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A B S T R A C T   

The intermittent nature of distributed energy resources introduces new degrees of uncertainty in the operation of 
energy systems; hence, short-term decisions can no longer be considered fully deterministic. In this article, an 
energy management system (EMS) was proposed to optimize the market participation and the real-time oper
ation of a virtual power plant (VPP) composed of photovoltaic generators, non-flexible loads, and storage systems 
(e-vehicle, stationary battery, and thermal storage). The market bidding process was optimized through a two- 
stage stochastic formulation, which considered the day-ahead forecast uncertainty to minimize the energy cost 
and make available reserve margins in the ancillary service market. The real-time management of regulating 
resources was obtained through an innovative rolling horizon stochastic programming model, taking into ac
count the effects of short-term uncertainties. Numerical simulations were carried out to demonstrate the effec
tiveness of the proposed EMS. The architecture proved to be effective in managing several distributed resources, 
enabling the provision of ancillary services to the power system. In particular, the model developed allowed an 
increase in the VPP’s profits of up to 11% and a reduction in the energy imbalance of 25.1% compared to a 
deterministic optimization.   

1. Introduction 

The integration of distributed renewable energy sources (RESs) and 
the gradual electrification of end-uses are crucial factors in achieving 
environmental targets [1]. Upgrading the power system to reach these 
goals has proven to be a very challenging task; moreover, policies need 
to be deeply revised to facilitate RESs penetration and develop a smarter 
and more flexible grid, able to manage effectively the variability of 
Distributed Energy Resources (DERs). 

In this regard, the aggregation of DERs in a virtual power plant (VPP) 
is an interesting option because it offers more predictable and control
lable power outputs [2]. Moreover, by adopting suitable strategies, the 
VPP can also be controlled to provide ancillary services (e.g., frequency 
and balancing regulation) to the power system, increasing the number of 
flexibility providers and improving grid stability. 

However, the stochastic nature of DERs introduces risks and un
certainties in all the decision-making phases of the VPP, namely, during 
the scheduling (i.e., market participation) and short-term decision 

phases (i.e., real-time operation). In the literature, there is consensus 
that the influence of these uncertainties must be taken into account in 
market participation that usually occurs from one day to some hours 
before the time of delivery [3,4]. The authors in [5] have investigated 
the influences of uncertainties during participation in the day-ahead 
market (DAM) by adopting a two-stage stochastic model. However, 
the effects of uncertainty on short-term decisions (i.e., real-time opera
tion) have not been thoroughly analyzed, neither in [5] nor in the wider 
literature (see Section 2). 

To address this limitation, this paper proposes a novel architecture 
capable of scheduling the resources available in a VPP (also applicable 
for aggregators) by considering the effects of the uncertainties in the 
short-term decision phase. The proposed architecture is composed of 
two layers. 

The first layer has a two-stage stochastic model designed to define 
the optimal power schedule on the DAM and to offer reserve capacity on 
the ancillary service market (ASM). The second layer relies on an 
innovative rolling horizon stochastic programming model, which man
ages the controllable units in the VPP in real time in order to fulfill the 
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DAM commitment and provide ancillary services (AS) to the power 
system. 

The proposed system was tested on a VPP composed of hundreds of 
residential users, equipped with rooftop photovoltaic (PV) plants, non- 
flexible loads, energy storage systems (ESSs), water heaters, and elec
tric vehicles (EVs). The uncertainties of RES production, load con
sumption, and users’ behavior (in terms of EV charging requests and hot 
water usage) were modeled in both layers by using real data. A central 
point of the analysis was to compare the rolling horizon stochastic 
programming model with its deterministic counterpart [6], to determine 
the value of considering the short-term uncertainty in real-time 
operations. 

Following a literature review (Section 2), the framework of appli
cation and the mathematical models are described in Section 3. Then, 
Section 4 and Section 5 report the case study and the scenario generation 
procedure adopted to characterize the uncertainties affecting the prob
lem, respectively. Section 6 and Section 7 present the numerical analyses 
carried out to assess the effectiveness of the proposed method. Finally, 

some conclusions are drawn. 

2. Related works and main contributions to the state of the art 

From the literature, several studies examined the market participa
tion of aggregates of DERs and the architecture required to optimally 
manage their power exchanges in real time. 

However, these two aspects have typically been investigated indi
vidually; hence, two separate research areas can be identified: i) stra
tegies for bidding on the market and ii) strategies for the real-time 
control of resources. The first research area includes studies about 
optimization strategies to bid in the markets. The bidding strategy 
problem is examined from different perspectives in the literature. For 
the purposes of this study, the approaches adopted to model the un
certainties and resources included in the VPP were critically reviewed. 

For example, the author in [7] proposed a two-stage stochastic 
problem to simulate the participation of the VPP in the DAM and spin
ning reserve market. The uncertainties that characterize RES and load 

Nomenclature 

Acronyms 
ARMA Autoregressive Moving Average 
AS Ancillary Service 
ASM Ancillary Service Market 
CS Charging Station 
D Day of delivery 
DAM Day-Ahead Market 
DER Distributed Energy Resources 
EMS Energy Management System 
ESS Energy Storage System 
EV Electric Vehicle 
MILP Mixed-Integer Linear Programming 
PDF Probability Distribution Function 
PV PhotoVoltaic 
RES Renewable Energy Source 
SoC State of Charge 
TSO Transmission System Operator 
VoPF Value of Perfect Forecast 
VoU Value of Uncertainties 
VPP Virtual Power Plant 

List of variables 
CostS1/S2 first/second-stage cost 
Imb net power imbalance 
Imb+/Imb− positive/negative power imbalance 
PAbs,f day-ahead power requirement forecast 
Pb water heater power absorption 
Pb,nom water heater nominal power 
Pbuy power purchased on the DAM 
PX,FS non-anticipativity auxiliary variable 
Pch,ESS/Pds,ESS charging/discharging ESS power 
PEV EV power absorption 
PDAM DAM power schedule 
Psold power sold on the DAM 
SoCESS ESS SoC 
SoCEV EV’SoC 
Tb internal temperature of the water heater 
zb,min/zb,Max binary variables for the thermal comfort 
zcap capacity remuneration binary variable 
zsold/zbuy binary variable for purchased/sold DAM power 
zch,ESS/zds,ESS charging/discharging binary state of the ESS 

z+/z− imbalance sign binary variable 
ΔPb water heater upward reserve margin 
ΔPESS ESS’s upward reserve margin 
ΔPEV EV’s upward reserve margin 
ΔPTOT overall upward reserve margin 

List of parameters 
cbuy/pbuy cost/price per unit of purchase/sold energy 
Cap required reserved margin 
CESS energy capacity of the ESS 
CEV energy capacity of the EV’s battery 
h̃EV boolean parameter for EVs connection (uncertain) 
MD upper bound for the power purchased/sold variable 
MI upper bound for the power imbalance variable 
MT upper bound for water temperature variable 
PCS rated power of the charging station 
PESS maximum charging/discharging ESS power 

P̃PV
t,s /P̃L

t,s PV/load power profile forecast (uncertain) 
pCap daily revenue for the capacity reserved during the 

availability hours 
SoCEV,conf desired EV’s SoC 
SoCmin/SoCMax upper/lower bound for the SoC 
T0 inlet water temperature 
Tcnf ,min/Tcnf ,Max upper/lower bounds of the comfort range 
Tenv temperature of the air surrounding the water heater 
w̃cns expected hot water consumption (uncertain) 
ΔTRH the length of the Rolling Horizon time window 
̃ΔSoCusg expected EV’s energy consumption (uncertain) 

∊X ARMA-based forecast error 
πs scenario probability of occurrence 
ηch/ηds ESS charging/discharging efficiency 
ηEV,ch EV’s battery charging efficiency 

List of indexes/Sets 
nb water heater index (NB) 
ne ESS index (NESS) 
nev EV index (NEV) 
s index of scenarios analyzed (SDAM/RT) 
t time step index (TDAM) 
tavb availability hours time step index (Tavb) 
tact time step in the delivery day (TD)  
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exchanges, energy prices, and flexibility activation were modeled by 
adopting a random sampling Monte Carlo method. However, errors 
affecting RES production were represented through univariate proba
bility distribution functions (PDFs), neglecting the intercorrelation be
tween forecast errors in succeeding time steps. Moreover, the VPP’s real- 
time operation was not simulated by a dedicated tool. Hence, the re
sources were not re-scheduled according to the actual realization of the 
uncertain parameters. In [8], the bidding strategy of a VPP participating 
in the energy and reserve markets was studied. The authors developed a 
bi-level stochastic programming framework to define the VPP planning 
operation (upper level) and clear the energy and reserve markets (lower 
level). In particular, the VPP was modeled as a price-maker in both 
markets, allowing an increase in its expected profits. Furthermore, in 
this case, the real-time dispatch of the resources was not modeled. 

Similarly, in [9], a model was proposed to optimize the day-ahead 
and reserve market participation of a VPP. Several uncertainties were 
considered, such as wind power production, flexibility activation, and 
market prices. The resulting stochastic optimization model was solved 
by adopting an iterative solution of a master problem and a subproblem. 
Despite the novelties of this study, the actual results achieved in real 
time were not tested. In [10], the authors proposed a mixed-integer 
linear programming (MILP) model to optimize the day-ahead and 
intra-day market participation; however, neither the real-time operation 
nor the uncertainties were modeled. In [11], a three-stage stochastic 
programming model was presented to optimize the offering process on 
the market. The uncertainties of the intermittent energy sources, cus
tomers’ demand, and electricity prices were considered by generating 
several scenarios through autoregressive methods and PDFs. Finally, the 
fast-forward scenario reduction algorithm, developed by the authors in 
[12], was implemented to select representative scenarios. The real-time 
operation of the system was not simulated. 

