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“Universities should use data regularly and systematically to identify high-risk students, target them with 

interventions, and evaluate those interventions’ effectiveness” 

von Hippel and Hofflinger, 2020 

1 Introduction 

The Italian Higher Education (HE) system is plagued by a high level of dropout, with many 

students abandoning their Bachelor courses during the first or second year. According to the 

Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR, 

2018), the dropout rate for the cohort of students from whom complete data are available is 

around 28.2 per cent, with almost two-thirds of them (20 per cent) dropping out in the first two 

years (ANVUR, 2018). OECD (2019) indicates that the percentage of 25-34 years old adults 

with higher education was 28 per cent, with the same share being 19 per cent for the adults 25-

64 years old (reference year: 2018): both indicators are well below the OECD average.  

A high incidence of dropout rates in the functioning of the HE system generates equity and 

efficiency problems. On the equity side, various students demonstrate how there is a correlation 

between socioeconomic background and dropout, and the academic literature confirms that 

disadvantaged students are more at-risk of dropping out. Unfortunately, reforms and 

interventions for expanding the access to HE were not successful in reducing the socioeconomic 

gradient of the dropout (Bratti et al. 2008; Brunori et al. 2012; Oppedisano, 2011). When 

considering efficiency, dropout represents a net waste of resources. Indeed, educating students 

is a costly activity, which generates returns in the long run due to the credentials acquired and 

the human capital accumulated. When students do not conclude their courses with a degree, 

these benefits are not realised1. 

Given the problems associated with dropout, a key policy issue is finding ways to understand, 

predict and prevent this phenomon. A recent trend in this area is the use of Learning Analytics 

(LA) tools (De Freitas et al. 2015). Advanced techniques, rooted in both the statistical and 

Machine Learning (ML) domains, can be used to predict the students who are more at-risk of 

dropping out. If algorithms demonstrate to be effective in predicting students’ performance, the 

early identification of students at-risk can be used to design targeted interventions for improving 

their chances of retention (Burgos et al. 2018). While a growing number of studies starts 

considering the specific use of predictions for remedial education, the debate about the best 

models to be employed for predictions is far from being concluded, and the empirical solutions 

proposed are not widely accepted. The potential consequences of using LA for practitioners are 

immediate and relevant. Indeed, if the algorithms work well in early predicting dropout, then 

HEIs’ managers can define interventions and courses targeted to specific individuals who are 

more at risk of leaving the studies without a degree, with the aim of improving their retention.  

This paper contributes to this new literature stream and institutional development. We develop 

innovative methods to formulate predictions of at-risk students early in their academic career, 

and we test them using administrative data from Politecnico di Milano (PoliMi), Italy. The 

database gathers various cohorts of first-year Bachelor students (in Engineering) and covers 9 

years (from 2010 to 2019); overall, it includes more than 110,000 students, with associated 

10,000,000 entries, each of which is a specific event related to the student journey (her initial 

administrative record, exams, etc.).  

This paper answers the following research question: How do alternative algorithms’ types (ML 

1 An important note is needed here. Dropout represents a net waste of resources in the cases in which students leave 

university, but sometimes they do so for switching major or university. In this latter case, the effect is not a net waste of 

resources for the society, but only for the abandoned university. The argument holds its validity then, although its 

application is dependent upon the specific definition of dropout. In this paper, we consider the viewpoint of the single 

university involved (see the section about Methodology and data).  



vs Generalised Linear Models) perform in predicting actual dropout and how do we interpret 

their results? This paper considers answering this research question a condition paving the way 

for subsequent interventions to be realized in supporting students who are at-risk of dropping 

out university.  

This study innovates the current state-of-the-art of the field in two main directions. First, we 

develop a comprehensive approach for studying dropout in a data analysis perspective, 

complementing the application of techniques to the existing data with a conceptual framework 

for exploring the determinants of dropout. The current approaches based on Learning Analytics 

are indeed very much data-driven, while paying less attention to the theoretical foundations of 

the models developed for the empirical analyses (Fun Li et al. 2013; Seidel and Kutieleh, 2017; 

Vicario et al. 2018; Korhonen and Rautopuro, 2019; Sothan, 2019; Barbu et al. 2019). We build 

a bridge between the literature about university dropout/success (Aljohani, 2016) and the one 

about the use of Learning Analytics techniques in the field (De Freitas et al. 2015; Leitner et al. 

2017). In practical terms, we exploit all the available administrative data about students 

(demographic, academic performance, prior achievement, a proxy for the socioeconomic status, 

etc.) for identifying the variables that are mostly correlated to the precision of predicting 

students’ dropout. While we do not select the variables to be used in the algorithms, we use the 

lenses of a specific conceptual framework about dropout to interpret their validity and 

conceptual soundness. Second, we compare different algorithms, built following alternative 

hypotheses and specifications, to test the validity and robustness of a number of statistical and 

ML methods. In so doing, we rely upon a set of newly developed methods (within the family of 

mixed models) that take into account the nested structure of data. In particular, the new methods 

adopted here consider the students within different degree courses, a feature that is decisive if 

dropout probability depends on the specific course chosen. The results provide evidence about 

the accuracy and robustness of predictions about the probability that a specific student would 

actually drop out.  

The remainder of the paper is organised as follows. In Section 2, we develop the conceptual 

framework for deriving the empirical models in the Learning Analytics perspective. Section 3 

describes the methods and data. Section 4 reports the main results. Lastly, Section 5 discusses 

the main implications and general suggestions towards implementing future interventions for 

helping at-risk students. 

2 Academic literature and conceptual framework 

2.1. Related Literature 

The academic literature distinguishes between two approaches investigating the features of 

students’ dropout: theory-driven and data-driven.  

The first stream deepens the reasons and the psychological constructs behind withdrawing 

decisions, identifying theoretical fundamentals and drawing a conceptual model to guide the 

inquiry. Different authors (Spady, 1970; Tinto, 1975; Pascarella and Terenzini, 1980; Cabrera 

et al. 1990; St John et al. 1996) propose models to show the processes of interactions between 

students, their characteristics and the institutions that lead to dropout (Tinto, 1975). These 

approaches consider the interaction between the student and the university environment in 

which individual attributes are exposed to influences, expectations, and demands from a variety 

of sources (such as courses, faculty members, administrators, and peers). The interaction 

between these two aspects allows the student to have success or failure in both the academic 

and social system (Spady, 1970).  

An alternative approach deals with data-driven studies, in which students’ characteristics are 



analysed longitudinally to predict dropout or graduation (Kotsiantis et al. 2003; Fun Li et al. 

2013; Seidel and Kutieleh, 2017; Vicario et al. 2018; Solís et al 2018; Nagy and Molontay, 

2018; Mayra and Mauricio, 2018; Korhonen and Rautopuro, 2019; Sothan, 2019; Barbu et al. 

2019; Alban and Mauricio, 2019; Silva et al. 2020; Heredia-Jiménez et al. 2020). The 

methodological approach to study dropout in HE described in these works is innovative. Indeed, 

as highlighted by Agrusti et al. 2019, researches on university dropout prediction increased 

considerably starting from 2017. The applications proposed in literature are various. Starting 

from the models adopted, ranging from the more traditional logistic regression (Mayra and 

Mauricio, 2018) to the innovative Machine Learning algorithms (Alban and Mauricio, 2019; 

Nagy and Molontay, 2018), also the university considered may be one (Heredia-Jimenez et al. 

