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Abstract— This article proposes the design of a hierarchical
control architecture capable of optimally coordinating multi-
energy systems (MESs). A MES involves the synergetic oper-
ation of subsystems belonging to different energy domains
(e.g., thermal, electrical, or gas), enhancing their energy effi-
ciency and economic savings, at the price of significant control
challenges. In fact, MESs imply an increased model complex-
ity and the interaction of networked subsystems with largely
different dynamics. This motivates the design of a multilayer
control architecture where, at the upper level, a model predictive
control (MPC) regulator relies on energy models of reduced
order to coordinate power exchanges among MES subsystems,
while, at the lower layer, decentralized MPC regulators locally
control subsystems with different sampling rates, consistently
with their local dynamics. On the other hand, the optimal
MES regulation may imply additional costs to few subsystems,
although the overall operational cost decreases. Thus, benefit
sharing algorithms are also proposed, relying on game-theoretical
methods, enabling to properly share the achieved economic
benefit among subsystems, and guaranteeing that the MES
operation is more convenient than the independent regulation for
each single subsystem. The designed control strategy is tested on
two different MES case studies, considering also the presence
of referenced electrical and thermal networks, showing high
versatility and enhanced performances.

Index Terms— Bargaining problem, hierarchical control, model
predictive control (MPC), multi-energy systems (MESs).

I. INTRODUCTION

MULTI-ENERGY systems (MESs) are today gaining
much attention, being recognized as a key solution

to achieve a reliable, resilient, and low-carbon energy sys-
tem [1]. The MES concept consists in the synergetic oper-
ation of subsystems belonging to different energy domains,
which can exchange energy through proper conversion devices
(e.g., interconnected electrical grids, district heating systems,
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and gas networks). The optimal coordination of these addi-
tional degrees of flexibility can significantly increase the
efficiency and storage capacity of the energy system, which are
crucial aspects to support a large-scale diffusion of intermittent
renewable energy sources [2]. For example, a surplus of
renewable electrical energy can be stored in other forms,
such as in a thermal or a gas storage tank through a proper
conversion process, and used when necessary. The growing
interest in MESs has been also pushed by the today com-
mercial availability of different conversion devices, such as
cogeneration systems (gas to electricity and heat), heat pumps
(electricity to heat), hydrogen electrolysers (electricity to gas),
and fuel cells (gas to electricity).

The benefits given by an integrated control of MESs come,
however, at a price. In fact, MESs can be large-scale systems
characterized by very different dynamic behaviors, such as
“fast” electricity systems and “slow” thermal ones, and they
can be governed by complex nonlinear equations (as for
thermal and gas networks [3], [4]). Moreover, since energy
systems of different domains may belong to different owners
or operators, privacy issues can be of paramount importance.
Finally, it is also worth noting that, despite the coordinated
control of MESs can lead to consistent economic saving, this
benefit could be a priori not equally shared among the involved
energy systems or owners. In fact, for each single-energy sys-
tem, it must be ensured that the coordinated MES optimization
is more convenient than its autonomous regulation.

A. State of the Art

The problem of modeling and control of MESs has recently
gained attention, given their inherent complexity and bene-
fits, as discussed in [5]. In [6], the energy hub concept is
discussed, comprising the interconnection of different MES
devices, and showing that applying model predictive control
(MPC) strategies can actually lead to enhanced energy savings.
A generalized modeling methodology for MESs has been
proposed in [7], leading to the formulation of mixed-integer
linear models suited for the design of MPC regulators. In [8],
a MES is modeled using state-space linear systems, and an
economic MPC is designed for its optimal regulation. Other
optimization-based control approaches for MESs consider
robust methods [9], [10], data-based approaches [11], [12],
[13], or the presence of time-varying constraints [14]. Never-
theless, all the mentioned contributions concern the design of
centralized regulators, which could be an impractical solution
for MESs due to computational issues and privacy concerns.
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Motivated by this, distributed approaches have been also
proposed. The design of a distributed MPC scheme for MESs
is described in [15], relying on dual-decomposition techniques.
In [16] and [17], distributed optimization algorithms for
energy systems described by mixed-integer linear models are
discussed. A distributed algorithm relying on the alternating
direction method of multipliers (ADMM) is proposed in [18],
assuming networked energy systems to be represented by
models. Nevertheless, distributed control strategies can be
critical in a multi-energy scenario. They often involve iterative
optimization processes, which can be slow, and, moreover,
are not guaranteed to converge to the optimal solution in
the presence of nonconvex and nonlinear problems, typical
in MESs. Because of this, a heuristic procedure based on
the relaxation of nonlinear constraints is proposed in [19],
able to recover at least a feasible solution if the designed
distributed algorithm fails in optimizing the MES. Other con-
trol approaches for networked energy systems have relied on
hierarchical architectures, enabling enhanced scalability and
prompt system regulation [20], [21], [22], [23]. In this context,
a two-layer control architecture for large-scale networks is
proposed in [24], exploiting a network partitioning procedure
to identify the subsystems to control, but, however, focusing
only on the electrical energy domain.

Concerning the distribution of the benefit achieved by the
optimal control of interconnected energy subsystems, most
literature has relied on game-theoretical approaches. A well-
known technique for this task is the Shapley value method,
first proposed in [25], where the profit is distributed based on
the effective contribution of each agent to the coalition [26].
Profit redistribution via Shapley value is applied to a resi-
dential microgrid in [27], however highlighting that it can be
intractable from the computational point of view, as each agent
needs to know the achievable benefit by any possible coalition
of agents [28]. An alternative game-theoretical method to
redistribute the benefit in cooperative fashion is the Nash
bargaining problem, first proposed in [29]. This benefit
sharing technique is exploited in [30] and [31], considering
the interconnection of electrical microgrids. Similar methods
are applied in [32] and [33], proposing distributed bargaining
algorithms, which lead to real-time trading frameworks among
energy subsystems.

Nevertheless, note that most of the mentioned references
consider simplified system models (e.g., mixed-integer linear),
which are not suited to represent dynamical energy networks,
such as thermal and gas ones, which are inherently nonlinear.
On the other hand, the presented approaches use the same
sampling period for controlling all devices, which can com-
promise performances in the presence of MESs, as they often
comprehend subsystems with largely different dynamics and
transients. Finally, note that the mentioned references do not
investigate benefit sharing strategies applied to different multi-
energy domains, which usually belong to distinct owners.

B. Main Contribution
The mentioned challenges motivate the design of a novel

hierarchical MPC architecture for MESs. In particular, we con-
sider a MES including interconnected subsystems belonging

to distinct energy domains (e.g., an electrical grid, a district
heating system, and a gas network) and that can exchange
energy through proper conversion devices (e.g., heat pumps,
gas boilers, cogenerators, and so on). The proposed control
architecture includes, at the high level, an MPC, which,
exploiting properly energy models of reduced order, computes
the optimal amount of energy to be stored in each MES
subsystem and the power exchanges among them. The pro-
posed reduced modeling is independent of the specific energy
domain, and it enables to describe the subsystem energy
dynamics at reduced complexity with respect to their detailed
modeling, facilitating their multienergetic coordination. Power
exchanges among subsystems computed at the high level are
directly imposed on conversion devices, whereas the computed
energy references are sent to a decentralized low-level layer of
MPC, each one regulating a subsystem at the minimum cost.
Each low-level MPC considers the detailed subsystem model,
possibly nonlinear, and is executed with a sampling period
consistent with the subsystem dynamical behavior.

Concerning the benefit sharing problem, a cooperative
bargaining game is formulated, resulting in an agreement
among subsystems on how the profit given by the multi-
energy interaction should be shared. In particular, the proposed
bargaining game is supposed to be periodically executed,
evaluating the benefit achieved by the designed control strategy
during the past instants and then defining the optimal economic
transactions among MES subsystems, so that the obtained
benefit is properly distributed.

The main advantages and contributions of the proposed
control strategy with respect to the literature are as follows.

1) At the high level, the definition of a novel reduced-
order modeling of MES subsystems, leading to convex
energetic models whose structure is independent of the
specific energy domain, enabling the computationally
efficient and prompt coordination of power exchanges
among MES subsystems and of their stored energy.

2) At the low level, the possibility of controlling each MES
subsystem through a local MPC (L-MPC) regulator,
considering the detailed system modeling, eventually
nonlinear, tracking an optimized overall energy profile at
the minimum cost. Moreover, each L-MPC regulator can
regulate its subsystem with a specific sampling period,
consistently with the dynamical characteristics of the
corresponding energy domain.

3) The design of a benefit sharing algorithm, which, relying
on bargaining games, enables each subsystem (or owner)
to benefit from the MES operation. In particular, the pro-
posed formulation guarantees that, for each subsystem,
the multi-energy cooperation is always more convenient
with respect to the independent regulation. Moreover,
the presented approach enables subsystems to preserve
their internal information and models, as they must
periodically communicate just their total operational
cost.

