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a b s t r a c t

During in-flight ice accretion, roughness plays an important role since it heavily in-
fluences the convective heat transfer and skin friction coefficients. This paper aims to
assess the ability of existing ice accretion simulation tools to compute the growing
ice’s roughness. To this purpose, a technique based on Self Organizing Maps is applied
to numerical simulations of in-flight ice accretion to characterize the roughness. The
numerical ice predictions are performed using a standard approach comprising RANS
computations, Lagrangian particle tracking, the solution of the unsteady Stefan prob-
lem, and a morphogenetic model. Numerical simulations are performed on selected
benchmark cases from the 1st AIAA Ice Prediction Workshop. Validation of roughness
computation is performed on synthetic test cases, while ice roughness is compared
directly to that extracted from ice scans. The results of simulated ice shapes compare
reasonably well with experimental data. Computations can replicate the trend of the
experimental mean ice shape and roughness distribution for both rime and glaze cases.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In-flight ice accretion is an important issue in aircraft design, and aviation safety [1]. It may possibly lead to a
egradation of the aerodynamic properties of wings, and disturb the output of sensors and engine performances. The
rowing concerns about the in-flight icing issue, and the increased attention of regulators and manufacturers in addressing
afety concerns, led to a blossoming of the related research activity. The early work of Stefan [2], and Messinger [3] built
he foundation for all subsequent research efforts, first of which the work of Myers [4]. Currently, literature reports a wide
ariety of numerical prediction codes, coming from either academia or industry and government-founded agencies [5–9].
umerical tools provide a mean to predict ice formation at critical locations over the aircraft fuselage and wings. Codes
re exploited to complement the experimental activity required to design new aircraft. Moreover, comparing predictions
gainst observations allows for model testing and tuning.
Airworthiness standards now require modern large civil aircraft to sustain operations in ice accretion conditions. Often,

umerical simulation is the only viable means to design for such requirements, it being inexpensive and safe compared
o in-flight or wind tunnel testing. Therefore, the accuracy and reliability of the numerical tools are extremely important.
oughness is expected to play an important role in ice accretion. First, it heavily influences the convective heat transfer
oefficient by exposing an increased surface to the flow. Enhanced convection leads to higher ice growth rates. Second,
oughness that forms at the early stages of accretion can trip the boundary layer to a premature transition, which modifies
ot only the heat transfer, but also the skin friction coefficient is perturbed [10]; this is the main driving force of the liquid
ilm, and its motion is crucial in glaze ice conditions. Therefore, an accurate characterization of icing roughness would
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Nomenclature

Greek letters

ϵ Relative Error

Parameters

ȳ Average Height [m]
x Point of the Data Cloud [m]
dN Normal Distance of point of the Data Cloud from Code Book Vector [m]
Ra Mean Arithmetic Roughness [m]
s Curvilinear Abscissa [m]
Sa Arithmetic Mean Height [m]
y(x) Height [m]

lead to a more precise estimation of the convective heat transfer and the skin friction if this information is propagated
to the aerodynamic solver. Recent results available in the literature show that improved roughness modeling leads to
more accurate predictions [11]. Current numerical codes either consider a constant roughness [5] or implement some
experimental correlation [12] or analytical model [13]. As such, current roughness modeling cannot cover all possible
ice accretion regimes and the effect of different geometries. This work aims to assess the ability of existing ice accretion
simulation tools to compute the roughness of the simulated ice shapes. The requirement is that numerical results must
attain an accuracy comparable with experimental results. This would provide a new tool for the characterization and
comparison of experimental and simulated ice shapes. Another use of the present research effort is providing a more
extended database of roughness measurements to cover more geometries and icing conditions, leading to a better
understanding of roughness evolution during ice accretion.

The paper is structured as follows. In Section 2 the computational model is briefly described. In Section 3, the Self
rganizing Maps approach to compute the ice roughness is introduced. Section 4 presents the results obtained with the
roposed framework. Finally, in Section 5 conclusions are drawn.