2020) or more (Silva et al. 2020) or with open courses (Kotsiantis, 2003). Moreover, the 

information considered for predictions may relate to specific students’ features, such as only 

demographics and pre-college information (Heredia-Jiménez et al. 2020; Nagy and Molontay, 

2018), or they exploit all possible knowledge about students (Silva et al. 2020). Results show 

that Machine Learning models often provide accurate predictions, leaving room for further 

interventions aiming at retaining potential dropout students. Anyway, in the cited cases, 

researchers are less interested in explaining the phenomenon per se, while the focus is on 

predicting withdrawing students with the highest level of accuracy.  

Placing at the mid-way between theory and data driven studies, some research papers show how 

the Machine Learning approach may be valuable to support the understanding of dropout 

(Berens et al. 2018; Rodríguez-Muñiz et al. 2019; Del Bonifro et al. 2020; Sandoval-Palis et al. 

2020). Del Bonifro et al. (2020) concentrates on the on-time prediction to detect and then help 

at risk students as early as possible. On practical strand, they consider only the information 

acquired at the moment of the students’ enrolment.  Sandoval-Palis et al. (2020) and Rodríguez-

Muñiz et al. (2019) enrich the prediction of dropout students with a deep interpretation of the 

main determinants of withdrawal, with the aim of arriving to the root causes of the problem.  

Sandoval-Palis et al. (2020) find that students with the highest risk of dropping out are those in 

vulnerable situations, with low application grades, enrolled in the levelling course for technical 

degrees. Results of Rodríguez-Muñiz et al. (2019) work show that the influence of personal and 

contextual variables and the academic performance in the first year represent the main predictors 

of dropout. Further, this model highlights other interesting factors: the importance of dedication 

(part or full time), and the vulnerability of the students with respect to their age. Lastly, Berens 

et al. (2018) supplement traditional administrative data with approximations of learning 

behavior and student-teacher interactions recalling the Tinto's integration model. Indeed, they 

adopted registration in online learning platforms, use of the university library, reading behavior 

data from the online library as well as online activity level.  

2.2. Conceptual Framework 

The present paper develops a clear conceptual framework for the comprehesion and 

interpretation of dropout at university. It considers both the educational process and the need of 

predicting students’ outcome as early as possible. In particular, the data-driven approach is 

substituted with an information-driven modelling, since the data mining approach to education 

is fastly becoming an important field of research due to its ability to extract new knowledge 

about this aspect from a huge amount of students’ data (Wook et al. 2017).  

With the aim of filling the gaps within the two approaches, the conceptual framework proposed 

here poses its basis on a student’s “educational journey”. This concept lays its foundation on 

Cunha and Heckman (2007), where the formation of individual skills (both cognitive and non-

cognitive) is the result of a cumulative process where different factors (e.g. investments, 

environments and genes) intervene. The technology that governs this process is formed by 

sequential periods influencing each others and resulting in the educational formation of the 



individual. Contextualizing this framework into our research, we consider educational stages as 

school cycles: childhood, primary school, middle school, high school (we use “K12” to refer to 

all school’s grades until the 12th) and university. During each stage, it is possible to gather 

different types of information about students’ characteristics and performance. The collected 

information deal with educational path, such as grades or school data, or with personal and 

demographic information, for instance the citizenship or family’s income. The key feature of 

this model is that individual experiences enrich students’ personal timeline. The milestone of 

the proposed framework relies on the possibility to predict student’s dropout, considering the 

previous educational stages as input. This conception brings to deal with an optimization 

problem, facing the trade-off between prediction accuracy, which normally improves when 

adding more features, and the potential timing to intervene, that needs to be reduced as much as 

possible, so with early predictions. This trade-off lays behind the managerial and policy 

implications of this research: the timing of the prediction is equally important to its accuracy. 

The incorrect prediction about possible dropouts may lead institutions to promote targeted 

remedial interventions for wrong students, risking to esclude the real dropouts. On the other 

side, intuitively, the more information is available, the more accurate is the prediction. Anyway, 

collecting data on students’ educational path require time, during which students may decide to 

leave the university. Hence, balancing time of prediction and information collected is an 

optimization problem for dropout detection. Further, the critical choice is not only related to the 

time of prediction, but also to the model adopted, which needs to be the one which better 

optimize the trade off between accuracy and timing.  

From an operational standpoint, a reduced view of the proposed conceptual framework needs 

to contextualise it into real-world practice. Our main assumption related to the optimization 

problem states that the first moment where we are able to predict, with satisfying accuracy, 

students’ outcome (graduation or dropout) is the end of the first semester of their first year. So, 

the complete timeline from HE’s perspective comprises students’ information, grouped 

according to educational path stages, as illustrated in the previous paragraph: (i) demographic 

characteristics, (ii) previous studies information (K12 information) and (iii) academic 

performance (related to first semester of first year).  

3 Methodology and data 

3.1 The methodological approach for the empirical analysis: overview 

When developing a sound methodology for an accurate and timely prediction of student dropout, 

this paper considers two main methodological challenges and issues. 

First, we must take into account that students are nested within different engineering degree 

courses. This induces a natural source of dependence among students due to the fact that they 

are enrolled in the same degree course. Since classical regression models assume all 

observations to be independent and do not take into account any type of latent structure, 

multilevel regression models (Pinheiro and Bates, 2006; Goldstein, 2011; Agresti, 2018) are 

adopted. This class of models are suited to handle the hierarchical structure of data, taking into 

account the induced dependence among observations. Besides modelling this intrinsic data 

structure, these models disentangle the variability explained by each level of grouping, helping 

the analyst in understanding the contribution given by each different level to the response. 

A second methodological aspect concerns models’ assumptions. Generalised linear models are 

the most frequently used techniques in the literature to predict student dropout. Nonetheless, 

they impose a parametric functional form on the association between the covariates and the 

response that sometimes results to be too restrictive or unrealistic for describing complex data. 

For this reason, we compare the results of generalised linear models with the ones obtained 



applying ML techniques, such as Classification and Regression Trees (CARTs) and Random 

Forest (RF) (Hastie et al. 2009; Breiman, 2001). These are flexible methods able to investigate 

non linear associations among the covariates and the response and to model interactions among 

them. Recent developments in this context allow classification trees to handle hierarchical data: 

in Fontana et al. (2021), the authors propose a method to fit generalised mixed-effects regression 

trees (GMET), while, in Pellagatti et al. (2021), the authors develop a new method to fit 

generalised mixed-effects random forest (GMERF). These methods have the strength and the 

flexibility of ML techniques, still maintaing the ability to model the nested structure of data. 

Moreover, although the literature already investigates the main determinants of student dropout 

(Fun Li et al. 2013; Seidel and Kutieleh, 2017; Vicario et al. 2018; Korhonen and Rautopuro, 

2019; Sothan, 2019; Barbu et al. 2019), their estimated effects might vary across methods (i.e., 

parametric and nonparametric methods). Linear models provide a coefficient for each covariate, 

that measures the increase in the response for one unit increase in the covariate. Tree-based 

methods provide a different type of result that consists in the quantification of each covariate’s 

importance (measured adopting different criteria) and in the estimation of the functional form 

that marginally links each covariate to the response. In this perspective, we are interested in 

comparing the predicive power and the interpretative potential of the aforementioned types of 

methods, considering these two methodological reflections in the analyses of results.  