In [13], a bi-level stochastic optimization model was implemented to 
obtain the bidding strategy of a VPP in the day-ahead (first level) and 
balancing (second level) markets. The load and wind uncertainties were 
modeled considering random forecast errors with a zero mean, 
neglecting their time-dependent structure and not considering the real- 
time operation of the system. 

In [14], a bi-level formulation was proposed to optimally declare the 
day-ahead and reserve market schedules for a VPP composed of con
ventional units, renewable resources, and interruptible loads. The model 
maximized the VPP’s profit while minimizing the emissions of the units 
involved. However, neither the DAM uncertainties nor the impact of 
unexpected events during the real-time dispatch were modeled. 

Similarly, the optimal bidding strategy of a VPP in joint day-ahead 
and reserve markets was studied in [15]. The day-ahead uncertainties 
were taken into account by considering stochastic scenarios, generated 
by shifting the deterministic forecast by constant values. The expected 
operation of the VPP on the following day was provided for the different 
scenarios; however, no dedicated tool was proposed to re-schedule the 
VPP units in real time, and short-term uncertainties were not considered. 

The authors in [16] proposed robust optimization to manage the 
bidding strategy of a VPP in both the day-ahead and real-time markets. 
The uncertainties of wind production and market prices were imple
mented by an auto-regressive moving average (ARMA) model [17], 
capturing the temporal correlation of the forecast errors. In [18], the 
optimal day-ahead scheduling was obtained by maximizing the profit 
and minimizing the emissions of the VPP. The behavior of wind power, 
solar radiation and load, and the market prices were represented using a 
statistical approach based on univariate PDFs. Neither of these studies 
took the real-time operation of the system into account. 

As is highlighted, most of the studies mainly focused on the VPP 
scheduling phase (e.g., by simulating its participation in electricity 
markets), without testing the actual performance achieved by the system 
during its operation (e.g., [7–11]). 

The second research area identified in the literature, concerning the 
management of DER units in an aggregated form, includes studies 

proposing approaches to optimally control the VPP resources during real 
time. 

In [19] and [20], real-time energy management systems were pro
posed to schedule a set of DERs and residential users. The optimal so
lution was achieved by solving distributed MILP problems, limiting the 
information shared with the central EMS. In these two papers, the effects 
of the systems’ evolution in the upcoming time steps and the related 
uncertainties were not considered. Furthermore, the interactions be
tween the VPP and the energy markets were not modeled. 

In [21], the real-time optimal dispatch problem of a VPP composed 
by controllable generators, ESS, and flexible loads was studied. The VPP 
was managed as a multi-agent system and the real-time active power 
dispatch was obtained through the adoption of a distributed model 
predictive control. Hence, each resource was equipped with a control 
system that dispatched the power exchanges to pursue a local individual 
goal, also considering the information exchanged by the other units. 
Despite the VPP being mainly composed of unpredictable RES genera
tion (wind and PV systems), the short-term uncertainties affecting the 
control horizon of the model predictive control were not considered. As 
in the previous case, the VPP participation in the market was neglected. 
In all of the studies found in the literature aiming at suggesting new 
approaches to the real-time dispatch of DER units, it became apparent 
that the interactions between the VPP and markets were not simulated. 
Furthermore, the effects of short-term uncertainties were always 
neglected. 

To fill this gap in the literature, the architecture proposed in this 
paper was based on two different models that simulated both market 
participation and the real-time operation of the VPP. To the best of the 
authors’ knowledge, this was the first paper to accurately model the 
effect of uncertainties in short-term decisions (i.e., during real-time 
dispatch). 

Moreover, in several works (e.g., [7–10,13], and [18]), the un
certainties were represented as white noise phenomena, neglecting the 
time intercorrelation between errors in succeeding time steps. In the 
authors’ opinion, this aspect is critical since the scenarios generated by 
this method are poorly diversified (i.e., they are distinguished by a zero- 
mean process), biasing the VPPs’ decisions. Instead, in this work, the 
statistical characteristics of the uncertainties were preserved by adopt
ing specifically designed autoregressive models. 

Table 1 summarizes the main differences between the proposed 
approach (last row) and the studies analyzed, with the goal of high
lighting the gap in the literature that this study aimed to fill. 

Therefore, the main contributions of this article to the current state 
of the art were as follows:  

• An integrated control architecture was proposed to effectively 
manage the market participation (DAM and ASM) and the real-time 
operation of a VPP including RES generation, non-controllable or 
partially controllable loads (EVs, water heaters), and ESSs. The 
reservation of a power band to supply ASs was also considered.  

• A novel rolling horizon stochastic programming approach was 
designed to manage the operation phase (close to the real-time 
scheduling) of the system considering short-term uncertainties.  

• A detailed model was implemented to simulate the power exchanges 
of residential water heaters. Furthermore, the thermal inertia of 
these flexible resources was exploited to make available a reserve 
margin and provide AS to the power system.  

• An in-depth techno-economic assessment was performed to 
comprehensively evaluate the effects of uncertainties on the VPP’s 
operation.  

• Without losing any generality, a market framework coherent with 
the situation in place in many European countries was taken as a 
reference. Moreover, real-life data were considered concerning the 
activation requests of ASs, EV and load utilization, and RES energy 
exchanges. 
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3. Problem description and formulation 

The control strategy proposed aimed to optimize the DAM and ASM 
participation and management in the real-time operation of a VPP 
composed of: i) PV panels, ii) non-flexible residential loads, iii) water 
heaters, iv) charging stations for EVs, and v) ESSs. 

The VPP operates as follows:  

a) On day D-1, a binding power curve is declared on the DAM to supply 
the local load and sell the PV power production. The VPP makes 
decisions on the power traded on the DAM based on the available 
forecasts and corresponding uncertainties. Moreover, the amount of 
frequency restoration and replacement reserves [22] to be offered on 

the ASM for specific hours of day D (hereafter referred to as avail
ability hours) is defined. According to the discipline currently in 
place in Italy for VPP projects [23], an amount of upward reserve at 
least equal to a predetermined threshold (Cap) must always be 
guaranteed by the VPP to the transmission system operator (TSO).  

b) On day D, during the availability hours, the TSO can activate the 
reserved flexibility to solve grid criticalities.  

c) In real time, the VPP dispatches the available flexible resources (i.e., 
ESSs, EVs, and water heater), to: i) respect the DAM market 
commitment and minimize the power mismatches and the corre
sponding fees (i.e., imbalance cost) [22], ii) ensure upward reserve 
capacity during the availability hours, iii) provide the requested AS, 

Table 1 
Comparison between the approaches available in the literature and this study.  

Reference Resources simulated Market participation Real-time dispatch 

Simulated 
market 
platform 

Optimization model 
adopted 

Real-time 
dispatch 

Optimization model 
adopted 

Short-term 
uncertainty 

[7] DR, ESS, RES DAM, SR SP × × ×

[8] CPP, ESS, RES DAM, SM SP bi-level optimization × × ×

[9] CPP, DR ESS, RES DAM, SR ARSP × × ×

[11] CPP, DR, ESS, RES DAM, IM SP 
(three-stage) 

× × ×

[13] N-F Load, RES DAM, BM SP bi-level optimization × × ×

[14] CPP, DR, ESS, RES DAM, RTM SP bi-level optimization × × ×

[16] DR, ESS, RES DAM, RTM Two-stage robust × × ×

[19] CPP, ESS, EV, RES × × √ Multi-objective RT 
optimization 

×

[20] ESS, N-F Load, RES × × √ Distributed MILP 
optimization 

×

[21] CPP, ESS, N-F Load, RES × × √ DMPC ×

This work ESS, EV, N-F load, WH, 
RES 

DAM, BM SP √ Rolling Horizon SP √ 

CPP: conventional power plant, DR: demand response, N-F load: non-flexible load, WH: water heater. 
BM: balancing market, ID: intra-day market, RTM: real-time market, SP: spinning reserve. 
ARSP: adaptive robust stochastic programming, DMPC: distributed model predictive control, MILP: mixed-integer linear programming, RT: real time, SP: stochastic 
programming. 

Fig. 1. Schematic representation of the EMS.  
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and iv) maintain an adequate level of comfort for residential users, 
both in terms of EV charging profiles and hot water temperature. 

The schematic description of the EMS is presented in Fig. 1. The first 
layer, executed on day D-1, is devoted to optimally defining the DAM 
power schedule and offering the available regulation reserve on the 
ASM. As is shown, different stochastic and deterministic parameters are 
used as inputs of the proposed two-stage stochastic model. Before 
solving the optimization problem, the day-ahead uncertainties are 
modeled using a scenario generation procedure. Then, in each time step 
of the delivery day (D), the rolling horizon stochastic programming 
model (i.e., second layer) is executed. It dispatches, in real time, the 
regulation resources considering the evolution of the uncertainties in the 
next future. 

3.1. Market participation 

The day before the day of delivery (day D-1), the expected power 
exchange of the VPP was required to be declared on the market to buy 
(or sell) the energy required (or produced) by all the users involved in 
the system. Furthermore, the VPP could offer its upward reserve on the 
ASM. For this purpose, an optimized power schedule for the VPP was 
necessary:  

• to minimize the DAM cost (e.g., exploiting self-consumption and 
energy arbitrage);  

• to mitigate forecast errors (i.e., minimize imbalance fees);  
• to guarantee a reserve margin to supply regulation services in case of 

AS request. 

The day-ahead forecast of the energy requirement is subject to strong 
uncertainties [24], which must be adequately considered in the opti
mization process. To handle these uncertainties, stochastic program
ming and robust optimization are generally considered as alternative 
choices. In the former, it is assumed that the probability distribution 
functions of the uncertain parameters are known. Instead, the latter 
seeks to find a solution that is optimal for the worst case within a given 
uncertainty set. Therefore, robust optimization is generally adopted for 
problems with constraints that must be respected despite the realization 
of the uncertainties (i.e., no latitude for violation is accepted). On the 
other hand, in stochastic programming, the decision variables are 
defined to optimize the expected outcomes of uncertain parameters. An 
exhaustive comparison between stochastic programming and robust 
optimization methods was provided in [2]. In this work, a two-stage 
stochastic programming model was adopted. 