. Ice accretion simulation

The numerical simulation of in-flight ice accretion often is built on the assumption that the phenomenon, although
ime dependent, can be approximated as quasi-steady. Although fully coupled, unsteady icing simulations are possible
see, e.g., [14]), the quasi-steady approximation is justified by the much longer time scale of ice accretion to that of
erodynamic problem. In addition, the low concentration of water droplets in the air makes the flow solution independent
rom the particle phase and can thus be obtained in an uncoupled manner [15,16]. Using the quasi-steady approximation,
he total ice accretion is subdivided into smaller layers to reach the final icing time. The multi-stepping approach aims to
ccount for the feedback of the growing ice on the aerodynamic and droplet fields. The total number of steps to employ
s somewhat case-dependent, and no unique solution is reported in the literature. Usually, ten steps are used for large
D simulations, and more can be used in 2D, see e.g. [17,18]. The goal is to accrete small layers so that changes in the
erodynamic and droplet fields are negligible. Also, the type of accretion influences the number of steps to be used. Icing
n the rime regime usually requires fewer layers than in the glaze regime. If the total exposure time is accreted in a single
ayer, the simulation uses a single-step (or single-shot) approach.

In-flight icing simulation frameworks are usually composed of four tools: an aerodynamics solver, a solver for the
article phase, a thermodynamic module to compute the accretion rate, and a geometry tool to output a valid volume
esh that complies with the new iced geometry. The solution procedure follows the pipeline reported in Fig. 1. Using the
uasi-steady approximation, each step is taken sequentially. First, the airflow is computed around the current geometry.
his work uses a Finite Volume discretization to obtain a solution to the Reynolds-averaged Navier Stokes equations.
hen, the water collected by the aircraft’s surfaces is computed by simulating the evolution of the droplets through the
omputational domain. Mass and energy balance is solved on the surface grid, and an ice layer is generated. If the total
ime of the icing event is not yet reached, a new computational mesh is obtained for the iced configuration, and the whole
rocess is repeated. In the following the main components of the simulation framework are briefly discussed.

.1. The aerodynamic model

The aerodynamic solution is obtained as the solution of a viscous compressible turbulent flow modeled by the Reynolds
veraged Navier Stokes (RANS) equations. The effects of turbulence on the mean flow are modeled using the Boussinesq

ypothesis which amounts to an increase in the viscosity. The total viscosity is obtained as the sum of the laminar viscosity

2
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Fig. 1. Block diagram showing the common workflow in an icing simulation.

nd the turbulent one. Laminar viscosity is computed via the model of Sutherland [19]. The turbulent viscosity is obtained
s the solution of the one-equation model of Spalart–Allmaras [20]. The open-source SU2 code is used to compute the
olution of the RANS system [21]. The compressible RANS equations are discretized using a vertex-based finite volume
ethod. The solver operates on a median-dual grid through an edge-based data structure. The convective fluxes are
iscretized using a limited second-order MUSCL reconstruction [22] with the slope limiter of Venkatakrishnan [23]. The
iemann problem is solved at each edge to compute the fluxes via the approximate solver of Roe [24]. Viscous fluxes are
iscretized using the corrected average of gradients method, while source terms are approximated at each node using
piece-wise constant reconstruction within each control volume. Gradients are obtained via a weighted least-squares
ethod [25]. A time-marching approach drives the system to a steady state using an implicit Euler scheme. The resulting
parse linear system is solved via a quasi-newton iteration using the GMRES solver [26]. Local time stepping and automatic
FL adaptation coupled with under-relaxation is employed to accelerate convergence [27].

