
Density-based debris cloud propagation and collision risk 
estimation through a binning approach
Lorenzo Giudici, Juan Luis Gonzalo, Mirko Trisolini, Camilla Colombo

6th Space Debris Modelling & Remediation Workshop

Milano, Italy | 18th-20th May 2022



The model – Starling V2.0
Block diagram

Limit values in 𝐴/𝑀 and 
ejection velocity

Domain in Keplerian 
elements

Binning and grid 
definition

Density distribution in 
Keplerian elements

Initial density estimation

Cloud sampling – initial 
characteristics

Characteristics’ propagation 
through MOC

Density interpolation 
through binning

Density propagation

Impact rate/number of 
impacts with targets

Estimation of the probability 
of collision 

(Evaluation of a suitable 
sustainability index)

Fragmentation effects

➢ Giudici L., Colombo C., Trisolini M., Gonzalo J. L., Letizia F., Frey S., “Space debris cloud propagation through phase space domain binning,” Aerospace Europe Conference, Warsaw,
Poland, 23-26 Nov. 2021.

➢ Colombo C., Trisolini M., Gonzalo J.L., Giudici L., Muciaccia A., Frey S., “Design, development, and deployment of software infrastructure to assess the impact of a space mission
on the space environment”, Technical Note 1, 31/03/2022, European Space Agency, Contract No.: 4000133981/21/D/KS.

18/05/2022 6th Space Debris Modelling & Remediation Workshop 2



The model – Starling V2.0
Block diagram

Limit values in 𝐴/𝑀 and 
ejection velocity

Domain in Keplerian 
elements

Binning and grid 
definition

Density distribution in 
Keplerian elements

Initial density estimation

Cloud sampling – initial 
characteristics

Characteristics’ propagation 
through MOC

Density interpolation 
through binning

Density propagation

Impact rate/number of 
impacts with targets

Estimation of the probability 
of collision 

(Evaluation of a suitable 
sustainability index)

Fragmentation effects

➢ Giudici L., Colombo C., Trisolini M., Gonzalo J. L., Letizia F., Frey S., “Space debris cloud propagation through phase space domain binning,” Aerospace Europe Conference, Warsaw,
Poland, 23-26 Nov. 2021.

➢ Colombo C., Trisolini M., Gonzalo J.L., Giudici L., Muciaccia A., Frey S., “Design, development, and deployment of software infrastructure to assess the impact of a space mission
on the space environment”, Technical Note 1, 31/03/2022, European Space Agency, Contract No.: 4000133981/21/D/KS.

18/05/2022 6th Space Debris Modelling & Remediation Workshop 2



▪ The fragments’ characterisation relies on the probabilistic reformulation of the NASA Standard Breakup 
Model*, according to 3 PDF:

1. Characteristic length:    𝑝𝜆
2. Area-to-mass ratio:       𝑝𝜒|𝜆 (conditional)

3. Ejection velocity:           𝑝𝜈|𝜒 (conditional)

Initial density estimation
Limit values in 𝐴/𝑀 and ejection velocity

➢ Frey S., Colombo C., “Transformation of Satellite Breakup Distribution for Probabilistic Orbital Collision Hazard Analysis,” Journal of Guidance, Control, and Dynamics, vol. 44, pp. 88-105, 2021.

𝜆 = log10 𝐿 , 𝜈 = log10 Δ𝑣 , 𝜒 = log10 Τ𝐴 𝑀 , 𝐿 = characteristic length, Δ𝑣 = ejection velocity, Τ𝐴 𝑀 = area-to-mass ratio
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𝑵𝝌 + 𝟐 equations solved numerically through:

➢ Root finding algorithms 

➢ Function minimisation routines
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Initial density estimation
Limit values in 𝐴/𝑀 and ejection velocity

Rocket body explosion, distribution in (𝜒, 𝜈)
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Rocket body explosion, distribution in (𝜒, 𝜈)
containing 95 % of the fragments’ population 
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Initial density estimation
Limit values in 𝐴/𝑀 and ejection velocity

Rocket body explosion, distribution in (𝜒, 𝜈)

Rocket body explosion, distribution in (𝜒, 𝜈)
containing 95 % of the fragments’ population 

Rocket body explosion, distribution in (𝜒, 𝜈)
containing 95 % of the fragments’ population 
– Predicted limits in 𝜒 and 𝜈 with 𝜉 = 0.95
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Cartesian coordinates (+ 𝐴/𝑀)