3.2 The methodological approach: mathematical details 

We recall now the basics of multilevel models, specifying their modelling both for generalised 

linear models and tree-based methods. Let 𝑌𝑖𝑗 be the binary variable that is equal to 1 if the 𝑗 −th 
student within the 𝑖 −th degree course, for 𝑗 = 1, … , 𝑛𝑖 and 𝑖 = 1, … , 𝑁, dropped his/her studies 
and equal to 0 otherwise. 𝑛𝑖 is the total number of students who concluded their career (either 
dropped or graduated) enrolled in the 𝑖 −th degree course and 𝑁 = 20 is the total number of 

engineering degree courses at PoliMi. Being 𝑌𝑖𝑗 a Bernoulli variable where 𝑌𝑖𝑗 = 1 with 
probability 𝑝𝑖𝑗 and 𝑌𝑖𝑗 = 0 with probability (1 − 𝑝𝑖𝑗), the classical logistic regression model 
(Agresti, 2018) takes the form: 

𝜇𝑖𝑗 = 𝔼[𝑌𝑖𝑗]   𝑗 = 1, … , 𝑛𝑖 ,    𝑖 = 1, … , 𝑁

𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗

𝜂𝑖𝑗 = ∑𝐾+1
𝑘=1 𝛽𝑘𝑥𝑖𝑗𝑘 (1) 

where 𝜇𝑖𝑗 = 𝑝𝑖𝑗. 𝑝𝑖𝑗 is the probability that student 𝑗 within degree course 𝑖 drops, 𝑔(𝜇𝑖𝑗) is the

logit link function, i.e. 𝑔(𝜇𝑖𝑗) = 𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑗) = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = log (
𝑝𝑖𝑗

1−𝑝𝑖𝑗
). 𝐾 is the total number

of predictors, 𝜷 is the (𝐾 + 1) −dimensional vector of coefficients and 𝐱𝑖𝑗 is the (𝐾 +

1) −dimensional vector of the covariates (including 1 for the intercept) relative to the (𝑖𝑗)-th

observation. This modelling assumes that all observations 𝑌𝑖𝑗 (i.e. single students) are

independent, that is to say, the production process of the outcome (dropout or not) is not affected

by common factors across students.

If we now take into account the nested structure of data (i.e. students being enrolled into degree 

courses), the Generalised (logistic) Linear Multilevel Model, GLMM (Agresti, 2018), 

considering two levels, takes the following form: 



𝜇𝑖𝑗 = 𝔼[𝑌𝑖𝑗|𝐛𝑖]  𝑗 = 1, … , 𝑛𝑖 ,    𝑖 = 1, … , 𝑁

𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗

𝜂𝑖𝑗 = ∑𝐾+1
𝑘=1 𝛽𝑘𝑥𝑖𝑗𝑘 + ∑𝑄+1

𝑞=1 𝑏𝑖𝑞𝑧𝑖𝑗𝑞

𝐛𝑖 ∼ 𝒩(𝟎, Ψ). (2) 

Conditionally on the random effects coefficients denoted by 𝐛𝑖, the multilevel logistic

regression model assumes that the elements of 𝐘𝑖 are independent. 𝐳𝑖𝑗 is the (𝑄 +

1) −dimensional vector of predictors for the random effects, 𝐛𝑖 is the (𝑄 + 1) −dimensional

vector of their coefficients and Ψ is the (𝑄 + 1) × (𝑄 + 1) within-group covariance matrix of

the random effects coefficients. In multilevel models, fixed effects are identified by parameters

associated to the entire population, while random ones are identified by group-specific

parameters. In our case study, 𝐛𝑖 are the coefficients relative to the 𝑖 −th degree course. To

verify whether the hierarchical structure taken into account by multilevel models improves

dropout predictions, we compare multilevel models’ performances with the ones of models not

considering degree courses and of models including the degree courses information as a

categorical student-level covariate (see Tables A1 and A2 in Annex).

Moving now to a ML setting, the GMET modelling (Fontana et al. 2021) basically 

substitutes the linear fixed-effects part in Eq. (2) with a tree structure: 

𝜇𝑖𝑗 = 𝔼[𝑌𝑖𝑗|𝐛𝑖]  𝑗 = 1, … , 𝑛𝑖 ,    𝑖 = 1, … , 𝑁

𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗

𝜂𝑖𝑗 = 𝑓(𝐱𝑖𝑗) + ∑𝑄+1
𝑞=1 𝑏𝑖𝑞𝑧𝑖𝑗𝑞

𝐛𝐢 ∼ 𝒩(𝟎, Ψ) (3) 

where 𝑓(𝐱𝑖𝑗) is not a linear combination of the coefficients 𝜷 but it is a partition of the covariates

space into boxes (or rectangles) and the prediction within each box is the mode of all the 

observations that belong to that box. The boxes are automatically built by tree in order to 

minimize the variability within them and maximize the variabilty between them. The absence 

of a specific functional form makes this method very flexible and able to better model 

interactions among the covariates. GMET, as standard CARTs, makes an intrinsic selection of 

the covariates: not all covariates are used in the splits that define the tree, but only the ones that 

result to be relevant. The covariate used in the first split is the most relevant one and so on. 

Moreover, different branches of the tree can be defined by different subsets of covariates and 

this building process reveals the interaction structure among covariates2.  

Similarly, GMERF (Pellagatti et al. 2020) substitues the standard tree 𝑓(𝐱𝑖𝑗) in Eq. (3) with a

RF, that is an ensemble of trees. RF basically works taking many training sets from the entire 

population, building a separate prediction model using each training set, and averaging the 

resulting predictions. Moreover, during this process, it considers different subsets of covariates 

for each training set, in order to give all variables the possibility to be taken into account in the 

tree splits - avoiding the risk that some variables cover the effect of other significant and 

2 It is worth to recall that relevance of covariates and threshold values in the splits are automatically identified by the 

tree, standing on certain input parameters. 



correlated ones (Hastie et al. 2009). Therefore, the advantage of RFs is twofold: they reduce the 

model variance and they handle the presence of highly correlated covariates, disentangling their 

associations with the response variable. RFs provide the importance ranking of the covariates 

in predicting the response, measured as the mean decrease in Gini index – obtained by adding 

up the total amount that the Gini index is decreased by splits over a given predictor, averaged 

over all trees of the ensemble (Raileanu and Stoffel, 2004). Moreover, related partial plots 

displays the marginal association, estimated by GMERF, between each covariate and the 

response, averaging out the effect of all other covariates. 

In the light of these methodological aspects, we expect tree-based methods to identify a similar 

set of significant covariates. Nonetheless, our main interest is not this one, but it regards two 

other aspects. The former is the quantification and the qualification of the estimated associations 

between relevant covariates and the response, compared across different methods. In particuar, 

we compare results interpretability and releasability. The latter is the quantification of the effect 

that different assumptions on fixed effects have on the models predictive power. 

In this light, standing on the proposed methods and on the different usages we propose about 

the degree courses information, we run 6 different empirical methods, listed in Table 1. 

[Table 1 near here] 

3.3 Application – data about Politecnico di Milano 

Politecnico di Milano (PoliMi) is the best-ranked Italian public university, and trains students 

in Engineering, Architecture and Design majors. PoliMi counts around 46,000 students in 

2019/2020 in Bachelor and Master courses, among which almost 35,000 in Engineering. This 

study investigates the phenomenon of student dropout at PoliMi (with specific reference to 

Engineering bachelor students) and develops a method to early predict it, making a further 

distinction between early and late dropout. To clarify the application, a dropout definition is 

needed: dropout occurs when the student leaves PoliMi for a reason different from graduation. 