.2. The droplet model

An in-house particle tracking code based on a Lagrangian framework was developed at Politecnico di Milano and
s used for the simulation of clouds containing supercooled water droplets [28]. The aim of the droplet solver is that of
omputing the collection efficiency β over the aircraft, which is used to compute the water mass that is collected at a given
ocation on the surface. The Lagrangian framework allows to track each particle motion in the flow field by integrating is
quation of motion. Therefore, the modeling of super-cooled water droplets effects, such as splashing effects, aerodynamic
reakup, deformation is straightforward and it can deal with secondary particles. The cloud impinging the aircraft surfaces,
s represented as a single front initially placed at an arbitrary distance ahead of the aircraft. This distance is set so that
roplets are traced starting from an unperturbed region of the domain and so that the computational burden related to the
rajectory time integration, proportional to the integration length, is bearable. In three-dimensional problems, this front
onsists of a two-dimensional layer of droplets uniformly distributed. In a two-dimensional setting the layer degenerates
nto a straight line. As the final result depends on the particle resolution, a strategy was developed to automatically refine
he seeding region by adding new particles where needed. The seeding front, initially uniform, is discretized as a structured
esh of linear (in 2D) or quadrilateral (in 3D) elements. Elements are incrementally split at each iteration which consists
f evolving the current cloud front and computing β on the surface. The simulation stops when the difference in L2 norm
etween two consecutive collection efficiency calculations is below a user supplied threshold. In practical applications,
louds are poly-dispersed. A standard approach deals with this problem by tracking a uniform cloud of droplets with
iameter equal to the Median Volume Diameter (MVD). That is the particle size that divides the total mass of the cloud
n two. Half the mass is coming from droplets of diameter smaller than the cloud MVD, half from particles larger than the
VD. A more refined discretization of the particle size distribution can be taken into account by subdividing the droplets
ize probability distribution function in a given number of bins. For each bin, a simulation can be performed and the final
ollection efficiency can be obtained as a weighted sum of the bins’ β .
3
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2.3. The freezing model

The morphogenetic approach [29] is used to generate the ice shapes. First introduced to model ice accretion on
ower lines’ cables [30], and then extended to in-flight icing [9], the morphogenetic approach models the ice accretion
henomenon as a stochastic process, tracking single fluid parcels in a Lagrangian frame of reference. The stochastic
lgorithm works on a 3D uniform cartesian grid that envelops the target surface or part of it. Voxels of the grid represent
he fluid elements, which can be thought of as a group of droplets undergoing an average time history described by
he motion of the fluid element. The model mimics the physical process leading to ice accretion by simulating particles
mpinge the surface and subsequently freezing. Fluid elements are sequentially shot toward the surface from a straight
ine aligned to the local droplets velocity, in a way such to comply with the surface water distribution obtained with
he Lagrangian solver described in Section 2.2. Fluid particles can either impinge on the clean geometry or the already
ccreted ice. At the impingement location, fluid elements can freeze or begin a (biased) random walk on the iced surface
n the direction of the local skin-friction coefficient. The parameter governing the freezing, or lack thereof, is the freezing
robability known on the wing surface. At each point in the random walk, a pseudo-random number is generated and
ompared with the local freezing probability. If the fluid element can freeze, it does so at a close location where it
aximizes the number of occupied neighbors.
The freezing probability is defined as the freezing fraction on the aircraft surface, i.e. the amount of freezing water

ass divided by the total mass of water, which can either come from the impinging droplets or from water flowing from
he neighboring locations. In the original work of Szilder [29], the freezing probability is computed using the model of
essinger [3], which amounts to solving a mass and energy balance on the wing surface. In the present work, we employ
n extension of the model of Myers [4], which considers also the temperature profile in the ice and water layers. In
articular we employ a local exact solution of the unsteady Stefan problem to obtain the freezing rate in the glaze case [31].
o do so, this work makes use of PoliMIce, the ice accretion code developed at Politecnico di Milano [5]. The freezing
robability is computed on the aircraft surface by PoliMIce beforehand, and it is given as an input to the morphogenetic
odel together with the surface distributions of the collected mass of supercooled water, the impinging droplets velocity,
nd the skin friction.
With the morphogenetic model, the ice volume is constructed by sequentially freezing groups of particles. This creates

ce accumulations that can contain voids, in an analogy with air bubbles being trapped inside forming ice, and present
omplex morphologies. Also, the resulting ice surface is uneven and rough.
In this work, we employ single-step icing simulations. Such an approach is applicable to short-time icing events, where

he growth of ice on the geometry only slightly changes the aerodynamics and particles fields. Even so, we simulate
onger accretion events with the aim of comparing the ice shape predicted with the morphogenetic approach, against
xperimental data. The ballistic nature of the stochastic model is able to account for shadowing effects, and may produce
etter results than a standard single-step model.