In stochastic programming, random variables are usually repre
sented by a finite set of realizations, called scenarios. Hence, each sce
nario is characterized by a different forecast of uncertain parameters and 
probability of occurrence [25]. 

In a two-stage stochastic optimization, two classes of variables are 
defined [26]. The first-stage variables represent decisions made before 
knowing the realization of the uncertainties. Thus, first-stage variables 
represent a decision that must be made based on the available infor
mation, without the knowledge of future events. For this reason, first- 
stage variables are also called here-and-now variables. On the other 
hand, second-stage variables are made after knowing the actual reali
zation of the aleatory parameters. Hence, these decisions depend on the 
uncertainty realization and they model corrective actions taken to 
compensate for any undesirable outcomes. Usually, stochastic models 
are solved considering the expected cost, calculated as the sum between 
the first-stage cost (i.e., cost experienced before the uncertainty reali
zation) and the weighted sum of the second-stage costs (i.e., cost 
incurred after the realization of uncertain parameters). The weights 
correspond to the probability of occurrence of each scenario and the sum 
of probabilities over all scenarios is equal to 1. However, risk-based 
measurements, such as the conditional value at risk, can also be 

included in the objective function [26]. 
In this model, the first-stage variables referred to the power declared 

on the DAM and the capacity reserve offered on the ASM, since all these 
decisions were made one day in advance, before knowing the actual 
realization of the uncertainty parameters. On the other hand, the 
second-stage variables describe the decisions set after the result of un
certainties is revealed and thus represent the expected operation for day 
D. It is worth noting that the expected operation forecasted on day D-1 
by the first layer of the EMS differed from the actual dispatch adopted in 
real time (achieved by the second layer). This is because, in general, the 
uncertain parameters forecasted during the market participation do not 
coincide with the actual realization in real time. 

The DAM power schedule (first-stage variable), hereafter PDAM
t , is 

indexed by t, where t ∈ TDAM indicates the time steps of day D. In each 
time step, the VPP can either inject (PDAM

t < 0) or absorb (PDAM
t > 0) 

power from the grid. Hence, the following constraints are introduced: 

PDAMt = Pbuyt − Psoldt (1)  

0 ≤ Pbuyt ≤ MDZbuyt (2)  

0 ≤ Psoldt ≤ MDZsoldt (3)  

zsoldt + zbuyt ≤ 1 (4) 

Constraints (2)–(4) avoid the simultaneous injection and withdrawal 
of power. Moreover, Eq. (1) evaluates the costs/revenues for the energy 
purchased (PDAM

t > 0) and sold (PDAM
t < 0). The parameter MD is a pos

itive upper bound for Pbuy
t and Psold

t , while zsold
t and zbuy

t are two mutually 
exclusive binary variables. 

The second-stage problem modeled the expected operation of the 
system on day D in different scenarios indexed by s, where s ∈ SDAM. 
Each scenario simulated a different realization of the uncertainty. In this 
study, the uncertain parameters were indexed by t and s (e.g., l̃t,s) to 
underline both the time and scenario dependency, and they were labeled 
with a tilde. 

To optimally bid on the markets, the first layer of the EMS considered 
the expected usage of the dispatchable resources (i.e., ESSs, EVs, and 
water heaters) on the following day. This allows for exploitation of the 
regulating capabilities of these resources to minimize the DAM costs and 
allows the reserve margin on the ASM to be offered. In this regard, two 
classes of variables were employed. Variables denoted as PX

t represent 
the power exchanged by the flexible resources X, while variables indi
cated as ΔPX represent the reserve margin that the flexible asset X can 
make available, i.e., the ΔPX variables denote the power capacity 
retained by the EMS to be able to supply the service when it will be 
requested by the TSO. 

Each ESS, indicated by ne ∈ NESS, is modeled by the following 
equations: 

SoCESS
t,s,ne = SoCESS

t− 1,s,ne +
(Pch,ESSt,s,ne η

ch − Pds,ESSt,s,ne

/
ηds)

CESS
ne

(5)  

SoCmin≤ SoCESS
t,s,ne ≤ SoCMax (6)  

zch,ESSt,s,ne + zds,ESSt,s,ne ≤ 1 (7)  

0 ≤ Pch,ESSt,s,ne ≤ PESSne z
ch,ESS
t,s,ne (8)  

0 ≤ Pds,ESSt,s,ne ≤ PESSne z
ds,ESS
t,s,ne (9)  

PESS,abst,s =
∑

ne∈NESS

Pch,ESSt,s,ne − Pds,ESSt,s,ne (10) 

Eq. (5) represents the energy balance of the ESS, where SoCESS is the 
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state of charge of the ESS, Pch,ESS
t,s,ne /Pds,ESS

t,s,ne are the expected charging/dis
charging power of the battery, and CESS

ne 
is its energy capacity. Constant 

charging and discharging efficiencies were considered (ηch and ηds, 
respectively), since the development of a detailed model of the battery 
was beyond the scope of this study. The SoC in Eq. (6) is bounded be
tween its minimum and maximum values [27]. Simultaneous charge and 
discharge is avoided by constraints (7)–(9), where zch,ESS

t,s,ne and zds,ESS
t,s,ne are 

two mutually exclusive binary variables. Eq. (10) evaluates the total 
power exchanged by the batteries (PESS,abs

t,s ). 
The second-stage problem must also consider the requirement to 

reserve flexibility margin during the availability hours tavb, where 
tavb∈ Tavb. The ESS’s upward reserve (ΔPESS

tavb ,s,ne
) is calculated as the 

maximum allowed power variation with respect to the expected net 
power absorption (i.e., Pch,ESS

tavb ,s,ne − Pds,ESS
tavb ,s,ne ). 

− PESSne ≤ ΔPESStavb ,s,ne +(Pch,ESStavb ,s,ne − Pds,ESStavb ,s,ne ) ≤ +PESSne (11)  

ΔSoCESS
tavb ,s,ne =

ΔPESStavb ,s,ne

CESS
ne

(12)  

SoCmin≤ SoCESS
tavb ,s,ne +ΔSoCESS

tavb ,s,ne ≤ SoCMax (13)  

ΔPESS,TOTtavb ,s =
∑

ne∈NESS

ΔPESStavb ,s,ne (14) 

ΔPESS
tavb ,s,ne 

represents the maximum upward reserve that each ESS can 
make available and it is constrained by the maximum charging/dis
charging power in Eq. (11) and the battery’s SoC in Eq. (12) and (13). 

Fig. 2 exemplifies the effects of the constraints introduced. For 
example, if an ESS is discharging at time t (see the blue marker in Fig. 2), 
the green area would represent the maximum available upward reserve 
considering only the power limits (Eq. (11) alone), i.e. the available 
power margin to reach the full discharge power. However, since ESSs are 
energy-limited devices, their energy content must also be checked (see 
yellow area). This is carried out by including in the problem the 
constraint in Eq. (13), which evaluates the reserve considering also the 
energy limits. 

The overall flexibility margin of the ESSs (ΔPESS,TOT
tavb ,s ) is calculated 

using Eq. (14). In the proposed formulation, two peculiar aspects must 
be noticed: i) Eq. (11)–(14) are applied only during the availability 
hours (i.e., ∀tavb ∈ Tavb) and ii) ΔPESS

tavb ,s,ne 
models the available reserve 

margin of the ESS and it does not represent a real variation in the power 
exchanged, which is Pch,ESS

tavb ,s,ne − Pds,ESS
tavb ,s,ne . 

Concerning electric mobility, each EV is indicated by the index 
nev ∈ NEV . In this study, both the instant of connection of the EV to the 
charging station (CS) and its initial SoC are considered uncertain. The 

former is modeled by the Boolean parameter ̃hEV
t,s,nev

, equal to 1 if the 
nev-th vehicle of scenario s is connected to the CS at time step t, and zero 

otherwise. The initial SoC depends on ̃ΔSoCusg
t,s,nev , which represents the 

forecasted energy consumption of the EV during the utilization by the 
owner. To model the EVs’ behavior, the following equations are used: 

SoCEV
t,s,nev = − ̃ΔSoCusg

t,s,nev + SoCEV
t− 1,s,nev +

(PEVt,s,nev η
EV,ch)

CEV
nev

(15)  

SoCmin≤ SoCEV
t,s,nev ≤ SoCMax (16)  

0 ≤ PEVt,s,nev ≤ PCSnev h̃
EV
t,s,nev (17)  

PEV,abst,s =
∑

nev∈NEV

PEVt,s,nev (18) 

Eq. (15) models the EV’s battery SoC (SoCEV
t,s,nev

), which is bounded in 
a feasible range by Eq. (16). ηEV,ch and CEV

nev 
represent the overall charging 

efficiency and the EV’s battery capacity, respectively, while PEV
t,s,nev 

is the 
power absorption of each EV. The EMS can manage only the power 

absorption of EVs connected to a CS (i.e., when ̃hEV
t,s,nev

= 1); therefore, Eq. 

(17) imposes PEV
t,s,nev

= 0 when the EV is not connected ( ̃hEV
t,s,nev

= 0) and 
0 ≤ PEV

t,s,nev
≤ PCS

nev 
otherwise, where PCS

nev 
is the CS rated power. Eq. (18) 

calculates the total power absorbed by the EVs (PEV,abs
t,s ). 

Fig. 3 exemplifies the formulation proposed. In the example, a sce
nario s is considered in which the EV is expected to be outside of the 

home location between 8 am and 4 pm. In this period, ̃hEV
t,s,nev

= 0; thus, 

the charging power PEV
t,s,nev 

is set to 0 and ̃ΔSoCEV
t,s,nev 

is greater than zero, 
modeling the estimated energy consumption of the car during its use. 