The proposed control strategy is tested on two MES case
studies. The first, more illustrative, has the purpose of clearly
showing the validity of the proposed modeling and how the
designed architecture actually solves the highlighted control
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challenges. The second case study is based on a more realistic
MES scenario, where two subsystems are interconnected and
jointly regulated, i.e., the IEEE 37-bus electrical grid [34]
and the AROMA district heating network (DHN) [3], showing
how the designed control architecture is effective also for the
coordination of large-scale MES benchmarks.

C. Outline

This article is organized as follows. Section II introduces the
MES modeling, the control objectives, and presents an illustra-
tive example to motivate the addressed control challenges. The
proposed two-layer control architecture is described in detail
in Section III. Section IV illustrates the formulated bargaining
game problem. Section V reports the analysis of the designed
control architecture tested on two MES case studies. The final
conclusions are gathered in Section VI.

Notation: Let R denote the set of real numbers, R≥0 the set
of positive or null real numbers including zero, and R>0 the
set of strictly positive real numbers. Moreover, let N denote
the set of natural numbers. Given a matrix A, A ∈ Rn,m

indicates that it has n rows and m columns, and all its entries
are real numbers. Given a vector v, v ∈ Rn indicates that
it has n rows and one column, and all its entries are real
numbers. Given a matrix A and a vector v, their transpose is
denoted with A′ and v′, respectively. The vector 1n is used
to define an n-dimensional vector where all entries are 1,
i.e., 1n = [1, . . . , 1]

′
∈ Rn . Similarly, the vector 0n is used

to define an n-dimensional vector where all entries are 0,
i.e., 0n = [0, . . . , 0]

′
∈ Rn . Given two vectors of variables

x, y ∈ Rn , the inequalities among the two, e.g., x > y, are
intended elementwise. For a vector x ∈ Rn , the vectors of the
corresponding upper and lower bounds are x ∈ Rn and x ∈ Rn ,
respectively, with x > x . The operators max(x) and min(x)
express the maximum and the minimum element of vector x ,
respectively. Considering a real variable a ∈ R≥0, b = ⌊a⌋ is
the largest integer less than or equal to a, i.e., b ∈ N ∪ {0}.
Given a sequence of variables a1, . . . , an , and the set of their
indexes N = {1, . . . , n}, the vector a = [a1, . . . , an]

′ is
compactly written as a = {ai }∀i∈N . Finally, given a set N ,
its cardinality is denoted with card(N ).

II. PROBLEM STATEMENT

Consider a MES S† composed by a set of M subsystems
S1, . . . ,SM , where each subsystem Si belongs to a specific
energy domain (electrical, thermal, gas, and so on) and is
assumed to be equipped with local generation and load units.
Moreover, assume that power can be transmitted among some
specific pairs of subsystems to optimize the overall energy
behavior of S†. More formally, this structure can be described
by a directed graph G(N , E), where the nodes N represent the
subsystems, i.e., card(N ) = M , while the edges E ⊆ N × N
model their energetic interconnections, i.e., (i, j) ∈ E if power
can be transferred from Si to S j . For each Si , i ∈ N , consider
the sets of output and input nodes N out

i ,N in
i ⊆ N , defined as

N out
i = { j ∈ N |(i, j) ∈ E} and N in

i = { j ∈ N |( j, i) ∈ E},
respectively, where card(N out

i ) = oi and card(N in
i ) = vi .

Each subsystem Si is modeled as follows:

ẋ i (t) = fi (xi (t), ui (t), d̃i (t)) (1a)

where xi ∈ Rni is the vector of local states and ui ∈ Rmi is the
vector of local inputs, both assumed to be bounded as follows:

x i ≤ xi (t) ≤ x̄ i (1b)

ui ≤ ui (t) ≤ ūi . (1c)

Moreover, in (1a), d̃i represents the vector of exogenous
signals for Si , defined as follows:

d̃i (t) = [di (t)′wi (t)′]′ (1d)

where di ∈ Rri are local disturbances, while wi includes
the power exchanges between Si and the other subsystems.
In particular, wi is structured as follows:

wi (t) =
[
wout

i (t)′win
i (t)

′
]′

(1e)

where wout
i (t) ∈ Roi and win

i ∈ Rvi include the power transfers
sent and received by Si , respectively. Expressing with pi j ∈ R
the power produced by Si and transferred to S j ,1 it follows
that:

wout
i (t) = {pi j (t)}∀ j∈N out

i
, win

i (t) = {η j i p j i (t)}∀ j∈N in
i

(1f)

where the power transfers in win
i are weighted by the efficiency

term η j i ∈ R, considering the conversion losses due to the
power transfer from S j to Si , with j ∈ N in

i .
Now, assume that a set Gi of controllable sources and a

set Li of nondispatchable loads are present in each Si and
denote with pg

i ∈ Rgi and pl
i ∈ Rli their power injections and

absorptions, respectively. These are described as the functions
of the local variables, i.e.,

pg
i (t) = φi (xi (t), ui (t)) (2a)

pl
i (t) = ψi (xi (t), di (t)) (2b)

where, in particular, controllable power flows are the functions
of local inputs, while the nondispatchable ones depend on local
disturbances.2

Moreover, introduce the variable ei ∈ R, representing
the total energy stored in Si . Then, the following modeling
assumption can be stated.

Assumption 1: Given a generic energy subsystem Si

described by (1), the total stored energy ei ∈ R can be defined
as a function of the local state, i.e.,

ei = ξi (xi ) (3)

where ξi : Rni → R. Moreover, its derivative with respect to
time can be stated as follows:

ėi (t) = 1′

gi
pg

i (t)− 1′

li
pl

i (t)+ 1′

vi
win

i (t)− 1′

oi
wout

i (t). (4)

□

1For the sake of clarity, pi j is modeled as scalar. However, in case p
different power interfaces are available to transfer power from Si to S j ,
it would follow that pi j ∈ Rp .

2The set Li can also include nondispatchable generators, e.g., renewable
sources, which are not explicitly mentioned in the following for the sake of
clarity.
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Fig. 1. Schematic of the proposed hierarchical control architecture for MESs.
The variables transmitted along the arrows going from each L-MPC to the
HL-MPC are not here depicted for the sake of clarity.

The formulated assumption is straightforward, as local states
in an energy system are generally linked to the stored energy
(e.g., batteries’ state of charges, fluid temperatures, gas pres-
sures, and so on), and the variation of the total energy is
dictated by the power balance. As it will be shown, several
energy systems of different domains can be represented by
(1) and (2) and satisfy Assumption 1. However, the addressed
multi-energy control problem and the proposed solution are
firstly presented.

A. Control Problem and Proposed Solution

Considering the presented framework for networked MESs,
the main control objectives can be synthesized as follows.

1) Objective 1: Locally control each Si to maintain its
states in prescribed operating bounds, meanwhile mini-
mizing local power production costs.

2) Objective 2: Coordinate the power exchanges pi j among
interconnected subsystems, possibly belonging to dis-
tinct energy domains, considering the energy availability,
and the requirements of each Si , as well as the mini-
mization of the operational cost of the whole networked
MES S†.

As discussed in Section I, pure centralized and distributed
control approaches are not suited to accomplish these tasks in
a multi-energy scenario, given the large-scale dimension of the
problem, the different involved time scales, and the modeling
complexity. This motivates the design of a novel hierarchical
predictive control architecture, depicted in Fig. 1. In this
structure, a lower layer made by decentralized L-MPC, one
for each Si , runs at “small” sampling periods, assuming that
the energy exchange terms pi j have been set. Each L-MPCi

computes local inputs ui to satisfy local constraints, minimize
internal operational costs, and maintain the total energy stored
in Si around a given reference, denoted with eh

i . This ref-
erence is computed by a coordination scheme at the higher
layer, named high-level MPC (HL-MPC), which, exploiting
a reduced energy model for each subsystem and according
to an economic criterion, computes the optimal energy to be
stored, i.e., eh

i , and the optimal power exchanges among the
interconnected subsystems, denoted with ph

i j ∈ R, at “large”

sampling periods (for the sake of clarity, all variables regulated
by the HL-MPC are reported with the superscript h). As shown
in the following, the proposed two-layer control architecture
enables, on the one hand, to locally control each energy
subsystem at a specific time rate, separately considering the
dynamical model complexity of diverse energy domains, and,
on the other hand, to optimally coordinate power exchanges
among subsystems taking advantage of a reduced modeling
approach. Before describing in detail the formulation of each
control layer, an illustrative example of a simple MES is
hereafter reported to better motivate the proposed system
modeling and assumptions, as well as the designed control
architecture.