. Self organizing maps for roughness characterization

Self-organizing maps (SOM) is an unsupervised machine learning technique commonly used to determine non-linear
anifolds starting from a data point cloud [32,33]. The data is fed to the algorithm that takes the position of each point
f the point cloud, x. Then, the codebook vectors (CBV) are initialized. These are moved toward the centroid of a cluster
f points that will have the CBV as the Best Matching Unit (BMU). This is done for all CBVs through a batch training
rocedure. Once the training is completed, the result is a map of CBV that identifies the mean shape of the point cloud.
inally, once the mean shape is known, statistical quantities related to the data point cloud can be computed. In this case,
he mean arithmetic roughness Ra, defined as the average distance of each input data point from the mean shape. For
each point of the clump, the normal distance dN from its BMU is computed, and for each CBV Ra is computed as:

Ra =
1
n

n∑
i=1

|dNi| (1)

here n is the number of points belonging to that data clump. In the context of roughness characterization for in-flight
cing, this approach has already been used to evaluate the mean shape and roughness from an experimental ice scan [33–
5]. Other techniques exist that, for example, unwrap the experimental data on a distance-spanwise-radial coordinate
ystem and then compute the mean ice shape and the roughness. The main advantage of SOM compared to these other
lassical techniques is that it can be applied also to complex geometries like glaze ice shapes where the projection method
ould fail. Indeed, a one-to-one correspondence between the clean wing and the ice shape is missing. To the best of our
nowledge, the SOM technique has never been used to characterize the roughness of simulated ice shapes. The SOM
lgorithm needs as input a data point cloud that represents the external surface of the ice shape. First, a morphogenetic
ce accretion simulation is performed has described in Section 2.3. Then, using a front advancing technique the external
urface is extrapolated and given as input to the SOM numerical code which performs the computation and returns the
ean shape grid identified by the CBV and the corresponding mean arithmetic roughness.
4
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Fig. 2. Flat Plate with sinusoidal roughness. Left, data point cloud and mean shape obtained with SOM. Right, Ra along the flat plate and arithmetic
mean height Sa computed from SOM and analytically.

Fig. 3. Parabola with uniform roughness of Ra = 0.01m. Left, data point cloud and mean shape obtained with SOM. Right, difference between the
imposed and computed Ra along the curvilinear abscissa, positive value refers to the parabola’s right while negative to the left.

4. Results

4.1. Roughness computation validation

Before analyzing the roughness of ice scans and simulated ice shapes, a validation on simpler geometries has been
carried out to assess the SOM algorithm capabilities. The code validation is performed by analyzing the mean shape
predicted by the SOM and the computed mean arithmetic roughness Ra on synthetic test cases. First, a flat plate with a
sinusoidal roughness y(x) =

1
2 sin(πx) has been tested. The data point cloud and the mean shape are shown in Fig. 2. The

right figure shows the Ra predicted using the SOM algorithm as in Eq. (1), along with the arithmetic mean height Sa that
is defined as:

Sa =
1
L

∫ L

0
|y(x) − ȳ| (2)

for this test case the analytical computed value is Sa = 0.3183mm, while the computed value using SOM is Sa =

0.3179mm with a relative error of ϵ = 0.13%. The second test has been performed considering a parabola with an
imposed uniform roughness of Ra = 0.01m; the results obtained are shown in Fig. 3. The left figure shows the data point
cloud and the mean shape predicted by the SOM algorithm, while the right figure compares the imposed Ra and the one
evaluated using SOM. The maximum relative error is ϵ = 0.0023%, and it is found close to the parabola vertex where
there is the highest curvature. Following these test cases, it can be stated that the SOM approach proposed in this work
can accurately predict the mean shape and roughness on simple geometries.

