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A B S T R A C T   

Access to reliable and sustainable electricity is still precluded for a large share of global population living in rural 
areas of developing countries, especially in sub-Saharan Africa. Hybrid microgrids are considered a suitable 
solution for providing affordable and reliable access to electricity to isolated communities. Properly planning and 
sizing such systems is although an aspect that can greatly influence the sustainability of the intervention, and the 
arrival to the market of the third generation minigrids poses new challenges to the process. Three main chal-
lenges are identified as pivotal for the proper sizing of new generation microgrids: arrival of the main grid, 
inappropriateness of Net Present Cost as only objective function in the strategy selection process, and necessity to 
operate on already existing minigrids. Such aspects are addressed in this work by proposing a methodological 
advancement to an existing open-source microgrid sizing model: a grid outage model alongside the definition of 
new constraints and variables for the optimization problem with grid-connected microgrids, a multi-objective 
optimization option, and a brown-field optimization option. The new version of the model is tested on real 
life case studies in rural Rwanda (greenfield) and Mozambique (brownfield), proving the profitability of grid- 
connected and grid-extension solutions for sufficiently low connection distances. Sensitivity analyses are per-
formed to assess variations in system size, cost and CO2 emissions with respect to microgrid and grid connection 
parameters.   

1. Introduction 

As remarked during the last COP26 in Glasgow, in the global 
discourse around the Energy Transition that the world will need to un-
dergo, universal access to energy is a fundamental aspect that cannot be 
neglected [1]. As highlighted by the IEA and IRENA in their last joint 
report, still 759 million people lacked access to a reliable and sustain-
able source of electricity [2]. The main share, namely 75%, of this 
population is located in Sub Saharan Africa, and 84% of the population 
with no access resides in rural areas of the continent [3]. 

Among the existing technological solutions, microgrids proved to be 
particularly suitable for granting access to populations that reside in 
rural area, and hence distant from the national T&D grids, and that 
present high population density and demand [4]. According to the 
World Bank, microgrids are expected to represent the solution for 

alleviating the issue of lacking access to electricity for “half a billion 
people” worldwide [5]. 

Microgrids are stand-alone electricity supply systems, that can count 
from some kW up to few MW of supply capacity [4]. Originally they 
were mainly diesel generator based, but in the last decade microgrids are 
more and more deployed in hybrid forms, including solar PVs, wind 
turbines and pico-hydro turbines, depending on the resource availability 
of the area [6]. Finally, the most recent and so-called third generation 
microgrids [7] are designed to be ready for eventual connection to the 
national grid, representing a huge step forward considering the issue 
that has been in the past the arrival of the main grid to a village powered 
by a microgrid [8]. 

The design of reliable and appropriate off-grid energy system is 
usually critical. The energy needs of people who are susceptible to the 
uncertainty of possible energy consumption evolution through time 
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must be considered, taking into consideration site-specific characteris-
tics of each target community [9]. 

In this field, energy system models can play a pivotal role in guiding 
informed policy decisions trying to capture the complexities related to 
the time-evolving boundary conditions, comparing alternative energy 
system configurations and energy mix combinations to find the optimal 
solution, as thoroughly reviewed in a recent publication that categorizes 
111 studies that adopt optimization models for rural electrification 
support [10]. 

Four main challenges are identified by the authors in current state of 
the art microgrid optimal sizing tools, presented below.  

(i) Net Present Cost alone is not a sufficient decision parameter in energy 
system sizing: 

Most optimization tools are focused on single-objective optimization 
that does not allow to capture the complexity of an intervention of 
rural electrification. Multi-objective optimization could be a solution 
to address economic, social and environmental objective evaluating 
different trade-off between these criteria, especially in the rural 
electrification sector where different stakeholders (companies, pub-
lic institutions, NGOs) with different priorities are involved. This is 
crucial in this type of projects given the multiplicity of impacts on the 
community involved and the interconnection between them. The 
result of multi-objective optimization would be a Pareto frontier 
providing the decision maker with a more comprehensive view of the 
possible alternatives and allowing him to take more informed de-
cisions. Exceptions to this are represented by Dufo-Lopez [11] that 
included a multi objective optimization on NPC, HDI and Job Crea-
tion and Petrelli [12] that optimizes on NPC, LCA emissions, Land 
Use and Job Creation.  

(i) Third generation minigrids and the arrival of the main grid: 

It has been observed how the arrival of the main grid at the microgrid 
location causes issues such as technology abandonment [8]. But the 
arrival of the main grid can be an asset, third generation microgrids 
are built with a compatibility with the connection to the national 
grid [7] and sizing a microgrid from the first year considering that at 
a given year the national grid will arrive is a key aspect that can grant 
a strategic advantage to the planning of the system. Exception is 
made for Homer® PRO [13], a diffuse proprietary software devel-
oped by NREL.  