In particular, early dropout occurs when the student drops within the 3rd semester after 

enrolment3, while late dropout occurs when the student drops later on. Taking the insitutional 

standpoint, it is not specified whether the student drops from educational system in general, or 

he/she shifts major. As stated by Tinto (1982, 2015), it is a matter of perspective and different 

interests between students, who aim at obtaining a degree, and institutions, which aim at 

retaining their students. The choice of distinguishing between early and late dropout is motivated 

by our interest in investigating the determinats of these two types of dropout, that might be 

potentially different. We expect  drivers of an early dropout to be different from the ones of a 

late dropout. Therefore, each classification model will consider as outcomes of interest early 

dropout versus graduate and late dropout versus graduate.  

The Information Technology (IT) system of the university collects both dynamic and static data 

about enrolled students. The former ones are the so-called “digital prints” left in correspondence 

to some key administrative facts, such as register at exams’ sessions, accept or retake grades or 

pay university’s fees. Static data comprises all the information that administrative office 

registers at the moment of enrolment, such as citisenship, gender or date/place of birth, previous 

school performance or the university admission test score. The university Administration and 

IT offices supply the dataset used in the analysis, recording students’ information from 2010 to 

2019. The number of observations is more than 10 million and each of them represents an 

3 We chose this threshold because the third semester after the enrolment represents the deadline for students to enrol in 

the second academic year. 



administrative event or a student’s set of features. The whole dataset is divided into multiple 

sub-datasets, according to type of information. Hence, data cleaning activity requires to merge 

the datasets through their linkage with unique encrypted key and to keep only concluded careers, 

using the student as a unit of analysis. The students’ features lastly selected and included into 

the analysis are summarised in Table 2, divided into demographic, previous studies and 

academic information.  

[Table 2 near here] 

Our final sample includes all concluded careers (for dropout or graduation) of students enrolled 

in an engineering degree course between a.y. 2010/2011 and a.y. 2015/2016. This sample counts 

31,071 concluded careers of students, 62.7% of which are graduated, 21.7% are early dropout 

and 15.6% are late dropout. For both early and late dropout prediction, we train our models on 

a training set, that is composed by randomly selected 70% of the sample, while the test set is 

composed by the remaining 30%. In particular, in our models, 𝑌𝑖𝑗 = 1 when student 𝑗 within

degree course 𝑖 drops, early or late depending on the model setting, and 𝑌𝑖𝑗 = 0 when he or she

graduated; 𝐗 is the matrix of the fixed-effects covariates that contains all student-level 

characteristics shown in Table 2. When we take into account the degree courses information as 

a categorical student-level variable (Models 1b, 2b and 3b of Table 1), 19 dummy variables are 

included. Each dummy variable represents the belonging to one degree course with respect to 

the reference one (the first one in alphabetic order). When running multilevel models, i.e. when 

we take into account the hierarchical structure of students nested within degree courses, we 

include in the random effects part a random intercept, i.e. 

𝑝𝑖𝑗 = 𝔼[𝑌𝑖𝑗|𝑏𝑖]       𝑗 = 1, … , 𝑛𝑖 ,    𝑖 = 1, … , 𝑁

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝜂𝑖𝑗

𝜂𝑖𝑗 = 𝑓(𝐱𝑖𝑗) + 𝑏𝑖

𝑏𝑖 ∼ 𝒩(0, 𝜎𝜓
2) (4) 

where 𝑏𝑖 is the value-added given by the 𝑖 −th degree course to the dropout probability (either

early or late, depending on the model setting): if 𝑏𝑖 is negative, students within the 𝑖 −th degree

course are on average less likely to drop with respect to the others; while, if 𝑏𝑖 is positive,

students within the 𝑖 −th degree course are on average more likely to drop with respect to the 

others. Given Eq. (4), 𝑓(𝐱𝑖𝑗) is equal to a linear combination of the fixed-effects covariates in

the case of a multilevel linear model (Model 1c), to a classification tree in the case of a multilevel 

classification tree (Model 2c) and to a random forest in the case of a multilevel random forest 

(Model 3c). In order to compare the performance of the fitted models, we compute two types of 

indexes: (i) the Area Under the ROC Curve (AUC), that provides an aggregate measure of 

performance across all possible classification thresholds; (ii) accuracy, sensitivity ans specificity 

indexes. Among the set of these performance indexes, we are mainly interested in the sensitivity, 

because we aim at finding the model that better identifies the at-risk students, i.e., the model 

with highest sensitivity. 

4 Results 



We run the 9 models presented in Table 1, for both early dropout versus graduated and late dropout 

versus graduated4. We analyze the results from two perspectives, recalling the methodological aspects 

presented in Section 3.1. First, we compare the models’ performance, highlighting the main 

differences between hierarchical and non-hierarchical models and between statistical and ML ones. 

Then, we compare the types of information about the dropout phenomenon extracted from the 

proposed models in order to deepen the related mechanisms.  

4.1 The performance of the empirical models – overview 

The first set of results from the empirical analyses are reported in Tables 3 and 4, which cointain 

the predictive performances, measured in terms of AUC, sensitivity, accuracy and speificity, of 

the fitted models, for early and late dropout prediction, respectively. All models’ predictive 

performances are very high, both for early and late dropout. The lowest value of AUC is 0.8714 

and it is reached by the simple tree for predicting late dropout, while the highest one is 0.9615 

and it is reached by the GLMM for predicting early dropout. All other models’ AUC range 

between these two values. In particular, classification trees have always slightly lower predictive 

power than GLM and RF, that, instead, have very similar performances. This difference is more 

pronounced for early than for late dropout and decreases when considering multilevel models.  

For both linear and tree-based models, taking into account the degree courses students are 

enrolled in (both as a dummy variable and by employing a multilevel model) increases their 

performances, with multilevel models having the highest peak (see Tables 3 and 4). 

Strengthened by this evidence, we retain multilevel models to be extremely informative in this 

application. Besides providing the best performance, they fit the real nested structure of students 

and, especially, they provide interpretable information about the heterogeneities across degree 

courses (see Section 4.2).  

[Tables 3 and 4 near here] 

4.2 Understanding and interpreting students’ dropout – findings from multilevel generalised 

linear model and tree based methods 

We now focus on the interpretation of the results, reflecting on the various types of information 

gathered from the proposed models output, adopting a student-level and course-level 

perspectives. We are interested in investigating whether these methods, that lead to slightly 

difference performance, give supplemental insights about the dropout phenomenon. In the light 

of the results shown in Section 4.1, we focus on the multilevel models output, that we retain to 

be the most informative.  

4.3 Individual level factors associated with dropout 

Table 5 reports the results of the GLMM (Model 1c), both for early and late dropout, 

respectively5. Not significant covariates are removed from the final model using a step-by-step 

procedure. 

[Table 5 near here] 

4 In the early dropout analyses, late dropout students are excluded from the sample and vice-versa. 
5 Tables in Annexes A1 and A2 report detailed results of Models 1a, 1b and 1c, for early and late dropout, respectively. 

The association between student-level covariates and the response remains coherent across the models.  