4.2. Ice accretion roughness computation

The ice roughness characterization results from the simulated shapes for two test cases are now presented. These are
selected from the 1st Ice Prediction Workshop [36], in particular case 241 and 242. An 18-inch NACA23012 model profile
was subject to rime and glaze ice accretion in Appendix C conditions in an experimental campaign carried out at NASA
IRT facility [37]. A straight wing section of 0.4m was used for the analysis, and a C-shape topology was chosen for the
5



M. Gallia, T. Bellosta and A. Guardone Journal of Computational and Applied Mathematics 427 (2023) 115114

o

f
t
d

4

t
s
s
g
o
a
t
t
t
a
f
n
R
d
t
b
i
w
t
a

4

t
s
f
c

Table 1
Rime ice accretion. Nominal test conditions.
Mach Pressure [Pa] Temperature [K] MVD [µm] AoA [deg] LWC [g/m3]

0.325 92528 250.15 30 2 0.42

Table 2
Glaze ice accretion. Nominal test conditions.
Mach Pressure [Pa] Temperature [K] MVD [µm] AoA [deg] LWC [g/m3]

0.31 92941 266.05 15 2 0.81

Fig. 4. Rime ice accretion. IPW case 241. Left, computed shape on a straight wing. Right, comparison of the predicted shape with experimental data
n a cut plane.

ar field. The volume was meshed with a structured grid of 1.5 million hexahedra. The Spalart–Allmaras model was used
o model the effect of turbulence on the mean flow, and the collection efficiency was computed by seeding 25 million
roplets in the flowfield. The fluid elements used in the morphogenetic model are voxels of size 0.2mm.

.2.1. Rime ice
Rime ice accretion on an airfoil flying in a cloud of small droplets is now investigated. The model airfoil was exposed

o the icing conditions reported in Table 1 for 5 min. Fig. 4 reports the computed ice shape. In the right picture, the ice
hape obtained from PoliMIce numerical simulations both with the Morphogenetic and the classical Myers model at a
ection in the middle of the model are compared to the experimental data. Regarding the classical ice accretion approach
ood agreement is found in the icing limits, while an overestimation of ice thickness is present at the leading edge. On the
ther hand, very good agreement in the iced volume and the position of the ice limits are shown for the morphogenetic
pproach. Some discrepancies can be noted at the leading edge. This could be due to the single-shot approach taken for
his work. Considering the feedback of the growing ice on the aerodynamics and particles would give a closer prediction in
his region. Fig. 5 reports the results obtained with the self-organizing maps approach. For this analysis a slice of 1 cm, in
he middle section of the test article was taken. In the left figure, the 2D data point cloud from the experimental ice scan
nd the simulated ice shape is shown along with the mean shape identified by the codebook vectors. While in the right
igure, the average roughness along the curvilinear abscissa is presented, positive values refer to the suction side while
egative to the pressure side. As can be seen, the mean shapes are very similar in the two cases, with small discrepancies.
egarding the average roughness, the trend is similar for the experimental and simulated ice shape; there is a large
iscrepancy only at s ≈ 0.04; this is because there is a deviation of the simulated ice shape from the experimental scan
hat causes this large peak in the roughness. Since the model’s base is the input data point cloud, the small discrepancy can
e, once again, attributed to the single-shot approach taken for this work. Although some discrepancies can be observed
n the roughness distribution, a common trend is identified. Indeed, there is a smooth region close to the stagnation point
here a low roughness value is seen. Moving toward the trailing edge, the roughness is increased with two peaks, one on
he pressure side and one on the suction side. Therefore, the data point distribution obtained for the simulated ice shape
grees fairly well with the experimental ice scan, both in terms of mean shape and average roughness distribution.