(i) The necessity to operate on already existing minigrids: 

From the review of the literature [10] regarding the energy system 
optimization models, it is noticed the absence of tools to design and 
optimize a so-called Brownfield Investment. Brownfield investment 
is the act of purchasing or leasing existing production facilities to 
launch a new production activity, this is a strategy used in foreign 
direct investment [14]. The alternative to this is a greenfield in-
vestment, in which a new plant is constructed. The clear advantage 
of a brownfield investment strategy is that the facilities are already 
constructed. The costs and time of starting up may thus be greatly 
reduced and the plant already up to code. Only Alsaidan [15] pro-
poses a storage system expansion optimization. 

Finally, Jaszczur [16] proposes a NPC–CO2 optimization also for 
grid-connected systems but only optimizes the sizing, without the 
dispatch, grid reliability is not modelled, and brownfield is not an 
optimization option. 

Building on previous modelling experience of the authors [17–19] 
the proposed methodology is implemented into the modelling frame-
work MicrogridsPy [20]. It is an open-source python-based model 
conceived for the optimization of hybrid electric microgrids, including 

solar PV, wind turbines, diesel genset and batteries. 
MicroGridsPy model provides a solution to the problem of sizing and 

dispatch of energy in microgrids in isolated places at village scale with a 
time resolution of 1 hour and time evolving load demand. The model is 
based on two-stage stochastic optimization, where the main optimiza-
tion variables are divided into first-stage variables (rated capacities of 
each energy source) and second-stage variables (energy flows from the 
different components), to deal with the high level of uncertainty asso-
ciated with renewable energy potential forecasts and the complex dy-
namics that govern the current and future evolution of electricity 
consumption in rural settings (parametric uncertainty) [21], while LP or 
MILP formulation can be used to tackle the imperfect mathematical 
representation of component operation (structural uncertainty), mainly 
related to the modelling of non-linear behavior. The optimization is 
performed in Python using Pyomo Library. Energy balance, VRES gen-
eration constraints, Battery charge/discharge constraints, Genset gen-
eration constraints are the main constraints of the model while 
regarding the objective function, it’s possible to switch between NPC 
and Operation Cost minimization. 

The work presented will add to existing knowledge in the following 
ways:  

(i) It will introduce a multi-objective optimization option to the tool, 
adding CO2 emissions of generation technologies to the already 
existing NPC objective function.  

(ii) It will include in the tool the possibility to account for the arrival 
of the main grid to the microgrid at a given year, accounting for 
the possibility to purchase from the grid and sell to the grid at 
different prices, and to model the national grid reliability. 

(iii) It will include the possibility to optimize a brownfield interven-
tion to an existing microgrid, namely taking into account already 
installed generation and storage capacity of the system. 

The remainder of the paper is structured as follows: Section 2 will 
describe the methodology adopted to implement the features in the 
model, Section 3 presents the two case studies to which the model is 
applied to and Section 4 reports the respective results. Finally, Section 5 
draws conclusions and policy implications deriving from the study. 

2. Methodology 

2.1. Multi objective 

A generic multi-objective optimization can be expressed as follows 
(considering minimization problem): 

minf (x) =
[
f1(x), f2(x), . . . ., fj(x)

]

s.t. yi (x) ≤ 0 i ∈ 1…m (1)  

hl (x) = 0 l ∈ 1...q  

x = [x1, x2, . . . ., xn]

where f(x) is the j-dimensional vector of the objective functions, 
dependent on the n-dimensional vector of decision variables x. The 
problem is subject to m inequality constraints and q equality constraints. 
The goal of multi-objective optimization is to find the solutions as close 
as possible to the Pareto frontier. 

The Pareto frontier is composed by the set of so-called non-domi-
nated points, i.e. solutions in which the performance of one objective 
function cannot be improved without worsening at least one other 
objective function [22,23]. The most used and efficient algorithms for 
the solution of multi-objective problems are the weighted sum method 
[24,25], which is typically used when the objective functions belong to 
the same sphere of interest, and the ε-constrain method [26–28], which 
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is able to represent the entire pareto frontier independently from its 
shape and will be adopted in this study. 

The ε-constrain method transforms the multi-objective optimization 
in several single-objective optimization. For sake of simplicity, two 
objective functions are considered, and process is shown in Algorithm 1. 

Firstly, the optimization of the first objective function f1(x) is per-
formed to evaluate simultaneously the minimum value of f1(x) and the 
maximum value of f2(x), named f2. Therefore, the optimization of f2(x)
follows determining the minimum value of f2(x), named f2, and the 
maximum value of f1(x). At this point according to the number of 
possible solutions (p) on the Pareto frontier the user wants to analyze, 
the range between f2and f2 is divided into (p-1) intervals, with a reso-

lution of step = r2
p− 1, where r2 =

(
f2 − f2

)
represents the range of vari-

ation of f2(x), in order to obtain a p-dimensional vector F2, which 
contain all the equidistant values of f2(x), included f2and f2. An iteration 
cycle with single-objective optimization using f1(x) as objective function 
can be performed taking into consideration f2(x) as equality constraint, 
changing at each iteration it its value, as shown in Eq. (2). For every 
iteration it, the values of f2(x) is updated and equal to F2(it), where it ∈
{1,…,p}. 

minf1(x)

s.t. f2(x) = F2(it) it ∈ 1...p  

yi (x) ≤ 0 i ∈ 1…m (2)  

hl (x) = 0 ∈ 1...q  

x = [x1, x2, . . . ., xn]

In this work the two objective functions taken into consideration are 
the Net Present Cost (or the Operation Cost) and the CO2 emissions to 
focus simultaneously on economic and environmental aspects, with the 
latter that has gained a greater interest in the last years. In particular, 
Life Cycle Assessment could be taken into account to quantify the 
emissions along the whole life-cycle of the assets and not only the direct 
emissions from the operation of the energy systems in order to avoid 
incomplete and misleading evaluations. In case single-objective opti-
mization (minimization of NPC) is selected, the CO2 emissions of the 
optimal configuration are computed according to the capacity installed 
of each component and to the optimized operational dispatch strategy. 