▪ Fragments share same initial position 𝒓𝑃
▪ 3D isotropic distribution in ejection velocity vector 𝜟𝒗
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3D density distribution in ejection velocity

Initial density estimation
Dimensionality preserving transformation



Cartesian coordinates (+ 𝐴/𝑀)

▪ Fragments share same initial position 𝒓𝑃
▪ 3D isotropic distribution in ejection velocity vector 𝜟𝒗

Keplerian elements (+ 𝐴/𝑀)

▪ Given 𝒓𝑃, for each 𝑎, 𝑒, 𝑖 there exist 4 possible 
Ω𝑘 , 𝜔𝑘 , 𝑓𝑘 that guarantee intersection
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3D density distribution in ejection velocity 3D density distribution in Keplerian elements, made up of a surface- and 
line-like distributions

Initial density estimation
Dimensionality preserving transformation
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3D density distribution in ejection velocity 3D density distribution in Keplerian elements, made up of a surface- and 
line-like distributions

Domain in Keplerian elements 
defined in the subset (𝒂, 𝒆, 𝒊)

Initial density estimation
Dimensionality preserving transformation



Initial density estimation
Domain in Keplerian elements
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2D distribution in 
𝐴/𝑀 and Δ𝑣, bounded 

by (𝜒0, 𝜒𝑁𝜒 , 𝜈𝑗)

Fragmentation properties

Domain in Keplerian elements 
defined in the subset (𝑎, 𝑒, 𝑖)



Initial density estimation
Domain in Keplerian elements
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Fragmentation properties

Isotropic 𝚫𝒗 distribution

Domain in Keplerian elements 
defined in the subset (𝑎, 𝑒, 𝑖)

2D distribution in 
𝐴/𝑀 and Δ𝑣, bounded 

by (𝜒0, 𝜒𝑁𝜒 , 𝜈𝑗)

4D distribution in 
𝐴/𝑀, Δ𝑣, 𝛾 and 𝜙



Initial density estimation
Domain in Keplerian elements
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Fragmentation properties

Isotropic 𝚫𝒗 distribution

Variations Δ𝑎, Δ𝑒, Δ𝑖
as function of 𝚫𝒗

Domain in Keplerian elements 
defined in the subset (𝑎, 𝑒, 𝑖)

2D distribution in 
𝐴/𝑀 and Δ𝑣, bounded 

by (𝜒0, 𝜒𝑁𝜒 , 𝜈𝑗)

4D distribution in 
𝐴/𝑀, Δ𝑣, 𝛾 and 𝜙

Relations Δ𝜶 = 𝑓(𝚫𝒗)



Initial density estimation
Domain in Keplerian elements
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2D distribution in 
𝐴/𝑀 and Δ𝑣, bounded 

by (𝜒0, 𝜒𝑁𝜒 , 𝜈𝑗)

Fragmentation properties

Domain in Keplerian elements 
defined in the subset (𝑎, 𝑒, 𝑖)

4D distribution in 
𝐴/𝑀, Δ𝑣, 𝛾 and 𝜙

Isotropic 𝚫𝒗 distribution

Variations Δ𝑎, Δ𝑒, Δ𝑖
as function of 𝚫𝒗

If 𝜉 is high enough:

▪ Averaging over 𝛾, 𝜙 →
Δ𝜶 = Δ𝜶 Δ𝑣

▪ Maximisation over Δ𝑣 → 𝒟𝜶

Relations Δ𝜶 = 𝑓(𝚫𝒗)



Density distribution approximated through a binning 
approach:

▪ Domain divided into bins with size proportional to the 
average density gradient:

𝛿𝜶 ∝ 𝛁𝜶 𝑝𝜈,𝜒

▪ Density in Keplerian elements obtained through change 
of variable transformation:

𝑝𝜶,𝐴/𝑀 =
𝑝Δ𝑣,𝐴/𝑀 𝜓𝒔→𝜶

−1 𝜶

| det 𝐽𝒔→𝜶 |

▪ Density in each bin averaged through Monte Carlo 
integration
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Initial density estimation
Density distribution in Keplerian elements

𝜓𝒔→𝜶 = transformation from 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 to 𝑎, 𝑒, 𝑖 ,  𝐽𝒔→𝜶 = Jacobian of the transformation 𝜓𝒔→𝜶

➢ Frey S., “Evolution and hazard analysis of orbital fragmentation continua,” PhD thesis, Politecnico di Milano, 2020, Supervisors: Colombo C., Lemmens S., Krag., H.

