tree-shaped tableau for LTL. The fact that branches
can be explored down independently makes this approach
particularly suitable for parallel implementation, whereas
Schwendimann’s approach [45] requires the full development
of branches.

Given the different nature of our approach with respect
to automata- and tableaux-based ones we did not compare
our tools against them, and focused on similar, BSC-based
approaches instead.

A simple translation of LTL formulae to CNF (Conjunc-
tive Normal Form) formulae is presented in [19], which deals
with the semantic equivalence of LTL and Computation Tree
Logic (CTL) when each step has only one successor in the
Kripke structure. Another bounded encoding is presented
in [20], which virtually unrolls the path up to the maximum
depth of past operators (d) in the LTL formula. Unlike other
bounded approaches (with bound k), this encoding unfolds
the LTL formula up to d ∗ k steps, instead of k.

NuSMV [47] is a symbolic model checker that supports
both BDD-based and SAT-based model checking. NuSMV
can check LTL and CTL properties against finite state system
models, so it can be used as a satisfiability checker for LTL
and CTL formulae. Several algorithms are implemented
in NuSMV for the satisfiability checking of LTL formu-
lae. nuXmv [48] is an extension of NuSMV that supports
both finite and infinite-state synchronous transition systems.
nuXmv extends NuSMV by augmenting basic verification

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 14

algorithms for finite-state systems and providing new data
types and advanced SMT-based model checking techniques
for infinite-state systems. Furthermore, nuXmv is the basis
for various tools for requirements analysis, contract-based
design, model checking of hybrid systems, safety assessment,
and software model checking [16]. nuXmv offers more
algorithms for checking the satisfiability of LTL formulae
than NuSMV.

6 CONCLUSIONS

This paper presents a new encoding of LTL formulae in bit-
vector logic. The encoding is used to solve the satisfiability
problem for LTL formulae through a bounded approach.
Besides demonstrating the benefits of the proposed encoding
by comparing it against the original bv logic-based encoding
and some well-known, more “classical” solutions, the paper
also investigates the gains provided by the specific SMT
checker adopted. While the original proposal exploits Z3, we
also carried out experiments with Boolector, Yices2, Mathsat,
and CVC4. Obtained results show that the benefits are mainly
independent of the specific solver. All proposed checkers are
implemented as dedicated plugins of Zot, our bounded
satisfiability checker.

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” in Proc. of FOCS, 1977,
pp. 46–67.

[2] K. Y. Rozier, “Linear temporal logic symbolic model checking,”
Comp. Sci. Review, vol. 5, no. 2, pp. 163–203, 2011.

[3] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with
linear temporal logic,” in Proc. of IEEE IRI, 2004, pp. 493–498.

[4] P. Tabuada and G. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Transactions on Automatic Control, vol. 51,
no. 12, pp. 1862–1877, 2006.

[5] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi, “Flexible
Modular Formalization of UML Sequence Diagrams,” in Proc. of
the 2nd FME Workshop on Formal Methods in Software Engineering,
ser. FormaliSE 2014, 2014, pp. 10–16.

[6] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp.
14:1–14:64, 2011.

[7] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal logic motion
planning for mobile robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2005, pp. 2020–2025.

[8] K. Y. Rozier and M. Y. Vardi, “LTL satisfiability checking,” in Model
Checking Software, ser. Lecture Notes in Computer Science, 2007,
vol. 4595, pp. 149–167.

[9] M. Pradella, A. Morzenti, and P. San Pietro, “Bounded Satisfiability
Checking of Metric Temporal Logic Specifications,” ACM TOSEM,
vol. 22, no. 3, pp. 20:1–20:54, 2013.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science,
1999, vol. 1579, pp. 193–207.

[11] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi, “Efficient
Scalable Verification of LTL Specifications,” in Proc. of the 37th Int.
Conf. on Soft. Eng. IEEE Press, 2015, pp. 711–721.

[12] Microsoft Research, “Z3: An efficient SMT solver,” https://github.
com/Z3Prover/z3.