To perform an accurate evaluation of the microgrid impact, emis-
sions have been considered in terms of LCA, i.e. accounting for con-
struction, installation, operation and disposal of the assets. CO2 
emissions related to the transportation of fuel and technologies are not 
considered because too specific to the location and difficult to assess 
accurately. The mathematical formulation of CO2 emissions for each 
component c is reported in Eqs. (3)–(5), where ec is the specific emis-
sions of each component. 

CO2res =
∑R

r

(
eres

r ⋅
(

Nres
r,u=1 − Nres,inst

r

)
⋅Cres,unit

r

)

+
∑R

r

(

eres
r ⋅
∑steps

u=2

(
Nres

r,u − Nres
r,u− 1

)
⋅Cres,unit

r

)

(3)  

CO2batt = ebatt⋅
(
Cbatt,nom

u=1 − Cbatt,nom)+
∑steps

u=2

(
Cbatt,nom

u − Cbatt,inst
u− 1

)
(4)  

CO2gen =
∑G

g

(
egen

g ⋅
(

Cgen,nom
g,u=1 − Cgen,inst

g,u

))

+
∑G

g

(

egen
g ⋅
∑steps

u=2

(
Cgen,nom

g,u − Cgen,nom
g,u− 1

)
)

(5)  

Where CO2res, CO2batt and CO2gen are, respectively, the CO2 emissions 
related to the installation of, respectively, the renewable components, 
the batteries and the generators. Furthermore, eres

r , ebatt and egen
g 

expressed in 
[

tonCO2
kW

]
are the specific emissions related with the installa-

tion of the component. The three equations are structured in the same 
way, and Eq. (3) can be used to explain the logic. The emissions related 
with the installation of all the renewable components R is the sum of the 
emissions related with the installation of all the r components. The 
emissions related to every r component are calculated as the sum of two 
different installation periods: i) the first round of installation when the 
first batch of units Nres

r,u=1 installed during investment period u = 1 
reduced by the already existing units Nres,inst

r in case of brownfield and ii) 
the marginal increase of unit of every following investment period 
∑steps

u=2 (Nres
r,u − Nres

r,u− 1) both multiplied by the size of the unit in [kW]. 
The fuel-fired generators and the electricity supplied by the national 

grid are the only contributing emissions during the operational phase 
and are calculated in Eqs. (6) and (7). 

CO2fuel
s =

∑G

g
efuel

g ⋅

(
∑years

y

(
∑periods

t

Egen
s,g,y,t

ηgen
g ⋅LHVfuel

g

))

(6)  

CO2grid
s = egrid⋅

(
∑years

y

(
∑periods

t
EfromGrid

s,y,t

))

(7) 

In each investment decision phase, CO2 emissions are calculated 
based on the capacities installed. The capacity previously installed for 
each technology is not considered in the computation of CO2 emissions 
linked to the manufacture, installation and operation of each technology 
when brownfield investment optimization is used. The model also gives 
the possibility to consider only direct emissions due to fuel-fired gen-
erators (diesel specific emissions equals to 3.15 kgCO2/lt) and to the 
electricity purchased from the grid (specific emissions in Section 2.1.1), 
neglecting the LCA emissions connected to the construction, installation 
and disposal of the technologies. 

The extreme solutions Min_NPC and Min_CO2 on the curve represent 
the single-objective optimization results referred, respectively, to the 
minimization of NPC and CO2 emission. Both optimal Pareto frontiers 
have an exponential trend because in order to reduce CO2 emissions, a 
slight increase in the NPC is required in the first instances, while after 
the first points, a significant increase in the NPC, mainly due to 
deployment of progressively larger capacity of cost-ineffective technol-
ogies like WT, is required for further emission reduction thanks to its low 
specific emission. This is evident looking to the differential increment/ 
decrement of emission and NPC passing from the point at minimum NPC 
to the one at minimum emissions on the curve with LCA emissions used 
as example. From SINGLE_NPC to MULTI_1 the CO2 emissions decrease 
of 224.44 ton while the NPC increases of 1.7%. On the other side, from 
MULTI_3 to SINGLE_CO2, with the same decrease of emission, the NPC 
increases of 47.1%. This trend can be observed between all the 

Algorithm 1 
ε-constrain method with two objective functions.  