Instead, when the EV is connected to the CS, ̃hEV
t,s,nev

= 1; therefore, the 
power absorption from the grid can be modulated between 0 and PCS

nev 

(green area). 
The DAM schedule should ensure the charging of all EVs prior to 

departure. For this purpose, constraint (19) restricts the domain to so
lutions that guarantee that, when the EV leaves the CS (i.e., t = tdep), the 
SoC is higher that a minimum acceptable threshold (SoCEV,conf ). 

Fig. 2. Example of the admissible upward reserve margin considering only the power limits (green area) and the energy limits (in yellow). The dotted line represents 
the projection of the yellow area into the power domain. In this example, the available power reserve is limited by the energy level. 
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SoCEV
t,s,nev ≥ SoCEV,conf if t = tdep (19) 

EVs are considered partially dispatchable resources. Their reserve 
margin during the availability hours (tavb) is evaluated through the 
following equations: 

0 ≤ ΔPEVtavb ,s,nev + PEVtavb ,s,nev ≤ PCSnev
̃hEV,contavb ,s,nev (20)  

ΔSoCEV
tavb ,s,nev =

ΔPEVtavb ,s,nev
CEV
nev

(21)  

SoCmin≤ SoCEV
tavb ,s,nev +ΔSoCEV

tavb ,s,nev ≤ SoCMax (22)  

ΔPEV,TOTtavb ,s =
∑

nev∈NEV

ΔPEVtavb ,s,nev (23) 

Also in this case, the EV’s available reserve margin (ΔPEV
tavb ,s,nev

) is 
limited both in terms of maximum power (Eq. (20)) and battery energy 

content (Eq. (21) and (22)). Parameter ̃hEV
tavb ,s,nev 

in Eq. (20) allows mod
ulation of the charging power of vehicles connected to a CS. 

The expected power withdrawal of each water heater is forecasted, 
on day D-1, to reserve an upward capacity margin and minimize the 
DAM cost (e.g., by maximizing the self-consumed energy). To model 
each water heater nb ∈ NB, the following equations are adopted: 

Tbt,s,nb = Tbt− 1,s,nb −
Tbt,s,nb − Tenv

RSWVnbρ
−
w̃cns
t,s,nb

(
Tbt,s,nb − T0

)

Vnb
+

Pbt,s,nb
SWVnb ρ

(24)  

0 ≤ Pbt,s,nb ≤ Pb,nomnb (25)  

T0 ≤ Tbt,s,nb ≤ TMAX (26)  

Pb,abst,s =
∑

nb∈NB

Pbt,s,nb (27) 

The water heater’s temperature (Tb
t,s,nb

) is described by the energy 
balance in Eq. (24), derived from [28]. The formulation takes into 
consideration: the temperature in the previous time step (Tb

t− 1,s,nb
), the 

heat dispersions (second term of (24)), the temperature reduction for the 
expected use of water (w̃cns

t,s,nb
), and the temperature increase obtained by 

the electric power absorption (Pb
t,s,nb

). The water usage strongly affects 
the water heater’s power request; therefore, the uncertainties that in
fluence w̃cns

t,s,nb 
are also considered. Eq. (25) bounds the heater power 

(Pb
t,s,nb

) between zero and its nominal power (Pb,nom
nb

). Infeasible solutions 
are avoided by constraint (26), which ensures that the value of water 
temperature will remain between the inlet (T0) and maximum (TMAX) 
limits. If temperature goes outside the comfort range, the VPP manager 
must refund the users. To model this aspect, a Big-M formulation is 
adopted [29]. 

Tcnf ,Max− Tbt,s,nb ≥ − MTzb,Maxt,s,nb (28)  

Tbt,s,nb − T
cnf ,min ≥ − MTzb,mint,s,nb (29)  

zb,mint,s,nb + zb,Maxt,s,nb ≤ 1 (30) 

Parameters Tcnf ,Max and Tcnf ,min are the upper and lower bounds of the 
comfort range, respectively. If the water heater temperature (Tb

t,s,nb
) is 

inside the limits ([Tcnf ,min; Tcnf ,Max]), Eq. (28) and (29) hold if, and only if, 
the two binary variables, zb,Max

t,s,nb and zb,min
t,s,nb , are zero. Instead, if the water 

temperature is too high (Tb
t,s,nb

> Tcnf ,Max) or too low (Tb
t,s,nb

< Tcnf ,min), Eq. 

(28) or (29) are alternately satisfied if zb,Max
t,s,nb = 1 or zb,min

t,s,nb = 1. These two 
binary variables are adopted in the objective function to evaluate the 
fees that the VPP owner owes the users in the case of non-fulfillment of 
thermal comfort. 

Also, the thermal inertia of the water heaters is exploited by the EMS 
to supply a reserve margin to the power system (ΔPb

tavb ,s,nb
). To ensure the 

feasibility of the solution, the following equations are adopted: 

0 ≤ Pbtavb ,s,nb +ΔPbtavb ,s,nb ≤ Pn,nomnb (31)  

ΔTbtavb ,s,nb =
ΔPbtavb ,s,nb
SWVnbρ

(32)  

T0 ≤ Tbtavb ,s,nb +ΔTbtavb ,s,nb ≤ TMAX (33)  

ΔPb,TOTtavb ,s =
∑

nb∈NB

ΔPbtavb ,s,nb (34) 

The heater upward reserve is limited in a feasible domain by Eq. 
(31)–(33), while the total reserved margin obtained by all water heaters 
in the VPP (ΔPb,TOT

tavb ,s,nb
) is calculated through Eq. (34). 

On the delivery day D, the VPP is subject to economic penalties, so- 
called imbalance fees, in case of mismatches between the power 
schedule on the DAM (PDAM

t ) and the actually exchanged one (PAbs,f
t,s ) 

[30], as defined in Eq. (35). The amount of imbalance is known only a 

Fig. 3. Approach proposed to constrain the admissible EV charging power domain.  
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posteriori, after the actual occurrence of the events. However, during the 
DAM participation, the perspective imbalance obtained in the different 
stochastic scenarios must be modeled to take them into account in the 
computation of VPP costs. The energy exchanged on day D in the various 
scenarios (PAbs,f

t,s ) is calculated considering the contributions of the 

flexible resources (ESSs, EVs, and water heaters), PV plants (P̃PV
t,s ), and 

non-flexible loads (P̃L
t,s), as shown in Eq. (36). Eq. (37)–(40) allow the 

separation of positive (Imb+t,s) and negative (Imb−t,s) imbalances, since 
they are priced differently. Moreover, the proposed formulation pre
vents the contemporary presence of imbalances in both directions, 
which is infeasible. 

Imbt,s = PDAMt − PAbs,ft,s (35)  

PAbs,ft,s = PESS,abst,s + PEV,abst,s + Pb,abst,s − P̃PVt,s + P̃Lt,s (36)  

Imbt,s = Imb+t,s − Imb−t,s (37)  

0 ≤ Imb+t,s ≤ MIz+t,s (38)  

0 ≤ Imb−t,s ≤ MIz−t,s (39)  

z+t,s + z−t,s ≤ 1 (40) 

The VPP owner could offer the upward regulating capacity during 
availability hours on the ASM. In this work, the VPP is supposed to be 
paid with a dual remuneration scheme similar to the one currently in 
place in Italy [23], in which both the availability to supply upward 
power regulation and the actual energy activated during the service 
provision are rewarded (payments proportional to the reserve margin 
available and the energy exchanged for the ASs supply, respectively). 
This is implemented by adopting the following equations: 

ΔPTOTtavb ,s = ΔPESS,TOTtavb ,s +ΔPEV,TOTtavb ,s +ΔPb,TOTtavb ,s (41)  

− ΔPTOTtavb ,s ≥ zcapCap (42) 

where Eq. (41) evaluates the overall upward reserve margin avail
able (ΔPTOT

tavb ,s ≤ 0) and Eq. (42) ensures that the binary variable zcap is set 
to 1 if the VPP is able to offer on the ASM a quota of the reserve greater 
than the one required by the TSO (Cap). It is worth noting that the binary 
variable zcap is a first-stage variable (it is not indexed by s), since the ASM 
session precedes real time (when the uncertainty realizations are 
known). The binary variable zcap is included in the objective function to 
assess the reserve availability payment. Hence, the EMS schedules the 
power exchanges by regulating resources (i.e., PESS,abs

t,s , PEV,abs
t,s , and Pb,abs

t,s ) 
also to guarantee the availability of a quota of reserve sufficiently high 
to receive the reserve availability payment. 

In the proposed formulation, the DAM power curve (PDAM
t ) and the 

reserve capacity are obtained by minimizing the expected costs, calcu
lated as a weighted sum of the first-stage and second-stage costs (Eq. 
(43)), where the weights πs correspond to the scenario occurrence 
probabilities. 

First-stage costs in Eq. (44) are related to the economic flows 
occurring before real time, such as the expected revenues (RevCap) ob
tained for having made available an amount of regulation reserve at 
least equal to Cap and the costs/revenues for the energy acquired/sold 
on the DAM (CostDAM

t ). In Eq. (44), cbuy
t and pbuy

t are the cost/price per 
unit of purchase/sold energy [€/MWh], while pCap is the daily revenue 
for the capacity reserved during the availability hours [€/MW]. 

The second-stage cost in Eq. (45) considers the operational expenses 
expected in each scenario. Imbalance fees (Costimb

t,s ) are calculated 
considering the economic flows in case of positive or negative imbal
ances, represented by c+t and c−t , respectively. The second term of Eq. 