Initial density distribution in semi-major axis, eccentricity and inclination for 
the hypothetical explosion of satellite Cosmos-2292 in LEO
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1. Cloud sampling:
➢ The samples are randomly extracted from the 

initial distribution

➢ The samples are in the subset 𝒙 ≔ 𝑎, 𝑒, 𝑖,
𝐴

𝑀

Cloud propagation
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C. Colombo, “Planetary orbital dynamics (PlanODyn) suite for long term propagation in perturbed environment,” 6th International Conference on Astrodynamics Tools and Techniques, 2016.
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𝐴

𝑀
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MOC:    ቐ

d𝑛

d𝑡
= −𝑛 𝛁 ⋅ 𝑭

d𝒚

d𝑡
= 𝑭

, 𝒚 ≔ 𝑎, 𝑒, 𝑖, 𝛺, 𝜔, 𝑓,
𝐴

𝑀

3. Density interpolation:

➢ Binning in (up to) 6D phase space 𝑎, 𝑒, 𝑖, 𝛺, 𝜔,
𝐴

𝑀

➢ Nearest-neighbour – like interpolation

Cloud propagation
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C. Colombo, “Planetary orbital dynamics (PlanODyn) suite for long term propagation in perturbed environment,” 6th International Conference on Astrodynamics Tools and Techniques, 2016.
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Fragmentation effects
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Estimation of the impact rate

Impact rate: flux of fragments over the target area assuming

▪ Fixed target position 𝒓𝑡 → Computed 𝑁 times for 𝑁 target’s 
mean anomaly 𝑀 ∈ 0,2𝜋

▪ Area of the target 𝐴𝑐 ≫ Area of the fragments 𝐴𝑓

➢ Frey S., Colombo C., “Transformation of Satellite Breakup Distribution for Probabilistic Orbital Collision Hazard Analysis,” Journal of Guidance, Control, and Dynamics, vol. 44, pp. 88-105, 2021.
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▪ Fixed target position 𝒓𝑡 → Computed 𝑁 times for 𝑁 target’s 
mean anomaly 𝑀 ∈ 0,2𝜋

▪ Area of the target 𝐴𝑐 ≫ Area of the fragments 𝐴𝑓

It can be computed from the phase space density:

1. In Cartesian coordinates

ሶ𝜂 𝒓𝑡, 𝒗𝑡 = 𝐴𝑐ම
ℝ3
𝑛𝒔 𝒓𝑡, 𝒗 𝒗 − 𝒗𝑡 d𝒗
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2. In Keplerian elements

ሶ𝜂 𝒓𝑡, 𝒗𝑡 = 𝐴𝑐ම
ℝ3


𝑘=1

4
𝑛𝜶 𝜶, 𝜷𝑘

det 𝐽𝒓→𝜷
𝑘

𝒗 𝜶, 𝜷𝑘 − 𝒗𝑡 d𝜶

➢ Frey S., Colombo C., “Transformation of Satellite Breakup Distribution for Probabilistic Orbital Collision Hazard Analysis,” Journal of Guidance, Control, and Dynamics, vol. 44, pp. 88-105, 2021.

𝜶 = 𝑎, 𝑒, 𝑖 , 𝜷 = Ω,𝜔, 𝑓 , 𝐽𝒓→𝜷 = Jacobian of the transformation from 𝒓 to 𝜷

4 possible intersections, fixed 𝒓𝑡 and 𝑎, 𝑒, 𝑖



Fragmentation effects

18/05/2022 6th Space Debris Modelling & Remediation Workshop 11

Estimation of the impact rate

Impact rate: flux of fragments over the target area assuming

▪ Fixed target position 𝒓𝑡 → Computed 𝑁 times for 𝑁 target’s 
mean anomaly 𝑀 ∈ 0,2𝜋

▪ Area of the target 𝐴𝑐 ≫ Area of the fragments 𝐴𝑓

It can be computed from the phase space density:

1. In Cartesian coordinates

ሶ𝜂 𝒓𝑡, 𝒗𝑡 = 𝐴𝑐ම
ℝ3
𝑛𝒔 𝒓𝑡, 𝒗 𝒗 − 𝒗𝑡 d𝒗

2. In Keplerian elements

ሶ𝜂 𝒓𝑡, 𝒗𝑡 = 𝐴𝑐ම
ℝ3


𝑘=1

4
𝑛𝜶 𝜶, 𝜷𝑘

det 𝐽𝒓→𝜷
𝑘

𝒗 𝜶, 𝜷𝑘 − 𝒗𝑡 d𝜶

➢ Frey S., Colombo C., “Transformation of Satellite Breakup Distribution for Probabilistic Orbital Collision Hazard Analysis,” Journal of Guidance, Control, and Dynamics, vol. 44, pp. 88-105, 2021.
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Integrated semi-analytical in:
➢ Semi-major axis, eccentricity, inclination (𝑎, 𝑒, 𝑖)
➢ Perigee radius, apogee radius, inclination (𝑟𝑝, 𝑟𝑎, 𝑖)