1: Calculate bounds: f1 = minf1(x) and f2 = maxf2(x) with f1(x) as objective function 
2: Calculate bounds: f2 = minf2(x) and f1 = maxf1(x) with f2(x) as objective function 
3: Initialize F1 and F2 

4: Ask to the user how many solutions (p) on the Pareto Frontier would analyze 
5: Calculate step =

r2

p − 1 
to create F2 

6: for it ∈ {1,…,p}
7: Solve (2) to obtain F1(it) with f2(x) = F2(it)
8: add F1(it) to F1 

9: End 
10: Display F1 and F2 and plot the Pareto Frontier 
11: Ask which couple of values satisfy the requests of the user 
12: Print out the results  
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consecutive points and it is emphasized when the multi-objective opti-
mization is applied to the brownfield investment case, as can be seen in 
some of the following case studies. Consequently, it’s evident that the 
point at minimum CO2 has important drawbacks related to the resulting 
large NPC. The same trend can be noticed in the case with direct emis-
sions only. 

2.1.1. National grid emissions 
In order to include in the analysis the direct CO2 emissions of the 

electricity supplied by the national grid, direct emissions related to 
national electricity generation are computed. Given the geographical 
scope of this study, the direct emissions of the national power systems of 
the 54 African Countries are computed. Indeed, the open-source nature 
of the tool allows future users to include emissions of different countries 
if needed. 

To calculate the direct emissions of the country’s power systems each 
country electricity mix is derived from the IEA Data & Statistics tool 
[29], and for the countries not available, from the IRENA country pro-
files [30]. Retrieved the electricity mix of the 54 countries, the as-
sumptions contained in Tables 1 and 2 are used to estimate the carbon 
intensity of the electricity sector. 

In Table 1 CHP stands for Combined Heat and Power and CCGT to 
Combined Cycle Gas Turbine as defined by the International Energy 
Agency Energy Technology Systems Analysis Program [31,32]. 

The full list of countries with relative electricity generation and 
calculated CO2 emissions is reported in Supplementary File SF-1. The 
calculated country-specific direct CO2 emissions egrid are used in Eq. (7) 
to compute the total direct CO2 emitted by the microgrid due to the 
usage of national grid energy. 

2.2. On-grid 

The reliability of national grid electricity supply has been accounted 
considering a 8760 h × Tproject matrix G (being Tproject the microgrid 
lifetime in years) filled with boolean values and representing the 
availability of the grid in a given hour of the year. The procedure applied 
for the calculation of G is based on grid power outages modelling by 
[21], in which the variables Outage Duration (OD) and Time Between 
Outages (TBO) are assumed to follow a two-parameters Weibull prob-
ability distribution. The use of Weibull distribution is consolidated in 
literature to model the behavior of components failure [35]. Weibull 
probability density function for a random variable X, defined for t ≥ 0, is 
given by: 

f (t) =
k
λ

(t
λ

)k− 1
exp
(

−
(t

λ

)k
)

(8)  

and its cumulative distribution function (CDF) is: 

f (t) = 1 − exp
(

−
(t

λ

)k
)

(9)  

where λ and k are the scale and shape parameters, here derived from 
[21]. Data about average number of outages in a year and average 
outage duration are also required to compute the total average outage 
duration in a year as: 

ODtot [h] = OD NO (10)  

being OD the yearly average outage duration and NO the yearly number 
of outages. The total average time in a year in which the grid is available 
is thus: 

TBOtot[h] = 8760h − ODtot (11)  

t = CDF− 1(r) = λ(− ln r)
1
k (12) 

The parameters TBOtot and ODtot are used as constraints to perform 
a random sampling of the above-described Weibull distributions. Sam-
pling from Weibull distribution is made with the inversion method, i.e. 
calculating time samples from the inverse Weibull CDF function: 

Firstly, a sampling from OD distribution is made, under the equality 
constraint between the sum of samples and ODtot in the period of grid 
connection: 

ti OD = λOD(− ln r)
1

kOD for i in 1...Nt, OD s.t.
∑Nti,OD

i
tOD = ODtot Tgrid

= = ODtot(Tproject − Tgrid connection)
(13)  

where Tgrid, Tproject and Tgrid connection are, respectively, the number of 
years of grid connection, the microgrid lifetime (in years) and the year at 
which the microgrid is connected to the national grid. Eq. (13) allows 
thus to obtain a set of values of outage duration whose sum respect the 
constraint imposed by input data in terms of total time at which the grid 
is not available. The same procedure is applied for TBO sampling with 
the constraint of same number of OD samples (i.e. same number of 
outages): 

tt, TBO = λTBO(− ln r)
1

kTBO for i in 1...Nt,TBO s.t. Nt,TBO = Nt,OD
(14) 

TBO list samples are then re-scaled to match the total TBO in the 
period of grid connection: 

t′ i, TBO = ti, TBO
TBOtot Tgrid
∑

ttt, TBO
(15) 

The lists of TBO and OD samples are used to construct the grid 
availability matrix G. Since each outage event is characterized by its 
TBO and duration OD (both expressed in hours), G is constructed for 
each year y as:  

• If y < Tgrid connection (i.e. microgrid not yet grid-connected), Gy,t =

0 ∀t, being Gy,t the element of the matrix G for year y and time-step t.  
• If y ≥ Tgrid connection, ones and zeros in number (rounded to integers) 

equal, respectively, to TBO and OD of outage O are placed in series. 
If, for instance, the first elements of TBO and OD are equal to n and m 
hours, respectively, then G1,t = 1 for t = 1…n and G1,t = 0 for t = n 
+ 1…n + 1 + m. 