[13] “The Zot bounded model/satisfiability checker,” https://github.
com/fm-polimi/zot.

[14] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An Open-
Source Tool for Symbolic Model Checking,” in Computer Aided
Verification, ser. LNCS, 2002, vol. 2404, pp. 359–364.

[15] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2013, pp. 93–107.

[16] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, and S. Tonetta, “The nuXmv
Symbolic Model Checker,” in Proc. of CAV, ser. LNCS, vol. 8559,
2014, pp. 334–342.

[17] G. J. Holzmann, The SPIN model checker: Primer and reference manual.
Addison-Wesley Reading, 2004, vol. 1003.

[18] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan,
“Linear Encodings of Bounded LTL Model Checking,” Log. Meth. in
CS, vol. 2, no. 5, pp. 1–64, 2006.

[19] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple Bounded
LTL Model Checking,” in Formal Methods in Computer-Aided Design,
ser. Lecture Notes in Computer Science, 2004, vol. 3312, pp. 186–
200.

[20] ——, “Simple is better: Efficient bounded model checking for past
LTL,” in Verification, Model Checking, and Abstract Interpretation, ser.
Lecture Notes in Computer Science, 2005, vol. 3385, pp. 380–395.

[21] “The annual smtcomp competition website.” http://www.
smtcomp.org.

[22] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 53–58,
2015.

[23] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, pp. 1–2, 2006.

[24] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in International
Conference on Computer Aided Verification. Springer, 2011, pp. 171–
177.

[25] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi, “How
Bit-vector Logic Can Help Improve the Verification of LTL
Specifications over Infinite Domains,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, ser. SAC ’16. New
York, NY, USA: ACM, 2016, pp. 1666–1673. [Online]. Available:
http://doi.acm.org/10.1145/2851613.2851833

[26] O. Lichtenstein, A. Pnueli, and L. Zuck, “The Glory of the Past,” in
Logics of Programs, ser. Lecture Notes in Computer Science, 1985,
vol. 193, pp. 196–218.

[27] F. Laroussinie, N. Markey, and P. Schnoebelen, “Temporal logic
with forgettable past,” in Proc. of the Symposium on Logic in Computer
Science, 2002, pp. 383–392.

[28] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, Modeling time
in computing. Springer Science & Business Media, 2012.

[29] L. De Moura and G. O. Passmore, “The strategy challenge in smt
solving,” in Automated Reasoning and Mathematics. Springer, 2013,
pp. 15–44.

[30] C. Ghezzi, D. Mandrioli, and A. Morzenti, “TRIO: A Logic
Language for Executable Specifications of Real-time Systems ,”
Journal of Systems and Software, vol. 12, no. 2, pp. 107 – 123, 1990.

[31] C. Heitmeyer and D. Mandrioli, Formal Methods for Real-Time
Computing. New York, NY, USA: John Wiley & Sons, Inc., 1996.

[32] F. Vicentini, M. Askarpour, M. Rossi, and D. Mandrioli, “Safety
assessment of collaborative robotics through automated formal
verification,” IEEE Transactions on Robotics, pp. 1–20, 2019, early
access. [Online]. Available: https://doi.org/10.1109/TRO.2019.
2937471

[33] K. Heljanko, T. Junttila, and T. Latvala, “Incremental and complete
bounded model checking for full PLTL,” in Computer Aided Verifi-
cation, ser. Lecture Notes in Computer Science, 2005, vol. 3576, pp.
98–111.

[34] Kurshan, Robert P, Computer-aided Verification of Coordinating
Processes: the Automata-Theoretic Approach. Princeton university
press, 2014.

[35] A. Cimatti, M. Roveri, and D. Sheridan, “Bounded verification of
past ltl,” in International Conference on Formal Methods in Computer-
Aided Design. Springer, 2004, pp. 245–259.

[36] “Smtcomp competition 2018.” http://smtcomp.sourceforge.net/
2018.