4 possible intersections, fixed 𝒓𝑡 and 𝑎, 𝑒, 𝑖



Integration in 𝒂, 𝒆, 𝒊
➢ Elliptic integrals from the integration in 𝑖

➢ Easy solution of the integration in 𝑎, 𝑒

➢ Analytical solution not available in the entire domain

Fragmentation effects
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Impact rate with binning approach

No intersection

Intersection

Curves 𝑟𝑎 = 𝑟𝑡 and 𝑟𝑝 = 𝑟𝑡 in the 𝑎, 𝑒 domain



Integration in 𝒂, 𝒆, 𝒊
➢ Elliptic integrals from the integration in 𝑖

➢ Easy solution of the integration in 𝑎, 𝑒

➢ Analytical solution not available in the entire domain

Fragmentation effects

▪ Integration in 𝒓𝒑, 𝒓𝒂, 𝒊
➢ Elliptic integrals from the integration in 𝑖

➢ Complex polylogarithms from the integration in 𝑟𝑎 , 𝑟𝑝
➢ Analytical solution available in the entire domain
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Impact rate with binning approach

No intersection

Intersection

𝑟𝑎
=
𝑟
𝑡

𝑟𝑝 = 𝑟𝑡

Curves 𝑟𝑎 = 𝑟𝑡 and 𝑟𝑝 = 𝑟𝑡 in the 𝑟𝑝, 𝑟𝑎 domain

No intersection

Intersection

Curves 𝑟𝑎 = 𝑟𝑡 and 𝑟𝑝 = 𝑟𝑡 in the 𝑎, 𝑒 domain



Applications
Fengyun-1C fragmentation under J2 and drag
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Density distribution over time under J2 and drag perturbations

Parent orbit: 𝑎 = 7231 km, 𝑒 = 0.001, 𝑖 = 98.6 deg, Ω = 106.1 deg, 𝜔 = 262.0 deg, 𝑓 = 133.5 deg



Applications
Fengyun-1C fragmentation under J2 and drag
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Density distribution over time under J2 and drag perturbations

Target orbit: 𝑎 = 7171 km, 𝑒 = 0.0, 𝑖 = Τ50 Τ80 Τ100 130 deg, Ω = 0.0 deg, 𝜔 = 0.0 deg

Collision probability over time for different values of target 
inclination – Accuracy analysis against Monte Carlo  

𝑃𝑐 = 1 − 𝑒−∫ ሶ𝜂 d𝑡
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Ariane 5 explosion in GTO under J2, drag, SRP, Moon + Sun
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Parent orbit: 𝑎 = 24443 km, 𝑒 = 0.709, 𝑖 = 6.5 deg, Ω = 253.2 deg, 𝜔 = 271.8 deg, 𝑓 = 43.5 deg

Density distribution over time under J2, Drag, SRP, Moon and Sun perturbations



Application
Ariane 5 explosion in GTO under J2, drag, SRP, Moon + Sun
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Target orbit (Syracuse 4A): 𝑎 = 24131 km, 𝑒 = 0.725, 𝑖 = 6.0 deg, Ω = 264.8 deg, 𝜔 = 167.3 deg

Density distribution over time under J2, Drag, SRP, Moon and Sun perturbations

Number of fragments and collision probability with Syracuse 4A 
over time – Accuracy analysis against Monte Carlo 



Conclusions

▪ The probabilistic definition of the phase space domain 
allows to accurately target the phase space reachable by 
the ejected fragments  

▪ The automatised definition of the grid in Keplerian 
elements reduces the user’s responsibilities, granting 
accuracy independently of the fragmentation type

▪ The semi-analytical computation of the impact rate 
dramatically improved the accuracy and efficiency in the 
estimation of the fragmentation effects

▪ The model, being agnostic to the force model, proved 
validity under complex dynamical regimes

Coclusions & Future works

Future works

▪ Extensive validation of the model against Monte Carlo 
simulations

▪ Application of the model for estimating sustainability 
indices in any orbital region
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