The obtained G matrix is thus characterized by a number of columns 
equal to the number of years of the project, where the columns from y =

Table 1 
Assumed efficiency of power production technologies.   

Min Median Max Source 

CHP efficiency natural gas 0.33 0.34 0.35 [31] 
CCGT efficiency 0.5 0.575 0.65 [32] 
Efficiency of Oil Power Plant 0.31 0.365 0.42 [1] 
Heavy Fuel Oil Carbon Content – 0.27 

kgCO2

kWhth 

– [33]  

1 Interview with Ghana Energy Ministry. 

Table 2 
Direct emissions of sources of electricity generation considered in this study.  

Emissions electricity supply 

Technology Direct Emissions [gCO2 /kWhe] Source  

Min Median Max  

Coal [GWh] 670 760 870 [34] 
Oil [GWh] 643 740 871 Elaboration from Table 1 
Natural Gas [GWh] 350 370 490 [34] 
Other [GWh] 530 626 910 Elaboration from Table 1  
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1 to y = Tgrid connection − 1 are filled with null values. The underlying 
assumption is that connection to the grid takes place from the beginning 
of year Tgrid connection. 

The LP optimization problem for a grid-connected microgrid requires 
the definition of the variables EtoGrid

s,y,t and EfromGrid
s,y,t (energy E exchanged to 

and from the national grid), defined on hourly time-step t of year y (for 
each scenario s) subject to maximum grid power constraint: 
⎧
⎨

⎩

EtoGrid
s,y,t <= Pmax, grid ⋅(1h)

EfromGrid
s,y,t <= Pmax, grid ⋅(1h)

(16)  

where Pmax, grid is the maximum active power exchangeable with the 
grid. Grid availability matrix is used to impose to 0 grid energy variables 
in the hours in which an outage occurs or the microgrid is not yet grid- 
connected: 
(

EtoGrid
s,y,t = 0 AND EfromGrid

s,y,t = 0
)

IF Gy,t = 0 (17)  

EtoGrid
s,y,t is imposed to be null also in the case of mono-directional grid, i.e. 

electricity selling not allowed: 

EtoGrid
s,y,t = 0 IF Monodirectional Grid = True (18) 

The overall microgrid energy balance constraint for each (y,t) step 
has been thus defined as: 

Edemand
s,y,t =

∑R

r
Eres

r,yt,t +
∑G

g
Egen

s,g,y,t + EfromGrid
s,y,t + Ebatt dis

s,y,t + Elost load
s,y,t − EtoGrid

s,y,t

− Ecurt
s,y,t − Ebatt ch

s,y,t

(19) 

Being Edemand
s,y,t the energy demand, Eres

r,yt,t energy produced by the 
renewable source r, Egen

s,g,y,t energy produced by generator g, Ebatt
s,y,t energy 

exchanged for charging and discharging of batteries, Elost load
s,y,t and Ecurt

s,y,t the 
lost load and the curtailment, respectively. Each energy flow is specific 
to scenario s, year y and hourly time-step t. The investment cost for grid 
connection is actualized at year 1: 

Invgrid [USD] =
Invgrid,km Dgrid

(1 + d)(Tgrid connection − 1) (20) 

Being d the discount rate, Dgrid the grid connection distance and 
Invgrid,km the specific connection cost per km. Total actualized grid vari-
able O&M costs and revenues are defined as: 

O&Mvar,grid =
∑Tproject

y = 1

∑8760

t = 1

EfromGrid
s,y,t pel, purchased

(1 + d)y (21)  

Rgrid =
∑Tproject

y = 1

∑8760

t = 1

EtoGrid
s,y,t pel, sold
(1 + d)y (22)  

where pel, purchased and pel, sold are the buying and selling price of 
electricity from/to the grid, respectively. Fixed O&M costs for power 
line and transformer maintenance are defined as: 

O&Mfixed,grid =
∑Tproject

y = Tgrid connection

Invgrid,km Dgrid xO&M

(1 + d)y (23)  

where xgrid,O&M is the fraction of grid O&M costs with respect to in-
vestment costs. All the grid cost components have been accounted in the 
total investment and O&M costs. 

2.3. Brownfield 

The new brownfield investment feature introduced in the model al-
lows to perform the optimization of the microgrid taking into 

consideration the availability of technologies previously installed in the 
field by others. The new feature requires modification of some existing 
constraints and to add others. 