[37] V. Schuppan and L. Darmawan, “Evaluating LTL satisfiability
solvers,” in Automated Technology for Verification and Analysis, ser.
Lecture Notes in Computer Science, T. Bultan and P.-A. Hsiung,
Eds. Springer Berlin Heidelberg, 2011, vol. 6996, pp. 397–413.

[38] K. Y. Rozier and M. Y. Vardi, “LTL Satisfiability Checking,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 12, no. 2,
pp. 123–137, 2010.

[39] ——, “A multi-encoding approach for LTL symbolic satisfiability
checking,” in FM 2011: Formal Methods, ser. Lecture Notes in
Computer Science, 2011, vol. 6664, pp. 417–431.

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/fm-polimi/zot
https://github.com/fm-polimi/zot
http://www.smtcomp.org
http://www.smtcomp.org
http://doi.acm.org/10.1145/2851613.2851833
https://doi.org/10.1109/TRO.2019.2937471
https://doi.org/10.1109/TRO.2019.2937471
http://smtcomp.sourceforge.net/2018
http://smtcomp.sourceforge.net/2018

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, M Y 15

[40] D. Giannakopoulou and F. Lerda, “From states to transitions:
Improving translation of LTL formulae to büchi automata,” in
Formal Techniques for Networked and Distributed Sytems — FORTE
2002, ser. Lecture Notes in Computer Science, 2002, vol. 2529, pp.
308–326.

[41] A. Duret-Lutz and D. Poitrenaud, “Spot: an extensible model check-
ing library using transition-based generalized büchi automata,”
in Proceedings of the Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS), 2004, pp. 76–83.

[42] J. Li, L. Zhang, G. Pu, M. Vardi, and J. He, “LTL satisfiability
checking revisited,” in Proccedings of the International Symposium on
Temporal Representation and Reasoning (TIME), 2013, pp. 91–98.

[43] V. Goranko, A. Kyrilov, and D. Shkatov, “Tableau tool for testing
satisfiability in LTL: Implementation and experimental analysis,”
Electronic Notes in Theoretical Computer Science, vol. 262, pp. 113–125,
2010.

[44] P. Wolper, “The tableau method for temporal logic: An overview,”
Logique et Analyse, no. 110–111, pp. 119–136, 1985.

[45] S. Schwendimann, “A new one-pass tableau calculus for PLTL,”
in International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. Springer, 1998, pp. 277–291.

[46] M. Reynolds, “A traditional tree-style tableau for LTL,” arXiv
preprint arXiv:1604.03962, 2016.

[47] “The NuSMV model checker,” http://nusmv.fbk.eu/.
[48] “The nuXmv model checker,” https://nuxmv.fbk.eu/.

Mohammad Mehdi Pourhashem Kallehbasti
is an assistant professor at University of Science
and Technology of Mazandaran, Behshahr. He
received his PhD degree in Software Engineering
in 2015 from Politecnico di Milano. His research
interests are in software engineering and formal
methods.

Matteo Rossi is an associate professor at Po-
litecnico di Milano. His research interests are in
formal methods for safety-critical and real-time
systems, architectures for real-time distributed
systems, and transportation systems both from
the point of view of their design, and of their
application in urban mobility scenarios.

Luciano Baresi is a full professor at the Politec-
nico di Milano. Luciano was visiting professor
at University of Oregon (USA) and visiting re-
searcher at University of Paderborn (Germany).
His research interests are in the broad area
of software engineering and include formal ap-
proaches for modeling and specification lan-
guages, distributed systems, service-based appli-
cations and mobile, self-adaptive, and pervasive
software systems.

http://nusmv.fbk.eu/
https://nuxmv.fbk.eu/

	Introduction
	Preliminaries
	Linear Temporal Logic
	Bounded Satisfiability Checking
	Bit-Vector Logic

	Bit-vector-based Encoding
	sbvzot
	Correctness and Complexity

	Experimental Evaluation
	Efficiency of the encoding
	Independence of the SMT solver
	Lessons Learned

	Related Work
	Conclusions
	References
	Biographies
	Mohammad Mehdi Pourhashem Kallehbasti
	Matteo Rossi
	Luciano Baresi