(45), Costdisc
t,s , evaluates the payments that the VPP owner owes users in 

the case of a reduction in their thermal comfort as a consequence of the 
power management of their water heaters (i.e., when zb,min

t,s,nb 
or zb,Max

t,s,nb 
are 

equal to 1). For each time step in which the water heater temperature is 
below or above the given thresholds, a fee equal to cmin or cMax is paid to 
the users. 

minFobj,DAM = CostS1 +
∑

s∈SDAM

πsCostS2
s (43) 

where: 

CostS1 = − zcappcapCap
⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

Revcap

+
∑

t∈TDAM

cbuyt Pbuyt − psoldt Psoldt⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
CostDAMt

(44)  

CostS2
s =

∑

t∈TDAM

[c+t Imb+t,s + c−t Imb−t,s
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Costimbt,s

+
∑

nb∈NB

(cminzb,min
t,s,nb + cMaxzb,Maxt,s,nb )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Costdisct,s

] (45) 

In the next section, the rolling horizon stochastic programming 
approach developed to manage the operation of the VPP is described. 

3.2. Real-time operation 

On the delivery day D (∀tact ∈ TD), every quarter of an hour, the 
rolling horizon stochastic programming procedure is executed to 
dispatch the available power control resources to respect the markets’ 
commitment (DAM + AS requests) and satisfy the users’ requests (EV 
charging and water heating). Flexible resources are scheduled based on 
their actual status, the forecasts for the future, and corresponding un
certainties. For this purpose, a moving time window is considered. For 
the optimization performed at tact (actual time step), it is composed of 
the current time step and a predictive control horizon (TPC = [tact + 1;
tact + ΔTRH]), where ΔTRH is the length of the sliding window [31]. 

The representation of the procedure is depicted in Fig. 4. At each 
time step, the architecture receives the current status of VPP resources 
and, during the availability hours, the AS request from the TSO (blue box 
in Fig. 4). Starting from these data, several forecasts of the uncertain 
parameters are generated. In particular, each time series relevant to an 

uncertain quantity (e.g., P̃PV
t ) is composed of the data measured at the 

actual time (P̃PV
t=tact 

which is known without errors) and several forecasts 
(one for each stochastic scenario) of its evolution in the predictive 
control horizon (red box in Fig. 4). Then, the predictions of the different 

parameters (e.g., P̃PV
t,s , P̃L

t,s, w̃cns
t,s,nb

, etc.) are combined to generate sce
narios (the detailed description of the procedure is provided in Section 
5.2). Therefore, each scenario s ∈ SRT collects an expected realization of 
all uncertainties in the following time steps. Finally, the optimal control 
of the resources in tact is obtained by solving a two-stage stochastic 
model. The first-stage collects the decision variables related to the cur
rent time (tact), since they must be set before the realization of the un
certain data, while the second-stage considers the predicted operation in 
the future (orange box in Fig. 4). 

The equations that follow are applied to the moving time window, 
composed of the current time step and the predictive control interval, 
∀t ∈ tact ∪ TPC. Once the solution is obtained, the control decisions for 
the current time tact are applied to the flexible resources and the time 
window is shifted forward by 15 min. 

To model the ESS in the real-time scheduling strategy, Eq. (5)–(10) 
are applied. Moreover, it is also necessary to include in the formulation 
some non-anticipativity constraints [32]. They guarantee that, at the 
current time (tact), decisions are carried out strictly on the basis of in
formation presently available. Eq. (46) and (47) fulfill this task, by 
ensuring that ESS power exchanges at the present time (Pch,ESS

tact ,s,ne/Pds,ESS
tact ,s,ne ) 

are equal in all the scenarios (i.e., Pch,ESS,FS
tact ,ne /Pds,ESS,FS

tact ,ne , being first-stage 
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variables, do not depend on the scenarios index). In the following, all the 
non-anticipativity auxiliary variables will be indicated by introducing 
the superscript ‘FS’ (e.g., Pch,ESS,FS

tact ,ne ). 

Pch,ESStact ,s,ne = Pch,ESS,FStact ,ne ∀s ∈ SRT (46)  

Pds,ESStact ,s,ne = Pds,ESS,FStact ,ne ∀s ∈ SRT (47) 

It can be easily verified that by enforcing Eq. (46) and (47), also the 
battery SoCs and the total power exchanged at time tact also comply with 
non-anticipativity constraints. 

In addition, the amount of reserve offered through the ESS on the 
ASM during the availability hours is also checked. For this purpose, Eq. 
(11)–(14) are adopted to calculate the available ESS’s reserve margin 
(ΔPESS,TOT

tavb ,s ). This ensures that, in case of AS requests, the VPP has an 
adequate margin available to provide the service activated by the TSO. 

At each time step, data relevant to the EVs connected to a CS (initial 
SoC and vehicle’s characteristics) are supposed to be known (e.g., ac
quired through a communication channel with the CS), while the 
number of expected EVs charging requests and their data (SoC, charging 
deadline, etc.) are predicted based on historical data (see Section 5.2). 
Already connected and predicted EVs are modeled using Eq. (15)–(18). 
The following non-anticipativity constraint is applied: 

PEVtact ,s,nev = PEV,FStact ,nev ∀s ∈ SRT (48) 

where, PEV,FS
tact ,nev represents the charging power of the nev-th EV at the 

current time and Eq. (48) forces it to be equal in all scenarios. To 
evaluate the EV’s reserve margin, Eq. (20)–(23) are applied. 

The water heater model is based on Eq. (24)–(27), while the users’ 
thermal comfort and the heater flexibility are calculated by Eq. (28)– 
(30), and Eq. (31)–(34), respectively. The non-anticipativity constraint 
is given by: 

Pbtact ,s,nb = Pb,FStact ,nb ∀s ∈ SRT (49) 

For the real-time scheduling problem, energy imbalances Imbt,s are 
defined by Eq. (50), as the difference between the markets’ commitment 
(Preq

t ) and the overall VPP power exchange (PAbs,RT
t,s ). The latter term is 

calculated considering Eq. (52) and evaluates the power absorbed 
(PAbs,RT

t,s > 0) or injected (PAbs,RT
t,s < 0) into the grid. Preq

t is the sum be
tween the DAM schedule (PDAM

t ) and the AS requests (PAS
t ). PDAM

t is ob
tained by solving the model described in Section 3.1 and PAS

t is supposed 
to be communicated to the VPP by the TSO just before the time of de
livery. Eq. (37)–(40) are adopted to distinguish positive (Imb+

t,s) and 
negative (Imb−

t,s) imbalances, and Eq. (53) and (54) implement the non- 
anticipativity constraints. 

Imbt,s = Preqt − PAbs,RTt,s (50)  

Preqt = PDAMt +PASt (51)  

PAbs,RTt,s = PESS,abst,s + PEV,abst,s + Pb,abst,s − P̃PVt,s + P̃Lt,s (52)  

Imb+tact ,s = ImbFS,+
tact ∀s ∈ SRT (53)  

Imb−tact ,s = ImbFS,−tact ∀s ∈ SRT (54) 

To drive the real-time optimization process (i.e., to adjust the power 
exchange of the flexible resources in the VPP instant by instant), the 
following objective function is applied: 

minFobj,RT = CostRT,S1 +
∑

s∈SRT

πRTs CostRT,S2
s (55) 

where the first term (CostRT,S1) represents the actual costs experi
enced by the VPP at the current time (Eq. (56)), while CostRT,S2

s evaluates 

Fig. 4. Structure of the proposed rolling horizon stochastic programming real-time scheduling strategy.  
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the cash flows expected in the future (Eq. (57)). Finally, during the 
availability hours tavb, the EMS verifies the availability of the reserved 
capacity (Cap) by Eq. (41) and (42). 

The VPP is paid for the reserve margin made available to the TSO 
during the availability hours; the term RevCap

s is introduced in Eq. (57) to 
check its actual provision. 

CostRT,S1 = c+tact Imb
+
tact + c−tact Imb

−
tact⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Costimbtact ,s

+
∑

nb∈NB

(cmin zb,min
tact ,nb + cMaxzb,Maxtact ,nb )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Costdisctact ,s

(56)  

CostRT,S2
s =

∑

ts∈TPC

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c+ts Imb
+
ts ,s + c−ts Imb

−
t,s

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Costimbts ,s

+
∑

nb∈NB

(cmin zb,min
ts ,s,nb + cMaxzb,Maxts ,s,nb )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Costdiscts ,s

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− pCapCap
(
zcaps

)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
RevCaps

(57) 

The model was designed to be solved in a real-time configuration, so 
its runtime is key. To reduce the computational requirement of each run, 
the optimal second-stage variables were saved and used as first-guess 
solution in the next time step. 

4. Case study 

To test the performance of the proposed strategy, a realistic case 
study was defined. For this purpose, a VPP composed of 100 residential 
customers was considered, each one equipped with a rooftop PV power 
plant (3.3 kW of peak power) and a water heater. The PV nominal power 
was chosen according to the most widespread size for residential ap
plications [33]. The PV production and the relevant day-ahead forecast 
were based on real data collected from a power plant located in Cen
tral–Northern Italy, obtaining an annual production of approximately 
4,600 kWh/user. The yearly average day-ahead forecast error of PV 
production was approximately 6.5%. The non-flexible load profiles were 
derived from data gathered on 100 real residential customers [34], 
while the day-ahead forecast value was evaluated by adopting a 
persistence model (the day-ahead forecast error was equal to 7.2%). The 
annual energy consumption of non-flexible loads was approximately 
2,400 kWh/user, while the average user consumption also considering 
EVs and water heaters was 4,300 kWh/user. In Fig. 5, PV and non- 
flexible load profiles are shown for 4 representative days, one for each 
season. 