Firstly, new constraints related to energy production of each energy 
source has to be included. The energy yield at each timesteps t by each 
type of renewable energy source technology r Eres

r,yt,t, u=1 at the first in-
vestment decision step (u = 1) has to be equal or higher than the energy 
produced by the capacity already installed on the field, as shown in Eq. 
(24), where Eres,unit

r,t,u=1 is the energy output of a single unit of each RES 
technology r, Nres,inst

r is the number of units of r already installed (inst) on 
the field and ηres,inv

r is the efficiency of the inverter (inv) connected to r. 
Regarding the generator’s capacities Cgen,nom

g,u=1 and the battery bank’s ca-

pacity Cbatt,nom
u=1 in the first investment decision step (u = 1), instead, as 

shown by Eqs. (25) and (26), respectively, these must be equal or higher 
than the capacity already mounted on the field (respectively Cgen,inst

g for 
each generator type g and Cbatt,inst for the battery bank). 

Eres
r,yt,t, u=1 ≥ Eres,unit

r,t,u=1 ⋅ ηres,inv
r ⋅ Nres,inst

r (24)  

Cgen,nom
g,u=1 ≥ Cgen,inst

g (25)  

Cbatt,nom
u=1 ≥ Cbatt,inst (26) 

The total investment cost (Invc) of each component c (c can stand for 
renewable energy source technologies res, generators gen and batteries 
batt) is evaluated as the actualized sum of the single investment step 
made at each capacity-expansion decision step u, with the investment 
cost of each technology at the first investment decision step equal to the 
investment cost due to the total capacity installed in the first step minus 
the investment cost of the capacity already connected to the microgrid, 
as shown in Eqs. (27)–(29) for each component: 

Invres =
∑R

r=1

⎛

⎝
(

Nres
r,u=1 − Nres,inst

r

)
⋅Cres,unit

r ⋅Ures
r

+
∑steps

u=2

[
Nres

r,u − Nres
r,u− 1

]
⋅Cres,unit

r ⋅Ures
r

(1 + d)y

⎞

⎠

(27)  

Invgen =
∑G

g=1

⎛

⎝
(

Cgen
g,u=1 − Cgen,inst

g

)
⋅Ugen

g +
∑steps

u=2

[
Cgen

g,u − Cgen
g,u− 1

]
⋅Ugen

g

(1 + d)y

⎞

⎠

(28)  

Invbatt =
(
Cbatt

u=1 − Cbatt,inst)⋅Ubatt +
∑steps

u=2

[
Cbatt

u − Cbatt
u− 1

]
⋅Ubatt

(1 + d)y (29)  

where Uc is the unitary cost of each technology c, Cc
u is the capacity of 

each component c at the investment decision step u and d is the discount 
rate. 

These last modifications allow to neglect the cost of investment of the 
components present on the field, before the implementation of the 
current project, in the first investment decision step modifying the 
optimization process based on cost minimization approach. 

Another modification is related to the salvage value (SV) of the 
installed components at the first step of investment calculated as the 
residual values at the end of the lifetime of the energy system, as shown 
in Eqs. (30) and (31), where TLTc represents the total lifetime of each 
component c and Y is the total number of years of the time horizon. 

SVres =
∑R

r=1

⎛

⎝

(
Nres

r,u=1 − Nres,inst
r

)
⋅Cres,unit

r ⋅Ures
r ⋅
(
TLTres

r − Y
)

TLTres
r

⋅
1

(1 + d)Y

⎞

⎠

+
∑res

r=1

(
Nres,inst

r ⋅Cres,unit
r ⋅Ures

r ⋅
(
TLTres

r − Yres
r − Y

)

TLTres
r

⋅
1

(1 + d)Y

)

(30) 
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SVgen =
∑G

g=1

⎛

⎝

(
Cgen

g, u=1 − Cgen,inst
g

)
⋅Ugen

g ⋅
(

TLTgen
g − Y

)

TLTgen
g

⋅
1

(1 + d)Y

⎞

⎠

+
∑G

g=1

⎛

⎝
Cgen,inst

g ⋅Ugen
g ⋅
(

TLTgen
g − Ygen

g − Y
)

TLTgen
g

⋅
1

(1 + d)Y

⎞

⎠ (31)  

3. Case study and scenarios definition 

The villages in question are classic examples of rural settlements with 
a dispersed population, a predominantly subsistence agricultural econ-
omy, few public facilities, and little private economic activities. 

3.1. Mozambique 

The village of Chissinguana (Table 3) is located in the Province of 
Sofala, District of Búzi, administrative post of Estaquinha and has 
25,622 inhabitants, with 1406 at the headquarters. 

The microgrid installed by FUNAE in 2018 is composed by 120 PV 
modules of 250 W each made of 60 Polycrystalline Silicon Cells for a 
total capacity of 30 kW and 144 tubular VRLA batteries of 1400 Ah and 
2 V each for a total capacity of 403.2 kWh. The microgrid is equipped 
with 6 photovoltaic inverters with nominal AC power of 5000 W and 
maximum DC power of 5500 W and 3 battery inverters a nominal AC 
power of 6000 W and maximum DC power of 8000 W. 