B. Illustrative Example of a MES

Consider the MES S† depicted in Fig. 2, where three
subsystems belonging to different energy domains are inter-
connected: a gas storage tank (subsystem S1), a water
thermal system (subsystem S2), and an electrical circuit
(subsystem S3).

The gas storage tank has volume Vg and contains gas at
density ρg(t). It is subjected to an input mass flow rate q in

g (t),
which is locally regulated, and to an output mass flow rate
qout

g (t), acting as a disturbance. Moreover, part of the stored
gas energy is transferred to the water thermal system through
a gas boiler absorbing the primary power pb

g(t).
The water thermal system includes a water vessel with mass

mw and temperature Tw(t), heated by a temperature-regulated
thermal plate of area A and temperature Tm(t). The water
contained in the vessel is also heated by a thermal resistance,
fed by the external electrical circuit with an electrical power
pr

e(t). A mass flow rate qw(t) of water is delivered by a pump
to an heat exchanger, absorbing an unknown thermal power
and returning output water at a temperature T r (t). In turn,
this is heated by the gas boiler and injected again into the
tank.

Finally, the electrical circuit is constituted by a locally
regulated voltage source V (t) delivering the current I (t),
an inductor L , a capacitor C , a time-varying resistor R(t),
and a thermal resistance, automatically regulated to absorb
the electrical power pr

e(t). As evident from Fig. 2, the capac-
itor, the time-varying resistor, and the thermal resistance are
connected in parallel, implying that they are subjected to the
same voltage Vc(t).

Hereafter, the presented MES is modeled as defined in
Section II with N = {S1,S2,S3} and E = {(S1,S2), (S3,S2)}.

As suggested by Liu et al. [4], the gas temperature dynam-
ics can be neglected given its low thermal capacity. Modeling
the mass conservation in subsystem S1, it follows that:

ρ̇g(t) =
1
Vg

(
q in

g (t)− qout
g (t)−

pb
g(t)

clhv
g

)
(5)

where clhv
g is the gas lower heating value. Setting x1(t) =

ρg(t), u1(t) = q in
g (t), d1(t) = qout

g (t), wout
1 (t) = p12(t) =

pb
g(t), and win

1 (t) = 0, it is clear that (5) belongs to the system
class represented by (1). Moreover, the energy stored in the
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Fig. 2. Schematic of an illustrative example of a MES S†, composed of a gas storage tank (subsystem S1), a water thermal system (subsystem S2), and an
electrical circuit (subsystem S3).

gas tank is

e1(t) = ξ1(x1(t)) = clhv
g Vgρg(t) (6)

and, consequently, the energy derivative follows:

ė1(t) = clhv
g q in

g (t)− clhv
g qout

g (t)− pb
g(t). (7)

It is apparent that, defining the local injected and absorbed
power as pg

1 (t) = clhv
g q in

g (t) and pl
1(t) = clhv

g qout
g (t), respec-

tively, Assumption 1 is validated.
Considering the electrical system S3, and using the

Kirchhoff’s circuit laws, it holds that

İ (t) =
1
L
(V (t)− Vc(t)) (8a)

V̇c(t) =
1
C
(I (t)− Vc(t)R(t)−1

− pr
e(t)Vc(t)−1). (8b)

Define x3(t) = [I (t), Vc(t)]′, u3(t) = V (t), d3(t) = R(t),
wout

3 (t) = p32(t) = pr
e(t), and win

3 (t) = 0. Thus, subsystem
(8) is represented by a model with the structure of (1). The
total energy of the electrical system is stored in the inductor
and capacitor and is defined as follows:

e3(t) = ξ3(x3(t)) =
1
2

L I (t)2 +
1
2

CVc(t)2 (9)

while its derivative is

ė3(t) = V (t)I (t)− R(t)I (t)2 − pr
e(t). (10)

Indicating the injected and absorbed power as pg
3 (t) =

V (t)I (t) and pl
3(t) = R(t)I (t)2, respectively, it is evident

that Assumption 1 holds.
Finally, modeling the thermal dynamics in the water vessel,

assuming it to represent the dominant inertia in the water
system, it follows that:

Ṫw(t) =
kwm A
mwcw

(
Tm(t)− Tw(t)

)
−

qw(t)
mw

(
Tw(t)− Tr (t)

)
+
ηgw pb

g(t)+ ηew pr
e(t)

mwcw
(11)

where kwm is the conduction heat transfer coefficient and
cw is the water specific heat capacity. The terms ηgw and ηew

represent the power conversion efficiencies from the gas and
electrical systems to the water system, respectively. Setting
x2(t) = Tw(t), u2(t) = Tm(t), d2(t) = [qw(t)Tr (t)]′, wout

2 (t) =

0, and win
2 (t) = [η12 p12(t)η32 p32(t)]′ = [ηgw pb

g(t)ηew pr
e(t)]

′,
also system (11) is represented by the model structure pro-
posed in (1). Moreover, the total stored energy in the water
vessel is

e2(t) = ξ2(x2(t)) = cwmwTw(t) (12)

its derivative is

ė2(t) = cwmw Ṫw(t) = kwm A(Tm(t)− Tw(t))+

− cwq(t)(Tw(t)− Tr (t))+ ηgw pb
g(t)+ ηew pr

e(t).

(13)

Defining the power injected by the thermal plate as pg
2 (t) =

kwm A(Tm(t) − Tw(t)) and the one absorbed by the heat
exchanger as pl

2(t) = cwqw(t)(Tw(t) − Tr (t)), it is apparent
that Assumption 1 holds.

Many other systems and energy domains can be formulated
with the model class (1)–(4) beyond the ones considered in
the described example (e.g., mechanical, hydraulic systems,
and so on), as well as more complex system architectures
(e.g., electrical, thermal, or gas networks). The formulated
example shows which are the possible interactions and control
challenges in a MES, where both local control and coordina-
tion of power exchanges must be performed in a cost-effective
and scalable manner.

Remark 1: It is worth noting that the multi-energy inter-
action may give many advantages from the energetic and
economic point of view, but the achieved benefit could
be not a priori equally shared among participating subsys-
tems. In fact, considering the illustrative example in Fig. 2,
transferring power to the water thermal system implies an
additional cost both for the gas and electrical system, which
may not want to afford without any revenue. This moti-
vates the necessity of a benefit sharing algorithm, which
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will be described in Section IV. The formulation of the
proposed hierarchical control architecture is described in
Section III.

III. HIERARCHICAL PREDICTIVE CONTROL OF MESS

Considering the hierarchical control architecture shown in
Fig. 1, each L-MPCi is executed with sampling period τi ,
while the HL-MPC runs with sampling period τh ≥ τi ,
∀i ∈ N . For the sake of simplicity, τh is chosen to be a
common multiple of τi , ∀i ∈ N , i.e., ∃Hi ∈ N, so that
τh = Hiτi .

A discrete time index ki ∈ N is introduced for
each subsystem Si , defining the time instants t = kiτi

when the L-MPCi is executed, while kh ∈ N is
used for the HL-MPC layer, running at time instants
t = khτh .

A receding horizon strategy is adopted for the MPC
control design, using Ni prediction steps for L-MPCi and
Nh prediction steps for HL-MPC. This one, providing
the optimal energy references to the L-MPC regulators,
is designed with a longer prediction horizon with respect
to each L-MPCi , precisely setting Nhτh ≥ Niτi + τh,

∀i ∈ N .

A. High-Level Coordination of a MES

The HL-MPC layer considers a reduced energy model for
each Si , formulating a model structure independent of the
specific energy domain. Denote with pgh

i (kh), plh
i (kh) ∈ R the

total generated and absorbed power in Si at kh , respectively.
Moreover, use eh

i (kh) ∈ R to indicate the total energy stored
in Si at kh . Thus, (4) can be discretized with sampling period
τh as follows:

eh
i (kh + 1) = eh

i (kh)+τh

pgh
i (kh)− plh

i (kh)+
∑

j∈N in
i

η j i ph
ji (kh)

−

∑
j∈N out

i

ph
i j (kh)

 (14)

enabling to obtain a dynamical model representing Si from
the energetic point of view.

The main objective of HL-MPC is to optimize the energy
stored in each Si and the power exchanges among S1, . . . ,SM ,
considering the minimization of an overall production cost.
To perform these tasks, the HL-MPC is assumed to have
available the following aggregated information for each Si :

1) the bounds of the total storable energy ēh
i , eh

i ∈ R;
2) the required energy nominal level eho

i ∈ R;
3) the bounds of the total generated power p̄gh

i , pgh
i

∈ R;
4) the total generation cost function, i.e., cgh

i : Rgi → R≥0,
expressing the total generation cost as a function of pgh

i ,
i.e., cgh

i (p
gh
i ).