Each water heater was characterized by a volume (Vnb ) of 100 L and a 
nominal power (Pn,nom

nb
) of 1.5 kW. The hot water usage was modeled 

based on the approach proposed in [35], while the fees in case of 
comfort reduction cmin and cMax were set equal to 1 € and 0.5 €, 
respectively, for every quarter of an hour in which the temperature was 
outside the allowed range [36]. It was assumed that half of the houses 
were equipped with a stationary ESS (CESS

ne 
= 5 kWh, PESS

ne 
= 3 kW, and 

ηch = ηds = 0.92) and an EV charging station (PCS
nev

= 6 kW). The EV’s 
usage and the corresponding charging request were simulated by 
adopting the model described in [37], while the battery capacity of each 
EV (CEV

nev
) was defined considering the technical characteristics of the 

best-selling models in Italy [38]. 
The AS requests were reproduced through the historical data 

collected on the Italian ASM [39]. To this purpose, all the upward 
reserve bids submitted in the ASM were considered in terms of price and 
power rewarded. Then, it was assumed that the TSO activated the VPP’s 
reserve according to a merit order approach: the capacity was activated 
if the price offered by the VPP (fixed to 200 €/MWh during the entire 
year) was lower than the highest price accepted by the TSO. In the case 
of AS provision, a pay-as-bid approach was adopted (the VPP was paid 
200 €/MWh). The remuneration for the upward reserve offered was set 
to pCap

t = 18 €/MW for each hour of availability (i.e., approximately 
20,000 €/MW/year, in line with the actual prices registered for this 
service in Italy). The amount of regulating reserve made available by the 
VPP (Cap) is assumed equal to 50 kW, calculated with the procedure 
proposed in [36], considering the trade-off between economic benefits 
and reliability of the reserve availability. In Italy, the regulation reserve 
(Cap) is supposed to be required in the period 3 pm–6 pm (i.e., avail
ability hours) [23]. 

The cost/price for the energy purchased/sold (cbuy
t and psold

t ) were 
calculated by averaging the actual DAM data of 2022, as 300 and 200 
€/MWh, respectively. The uncertainty of DAM prices was not assessed in 
this work, hence cbuy

t and psold
t were considered constant and fully 

deterministic. 
The imbalances are subject to a single price mechanism [30], hence, 

if a mismatch between the power exchanged and the power scheduled 
(DAM + AS) is detected (i.e., Imb ∕= 0), the difference is penalized at 
c+/c− , which is set equal to − 0.5⋅psold

t = − 100 €/MWh and + 0.5⋅psold
t =

100 €/MWh, respectively [40]. 
Finally, the time resolution adopted for numerical simulations was 

equal to 15 min, while the length of the predictive control horizon 
(ΔTRH) was set to 1 h (i.e., four time steps). 

5. Scenario generation 

The models required suitable scenarios to represent the realization of 

Fig. 5. PV production (left) and non-flexible loads absorption (right) in four representative days.  
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the second-stage uncertainties. This section describes the procedures to 
generate the scenarios for the DAM participation and real-time 
operation. 

5.1. DAM uncertainty characterization 

During the DAM bidding process, the uncertainties affecting PV 

production and non-programmable loads (P̃PV
t,s and P̃L

t,s in Eq. (36)), hot 

water usage (w̃cns
t,s,nb

), and EV charging requests ( ̃hEV,con
t,s,nev 

and ̃ΔSoCusg
t,s,nev ) 

were considered. To originate the scenarios for the stochastic model, the 
following steps were carried out, as exemplified in Fig. 6:  

1. For each uncertain parameter, here denoted by X, where X could be 

P̃L
t , P̃PV

t , w̃cns
t,nb

, ̃hEV,con
t,nev 

and ̃ΔSoCusg
t,nev , the expected profile for the next 

day (XF
t ) was forecasted. Which method was adopted to elaborate the 

prediction was irrelevant for the application of the procedure, and its 
development was outside of the scope of this study.  

2. An iterative procedure was performed. At each iteration i, an error 
∊X

t,i was added to the forecasted profile (see Eq. (58)). ∊X
t,i was 

generated by adopting an ARMA model [41], trained considering the 
forecast errors detected during the previous days. In this research, 5 

ARMA models were used, one for each parameter (i.e., X ∈ {P̃L
t , P̃

PV
t ,

w̃cns
t,nb

,
̃hEV,con
t,nev

,
̃ΔSoCEV,usg

t,nev }), and the optimal order of each ARMA model 
was obtained by adopting Akaike’s information criterion [42]. 

X̃t,i = XF
t + ∊Xt,i (58)    

3. The uncertain parameters relevant to non-energetic quantities (i.e., 
hot water usage and EV charging requests) were transformed into 
equivalent power profiles by considering their average power ab
sorption, estimated by data collected on previous days. Several sce
narios of realization were defined by randomly selecting a power 
profile for each uncertain parameter. The overall expected power 
profile was calculated for each scenario as the sum of the different 
resource contributions (i.e., PV system + load + water heater + EV).  

4. A k-means scenario reduction was applied to the power profiles 
previously obtained, selecting K representative trends among all of 
the available ones. To evaluate the number of clusters to adopt (K), 
the silhouette method was applied [43,44].  

5. A random power profile was selected as representative among the 
population within each cluster. Finally, the initial uncertain pa

rameters (i.e., ̃hEV,con
t,s,nev

,
̃ΔSoCEV,usg

t,s,nev and w̃cns
t,s,nb

) having generated the 

representative profile were used in the second-stage problem of the 
model described in Section 3.1. 

5.2. Real-time uncertainty characterization 

The real-time management of the VPP was based on a two-stage 
stochastic model; therefore, the uncertainties affecting short-term de
cisions also needed to be characterized with a scenario-based approach. 
The development of short-term forecast algorithms is outside of the 
scope of this study; thus, straightforward methodologies were adopted 
to estimate the evolution in the predictive control horizon. It is impor
tant to underline that the EMS optimization approach proposed in Sec
tion 3 does not rely on a specific forecasting method and different 
methods could be more suitable in other situations. 

Short-term forecasts for load and PV were conducted using ARMA 
models, similar to those described in [45] and [46]. The ARMA models 
were applied to the values measured in previous time steps to obtain 
forecast profiles for each scenario. It should be noted that ARMA models 
require time series to be stationary [47], which is rarely satisfied by PV 
production and load consumption data. For this reason, the approach 
adopted in [48–50] was utilized. The data were subdivided into smaller 
groups to satisfy the stationary requirement. In particular, the training 
datasets, composed of the quarter-hour measurement of the PV system 
and loads, were firstly grouped by season to mitigate the seasonality 
effects. Then, within each seasonal group, the daily production profiles 
were further subdivided into 6 subgroups, each one containing the PV 
production data for four consecutive hours of the day. Therefore, a total 
of 24 subgroups were defined for both PV production and load con
sumption data (24 + 24 = 48 profiles in total). 

The Kwiatkowski-Phillips-Schmidt-Shin and Augmented Dickey- 
Fuller tests were performed in parallel to assess the stationarity 
behavior of each subgroup [51]. The results of both tests confirmed the 
hypothesis of stationary time series, thereby validating the adoption of 
ARMA models. It is worth noticing that, if the time series were not 
stationary, the adoption of more complex approaches such as ARIMA or 
machine learning models should be required. Finally, for each subgroup, 
an ARMA model was trained. Therefore, in total, 48 ARMA models were 
defined. For each one, the coefficients were optimized using the 
“pmdarima” package [52]. 

Fig. 7 shows the improvement of the forecast accuracy provided by 
the proposed ARMA models compared with the day-ahead forecast. In 
particular, the black line depicts the load and PV forecast relative error 
(i.e., ratio between the error in kW and the measured value) made 
during the DAM participation (i.e., 24 h in advance). The colored lines 
refer to the forecast refinement performed, getting closer to the real time 

Fig. 6. Scenario generation procedure.  
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(15, 30, 45, and 60 min before the current time). Colored squares 
represent the average values of the absolute error detected over the 
period considered. As can be seen, the mean absolute day-ahead forecast 
error (13.8%) was approximately 3.9 and 1.9 times higher compared 
with the forecast performed 15 and 45 min in advance (3.5% and 7.2%), 
respectively. Furthermore, the forecast refinement performed closer to 
real time allowed a lower presence of larger forecast errors, as is shown 
by the reduction in the PDFs tails. 

Instead, the water consumption forecasts were based on a random 
walk persistence model; the value expected in the following time steps 
was set as being equal to the last value measured plus a normally 
distributed error. The approach used was justified by the fact that, ac
cording to the analyses carried out, the water usage samples only 
showed a good correlation with the value of the previous (15 min in 
advance) time step [41]. 

Vehicle charging requests were estimated based on the historical 
data collected during the previous days. The approach drew the ex
pected number of charging requests in the upcoming time steps and the 
SoC on arrival from the corresponding PDFs. A detailed description of 
the approach is reported in [53]. 

Finally, by randomly combining a forecast for each parameter, the 
scenarios of the rolling horizon stochastic programming problem 
described in Section 3.2 are defined. 

6. Model implementation: An illustrative example 

In this section, a detailed description of the VPP operation for one 
day in spring was presented to clarify the operating logic and benefits of 
the EMS. Then, in Section 7, an extensive analysis of the EMS perfor
mance and a sensitivity analysis regarding the number of scenarios was 
performed. 

The day analyzed was characterized by variable weather conditions 
(i.e., large forecast errors), making the EMS operation more challenging. 
This case considered 11 stochastic scenarios (i.e., the cardinality of SRT 

was 11). 
DAM scenarios were created with the approach described in Section 

5.1. A day-ahead forecast for each uncertain parameter was considered 
and, through the iterative procedure described in step 2 of Section 5.1, 
300 scenarios were generated and clustered by the k-means algorithm. 

The number of clusters selected by the silhouette method was 15 (i.e., 
cardinality of SDAM = 15). 

In each scenario selected by the k-means method, the optimal DAM 
profile and upward reserve were defined by solving the model described 
in Section 3. Fig. 8 shows the DAM binding schedule and the upward 
reserve offered on the ASM (orange bars). It was observed that, during 
the availability hours (3 pm–6 pm; green area), the VPP offered a quota 
of upward reserve that was always higher than Cap (red horizontal line). 
Hence, the VPP received the reserve availability remuneration. 