FUNAE deployed the microgrid after conducting a load demand 
study prior to construction in 2017, expecting a peak demand of roughly 
10 kW. Despite the previsions made by FUNAE, the microgrid results 
inadequate to satisfy the energy needs of the community after just 4 
years from its construction as can be seen comparing the operations of 
the microgrid with respect the load demand in 2021. Thanks RAMP and 
the information collected on the field, it’s possible to evaluate the daily 
average load demand curve for each class of users (Households, Public 
Services and Productive Activities) and the aggregated daily average 
energy demand curve (Fig. 1), from which is possible to note a peak 
demand of around 35 kW, more than 3 times the peak demand evaluated 
by FUNAE in 2017. 

Consequently, the microgrid results inadequate to meet the energy 
demand of the community due to an inappropriate design of the 
microgrid made by FUNAE. This obviously determines an important 
amount of lost load (yearly lost load of 88,253.3 kWh, that corresponds 
to 61% of the yearly total demand). Despite the important battery bank 
capacity installed, their usage factor (6%) is very limited due to the 
inability of the PV modules to recharge the batteries completely. The PV 
capacity installed, in fact, results too low to satisfy the demand (only 
39% of the yearly total demand is covered by the PV modules) and 
simultaneously recharge the batteries. The absence of a fuel-fired 
generator is another important issue, reducing dramatically the reli-
ability of the microgrid especially during the hours in which the PV 
modules are not able to produce electricity. Moreover, the system is 
subjected to frequent shutdown due to technical issues. In this context, 
the new brownfield investment feature introduced in MicroGridsPy can 
provide a technical solution to specifically address these issues. 

In order to better design the possible future interventions on the 
microgrid, starting from the previous load demand, different assump-
tions were made to evaluate the long-term evolution of the energy 
consumption for the remaining lifetime of the microgrid. The results of 
this assessment performed by means of RAMP are showed in Fig. 2. 

3.2. Rwanda 

For this case study the hybrid off-grid microgrid installed in Ruten-
deri village, in Gatsibo district, will be considered. The project, realized 
between 2017 and 2018 with no previously installed capacity, consists 
of a PV plant of 50 kW of nominal power, a lead acid battery storage 
system of 100 kWh and a back-up diesel generator of 50 kVA. The 
microgrid provides electricity through a LV distribution grid to 505 
users, composed as reported in Table 4. 

Since no data regarding the production from the PV system and the 
load profile, these have been estimated as follows. The calculation of 
hourly time series for PV energy production in the TMY is based on 
resource data by NASA POWER [36] for GHI and air temperature, pro-
vided as input to a PV performance model (additional data provided in 
Supplementary information SI-1). 

Load demand is assessed applying the same methodology adopted by 
the authors in [37]. In previous work the authors developed a set of load 
archetypes for 5 different wealth tiers of rural households in Kenya, 4 
tiers of rural health centers and of a typical primary school. The same 
archetypes are assumed valid for this context, given the geographical 
proximity and cultural similarities [38]. 

The archetypes composition has been thus constructed as reported in 
Table 5. Public institutions are assumed to have the highest demand and 
are considered as HHs of tier 5. The commercial activities are considered 
HHs of tier 4. The remaining HHs are splitted such that the computed 
annual energy demand is obtained (Fig. 3). 

4. Results and discussion 

In this section the results for the off-grid and grid-connected con-
figurations will be presented with a particular focus on the comparison 
between them in terms of capacity installed, costs and direct CO2 
emissions. For Rwanda case study a greenfield investment analysis will 
be carried out while for the Mozambique one, the presence of already 
functioning microgrid makes preferable a brownfield investment 
approach. In each case the results for three points of the Pareto curve 
obtained with the multi-objective optimization will be discussed to 
underline the variation of the technologies capacities and costs in case of 
CO2 emissions reduction. 

The grid-connected configurations for the three points of the Pareto 
curve will be the base cases for the following sensitivity analysis on 
different grid parameters to evaluate how the distance from the national 
grid, the year of connection, the price of electricity sold from the 
microgrid to the national grid influence the design of the microgrids and 
their costs. Four different sensitivity analyses have been considered for 
the two case studies:  

• National grid extension (only for Rutenderi): sensitivity to CO2 
emissions and grid connection distance. 

• Grid-connected microgrid: sensitivity to CO2, grid connection dis-
tance and electricity selling price.  

• Grid-connected microgrid: sensitivity to CO2 emissions and year of 
grid connection. 

• Grid-connected microgrid: sensitivity to CO2 emissions and reli-
ability of the national grid. 

In the following analysis only PV panels, battery bank and diesel 
genset will be considered for the microgrids design while wind turbines 
will be neglected for the very low wind speed, which characterizes the 
areas considered making them economically inconvenient. Moreover, 

Table 3 
General information of the chissinguana village.  

Location (Lat. 
Lon.) 

Lat. - 20◦12́16.51́́S; Lon. - 34◦09́19.86́́E; 
53 km from Muxungue village where there is the nearest 
national electricity grid, located in Sofala province 

Population 25,622 
Beneficiaries 65 
Social services Health center, School, Police office, Secretary of the locality 
Productive 

activities 
Bars, Tents, Barbershops, Tailor workshops, Mills  
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only direct emissions will be considered for the difficulties in evaluating 
the emissions related to the construction, transportation, installation 
and disposal for each technology. 