Moreover, the HL-MPC receives at time instants t = khτh the
following variables from each L-MPCi :

1) the total energy stored at kh in Si , denoted as
ẽh

i (kh) ∈ R;

2) the expected total power absorption in Si , denoted as
p̃lh

i (k) ∈ R, with k ∈ Th = {kh, . . . , kh + Nh − 1}.
For the sake of clarity, the detailed definition of the mentioned
variables will be given in Section III-B, where the L-MPCi

problems are formulated.
Letting the prediction horizon used in HL-MPC defined

by Th , the high-level control problem is formulated
as follows:

min
pgh

i (·) ∀i∈N ,
ph

i j (·) ∀(i, j)∈E

∑
∀k∈Th

( ∑
∀i∈N

cgh
i

(
pgh

i (k)
)
+

∑
∀(i, j)∈E

cph
i j |ph

i j (k)|
)

+

∑
∀i∈N

λi
(
eh

i (kh + Nh)− eho
i

)2 (15a)

s.t. ∀k ∈ Th ∀i ∈ N , to (14) and

eh
i ≤ eh

i (k) ≤ ēh
i (15b)

pgh
i

≤ pgh
i (k) ≤ p̄gh

i (15c)

eh
i (kh) = ẽh

i (kh) (15d)

ph
i j

≤ ph
i j (k) ≤ p̄h

i j ∀(i, j) ∈ E . (15e)

The cost function (15a) comprises the overall cost for the
produced power in each Si , the one to implement power
exchanges among interconnected subsystems, and a terminal
cost with coefficient λi ∈ R≥0 included to prevent excessive
variations of eh

i with respect to the nominal value eho
i . The

power exchanges cost is expressed using the term cph
i j ∈ R≥0

weighting the absolute value of ph
i j , which is bounded between

ph
i j

≤ 0 and p̄h
i j ≥ 0 in (15e), ∀(i, j) ∈ E . On the other hand,

the variables of each Si are constrained by the total power
and energy bounds (15b) and (15c), and by the initial energy
state (15d).

The solution to (15) is the optimal sequence over Th of the
total power production in each Si and of the power exchanges
among S1, . . . ,SM . The optimal energy to be stored in each Si ,
indicated with eh∗

i (k|kh), k ∈ Th , can be obtained iterating (14)
and is sent as a reference to each L-MPCi . The same holds
for the optimal power exchanges computed at kh , indicated
with ph∗

i j (k|kh), k ∈ Th , where, in particular, the first step of
the sequence is directly imposed by the HL-MPC according
to the receding horizon approach, i.e., pi j (t) = ph∗

i j (kh|kh),
for t ∈ [khτh, khτh + τh]. Finally, the power production in
each Si is reoptimized by the corresponding L-MPCi with
sampling period τi ≤ τh , considering local constraints, costs,
and disturbances.

B. L-MPC Regulation for Single Energy Subsystem

Each L-MPCi regulates Si considering its discretized
dynamics, i.e.,

xi (ki + 1) = f̃ d
i (xi (ki ), ui (ki ), d̃i (ki )) (16)

where f̃ d
i derives from (1) applying a suitable integration

method. Letting the prediction horizon used in L-MPCi be
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Ti = {ki , . . . , ki + Ni − 1}, the local control problem formu-
lation follows:

min
ui (·),σi (·)

∑
∀k∈Ti

(
cg

i
′ pg

i (k)+ γiσi (k)
)

(17a)

s.t. ∀k ∈ Ti , to (16) and

x i ≤ xi (k) ≤ x̄ i (17b)

ui ≤ ui (k) ≤ ūi (17c)
pg

i (k) = φi (xi (k), ui (k)) (17d)

pg
i

≤ pg
i (k) ≤ p̄g

i (17e)

ei (k) = ξi (xi (k)) (17f)

ei (k) ≤ eh∗

i

(⌊
k
Hi

⌋
|kh

)
+ σi (k) (17g)

ei (k) ≥ eh∗

i

(⌊
k
Hi

⌋
|kh

)
− σi (k) (17h)

σi (k) ≥ 0 (17i)

pi j (k) = ph∗

i j

(⌊
k
Hi

⌋
|kh

)
∀ j ∈ N out

i (17j)

p j i (k) = ph∗

j i

(⌊
k
Hi

⌋
|kh

)
∀ j ∈ N in

i . (17k)

The L-MPCi cost function (17a) is constituted of two terms.
The first term expresses the local power production cost, with
cg

i ∈ Rgi
≥0, including the cost of each single power generation

in Si , and the second term minimizing the slack variable
σi ∈ R≥0, weighted by γ ∈ R>0 selected as γi ≫ max(cg

i ).
This slack variable σi is introduced to ensure problem feasi-
bility while imposing the HL-MPC energy reference through
(17f)–(17i), where it is recalled that, given the definition of
τh , kh = ⌊(ki/Hi )⌋, ∀i ∈ N . The optimal power exchanges
are included as hard constraints in (17j) and (17k), as these
are directly imposed by the HL-MPC. The L-MPCi regulates
Si considering its discrete dynamics in (16) and the local
states and inputs constraints in (17b) and (17c). Local power
injections, defined in (17d), are bounded in (17e). Moreover,
it is assumed that a prediction of local disturbances over Ti is
available; otherwise, they are considered constant.

Each L-MPCi enables the fine regulation of Si , considering
local production costs and constraints, while tracking the
HL-MPC references of energy and power. Precisely, the first
step of the optimal input sequence computed by (17), i.e.,
u∗

i (k|ki ), ∀k ∈ Ti , is implemented in Si , implying that ui (t) =

u∗

i (ki |ki ) for t ∈ [kiτi , kiτi + τi ].
Definition of Aggregated Variables of the Energy Subsys-

tems: As mentioned in Section III-A, the HL-MPC requires
some aggregated information regarding each Si , namely, the
following hold.

1) The bounds of the total stored energy in Si , which are
the functions of the local state ones. In particular, if the
function ξi (·) is monotonically increasing (as the ones
of the example described in Section II-B), it follows that
eh

i = ξi (x i ) and ēh
i = ξi (x̄ i ).

2) The nominal energy level eho
i in Si can be defined as

a function of state nominal values, denoted as xo
i , and

implying that eho
i = ξi (xo

i ).

3) The bounds of total generated power in Si , which can
be computed as the sum of the local bounds, i.e.,
p̄gh

i = 1′
gi

p̄g
i and pgh

i
= 1′

gi
pg

i
.

4) The overall cost of the total generated power in Si ,
which can be derived through different methods. A sim-
plistic solution is to exploit an average cost, as in [35],
i.e., cgh

i (p
gh
i ) = ((1/gi )1′

gi
cg

i )p
gh
i , with gi represent-

ing the number of generators in Si . On the other
hand, a more precise convex quadratic approximation
of cgh

i (p
gh
i ) can be computed, using the procedure

reported [36]. Finally, an alternative method exploiting
the structure of problem (17) and leading to a piecewise
definition of cgh

i (p
gh
i ) is reported in Appendix A.

On the other hand, the HL-MPC requires also to measure
specific variables from each L-MPCi at each t = khτh ,
defining the energy and power conditions of Si . These are
the following.

1) The total energy stored, which can be derived from the
local state variables as ẽh

i (kh) = ei (ki ) = ξi (xi (ki )), with
ki = kh Hi .

2) The expected load power absorption in Si , denoted as
p̃lh

i (k) with k ∈ Th , estimated exploiting (2b) and assum-
ing to have available predictions on the future states,
inputs, and disturbances in Si , e.g., given by the optimal
solution of (17). Thus, assuming to know future predic-
tions of local load power absorptions in Si and indicating
it with p̃l

i (ki ), it follows that p̃lh
i (k) = 1′

li
p̃l

i (k Hi ),
∀k ∈ Th .

Remark 2: The proposed hierarchical control architecture
can be implemented with a fully distributed scheme, e.g., sim-
ilar to [37], avoiding to share even aggregated information of
each Si to a central entity. In fact, the HL-MPC control prob-
lem (15), exploiting reduced energy models for S1, . . . ,SM ,
is convex if the overall costs cgh

i (p
gh
i ) are defined with convex

functions as well (e.g., using the method proposed in [36]).
The convexity of (15) would enable its fully distributed
computation with guaranteed optimality and convergence, e.g.,
using the algorithms proposed in [38] and [39].

Remark 3: The analysis of the recursive feasibility of (15)
and (17) is a complex task due to model nonlinearities and
disturbance uncertainties. From a practical point of view, the
feasibility of (15) can be assumed provided that S1, . . . ,SM

are equipped with sufficient generating power to keep their
total energy in the prescribed bounds, considering also the
possibility of multi-energy power transfers. In particular,
if subsystems are designed, such that pgh

i
≤ p̃lh

i ≤ p̄gh
i

∀i ∈ N , it can be shown that a feasible solution to (15) always
exist, because each Si can balance its own power absorption
without exploiting power exchanges.