For each time step of the delivery day, the second layer of the EMS (i. 
e., rolling horizon stochastic programming model) was executed. As is 
described in Section 3.2, the EMS forecasted the evolution of the un
certain parameters in the predictive control horizon based on the current 
measurements. Fig. 9 shows the comparison between the actual PV 
production (in red) and the one forecasted 15 min before the time of 
delivery; the latter was used by the EMS to perform real-time scheduling 
and is represented as range (in blue) between the maximum and mini
mum value forecasted on all 11 scenarios. Despite the simple forecast 
model adopted and the variable weather conditions, the proposed 
method predicted the PV production trend quite accurately, refining the 
forecast used during the DAM bidding (black dotted line in Fig. 9). It is 
worth noting that the day-ahead PV forecast was not particularly ac
curate, making it more complex for the second layer of the EMS to follow 
the DAM commitment. 

According to the short-term forecasts and the corresponding sce
narios, the optimal dispatch of available regulating resources was ob
tained. Fig. 10 shows the resulting energy flows (colored bars) and the 
ESS’s SoC trend (dotted line) on the day analyzed. As can be seen, most 
of ESSs and water heater absorptions (violet and green bars, respec
tively) occurred in the early morning and during the PV system peak 
hours (approximately 2 pm). This can be interpreted by considering that 
these two systems were used by the EMS logic with a twofold scope: i) to 
maximize the energy self-consumed by the VPP by performing a time 
shift of the energy required and produced, and ii) to reduce the forecast 
errors and provide ASs (between 6 and 8 am the PV production is higher 
than the value forecasted during the DAM bidding, see Fig. 9; thus, ESSs 
and water heaters were used to compensate for this error). Similarly, the 
EV power absorptions (magenta bars) mainly occurred in the afternoon 
hours (2:30–4:30 pm) to exploit PV production, thus maximizing the 

Fig. 7. PDFs of the load and PV relative forecast error. The square markers represent the absolute mean forecast error.  
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self-consumed energy. Then, the EV charging was completed during the 
late evening (6:00–10:30 pm), exploiting the energy stored in the bat
teries (see the SoC profile in Fig. 10). This ensured an adequate charging 
profile before the vehicles’ departure. 

In Fig. 10, the PDFs of the EVs’ SoC at the charging station arrival and 
departure time are shown in blue and orange, respectively. Despite the 
large variability in the initial SoC, which ranged between 0.45 and 0.83, 
and the connection deadline uncertainties, the EMS suitably charged the 
EVs prior to their departure. In fact, the mean SoC on departure was 0.96 
(and was therefore very close to being fully charged), while the EVs that 
left the charging stations with an SoC of<0.80 only represented 1.0% of 
the total. Finally, in the last plot of Fig. 10, the PDF of the temperature of 
the water heaters is shown. In 93% of cases, the temperature was inside 

the range of comfort (shown by the two vertical lines). In the remaining 
cases (7%), even if the temperature was outside of the optimal range, the 
average temperature (54.6 ◦C) was only approximately 5 ◦C lower than 
the 60 ◦C threshold; in addition, the probability of reaching a temper
ature lower than 40 ◦C (considered the minimum acceptable tempera
ture for the user [54]) is only 0.2%. 

The overall power exchange of flexible resources was managed to 
minimize the power mismatch (shown in Fig. 10 by red markers) with 
respect to market commitments (DAM + AS provision). Despite the 
variable weather conditions and corresponding day-ahead forecast er
rors, the total energy imbalance during the day was only 62.7 kWh, 
which is<3.5% of the total energy absorbed by the VPP (1,775 kWh). 
Moreover, the imbalance’s peak power (50 kW at 12 pm) was three 

Fig. 8. DAM power schedule for the day under analysis and the upward reserve availability.  

Fig. 9. Comparison between the measured PV production (red line), the day-ahead forecast (dotted line), and the forecast range adopted for the real-time scheduling 
(blue area). 
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times lower than the maximum day-ahead PV forecast error (i.e., the 
difference between the power forecasted and the power produced), 
which was 152 kW at 11:00 am (see the distance between the red and 
black lines in Fig. 9). 

Finally, some considerations can be drawn on the capability of the 
EMS to reserve the regulation band required and provide ASs. Just 
before the availability hours (approximately 2 pm), the EMS charged the 
ESSs to ensure the reserve margin offered on the ASM. This is because 
the rolling-horizon-based approach predicted the evolution of the VPP 
in the following hours and, thanks to Eq. (41) and (42), ensures to make 
available the capacity needed on the ASM was made available. 

As is shown by the hatched violet bars, the TSO requested that the 
VPP reserved flexibility for 1.25 h on the selected day, requiring a 
maximum power variation of 40 kW (maximum regulation reserve Cap 
= 50 kW). During the service provision, no power imbalances were 
detected; hence, the reserve activation was perfectly satisfied by the 
TSO. 

7. Validation of the rolling horizon stochastic programming 
model 

This section proves the effectiveness of the proposed EMS and 
quantifies the effect of the short-term uncertainties during the VPP’s 
operation. Three different case studies were analyzed, which differed in 
the approach adopted to manage the resources in real time (i.e., second 
layer of the EMS), but kept the DAM and ASM bidding process un
changed (the model in Section 3.1). These were:  

• RH Stc n case: The proposed rolling horizon stochastic programming 
model was implemented. A sensitivity analysis of the number of 
scenarios (n) considered during the real-time dispatch (i.e., cardi
nality of SRT) was also provided.  

• RH Det case: Here, the real-time dispatch was obtained without 
considering the effects of uncertainties; therefore, the VPP operation 
was obtained considering only the average scenario (i.e., cardinality 
of SRT = 1). In the literature, this case study has usually been referred 
to as rolling horizon optimization and it is considered a state-of-the- 
art approach to schedule an asset of energy resources [55].  

• RH Omn case: This assumes that the second layer of the EMS can 
perfectly forecast the uncertain parameters inside the predictive 
control horizon (i.e., omniscient prediction 1 h in advance). This case 
study was designed to provide an ideal upper bound on the perfor
mances of the EMS second layer. It is worth noting that the un
certainties during the DAM participation were still present because 
the goal of this analysis was to assess the impact of unexpected events 
only during the real-time dispatch. 

Table 2 reports the VPP results obtained in four representative weeks 
(one per season). To ensure a fair comparison, the same input data, 
including PV production, loads absorption, water usage, EV charging 
requests, and AS activations, were used in all of the case studies. Thus, 
the net energy exchanged in the DAM and corresponding revenues were 
almost constant in all scenarios (see the 4th row in Table 2). The small 
differences (lower than 1.5%) can be attributed to the different exploi
tation of the storage units in real time and the corresponding internal 
energy losses. 

Concerning the capabilities of the three models to respect the mar
kets’ commitment, the first column of Table 2 shows the average daily 
energy imbalance detected. The highest value was observed in the RH 
Det case study (198.7 kWh/day), while the proposed rolling horizon 
stochastic programming model allowed this to be drastically reduced, 
reaching 148.69 kWh/day in the case study with 13 scenarios. There
fore, considering the short-term uncertainties during the real-time 
dispatch allowed the imbalances to be reduced by up to 25.17% 
compared with a deterministic model (i.e., RH Det). Even in the ideal 
case (RH Omn), an average imbalance of 81.58 kWh/day was detected. 
This is because the day-ahead forecast uncertainties were still present. 

The EMS relies on the EVs’ charging flexibility and the thermal 
inertia of water heaters to mitigate imbalances and make available 
reserve margin to the grid. Therefore, the effects on the services offered 
to users must be also evaluated. Concerning e-mobility, it can be seen 
that, by increasing the number of scenarios, the average SoC at the 
vehicle departure remained almost constant. However, the percentage 
of EVs that left the CSs with a low SoC decreased considerably; in the 
deterministic case study (RH Det), 20% of EVs were released with a SoC 
< 0.90 and the 10th percentile of the final SoC was 0.86 (i.e., 10% of EVs 
were released with a SoC < 0.86). When adopting the proposed 

Fig. 10. Power flows in the VPP (above) and PDFs of the EVs’ SoC and water temperatures (below) over the day of simulation.  
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stochastic approach with 11 scenarios, less than 8% of EVs left the CS 
with a SoC < 0.90 and the 10th percentile grew to 0.95 (i.e., only 10% of 
EVs were released with a SoC < 0.95). This result is particularly note
worthy also compared with the RH Omn case, in which the charging 
deadlines were known in advance. In the ideal case, 8% of the EVs were 
released with a SoC < 0.95 and the 10th percentile was only 2% higher 
(0.97) compared with the proposed stochastic model. Thus, despite the 
straightforward approach adopted to forecast the EV charging requests, 
the outcomes achieved in the RH Stc case study were close to ideal (RH 
Omn). 

Table 2 shows the statistical properties (mean, 10th and 90th per
centiles) of the water temperature in the different case studies. In the 
stochastic case study (RH Stc), the average temperature and 10th 

percentile were almost 3 ◦C higher compared with the value obtained in 
RH Det. This is because the stochastic scheduler explored different sce
narios of water consumption and opted to preheat the water to avoid an 
insufficient temperature. On the other hand, the deterministic 

formulation (RH Det) tended to underestimate the water consumption 
variability in the upcoming time steps, because a single (average) sce
nario was considered. As a consequence, in the RH Det case, each user 
experienced 15 min of cold water (<55 ◦C) during every week analyzed, 
while in the stochastic model (e.g., RH Stc 11), the discomfort duration 
was reduced by 62.8%. In the RH Omn case, the water temperature was 
always inside the comfort range, since the EMS perfectly forecasted 
water usage in the subsequent time steps. These considerations affected 
the discomfort costs, which (e.g., RH Stc 13) were reduced by almost 
three times in the stochastic formulation compared with the determin
istic approach (RH Det). 