Several interesting observations emerge from the associations between student-level 

information and dropout probability. First, some differences are related to personal 

characteristics and background. Males are more likely to late drop out than females; although 

the literature did not reach an agreement about the direction of gender differences in HE dropout, 

some studies found that female students drop less than their male counterparts (Johnes & 

McNabb, 2004). Native Italians off-site (i.e. not living in Milan) are more likely to early drop 

than Italians in-site, perhaps suggesting that commuters and/or students who moved for studying 

reasons could have encountered additional obstacles to regular academic activities. Non-Italian 

students are more likely to late drop than native Italians in-site, all else equal – this finding 

echoes a similar one reported by Meggiolaro et al. (2017) for another Italian university. Students 

starting their careers at PoliMi at an older age than the average, are more likely to late drop, 

potentially indicating that these students have a non-linear educational trajectory until their 

starting moment at PoliMi (for example, they could be students who repeated a grade during 

secondary education, so are intrinsically more at-risk). Students who attended Other and, 

especially, technical high schools are more likely to late drop than the ones who attended 

academic, scientific high schools. This evidence corroborates the heterogeneity across students 

with different educational background; in Italy, students can attend academic, technical or 

vocational secondary education, a practice that can hinder equality of opportunities, including 

later academic success (Brunello and Checchi, 2007).  

Differences in dropout probability are also associated with students’ previous academic 

performances. The higher is the admission test score at PoliMi, the higher is the probability of 

students early dropout, but the lower is the probability of students late dropout. While the 

negative association with late dropout confirms the right “signalling” effect of the entry test, the 

positive assocaion with early dropout is quite anomalous. There could be several reasons for 

this result. It can be the case that high admission scores encourage less motivated students to 

enrol at PoliMi, then it could happen that they get recruited into the labor market early on or 

they change university. Further, the higher is the number of credits obtained at the first semester, 

the lower are both the early and late dropout probabilities, suggesting that students with a good 

(regular) early start benefit of less risks later on. Students doing more than one attempt per exam 

during the first semester are less likely to early drop and more likely to late drop with respect to 

students doing one attempt per exam. These are students who try to pass exams with strong 

commitment (so they do not drop immeditely), but then are more likely to drop out later if their 

performance continues struggling. Students that do not attempt any exam during the first 

semester are more likely both to early and late drop with respect to students doing one attempt 

per exam; these are students who almost immediately find strong difficulties, and do not even 

show up at first exams, becoming unable to fill the gap later in their career6. Lastly, students 

with more disadvanatged background (as measured through the income group) are less likely to 

early drop than their more advantaged counterparts. Also, DSU students (e.g. with a study grant) 

are less likely to late drop, meaning that socioeconomic background still plays a role in dropout 

(Rodriguez-Hernandez et al. 2020). It is worth to notice that this finding is conflicting to the one 

identified by the majority of the worldwide literature, that sees students from disadvantaged 

backgrounds facing a higher risk of dropping out, but is in line with previous findings on the 

Italian case (Belloc et al. 2010). A possible explanation could be that, with respect to the 

majority of students that are in the highest income range and have a wide range of opportunities, 

6 We are aware that there could be a portion of students who do not take any attempts because they have already decided 

to drop, creating a potential endogeneity issue in studying the phenomenon. In order to check the robustness of our results 

and to avoid this potential confounding factor, we re-run our linear models for predicting early dropout excluding from 

the sample those students who did not take any attempts at the first semester. Results, reported in Table A3, confirm that 

student characteristics associated to the dropout probability, together with models predictive performance, remain quite 

unchanged (AUC indexes are slightly lower when excluding zero attempts students). 



more disadvantaged students are more motivated or feel financial pressures. Their choice to 

enroll at university may request sacrifices to their family, spurring them to commit. Moreover, 

those disadvantaged students who decide to enroll at PoliMi are somehow already self-selected 

and more motivated than average. 

Regarding tree-based methods, Figure 1 reports the fixed-effects trees estimated by GMET, for 

both early and late dropout, respectively. The number of credits the student obtains at the first 

semester results to be the most important variable to predict both early and late dropout 

probability. In particular, this is the only covariate used to build the trees. This result helps us 

in further understanding the dropout phenomenon. GMET output reveals that, by using the 

number of total credits as single fixed-effects covariate, we build a classificator that performs 

very close to much more complex models. This evidence is also corroborated by the variables 

importance ranking shown in Figure 2, obtained by GMERF. Variables importance rankings in 

Figure 2 confirm that, for both early and late dropout prediction, the number of total credits 

obtained at the first semester is the most important covariate, and also, it way distance itself, in 

terms of importance, from the other covariates. The second covariate of the ranking adds very 

low information to the prediction with respect to it, and so on so forth. The only other covariate 

that significantly affects the estimates of early dropout probability is the number of attempts.  

Besides this clear and interpretable result regarding the covariates’ importance, Figure 3 reports 

the partial dependence plot of the most important covariate selected by GMERF, i.e. the number 

of credits. Partial dependence plots show the association between the selected covariate and the 

response, estimated by GMERF net to the effect of all other covariates. In the perspective of 

investigating the type of association between the single covariate and the response, this graphical 

tool is extremely informative since it shows the functional form that links the covariate to the 

response, estimating it directly from the data without imposing any parametric assumption on 

it. Panels (3a) and (3b) of Figure 3 show that the associations between the number of credits 

obtained at the first semester and both early and late dropout probability are approximately 

linear. Being the number of credits obtained at the first semester the most important variable 

and having it a linear association with the response, it is reasonable to observe similar 

performances in GMERF and GLMM.  

Although the early academic performance results to be the most significant determinant of 

student dropout probability, some differences in the dropout probability still emerges between 

students with different origin, gender or previous study. This finding suggests that there are 

other unobservable factors at play, connected to student origins and previous studies, that lead 

to significant differences in the dropout probability. 

4.4 Dropout differences across degree courses 

Besides the information about student-level characteristics, multilevel models give easily 

interpretable insights about the nested structure, i.e. the degree courses effect. Standing on the 

predictive performance of the models and on the coefficients significance, both early and late 

dropout probabilities vary across engineering degree courses. The Variance Partition Coefficient 

(VPC) is a common index computed in the multilevel model framework to quantify the portion 

of variability in the response explained at the highest level of grouping. In our case study, VPC 

quantifies the portion of variability in student dropout that is explained at the degree courses 

level. Regarding early dropout, VPCs measure 0.1063 for GLMM (Model 1c), 0.0857 for 

GMET (Model 2c) and 0.1803 for GMERF (Model 3c). For late dropout, VPCs measure 0.0852 

for GLMM (Model 1c), 0.1193 for GMET (Model 2c) and 0.1276 for GMERF (Model 3c). 

These percentages are not negligible, suggesting that there are significant differences in dropout 



dynamics across degree courses. Random intercepts estimated by multilevel models represent 

the value-added (positive or negative) of the 20 degree courses to the dropout probability of 

their students7. These estimates are graphically reported in Figure A4 in Annex.  

Differences among degree courses might be due to various aspects, as for example heterogenous 

quality and difficulty and/or structural differences or movement of students across courses. 

Available data do not allow investigating these mechanisms more in details, and this topic 

deserves further attention in the future. 

4.5 The number of credits obtained at the first semester: the real milestone 

Results of the empirical models confirm that the most powerful predictor of both early and late 

student dropout is the number of credits the student obtains at the first semester of the first year 

of career. The initial student performance at the university results to be decisive for the career 

and observing the number of credits obtained by each student at the first semester gives by itself 

a very good indicator of the student dropout probability. This does not mean that other 

characteristics are not relevant, especially, considering that all students characteristics 

antecedent to the enrolment are somehow partially endogenous with the number of credits 

obtained at the first semester. Type of previous studies, nationality, residence, admission score 

and income are potential predictors of the student early academic performance.  