The feasibility analysis of (17) is more complex, mainly
due to state constraints (17b). However, note that the HL-MPC
computes the optimal power transfers considering total energy
and power constraints for each Si , which bounds depend on the
local states and power limits, as previously described. Thus,
the feasibility of (17) can be assumed provided that local
inputs are sufficiently sized to ensure that (17b) and (17e)
are respected. It is also worth noting that, as usual in MPC
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approaches [40], the recursive feasibility can be guaranteed
by the use of additional slack variables in the formulation of
constraints (15b) at the high level and of (17b) and (17e) at
the low level.

IV. BENEFIT SHARING IN MESS

The proposed hierarchical control architecture enables the
optimized control of a MES S†, but it does not consider how
the achieved benefit is shared among subsystems S1, . . . ,SM .
In fact, the multi-energy operation can imply an additional cost
to few subsystems and an increased gain to others, even though
the overall operational cost of S† decreases with respect to
the independent regulation of each Si . This benefit sharing
problem is here recast in the framework of cooperative game
theory,3 formulating it as a bargaining problem [29].

A bargaining problem, or game, involves a group of players
having to reach an agreement about a set of feasible payoff
solutions, with the common objective of maximizing their
own utility. In particular, it involves M players and a pair
(2, δ), where 2 ⊆ RM identifies the set of feasible players
payoff, whereas δ ∈ RM corresponds to a given disagreement
outcome, i.e., the one that players achieve if they do not
cooperate. It is assumed that ∃θ ∈ 2, so that θ > δ,
meaning that there exists at least one cooperative feasible
payoff solution exceeding the disagreement outcome for each
subsystem. As described in detail in [41], there is a unique
bargaining solution possessing specific common properties
(e.g., the independence of equivalent utility representations).

This is the one maximizing the weighted geometric mean
of players utilities,4 i.e.,

max
θ1,...,θM

M∏
i=1

(θi − δi )
αi

s.t. θ ∈ 2

θ > δ (18)

where αi ∈ R>0 is a parameter denoting the bargaining power
of the i th player, defined so that

∑M
i=1 αi = M . In particular,

if αi = 1, ∀i ∈ {1, . . . ,M}, the solution of (18) is named
symmetric Nash bargaining solution; otherwise, it is named
nonsymmetric Nash bargaining solution [42].

Now, consider our case study and assume that the interaction
over multiple energy vectors among subsystems S1, . . . ,SM

achieves an overall cost lower than the one achieved by their
independent regulation. Moreover, suppose that subsystems
agree with a time period τb on how the achieved benefit
must be shared. For the sake of simplicity, τb is chosen,
so that τb = Biτi , ∀i ∈ N , with Bi ∈ N, and τb = Ghτh ,
with Gh = Bi/Hi > 1. Moreover, define with kb ∈ N the
discrete time index used in the benefit sharing problem and
with t = kbτb the time instants where agreement must be

3For the sake of simplicity, it is here assumed that all subsystems in S†

take part in the multi-energy cooperation and share the achieved benefit. The
scenario where some subsystems decide to not join the coalition S† is not
here addressed, being the overall cooperation the most convenient scenario
(for coalitional approaches, the reader is referred to [26] and [28]).

4For notational simplicity, the M th power of the weighted geometric
average is used in (18), since this is maximized by the same point of the
weighted geometric average [41].

reached for the time period [(kb − 1)τb, kbτb]. The cost that
each Si has effectively afforded over [(kb − 1)τb, kbτb] is

J c
i (kb) =

kb Bi∑
k=(kb−1)Bi

(
cg

i
′ pg∗

i (k|k)
)

+

kbGh∑
k=(kb−1)Gh

∑
j∈N in

i

cph
ji |ph∗

j i (k|k)|

 (19)

where pg∗

i (k|k) is the power generation solution implemented
by the L-MPCi , i.e., the first step of the optimal sequence
computed at t = kτi by problem (17). On the other hand, as a
convention, it is chosen in (19) that the costs to implement
power transfers, if present, are applied to the receiving subsys-
tems. It is worth noting that the cost incurred by each Si over
the period [(kb−1)τb, kbτb] could also be directly derived from
local measurements, e.g., by substituting, in (19), the optimal
generated and transferred power with the effectively measured
ones.

To evaluate the benefit introduced by the multi-energy
operation, assume that each Si can be independently regulated,
i.e., local input and generation capability are sufficient to sat-
isfy the internal demand without exploiting power exchanges.
Thus, the cost that each Si would have incurred if inde-
pendently regulated can be computed by solving, for each
ki ∈ [(kb − 1)Bi , kb Bi ], the following problem:

min
ui (·)

∑
∀k∈Ti

(
cg

i
′ pg

i (k)
)

(20a)

s.t. ∀k ∈ Ti , to (16), (17b)–(17e) and

pi j (k) = 0 ∀ j ∈ N out
i (20b)

p j i (k) = 0 ∀ j ∈ N in
i . (20c)

This corresponds to the L-MPCi problem in case each sub-
system Si does not exchange energy with the others, aiming
solely to the minimization of its internal cost. The optimal
power generation computed by (20) is denoted with pg∗∗

i (k|k).
Therefore, the cost that each Si would have afforded over
[(kb − 1)τb, kbτb], if independently regulated, is

J nc
i (kb) =

kb Bi∑
k=(kb−1)Bi

cg
i

′ pg∗∗

i (k|k). (21)

It is possible now to define the effective benefit that each Si

has achieved because of the multi-energy interaction over the
time period [(kb − 1)τb, kbτb], i.e.,

1Ji (kb) = J nc
i (kb)− J c

i (kb) (22)

which is positive in case subsystem Si achieves a lower cost
while exchanging energy with the others. A positive benefit
is not guaranteed for each Si , while a total positive benefit is
assumed to be achieved in S†, i.e.,

1J tot(kb) =

M∑
i=1

1Ji (kb) ≥ 0. (23)

Thus, the total benefit 1J tot(kb) must now be properly shared
among S1, . . . ,SM , so that all players take advantage from the
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multi-energy interaction. To do that, introduce πi j (kb) ∈ R,
∀(i, j) ∈ E , expressing a payment transfer from Si to S j .
Then, the following problem is solved at each t = kbτb:

max
πi j

∀(i, j)∈E

M∏
i=1

(zi +1Ji )
αi (24a)

s.t. ∀i ∈ N (24b)

zi =

∑
j∈N in

i

π j i −

∑
j∈N out

i

πi j (24c)

zi > −1Ji (24d)

where, for the sake of clarity, the dependency on kb has been
removed. The variable zi represents the net payment transfer
of each Si , defined as the difference between the incoming
and outgoing payment transfers from, or to, its neighbors,
as dictated by (24c). Equation (24d) states that the sum of net
payment zi and of the benefit 1Ji must be positive for each
Si ; otherwise, players would be not incentivized to cooperate.
It is worth noting that (24c) implies that∑

∀i∈N

zi =

∑
∀i∈N

∑
j∈N in

i

π j i −

∑
∀i∈N

∑
j∈N out

i

πi j

=

∑
∀(i, j)∈E

πi j −

∑
∀(i, j)∈E

πi j = 0

meaning that the sum of the net payments of S1, . . . ,SM

is balanced, being these used to redistribute the achieved
cooperation benefit among subsystems, i.e., z ∈ Z =

{z ∈ RM
: 1M

′z = 0}. Considering the bargaining problem
formulation in (18), θi = zi represents the payoff of each
player Si , while δi = −1Ji identifies its disagreement
outcome, i.e., the cost loss (or gain) achieved if subsystems
S1, . . . ,SM do not cooperate [see (22)].

As mentioned before, αi in (24a) is a parameter expressing
the bargaining power of each Si . If αi = 1, ∀i ∈ N , the
bargaining problem is symmetric, meaning that the optimal
solution of (24) will provide all players the same utility, i.e.,
z∗

1 + 1J1 = z∗

2 + 1J2 = · · · = z∗

M + 1JM . Note that
maximizing the utility of each Si in (24) actually corresponds
to maximizing the cost reduction achieved by each subsystem
with respect to its independent regulation. In fact, it holds
that z∗

i + 1Ji = J nc
i − (J c

i − z∗

i ), where the effective final
incurred cost of each Si is (J c

i − z∗

i ). On the other hand, the
total cooperation benefit could be shared according to different
strategies exploiting the bargaining power parameters αi . For
instance, αi can be defined proportionally to the operational
cost of each Si , thus providing a higher cost reduction to
subsystems characterized by higher expenses.