.2.2. Glaze ice
For the glaze ice accretion test case, the model airfoil was exposed to the icing conditions reported in Table 2 for a

otal of 5 min. As before, Fig. 6 shows the computed ice shape and the comparison with experimental data on a single
ection. Again, the computational framework with the morphogenetic approach can accurately predict the ice shape also
or a glaze-type accretion. The position and height of the horns, the icing limits, and the maximum thickness are well
aptured for this single section. While with the classical approach, the horn position is not predicted very well but the ice
6
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Fig. 5. Rime ice accretion. IPW case 241. Left, data point cloud and mean shape obtained with SOM for experimental ice scan and simulated ice
shape. Right, arithmetic mean roughness computed for experimental ice scan and simulated ice shape along curvilinear abscissa, positive values
refer to the suction side of the airfoil while negative to the pressure side.

Fig. 6. Glaze ice accretion. IPW case 242. Left, computed shape on a straight wing. Right, comparison of the predicted shape with experimental data
on a cut plane.

thickness at the stagnation point is in good agreement with experimental results. In Fig. 7 the results obtained with the
self-organizing maps technique are reported. Also for this test case, a slice of 1 cm in the middle section of the test article
was taken for the mean shape and roughness analysis. The left figure shows the 2D data point cloud from the ice scan
and the simulated ice shape, along with the mean shapes identified by the codebook vectors. The right figure shows the
average roughness along the curvilinear abscissa; positive values refer to the suction side of the airfoil while negative to
the pressure side. The mean shapes are quite similar in the two cases, with small discrepancies; the numerical approach
well captures the position and size of the horns. The largest discrepancy regards the plateau region in the leading edge
region. Indeed, for the simulated ice shape, this is more extended compared to experimental data. This is also seen in
the mean arithmetic roughness plot. The region of low roughness at the leading edge is thinner in the experimental
data compared to the simulated ice shape. Although the Ra trend is similar in both cases, indeed, there is a region of
ow roughness at the leading edge, followed by a peak of similar magnitude in the roughness corresponding to the horn
osition in the ice shape. The discrepancy between simulated and experimental ice shape and roughness is higher for
laze ice conditions compared to previously presented rime ice. Once again the discrepancy is due to the different input
ata point cloud and could therefore be attributed to the single-shot approach used in this work. The ice shape obtained
n glaze ice conditions is very different from the original airfoil, which was not the case for rime ice. Therefore, a larger
nfluence of the modified geometry on the aerodynamic and particle trajectory is expected. Further studies should be
onducted on the influence of a multi-step approach on the mean ice shape and the roughness distribution.

. Conclusions

In this work, a methodology for the analysis and comparison of experimental and simulated ice shapes was presented.
elf-organizing maps algorithm was used to extract the mean shape and average roughness distribution from a data
oint cloud. This was validated for synthetic test cases on a flat plate with a sinusoidal distribution and on a parabola
ith an imposed uniform roughness distribution. In both cases, the algorithm was in good agreement with the analytical
7
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Fig. 7. Glaze ice accretion. IPW case 242. Left, data point cloud and mean shape obtained with SOM for experimental ice scan and simulated ice
shape. Right, arithmetic mean roughness computed for experimental ice scan and simulated ice shape along curvilinear abscissa, positive values
refer to the suction side of the airfoil while negative to the pressure side.

results. The methodology was then applied to two reference test cases from the 1st Ice Prediction Workshop. One for rime
and one for glaze ice accretion. The simulated ice shapes were obtained with the morphogenetic approach to emulate
the stochastic ice accretion process. The simulated mean ice shape and the average roughness were compared against
experimental data. A very good agreement was found for rime ice accretion. On the other hand, some discrepancies were
found in the glaze ice accretion test case on the mean ice shape, which then reflected on the roughness distribution. This
can be attributed to the one-shot approach used for this work. Further studies will be performed on the influence of the
multi-step approach on the mean ice shape and roughness. The methodology presented in this work can be a useful tool
for analyzing simulated and experimental ice shapes that can be used to perform further analysis on the characterization
of ice roughness.
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