In order to investigate this association, we regress the number of credits obtained at the first 

semester against student characteristics antecendent to the enrollment. We consider all students 

in the sample, i.e. enrolled at PoliMi between 2010 and 2015. In particular, we dichotomise the 

variable TotalCredits1s  in a binary variable called Credits_01 that takes value 1 if TotalCredits1s 

< 7.5 and value 0 if TotalCredits1s ≥ 7.5. We chose the threshold value 7.5 identified by the 

GMET model (Model 2c) as the most important split to differentiate graduate vs early drop 

students.  

Results of the generalized linear model are reported in Table 6 (the model’s AUC values 0.733). 

All student characteristics antecedent to the enrolment result to be significant for predicting the 

amount of credits (low or high) obtained by the student at the first semester. This result somehow 

confirms that students’ features are intrisecally and structurally dependent each other, 

confirming the conceptual framework exposed in Section 2.  

[Table 6] near here 

5 Discussion, implications and concluding remarks 

The results presented in Section 4 can be summarized and commented by answering the research 

question of this paper.  

First, we find a number of factors and variables that are associated with likelihood of dropout, 

classifiable in the two broad categories of (i) personal background and (ii) previous and early 

7 The technical and mathematical details about the computation of degree courses’ effects are reported in Pinheiro and 

Bates (2006) and Pellagatti et al (2020). 



academic performance. Broadly speaking, information belonging to the latter group is more 

statistically relevant for predicting dropout. All the models tested in this paper performs very 

well in identifying students who are at risk of dropout, and this is especially true for methods 

based on multilevel modelling. The major validity of multilevel approaches suggests how 

sorting across different majors, as well as structural differences across the majors themselves, 

is an important factor affecting the decision of students to drop out.   

Second, the use of tree-based classification methods highlights how the formative credits 

obtained in the first semester is by far the most important factor associated with dropout. The 

visualization by means of partial plots identifies the relationship between credits and dropout as 

an almost linear one. This linear correlation explains why machine learning models (i.e., random 

forests) do not outperform multilevel ones in correctly predicting students who will droput. 

Indeed, ML techniques are known to be very flexible and to perform good prediction results in 

complex data structures, when non-linearities and interactions are at play. In the case presented 

here, the situation is partly different.  

Third, the importance associated with early performance to influence dropouts calls for a 

renovated attention to explore the determinants of first-semester performance. In the paper, we 

present some exploratory analyses that are able to explain a significant portion of variability 

across students in this early performance. This type of analysis can help in identifying the at-

risk students even before they obtain their first academic results.  

The findings hold a number of policy and managerial implications. The ability to early predict 

students’ dropout is crucial for targeting interventions in a very personalized way. For example, 

once identified the at-risk students with sufficient precision, it is possible to develop 

individualized tutoring systems – eventually, with the support of technology. This is a promising 

direction to develop a fruitful integration between institutional research and student support 

systems. In this vein, the results presented in the paper are encouraging. Indeed, they provide 

sufficient evidence about the positive performance of the statistical and machine learning 

methods employed for the prediction of students’ results. Such predictions happen soon enough 

in time to develop remedial interventions, which can sustain the difficulties of students in early 

stages of their higher education path.   

Lastly, a discussion about the limitations of this work and future research is needed. The ML 

methodologies that we chose to address our research question can handle a binary response, but 

not a multi-category one. To the best of our knowledge, while linear mixed-effects models have 

been developed also for multinomial responses (Hadfield 2010). This is not the case for mixed-

effects trees and RF, that, when dealing with hierarchical observations, can handle only 

continuous or binary responses. Because of this limitation, we implemented two different 

models to estimate early and late dropout probability instead of considering a unique 

multinomial mixed-effects models with a three categories response (i.e., early dropout, late 

dropout and graduate). The multinomial approach would be of interest since it would allow to 

include the entire set of observations, i.e. students, in the multinomial model instead of 

excluding late dropout students when studying early dropout phenomenon and vice-versa, 

introducing a natural bias in the model. In this perspective, future research will be devoted to 

the identification of flexible models, able to handle hierarchical observations and multinomial 

responses.  
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Tables and figures 

Table 1: Proposed empirical models for analyzing early and late dropout. 

Degree courses 

approach 

Type of models 

Degree courses not 

considered 

Degree courses 

considered: dummy 

variable 

Degree courses 

considered: multilevel 

model 

Generalised linear model Model 1a Model 1b Model 1c 

Classification tree Model 2a Model 2b Model 2c 

Random forest Model 3a Model 3b Model 3c 

Note: the table presents the overview of the run models, dividing them according to their typology 

(linear, tree or random forest) and to the ways of considering the degree courses information 

(ignored, included as a categorical variable or by a multilevel approach). 



Table 2: Student-level variables’ list: description and domain 

Group Variable’s name Description Possible values Descriptive statistics8 

Demographic 

information 

Gender Student’s gender 1: male 76.17% 

0: female 23.83% 

Income (range) Student’s 

contribution fee 
Highest income (reference) 33.58% 

High income 32.55% 

Low income 27.97% 

DSU (if the student receives a 

grant) 
3.20% 

DK, Unknown income 2.70% 

Access to study 

age 

Student’s age at 

enrolment 
From 17 to 50 

19.27 

(IQR: 18.00 – 19.00) 

Student’ origins Student’s 

Citizenship & 

Residency 

Native Milan: if the student is 

Italian and live in Milan 

(reference) 

25.54% 

Native out Milan: if the student 

is Italian and live outside Milan 
67.57% 

Non-Italian abroad: if the 

student is not Italian and lives 

outside Italy 

3.87% 

Non-Italian in Milan: if the 

student is not Italian, but lives 

in Milan 

1.69% 

Non-Italian out of Milan: if the 

student is not Italian and lives 

out of Milan 

1.33% 

Previous 

studies and 

performance 

information 

Previous Studies High school track Scientific (reference) 73.33% 

Classic 6.32% 

Technical 15.97% 

Other 4.38% 

Admission score Admission test grade 
From 60 to 100 

72.45 

(IQR: 81.07 – 64.57) 

Academic 

information 

TotalCredits1s Total credits earned 

at 1st sem. of 1st year 
From 0 to 40 

17.97 

(IQR: 30.00 – 0.00) 

Attempts 1s n. of attempts to pass

an exam in the 1st

semester of the 1st

year

One: the student attempted the 

exam once (reference) 
24.17% 

No: no attempts are done, so the 

student never attempted the 

exam 

12.94% 

More: if the student attempted 

the exam more than once 
62.89% 

Note: The table presents the list of variables adopted in the models with their description and 

assumed values. When dealing with a categorical variable, we point out the reference level – 

usually the most populated one.  