Remark 4: The benefit sharing problem (24) is assumed to
be solved by a central entity, e.g., by an additional control
layer or by the HL-MPC itself, as it requires as inputs the
benefit achieved by each subsystem Si , i.e., 1Ji . On the
other hand, operations (19)–(22) are separately solved by
each Si , e.g., by the L-MPCi themselves. It is worth noting
that the bargaining problem can be solved in a very reduced
computational time and with a large sampling period, being a
static problem, as it will be evident in Section V.

Remark 5: A different strategy that can be exploited for
the benefit sharing problem relies on the Shapley value
method [26]. First of all, consider the set of all players
S†

= {S1, . . . ,SM} and the achieved benefit by their joint
regulation 1J tot(S†) =

∑M
i=11Ji > 0, defined in (23) (in the

following, the time index kb is removed for notation clarity).
The idea of this technique is to redistribute the total achieved
benefit 1J tot(S†) among all subsystems S1, . . . ,SM based on
their effective contribution to the coalition. To do that, consider
any possible coalition Cl ⊆ S†, with l ∈ {1, . . . , 2M

− 1},
and denote with 1J tot(Cl) the benefit achieved by the joint
regulation of Cl . In particular, given a generic coalition Cl ,
1J tot(Cl) can be computed as in (23) by applying the proposed
control strategy to the overall S† while adding the constraint
ph

i j (k) = 0,∀Si ,S j /∈ Cl to (15), i.e., imposing that power
exchanges can occur just within Cl . Now, suppose to have
computed 1J tot(Cl) for any l ∈ {1, . . . , 2M

− 1}. Then, the
Shapley value assigns the final utility to each Si , denoted as
χ∗

i , through the following formula:

χ∗

i =

2M
−1∑

l=1

ζ(Cl ,M) ·

(
1J tot(Cl)−1J tot(Cl\Si )

)
(25a)

where

ζ(Cl ,M) =
(M − card(Cl))!(card(Cl)− 1)!

M !
. (25b)

The final utility assigned to each Si through the Shapley
value method is a fraction of the total benefit, implying that∑M

i=1 χ
∗

i = 1J tot(S†). Considering the formulation of the
final utility adopted in the bargaining problem, i.e., z∗

i +1Ji ,
the final net payment transfer for each Si using the Shapley
value is z∗

i = χ∗

i −1Ji , with 1Ji defined by (22).
Conversely to the solution of the bargaining problem (24)

with αi = 1 ∀i ∈ N , now, the benefit will be not distributed
equally but based on the effective contribution of Si to the
coalition, i.e., z∗

1 + 1J1 ̸= z∗

2 + 1J2 ̸= · · · ̸= z∗

M + 1JM .
Moreover, while the proposed bargaining method implies to
just solve (24), the Shapley method requires to solve 2M

− 1
optimization problems to compute (25), as 1J tot(Cl) for any
possible coalition of subsystems is necessary, making this
method often computationally intractable [27].

V. CASE STUDIES

The described hierarchical control architecture and benefit
sharing algorithm have been tested on two MES case studies.
First, the illustrative example described in Section II-B is
considered, showing how the highlighted challenges are solved
by the proposed control strategy. Then, a realistic MES bench-
mark is considered, where two energy networks referenced
in the literature, i.e., an electrical and a thermal one, are
effectively regulated by the proposed control architecture.

A. Control of the MES Illustrative Example

The MES illustrative example, depicted in Fig. 2, has been
simulated in MATLAB numerically integrating the dynamical
equations described in Section II-B and using the physical
parameters reported in Table I. The system has been tested
under the regulation of the proposed hierarchical control
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TABLE I
PHYSICAL PARAMETERS OF THE MES EXAMPLE

TABLE II
CONTROL PARAMETERS FOR THE MES EXAMPLE

architecture, implementing an L-MPC regulator for each sub-
system, i.e., L-MPC1 for the gas storage tank (subsystem S1),
L-MPC2 for the water thermal system (subsystem S2),
and L-MPC3 for the electrical circuit (subsystem S3). The
HL-MPC, placed at the upper layer, provides the energy set
points to the L-MPC regulators and optimizes the power
exchanges among the different subsystems, thus regulating the
gas boiler (power transfer from S1 to S2) and the thermal
resistance (power transfer from S3 to S2). The control prob-
lems (15) and (17) have been implemented in MATLAB and
solved using CasAdi and the Interior-Point Optimizer (IPOPT)
solver, which are particularly suited for optimizing nonlinear
dynamical systems [43]. The main control parameters are
reported in Table II (please refer to Section II-B for the
physical meaning of the subsystems variables). Please note that
γi = 103 and λi = 103, ∀i ∈ N . Moreover, note from Table II
that each L-MPCi regulator runs with a specific sampling
period and prediction horizon, chosen consistently with the
local requirements of each subsystem. On the other hand, the
HL-MPC layer is designed to operate with τh = 15 min and
Nh = 16, optimizing the MES over a prediction horizon larger
than the L-MPC regulators ones. The generation costs for each
subsystem are depicted in Fig. 3(a), where cg

1 is the cost for
power injected in the gas tank, cg

2 is the cost for the power
generated by the thermal plate, and cg

3 is the cost for the
electrical power generated by the voltage source. The costs
of power interfaces are cph

12 = 0.1 $/kW for the gas boiler
and cph

31 = 0.01 $/kW for the thermal resistance. Moreover,
the total costs cgh

i have been derived using the procedure
described in Appendix A. The MES example benchmark
is tested with time-varying disturbances, which normalized
profiles are depicted in Fig. 3(b), since they are characterized
by different units of measure.

Fig. 3. (a) Power generation costs: cg
1 (blue solid line), cg

2 (red dotted-dashed
line), and cg

3 (green dotted line). (b) Normalized disturbances: d1, output gas
flowrate qout

g /q̄out
g , with q̄out

g = 1.5 g/s (blue solid line); d2, output water
flowrate qw/q̄w , with q̄w = 1.5 m3/s (red dotted-dashed line), and load output
water temperature T r/T

r
, with T

r
= 65 ◦C (yellow dashed line); and d3,

time-varying load resistance R/R̄, with R̄ = 2000 � (green dotted line).

Fig. 4. (a) Power exchanges: p12/ph
12 (blue solid line) and p32/ph

32
(green dotted line). (b) Energy references: e1/eh

1 (blue solid line), e2/eh
2

(red dashed-dotted line), and e3/eh
3 (green dotted line). (c) Control inputs:

q in
g (blue solid line), Tm (red dashed-dotted line), and V (green dotted line).

(d) Subsystems states: ρg (blue solid line), Tw (red dashed-dotted line), Vc
(green dotted line), and I (light green dashed line).

Fig. 4 reports a 24-h simulation of the considered case
study, whose numerical results are reported as normalized with
respect to their maximum bounds for the sake of clarity. It is
evident from Fig. 4(a) that the HL-MPC optimal coordination
involves a continuous power transfer to S2, principally from
S1 in the first half of the simulation and from S3 in the
second half. This is mainly due to the generation costs, being
S2 characterized always by the higher one [see Fig. 3(a)].
While optimally coordinating power transfers among subsys-
tems, the hierarchical control architecture ensures that all
local constraints are respected. As an example, consider the
time period between 16:00 and 20:00, characterized by an
increase of the load water flow qw in S2 [red dashed-dotted
line in Fig. 3(b)]. This implies an increment of the power
transfer from S3 and S1 to S2 in the same time period
[see Fig. 4(a)], being local generation in S2 still too costly.
Nevertheless, S1 is also characterized by a high output gas
flowrate qg , and an extra power transfer to S2 may cause
to violate local state constraints in S1. Thus, the HL-MPC
requires to increase the stored energy in S1 between 12:00
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TABLE III
BARGAINING RESULTS FOR THE MES EXAMPLE

and 16:00, as evident from Fig. 4(b), so that it can support
S2 by transferring the necessary power between 16:00 and
20:00 without violating the local states bounds. The regulation
of the L-MPC controllers is depicted in Fig. 4(c), ensuring
that local inputs and states are optimally controlled at their
specific time rates and maintained within the desired bounds.
Please note that there is a clear correspondence between the
HL-MPC energy references and the local states, e.g., the
variation of stored energy in S1 directly implies a variation
of the stored gas density [see Fig. 4(b) and (d)].