The ASs requested by the TSO during the simulated period are 
depicted in Fig. 11 (orange bars). On average, the VPP reserve was 
activated almost twice per week (7 activations in 28 days). During the 
AS provision, the mean power activated was 22 kW and, on average, the 
service provision lasted for 1 h (out of 3 h of availability). However, in 
some cases (especially during winter and spring days), the AS request 

Table 2 
Techno-economic results in the analyzed case studies.  

Case 
Study 

Technical Results Economic Results 

Energy 
Imbalance 

[kWh/day] 

Water 
Temperature 

[◦C] 

EVs’ Final 
SoC 

DAM 
Revenues 
[€/day] 

Imbalance 
Cost 

[€/day] 

ASM 
Revenues 
[€/day] 

Discomfort 
Cost 

[€/day] 

Total Operation 
Cost 

[€/day] 

RH Omn  81.58 62.4 
[60.1; 63.5] 

0.98 
[0.97; 1]  

− 134.69  8.16  − 3.59 0  4.57 

RH Det  198.71 61.6 
[58.7; 65.6] 

0.97 
[0.86; 1]  

− 138.65  19.87  − 3.59 14.38  31.16 

RH Stc 3  205.59 62.8 
[59.1; 65.9] 

0.97 
[0.89; 1]  

− 139.22  20.56  − 3.59 15.14  32.61 

RH Stc 5  168.54 64.8 
[60.89; 67.8] 

0.98 
[0.89; 1]  

− 137.41  16.85  − 3.59 9.82  23.09 

RH Stc 7  175.44 64.7 
[61.1; 67.6] 

0.98 
[0.92; 1]  

− 135.05  17.54  − 3.59 4.58  18.54 

RH Stc 9  152.19 64.6 
[61.2; 67.8;] 

0.98 
[0.93; 1]  

− 137.59  15.22  − 3.59 6.33  17.96 

RH Stc 11  149.84 64.5 
[61.1; 67.4] 

0.98 
[0.95; 1]  

− 136.14  14.98  − 3.59 5.35  16.74 

RH Stc 13  148.69 64.9 
[61.2; 67.8] 

0.98 
[0.95; 1]  

− 135.47  14.87  − 3.59 5.84  17.11  

Fig. 11. Upward AS requests activated by the TSO in the 4 weeks simulated (orange bars) and the corresponding degree of reliability (in blue). Only the availability 
hours are depicted. 
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lasted up to 3 consecutive hours. Fig. 11 shows the reliability during the 
service provision, calculated as the ratio between the power variation 
provided by the VPP and that requested by the TSO. It is worth noting 
that the reliability of the provision was always 100%; hence, the VPP 
always provided the requested regulation without imbalances. 
Furthermore, in all the case studies analyzed, the VPP was always 
capable of making the upward reserve available (Cap). 

Finally, an analysis of the economic outcomes of the case studies was 
provided. Since all the scenarios adopted the same DAM strategy 
(variation in daily DAM revenues was sufficiently low to be neglected), 
the analysis focused on the costs arising from the operation of the VPP 
on day D (see Eq. (56)). 

To evaluate the impacts of short-term uncertainty, the value of un
certainties VoU(n) was introduced as a metric. This measures the 
improvement, in terms of operational cost, of adopting a stochastic 
model rather than a simpler deterministic one; VoU(n) is defined as the 
average variation in the operational cost between the RH Stc and RH Det 
case studies, normalized with respect to the average RH Det operational 
cost. Therefore, this index assessed if a deterministic scheduler (RH Det, 
in which the short-term uncertainties were neglected) led to misguided 
dispatch decisions in a stochastic environment. 

Fig. 12 presents the average operational costs (see Eq. (56)) and 
corresponding 10th and 90th percentiles in the different case studies. 
According to Fig. 12, the proposed rolling horizon stochastic program
ming model provided a considerable improvement compared to its 
deterministic counterpart (RH Det). In particular, the adoption of just 
five scenarios allowed for the average cost to be lowered by approxi
mately 8.07 €/day (23.09 compared with 31.16 €/day); therefore, VoU 
(5)= − 25.91%. Similarly, solving 11 scenarios introduced a cost saving 
of 14.42 €/day (16.74 compared with 31.16 €/day), so VoU(11)= −

46.27%. The cost reduction was mainly due to the capability of the 
stochastic scheduler to drastically reduce the imbalance (− 4.89 €/day 
w.r.t RH Det) and discomfort costs (− 9.04 €/day w.r.t RH Det). Instead, 
revenues arising from offering the reserve and AS provision remained 
constant in all cases. A similar reduction in costs could also be found by 
analyzing the RH Stc 13 case study, where VoU(13)= − 45.07%. 
However, this scenario was computationally heavy to manage and 
presents convergence issues during the resolution of the optimization 
problem. Since the EMS was designed to run almost in a real-time 
configuration, two stop criteria were adopted during the rolling hori
zon stochastic programming model resolution (second layer of the EMS). 
The first was based on the MIP gap (fixed to 0.5%), and the second had a 
fixed upper limit for the computational time (<120 s for each time step). 

The RH Stc 13 case study hit the time limit in almost 13% of runs. Hence, 
in approximately one-sixth of executions, a sub-optimal solution was 
used to schedule the regulating resources. Consequently, the average 
operational costs were not further reduced compared with the RH Stc 11 
case. 

The gap of the stochastic scheduler compared with the ideal case (i. 
e., RH Omn) could be quantified by the value of perfect forecast VoPF(n) 
index, defined as the cost variation between the RH Stc and RH Omn 
approaches, divided by the RH Stc operational cost. The operational cost 
in the ideal case (RH Omn) was − 12.17 €/day lower compared with the 
RH Stc 11 case, so VoPF(11) = 75.7%. 

The economic profitability of the proposed rolling horizon stochastic 
programming model was highlighted by the total daily profit, calculated 
as the sum between DAM revenues (on average equal to − 136.78 €/day) 
and operational costs. The stochastic approach with 11 scenarios 
allowed the VPP’s revenue to be increased by 11.08% compared with 
the deterministic scheduler (− 119.39 €/day compared with − 107.48 
€/day). Furthermore, the daily revenue in the RH Omn case was 
approximately − 129.35 €/day, which was 20.55% and 8.53% higher 
than the RH Det and RH Stc 11 cases, respectively. 

Finally, the computational times required by the different mathe
matical models under analysis were compared. Tests were run on a 
workstation equipped with an Intel Core i9-10980XE processor, 128 GB 
of RAM, and a Windows 10 operating system. The models were built 
using Pyomo [56] and solved through the commercial software Gurobi 
9.5. In all case studies, the optimization of the DAM schedule (first layer) 
took approximately 45 s, while the time required to carry out the real- 
time dispatch (second layer) was influenced by the number of sce
narios analyzed. In both the RH Omn and RH Det case studies, the time 
required to solve one time step was approximately 4 s (i.e., 6.4 min to 
simulate the entire day, since a 15 min resolution was adopted). On the 
other hand, the resolution of the proposed rolling horizon stochastic 
programming model required, on average, from 12 s (RH Stc 3) up to 68 
s (RH Stc 13) for each time step. 

8. Conclusions 

In this study, an EMS that optimizes the market bidding and real-time 
operation of a VPP composed of residential users equipped with small- 
scale renewable assets, non-flexible loads, and thermal and electro
chemical storage systems was developed. The DAM and ASM partici
pations were optimized through a two-stage stochastic model that 
considered day-ahead uncertainties. The real-time management was 

Fig. 12. Trend in the average operational cost (blue line) and corresponding percentiles in the different case studies.  
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based on an innovative rolling horizon stochastic programming model, 
optimally dispatching the regulating resources considering the effects of 
short-term uncertainties. 

The extensive simulations performed proved the effectiveness of the 
approach and allowed for evaluation of the impact of short-term un
certainties on the VPP dispatching. It emerged that the EMS was effec
tive in limiting power imbalances, also providing a reliable balancing 
reserve margin on the ASM. Moreover, a satisfactory service was guar
anteed to be provided to residential users (both in terms of hot water 
temperature and EV charging). 

The comparison of the rolling horizon stochastic programming 
model with its deterministic counterpart showed that the adoption of a 
stochastic formulation can bring significant techno-economic benefits 
compared with the methods that have usually been adopted in the 
literature. In particular, taking into account the short-term un
certainties, this allowed for a reduction in operational costs of up to 45% 
and the VPP’s total profits increased by 11% compared with the deter
ministic approach. Furthermore, despite the presence of non- 
programmable generation (PV system) and scarce predictable loads 
(EV charging and residential loads), the EMS allowed the VPP to be 
managed as a controllable unit, with small energy imbalances (on 
average, 148.69 kWh/day, i.e., 8% of the VPP daily energy requirement) 
and perfect reliability during the AS supply (no imbalances were 
detected during the service provision). 

The results were achieved with a limited increase in the problem 
computational burden. Indeed, the time required to carry out the real- 
time dispatch considering the short-term uncertainties (16 s per time 
step in RH Stc 7) was only 12 s higher compared with that required with 
the deterministic approach (4 s per time step in RH Det). Hence, despite 
the greater model complexity, the proposed rolling horizon stochastic 
programming model is suitable for a real case study application. 

In conclusion, the numerical evaluations confirmed that, in the 
presence of intermittent and non-programmable energy resources, the 
adoption of suitable models capable of handling the uncertainties 
affecting different time scales is pivotal. 

In future studies, the effects of the market price uncertainties are an 
aspect requiring further evaluation. This could be carried out by 
extending the proposed scenarios generation method to also consider 
the correlation between market prices and RES production. Moreover, 
with a view to limiting the impacts of the DER dispatch on the under
lying distribution network, the electrical grid model and the corre
sponding technical constraints could be included in the formulation. 
Although different studies can already be found in the literature 
including such technical constraints in their formulations, the compu
tational times are usually significantly higher. Hence, techniques based 
on stochastic programming decomposition should be implemented. 
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