8 We provide mean and interquartile range for numerical variables and percentage for categorical variables 



Table 3: Area Under the ROC Curve (AUC) and accuracy, sensitivity and specificity indexes of the 9 

models run for early dropout versus graduated 

Not nested 

(a) 

Dummy 

(b) 

Nested 

(c) 

Generalised 

Linear Model 

(1) 

AUC = 

0.9576 

Acc = 0.9178 
AUC = 

0.9614 

Acc = 0.9219 AUC = 

0.9615 

VPC = 0.1063 

Acc = 0.9224 

Sen = 0.8943 Sen = 0.8913 Sen = 0.8921 

Spec = 0.9234 Spe = 0.9291 Spec = 0.9296 

Classification 

Tree  

(2) 

AUC = 

0.8748 

Acc = 0.9342 
AUC = 

0.8748 

Acc = 0.9342 AUC = 

0.9473 

VPC= 0.0857 

Acc = 0.9118 

Sen = 0.7789 Sen = 0.7789 Sen = 0.9004 

Spec = 0.9708 Spe = 0.9708 Spec = 0.9145 

Random 

Forest 

(3) 

AUC = 

0.9512 

Acc = 0.9183 
AUC = 

0.9553 

Acc = 0.9155 AUC = 

0.9598 

VPC=0.1803 

Acc = 0.916 

Sen = 0.8709 Sen = 0.8898 Sen = 0.8966 

Spec = 0.9294 Spe = 0.9216 Spec = 0.9205 

Note: The sensitivity is obtained as sensitivity = # true positive / (#true positive + #false negative), where the 

true positives are the students correctly classified as dropout by the model and the false negatives are the students 

that are wrongly identified as graduated by the model. ROC curve is a graphical plot that illustrates the diagnostic 

ability of the classifier system as its discrimination threshold is varied. AUC measures the area under the ROC 

curve and is equal to the probability that the classifier will rank a randomly chosen dropout student higher than 

a randomly chosen graduated one (assuming dropout ranks higher than graduate). AUC =1 is the perfect fitting. 



Table 4: Area Under the Curve (AUC) and accuracy, sensitivity and specificity indexes of the 9 

models run for late dropout versus graduated 

Not nested 

(a) 

Dummy 

(b) 

Nested 

(c) 

Generalised 

Linear Model 

(1) 

AUC = 

0.8977 

Acc = 0.8637 

AUC = 

0.9089 

Acc = 0.8593 

AUC = 0.9091 

VPC=0.0852 

Acc = 0.859 

Sen = 0.7634 Sen = 0.8003 Sen = 0.7979 

Spec = 0.8855 Spec = 0.8721 Spec = 0.8723 

Classification 

Tree 

(2) 

AUC = 

0.8714 

Acc = 0.8851 

AUC = 

0.89019 

Acc = 0.8157 

AUC = 0.9049  

VPC = 0.1193 

Acc = 0.8393 

Sen = 0.673 Sen = 0.8718 Sen = 0.8118 

Spec = 0.9312 Spec = 0.8035 Spec = 0.8453 

Random 

Forest 

(3) 

AUC = 

0.8897 

Acc = 0.864 

AUC = 

0.9016 

Acc = 0.8519 

AUC = 0.9065 

VPC =0.1276 

Acc = 0.8549 

Sen = 0.7354 Sen = 0.788 Sen = 0.8036 

Spec = 0.8919 Spec = 0.8658 Spec = 0.866 

Note: The sensitivity is obtained as sensitivity = # true positive / (#true positive + #false negative), where 

the true positives are the students correctly classified as dropout by the model and the false negatives are 

the students that are wrongly identified as graduated by the model. ROC curve is a graphical plot that 

illustrates the diagnostic ability of the classifier system as its discrimination threshold is varied. AUC 

measures the area under the ROC curve and is equal to the probability that the classifier will rank a 

randomly chosen dropout student higher than a randomly chosen graduated one (assuming dropout ranks 

higher than graduate). AUC =1 is the perfect fitting. 



Table 5: Coefficients of GLMMs for early and late dropout prediction 

Dependent variable: 

Dropout vs. Graduated 

(Early) (Late) 

Gender (ref.: female) 0.616*** 

(0.087) 

Prev Stud: Classic (ref.: scientific) -0.186

(0.131)

Prev Stud: Other (ref.: scientific) 0.266*

(0.161)

Prev Stud: Technical (ref.: scientific) 0.177**

(0.08)

Native out of Milan (ref.: Native Milan) 0.341*** 0.101 

(0.086) (0.067) 

Non-Italian abroad (ref.: Native Milan) 0.008 0.760** 

(0.457) (0.36) 

Non-Italian in Milan (ref.: Native Milan) 0.209 0.485** 

(0.364) (0.228) 

Non-Italian out of Milan (ref.: Native 

Milan) 

0.002 0.347 

 
(0.337) (0.238) 

Admission Score 0.015*** -0.006**

(0.004) (0.003)

Access to studies age 0.188***

(0.025)

TotalCredits1.1 -0.228*** -0.171***

(0.005) (0.004)

attempts1: more (ref.: one) -0.682*** 0.463***

(0.096) (0.089)

attempts1: none (ref.: one) 2.339*** 0.973***

(0.288) (0.274)

Family Income: DSU (ref.: highest) -0.332 -0.754***

(0.286) (0.264)

Family Income: High (ref.: highest) -0.222** -0.1

(0.094) (0.077) 

Family Income: Low (ref.: highest) -0.163* 0.116 

(0.097) (0.078) 

Family Income: DK (ref.: highest) -1.227 -0.773

(1.031) (0.514)

Constant 1.103*** -2.665***

(0.322) (0.552)

Observations 16,216 15,901 

Log Likelihood 2,703.508 -4,019.046

Akaike Inf. Crit. 5,435.017 8,076.093

Bayesian Inf. Crit. 5,542.729 8,221.901

Note: Results are reported in terms of regression coefficients point estimates with their standard 

deviation (in brackets). Stars represent the statistical significance: *p<0.1; **p<0.05; ***p<0.01. 



Table 6: Results of the GLM for predicting Credits_01, considering all students enrolled between 2010 and 

2015 

Dependent variable: 

Credits_01 

Gender (ref.: female) 0.224*** 

(0.048) 

Previous Studies: Classic (ref.: scientific) 0.061 

(0.077) 

Previous Studies: Other (ref.: scientific) 0.527*** 

(0.101) 

Previous Studies: Technical (ref.: scientific) 0.045 

(0.055) 

Native out of Milan (ref.: Native Milan) -0.011

(0.043)

Non-Italian abroad (ref.: Native Milan) 0.358

(0.236)

Non-Italian in Milan (ref.: Native Milan) 0.624***

(0.164)

Non-Italian out of Milan (ref.: Native Milan) 0.390***

(0.160)

Admission Score -0.651***

(0.023)

Access to studies age 0.316***

(0.024)

Family Income: DSU (ref.: highest) -5.809***

(1.005)

Family Income: High (ref.: highest) -1.080***

(0.047)

Family Income: Low (ref.: highest) -0.743***

(0.048)

Family Income: DK (ref.: highest) -14.572

(97.677)

Constant -0.993***

(0.057)

Observations 18,865 

Log Likelihood -8,483.819

Akaike Inf. Crit. 16,997.640

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in 

brackets). Stars represent the statistical significance: *p<0.1; **p<0.05; ***p<0.01.  



Figures 

Figure 1: Fixed-effects trees obtained by GMET (Model 2c), for early (panel 1a) and late (panel 1b) dropout 

prediction 

(1a) 

(1b) 

Note: Each node reports the probability of dropout of the percentage of observations (reported below) 

belonging to the node. 



Figure 2: Fixed-effects variable importance plots computed by GMERF (Model 3c), for both early and 

late dropout prediction. 

Note: The variable importance measure is the total decrease in node impurities from splitting on 

the variable, averaged over all trees. For classification, the node impurity is measured by the Gini 

index.  

(a) (b) 
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for predicting early dropout 

GMERF importance ranking 

for predicting late dropout 



Figure 3: Variable importance plots of total credits for early (panel 3a) and late dropout (panel 3b), 

respectively, estimated by GMERF (Model 3c). 