The benefit sharing problem discussed in Section IV has
been solved through the bargaining method at the end of the
overall simulation, i.e., using τb = 24 h, and considering a
symmetric bargaining, i.e., αi = 1, ∀i ∈ N . The values of
the cost functions (19) and (21) are reported in Table III.
As evident, the optimal MES coordination is economically
convenient for the total MES S†, but it could be not convenient
for each single subsystem. As evident, the water thermal sys-
tem S2 is the only one achieving a cost reduction with respect
to its independent regulation (J c

2 < J nc
2 ), being it supported

with the extra power produced by the other subsystems. In fact,
solving the benefit sharing problem (24), its optimal solution
implies a payment transfer z∗

i from S2 to S1 and S3, eventually
resulting in a MES interaction economically convenient for all
subsystems. As clear from Table III, the effective final cost,
i.e., J c

i −z∗

i , is lower than the one achieved by the independent
regulation, i.e., J nc

i , for each subsystem belonging to S†. For
the sake of comparison, the benefit sharing problem is solved
also through the Shapley value method, described in Remark 5.
In particular, calculating the achieved benefit by each possible
coalition (see Remark 5), it is obtained that: 1J tot({Si }) = 0$,
∀i ∈ N , 1J tot({S1,S3}) = 0$, 1J tot({S1,S2}) = 391.2$,
1J tot({S2,S3}) = 483.4$, and 1J tot({S1,S2,S3}) = 652.4$.
First of all, these results witness that the cooperation among
all subsystems is the scenario that achieves the maximum
total benefit. Applying the Shapley value method discussed in
Remark 5, the final outcome is z∗

1 = 190.48, z∗

2 = −426.95,
and z∗

3 = 235.57, leading to the following effective final cost
for each subsystem: J c

1 − z∗

1 = 284.8, J c
2 − z∗

2 = 462.2,
and J c

2 − z∗

3 = 2131.5. Comparing these results with the one
reported in Table III, it is evident that the Shapley method
assigns to the water thermal system S2 a lower final effective
cost with respect to the bargaining method. This is motivated
by the fact that the Shapley method redistributes the benefit
based on the contribution of each Si to the coalition, and
S2 is the element that actually enables the power exchanges
among the different subsystems and, consequently, leads to
cost saving. Note that, given the benefit problem formulation,
also the Shapley value method ensures that the final cost of

each Si , i.e., J c
i − z∗

i , is lower than the one achieved by the
independent regulation, i.e., J nc

i .
Finally, the performances achieved from a centralized con-

troller running with τcentr = 15 min are also reported,
computed as described in Appendix B. The obtained optimal
cost functions are J centr

1 = 473.14, J centr
2 = 30.59, and

J centr
3 = 2356.6, whereas the total cost is

∑
∀i J centr

i =

2860.3. Comparing these values with J c
i in Table III, it is

evident that the suboptimality introduced by the proposed
hierarchical strategy is quite limited, i.e., (

∑
∀i J centr

i − J c
i )/

(
∑

∀i J centr
i ) = −0.6%.

B. Control of a Realistic Networked MES Benchmark

The proposed hierarchical control architecture has been also
tested considering the realistic multi-energy scenario depicted
in Fig. 5, where two energy networks are jointly coordinated,
i.e., the AROMA DHN [3] and the IEEE 37-bus electrical
network [44]. According to the modeling framework presented
in Section II, we denote the IEEE 37-bus electrical subsystem
as S1 and the AROMA DHN subsystem as S2. The two
subsystems are energetically connected through a heat pump,
which converts electrical power into thermal one, transferring
energy from S1 to S2, as clear from Fig. 5. As a consequence,
S† can be represented by a graph G(N , E) with N = {S1,S2}

and E = (S1,S2).
The detailed models of S1 and S2 are not here reported in

detail for the sake of compactness, being them relying on well-
known physical equations for electrical and thermohydraulics
network systems [3], [18]. Nevertheless, the reader is referred
to [18] and [45, Ch. 1] for the detailed modeling of S1 and
S2. Hereafter, a general description of each Si in S† and of
the involved main variables is given.

The IEEE 37-bus electrical subsystem S1 is equipped
with three storage batteries (nodes E5, E21, and E30),
two photovoltaic generators (nodes E15 and E32), 12 loads
(nodes E6–E9, E16–E19, and E33–E36), and a converter-
interfaced connection with the main utility (node E26),
as depicted in Fig. 5. The vector of local states x1(t) comprises
the state of charges of batteries, which dynamics is described
through the battery integrator model [46]. The local control
inputs are the active power absorbed (delivered) from (to)
the main utility, i.e., pg

1 (t) = u1(t) (defined to be positive if
absorbed from the main utility), and the active power output
of batteries in nodes E5 and E30, i.e., pg

2 (t) = u2(t) and
pg

3 (t) = u3(t) (defined to be positive if injected into the grid).
In fact, the battery in node E21 is not power-controlled, but
it is regulated to maintain a fixed voltage at its node (similar
to [46]), implying that its output power automatically ensures
the overall power balance. The load power absorption and
the photovoltaic power production are local disturbances, and
so compacted in d1(t). The electrical power absorbed by the
heat pump (node E11) is w1(t) = p12(t), whereas the total
energy in S1 is the sum of the ones stored in the batteries,
implying that e1(t) linearly depends on x1(t). On the other
hand, the electrical model of S1 is nonlinear, being it based
on the power-flow equations [18].

The AROMA DHN subsystem S2 is equipped with a
thermal boiler, a thermal storage (with a constant water mass),
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Fig. 5. MES realistic case study: IEEE 37-bus electrical network [44] (subsystem S1) and AROMA DHN [3] (subsystem S2).

and eight thermal loads (see Fig. 5). In particular, the DHN
is constituted of two parallel layers: an upper network, which
supplies hot water to the loads, and a lower returning layer
where the output load water flows back toward the heating
stages. The DHN and the thermal storage are modeled through
the finite-volume method, where thermal pipes and the thermal
storage are partitioned in finite-volume sections parallel to
the water flow direction, and each finite-volume section is
described by a local lumped temperature model [3], [47].
On the other hand, the thermal boiler and loads are described
through static models, given their smaller time constants
with respect to the thermal network ones [48]. Considering
the model of S2, the local state x2(t) = [x21(t)′x22(t)′]′

comprehends the water temperature in the sections of the
heating supply network, included in x21(t), and in the ones of
the thermal storage, included in x22(t). Moreover, as common
in practice [48], the thermal boiler is temperature-regulated,
and the inlet/outlet water flowrate of the thermal storage
is regulated through a local pump. Thus, the local inputs
u2(t) = [u21(t)u22(t)]′ are the output temperature of the
thermal boiler, denoted with u21(t), and the water flowrate
for the thermal storage, denoted as u22(t) (defined as positive
if hot water from the upper network layer is injected in the
thermal storage). The local power generation pg

2 (t) includes
the power injected by the thermal boiler, whereas the vector
of disturbances d2(t) is the power absorptions of thermal
loads. The energy e2(t) stored in S2 is a linear function of
x2(t), i.e., of the temperatures of pipes and storage sections,
as in (12) for the MES illustrative example. Nevertheless, the
model of S2 is nonlinear, mainly due to transport dynamics in
thermohydraulic networks and their nonlinear dependence on
the water flowrate.

The physical parameters of the IEEE 37-bus electrical
network and of the AROMA DHN, as well as their topologies,
are reported in detail in [3] and [44], whereas additional
parameters regarding generation and storage units are available
in Table IV. The power profiles of the electric loads and of
the photovoltaic generators are depicted in Fig. 6(a) and (b),
respectively, whereas the power absorbed by thermal loads

TABLE IV
ADDITIONAL PHYSICAL PARAMETERS FOR THE

MES REALISTIC BENCHMARK

is reported in Fig. 6(c). The cost of the electrical power
exchanged with the main utility and the one of the gas power
consumed by the thermal boiler are reported in Fig. 6(d).
The main control design parameters adopted for the numerical
tests are reported in Table V, considering also that γi = 103

and λi = 10, ∀i ∈ N . As clear from Table V, also in this
case, the L-MPC regulators operate with different sampling
periods and prediction horizons, given the different involved
time constants in electrical and thermal systems. On the other
hand, the HL-MPC layer is executed at a slower time rate,
having a sampling period of τh = 1 h and a prediction horizon
of Nh = 24 steps. Also, for the considered case study, control
problems have been implemented and solved using CasAdi and
the IPOPT solver in MATLAB. The overall MES benchmark is
simulated using Simscape, a MATLAB library, which enables
the cosimulation of different physical domains (e.g., electrical,
thermal liquid, and so on).