(3a) (3b) 

Note: Partial plots report the net effect of the selected covariates on the response (logit(p)), after 

averaging out the effect of all other covariates.  

GMERF for early dropout – total credits 1sem GMERF for late dropout – total credits 1sem 



Annexes

Table A1: Complete results of GLMs (Models 1a, 1b) and GLMM (Model 1c) for the prediction of early 

dropout vs. graduation.  

Dependent variable: 

Early dropout vs graduated 

Logistic models Mixed-effects generalized 

linear model 

(a) (b) (c) 

Native out of Milan 0.338*** 0.352*** 0.341*** 

(0.083) (0.086) (0.086) 

Non-Italian abroad 0.122 0.004 0.008 

(0.432) (0.46) (0.457) 

Non-Italian in Milan 0.319 0.202 0.209 

(0.362) (0.367) (0.364) 

Non-Italian out of Milan 0.094 -0.008 0.002 

(0.33) (0.338) (0.337) 

Admission Score 0.017*** 0.014*** 0.015*** 

(0.003) (0.004) (0.004) 

TotalCredits1.1 -0.220*** -0.229*** -0.228***

(0.004) (0.005) (0.005)

attempts1: more -0.528*** -0.694*** -0.682***

(0.091) (0.097) (0.096)

attempts1: none 2.461*** 2.352*** 2.339***

(0.284) (0.289) (0.288)

Family Income: DSU -0.364 -0.325 -0.332

(0.288) (0.287) (0.286) 

Family Income: High -0.257*** -0.217** -0.222**

(0.091) (0.094) (0.094)

Family Income: Low -0.172* -0.158 -0.163*

(0.094) (0.097) (0.097) 

Family Income: DK -1.315 -1.219 -1.227

(1.038) (1.034) (1.031) 

Constant 0.802*** 1.016*** 1.103*** 

-0.27 -0.331 -0.322

Control for course enrolment No Yes No 

Observations 16,216 16,216 16,216 

Log Likelihood -2,778.236 -2,667.904 -2,703.508

Akaike Inf. Crit.  5,582.472 5,399.808 5,435.017

Bayesian Ing. Crit. 5,542.729

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in 

brackets). Stars represent the statistical significance: *p<0.1; **p<0.05; ***p<0.01. 



Table A2: Complete results of GLMs (Models 1a, 1b) and GLMM (Model 1c) for the prediction of late 

dropout vs. graduation.  

Dependent variable: 

Late dropout vs graduated 

Logistic models 

Mixed-effects 

generalized linear 

model 

(a) (b) (c) 

Gender Male 0.770*** (0.083) 0.607*** (0.088) 0.616*** (0.087) 

Previous Studies: Classic -0.105 (0.128) -0.188 (0.132) -0.186 (0.131) 

Previous Studies: Other 0.370** (0.152) 0.265 (0.161) 0.266* (0.161) 

Previous Studies: Technical 0.408*** (0.073) 0.174** (0.08) 0.177** (0.08) 

Native out of Milan  0.071 (0.065) 0.107 (0.067) 0.101 (0.067) 

Non-Italian abroad 0.950*** (0.345) 0.749** (0.361) 0.760** (0.36) 

Non-Italian in Milan 0.741*** 0.466** (0.228) 0.485** (0.228) 

Non-Italian out of Milan  0.606*** (0.222) 0.334 (0.239) 0.347 (0.238) 

Admission Score -0.006** (0.003) -0.006** (0.003) 

Access to studies age 0.206*** (0.024) 0.188*** (0.025) 0.188*** (0.025) 

TotalCredits1.1 -0.171*** (0.003) -0.172*** (0.004) -0.171*** (0.004) 

attempts1: more 0.462*** (0.09) 0.463*** (0.089) 

attempts1: none 0.974*** (0.274) 0.973*** (0.274) 

Family Income: DSU -0.752*** (0.264) -0.754*** (0.264) 

Family Income: High  -0.098 (0.077) -0.1 (0.077) 

Family Income: Low 0.116 (0.078) 0.116 

Family Income: DK -0.779 (0.514) -0.773

Constant -3.197*** -2.894*** -2.665***

(0.461) (0.553) (0.552)

Control for course enrolment No Yes No 

Observations 15,901 15,901 15,901 

Log Likelihood -4,169.700 -3,981.816

Akaike Inf. Crit.  8,361.400 8,037.631 8,076.093 

Bayesian Inf. Crit. 8,221.901 

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in 

brackets). Stars represent the statistical significance: *p<0.1; **p<0.05; ***p<0.01. 



Table A3: Complete results from GLM (Models 1a and 1b) and GLMM (Model 1c) for the prediction of early 

dropout vs. graduation considering students with more than 0 attempts (i.e. excluding from the analysis those 

students who did not attempt any exam).  

Dependent variable: 

Early dropout vs. graduated 

Logistic models 

Mixed-effects 
generalized 

linear model 

(1) (2) (3) 

Gender Male 0.191** 0.144 

(0.09) (0.097) 

Native out of Milan 0.329*** 0.349*** 0.329*** 

(0.083) (0.086) (0.086) 

Non-Italian abroad -0.104 -0.194 -0.187

(0.492) (0.535) (0.526) 

Non-Italian in Milan -0.034 -0.072 -0.118

(0.391) (0.389) (0.38) 

Non-Italian out of Milan 0.359 0.24 0.248 

(0.364) (0.378) (0.372) 

Admission Score 0.011*** 0.010** 0.010*** 

(0.004) (0.004) (0.004) 

TotalCredits1.1 -0.215*** -0.225*** -0.226***

(0.004) (0.005) (0.005)

attempts1: more -0.638*** -0.828*** -0.813***

(0.09) (0.097) (0.096)

Family Income: DSU -0.531* -0.488

(0.319) (0.316) 

Family Income: High -0.221** -0.187**

(0.092) (0.095)

Family Income: Low -0.043 -0.037

(0.094) (0.098) 

Family Income: DK -1.241 -1.126

(1.038) (1.041) 

Constant 0.997*** 1.100*** 1.330*** 

(0.28) (0.336) (0.32) 

Control for course enrolment No Yes No 

Observations 14,790 14,790 14,790 

Log Likelihood -2,709.975 -2,591.232 -2,632.042

Akaike Inf. Crit.  5,445.949 5,246.463 5,282.084 

Bayesian Ing. Crit. 5,350.500 

Note: AUC indexes are 0.9258, 0.9311 and 0.9311 for Models 1a, 1b and 1c, respectively. Results are 

reported in terms of regression coefficients point estimates with their standard deviation (in brackets). Stars 

represent the statistical significance: *p<0.1; **p<0.05; ***p<0.01. 



Figure A4: Random effects intercepts with relative 95% confidence intervals, estimated by GLMM 

(Model 1c), GMET (Model 2c) and GMERF (Model 3c). In particular, first line reports the results for 

early dropout, for GLMM (Panel 4a), GMET (Panel 4b) and GMERF (Panel 4c), respectively. Second 

line reports the results for late dropout, for GLMM (Panel 4d), GMET (Panel 4e) and GMERF (Panel 

4f), respectively.  

Note: For anonymity reasons, we do not report degree courses names alongside the estimated 

rankings. This figure is intended only as a tool to visualize and quantify the variability across degree 

courses, estimated by the proposed multilevel models. 

4a 4b 4c 
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