Fig. 7 reports the numerical results obtained by running
the proposed hierarchical architecture on the considered MES
benchmark for one day. Considering the electrical energy
cost depicted in Fig. 6(d), it is clear from Fig. 7(b) that
the HL-MPC coordinates S1 and S2 so as to increase the
stored energy when the cost is lower (i.e., before 7:00 and
between 9:00 and 16:00) and to use the stored energy when
the cost is higher (i.e., around 8:00 and 19:00). Coherently, the
HL-MPC also regulates the heat pump, so that its maximum
power is transferred from S1 to S2 when the electrical energy
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Fig. 6. (a) Active power absorbed by loads in nodes E6–E9 (blue dashed
line), load in nodes E16–E19 (red dashed-dot line), and load in nodes
E33–E36 (green solid line). (b) Active power produced by photovoltaic
generators in nodes E15 and E32. (c) Thermal power absorbed by loads
in nodes T 1, T 2, and T 6 (blue dotted line), by loads in nodes T 3, T 4, and
T 7 (red dashed-dotted line), and by loads in nodes T 5 and T 8 (yellow dashed
line). (d) Cost of consumed gas power by the thermal boiler (red solid line) and
cost of exchanged electrical energy with the main utility (green dotted line).

TABLE V
CONTROL DESIGN PARAMETERS FOR THE MES REALISTIC BENCHMARK

cost is lower, as shown in Fig. 7(a). In turn, the L-MPC
controllers regulate their own subsystems to track the energy
references defined by the HL-MPC, while optimizing their
local resources. In particular, L-MPC1 modulates the power
exchanged with the main utility, depicted in Fig. 7(c), so that
the total energy stored in batteries in S1 tracks the HL-MPC
reference, as evident from the states of charge profiles depicted
in Fig. 7(d), while ensuring the optimal electrical power
supply to the heat pump. The L-MPC2 regulates the output
temperature of the thermal boiler, depicted in Fig. 7(e), and
the water flowrate of the thermal storage, depicted in Fig. 7(g),
so as to store the energy transferred from the electrical system,
tracking the energy reference dictated at the HL-MPC layer.
In particular, it is worth noticing that most power produced
by the photovoltaic generators is not sold to the main utility
by S1, but it is transferred to S2 between 8:00 and 16:00,

Fig. 7. (a) Electrical power absorbed by the heat pump. (b) Energy references
for S1 and S2 defined by the HL-MPC. (c) Electrical power exchanged with
the main utility in S1. (d) States of charge of batteries in S1: node E5 (red
solid line), node E21 (blue dotted line), and node E30 (green dashed line);
(e) Output temperature of the thermal boiler in S2. (f) Temperature at each
node of the supply network in S2. (g) Water flowrate of the thermal storage
in S2. (h) Temperature at each layer of the thermal storage in S2.

whereas L-MPC2, in turn, acts on the local inputs so as to
increase the water temperature at each node of the heating
supply network [see Fig. 7(f)] and at the different sections of
the thermal storage [see Fig. 7(h)]. The stored thermal energy
is later used, i.e., between 16:00 and 20:00, while keeping the
output temperature of the thermal boiler at its lower bound so
as to minimize the local gas consumption.

The benefit sharing problem discussed in Section IV is
solved for the considered scenario at the end of the day,
using τb = 24 h, and considering a symmetric bargaining, i.e.,
αi = 1, ∀i ∈ N . The obtained results are reported in Table VI.
It is evident that the total operative cost of S† significant
decreases when the proposed hierarchical control architec-
ture is applied (i.e.,

∑
∀i J c

i <
∑

∀i J nc
i ). This operation is,

in principle, not convenient for all subsystems, as the operative
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TABLE VI
BARGAINING RESULTS FOR THE MES REALISTIC EXAMPLE

cost of S1 increases (it delivers additional energy to S2 instead
of selling it to the main utility), whereas the operative cost
of S2 significantly decreases. This issue is solved by running
the benefit sharing problem formulated in (18), achieving an
effective final cost for each subsystem, i.e., (J c

i − z∗

i ), much
lower than the one achievable by their independent regulation.
The described case study witnesses that the designed control
strategy is effective in enabling the optimal and efficient opera-
tion of MES, also when applied to large-scale energy networks.
The control problem has been solved on a laptop with an
Intel i7-11850H processor, recording an average computational
time of 0.03 s for solving the HL-MPC coordination problem,
3.7 s for solving the L-MPC1 control problem, and 0.35 s for
solving the L-MPC2 one. On the other hand, the computational
time for solving the benefit sharing problem in (18) is 0.37 s,
whereas the one to solve (20) is, for each subsystem, similar
to the one of the corresponding L-MPC regulator.

VI. CONCLUSION

This article describes the design of a novel hierarchical
predictive control architecture for the coordination of MESs,
i.e., interconnected energy systems of different energy domains
(e.g., thermal, electrical, or gas). The proposed control strat-
egy involves, at the high level, an energy modeling of
reduced order for each MES subsystem, which enables the
computational-effective and optimal coordination of power
exchanges among MES subsystems. Moreover, at the high
level, an energy reference for each MES subsystem is com-
puted, which is then tracked by a low-level MPC regulator
regulating local subsystem inputs. On the other hand, a benefit
sharing algorithm is designed, with the goal of properly
sharing the economic saving achieved by the multi-energy
interaction among MES subsystems. As witnessed by the
numerical results, the formulated control framework can be
easily applied to different MES benchmarks, being capable
of dealing with nonlinear large-scale systems, as most model
complexity is addressed by the local low-level regulators and
not by the high-level one. The approach described in this arti-
cle allows for many extensions, currently underway. Among
them, the following hold: 1) the design of a distributed control
algorithm for the high-level coordination; 2) the formulation
of robust and/or stochastic MPC algorithms to deal with
possible uncertainties in the prediction of disturbances; 3) the
investigation of a more structured game-theoretical framework
for the benefit sharing, where MES subsystems may directly
compute the optimal energy exchanges through negotiation

Fig. 8. Cost of total produced power in Si with gi = 3 local power sources.

strategies; and 4) the investigation of more advanced coordina-
tion strategies among multi-energy subsystems, e.g., involving
demand-response services.

APPENDIX A
PIECEWISE DEFINITION OF TOTAL GENERATION COST

It is here presented an alternative method, other than the
ones discussed in Section III-B, to approximate the total
produced power cost cgh

i (p
gh
i ), used by HL-MPC in (15), using

the local generation costs cg
i exploited by L-MPCi in (17a).

For the sake of readability and without any loss of generality,
this procedure is here described considering pg

i
= 0gi . First

of all, number power generators in Si in increasing order with
respect to their costs, assumed to be different among each
other, i.e., cg

i1 < cg
i2 < · · · < cg

igi
. Then, assuming local

state and input constraints (17b) and (17c) to be respected,
each L-MPCi will use local power generators in increasing
order with respect to their index, until their power bounds are
reached, minimizing the operational cost. Thus, the overall
cost of the total generation in each Si can be modeled at the
HL-MPC level as follows:

cgh
i

(
pgh

i

)

=


cg

i1 pgh
i , if 0gi ≤ pgh

i ≤ p̄g
i1

cg
i j pgh

i +

j−1∑
l=1

p̄g
il

(
cg

il − cg
i j

)
, if

j−1∑
l=1

p̄g
il ≤ pgh

i ≤

j∑
l=1

p̄g
il

∀ j ∈ {2, . . . , gi }.

The idea behind this cost formulation can be better appreciated
considering Fig. 8, where the function cgh

i (p
gh
i ) is depicted for

a system with gi = 3 power sources. As evident, the overall
cost represents, at the HL-MPC level, the fact that generators
in Si would be exploited by the L-MPCi regulator in sequence
with respect to their cost.

APPENDIX B
CENTRALIZED CONTROL PROBLEM

Hereafter, the centralized control problem for the coordi-
nation of S† is formulated. Consider a sampling period τcentr
and a prediction horizon Tcentr = {k, . . . , k + Ncentr − 1}, with
Ncentr > 0. Thus, at each k, a centralized predictive regulator
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should solve the following problem:

min
u∀i (·)

∑
∀k∈Ti

 ∑
∀i=1,...,M

cg
i

′ pg
i (k)+

∑
∀(i, j)∈E

cph
i j |pi j (k)|


s.t. ∀k ∈ Ti , to

(16), (17b)-(17e) ∀i = 1, . . . ,M

p
i j

≤ pi j (k) ≤ p̄i j ∀(i, j) ∈ E .

(26)

Denote the optimal power production and exchanges computed
by (26) with pg∗∗∗

i (k|k) and pg∗∗∗

i j (k|k), respectively. Similar
to Section IV, considering a sampling period τb > 0 and the
generic time instant t = kbτb, with kb ∈ N, the operational
cost of each Si over [(kb − 1)τb, kbτb] is

J centr
i (kb) =

kb Bi∑
k=(kb−1)Bi

cg
i

′ pg∗∗∗

i (k|k)+

∑
j∈N in

i

cph
ji

∣∣ph∗∗∗

j i (k|k)
∣∣

where, as a convention, the cost of power exchanges is applied
to the receiving subsystems [as in (19)].
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