4.1. Chissinguana village 

The microgrid that is currently set up on the field is unable to provide 
for the entire demand. The best strategy to fix the problems with this 
energy system is the brownfield investment approach. To fully meet the 
long-term evolving demand, this strategy results in an increase in 
installed capacities compared to the original asset. Particularly, the 
problem associated with the microgrid’s low reliability is significantly 
diminished by the installation of a diesel genset and the already 
important installed battery bank capacity makes convenient the 
deployment of PV modules. 

Fig. 4 illustrates how the multi-objective optimization can be used to 
compare the costs (NPC) and emissions of various solutions. 

As anticipated, the significant reduction in CO2 emissions causes a 
gradual rise in the NPC. With a 634.87 ton decrease in CO2 emissions, 
the NPC increased by 8.9% from the Min_NPC point to the Intermediate 
point, but increased by 189.9% from the Intermediate point to the 
Min_CO2 point. This is primarily because, when compared to the 
expense of a diesel generator, cost-ineffective technologies like PV and 
batteries have steadily increased capacity. In particular, decreasing the 
CO2 emissions, the installed capacity of PV panels and battery bank 
(such as the yearly average renewable penetration and battery usage) 

Fig. 1. Energy dispatch strategy for the existing microgrid for three consecutive days (on the left) and average daily load demand by sectors (on the right).  

Fig. 2. Long-term evolution of load demand for Chissinguana.  

Table 4 
General information of the rutenderi rural area.  

Location (Lat. Lon.) Lat. − 1◦ 33′ 56.4′’ S; Lon. 30◦ 21′ 3.4′’ E; 
1.2 km from Point of Common Coupling (PCC) with 30 kV line 

Households 457 
Public institutions 7 
Productive 

activities 
36  

Table 5 
Assumed parameters for the construction of the 
total demand from archetypes.  

Parameter Value 

HHs Tier 1 252 
HHs Tier 2 160 
HHs Tier 3 50 
HHs Tier 4 36 
HHs Tier 5 5 
Schools 1 
Hospitals Tier 2 1  
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increases in favour of diesel genset capacity (such as the yearly average 
genset share over the total production) in order to limit the emissions 
related to fuel consumption. The absence of diesel genset in the 
Min_CO2 point allows to completely cut off the CO2 emission with a cost 
for the CO2 avoided equal to 585.1 USD/tonCO2 Table 6. 

Connecting the microgrid to the national grid, as part of the 
brownfield investment approach, leads to a strong increase of the NPCs 
for each point of the Pareto curve (Fig. 5), mainly due to the prohibitive 
investment cost for the extension of the national grid from the nearest 
point situated at 53 km. On the other side, the CO2 emissions are 
strongly decreased thanks to the reduction of diesel consumption. 

The main grid connection determines a rough reduction of the 
installed genset capacity in the microgrid compared to off-grid config-
urations, but the reduction of the average annual genset share over total 
production is more significant (for instance, in the Min_NPC point, the 
average annual genset share is 0.04% with respect the 27.05% in the off- 
grid case). Because it is less cost-effective than electricity from the na-
tional grid (yearly average grid usage equals 53.70% in the Min_NPC 
point), the diesel generator is only used when the main grid is down. 

Additionally, as shown in Table 7, the opportunity to sell the electricity 
generated by the microgrid to the national grid determines an increase 
in the PV installed capacity, determining an important flow of revenues, 
particularly in the first years, and drastically reducing the curtailment 
(in the Min_NPC point, the yearly average curtailment is 0.10% versus 
the 9.26% in the off-grid case). Finally, the connection to the national 
grid limits the battery usage and, consequently, the need of important 
battery bank capacity like in the previous case for the Min_NPC and 
Intermediate point. 

As for the off-grid case, minimizing the CO2 emissions results in a 
complete avoidance of the embedded emissions to the main grid’s 
electricity as well as the direct emissions associated to fuel consumption. 
Consequently, the microgrid configuration in the Min_CO2 point re-
mains unaltered between the off and on-grid cases, with the electricity 
produced in excess by the microgrid sold to the main grid but insuffi-
cient to cover the important grid investment cost. 

This initial comparison of grid-connected and off-grid configurations 
shows that there is no cost-effective alternative to the off-grid design 

Fig. 3. Households load demand by wealth tier (left) and village total demand by sector (right).  

Fig. 4. Pareto frontier for off-grid configuration.  

Table 6 
Capacity installed in off-grid configuration.  

Component Unit Min NPC Intermediate Min CO2 

PV panels kW 119.03 157.69 721.22 
Battery bank kWh 464.61 708.32 1177.01 
Diesel genset kW 34.86 29.42 0  

Fig. 5. Pareto frontier for grid-connected configuration.  

Table 7 
Installed capacity in grid-connected configuration.  

Component Unit Min NPC Intermediate Min CO2 

PV panels kW 142.22 156.94 721.23 
Battery bank kWh 403.20 436.17 1176.94 
Diesel genset kW 27.43 24.68 0  
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when the main grid is expanded to reach the microgrid, which is located 
53 km from the nearest national grid point. However, assuming to make 
the grid-connected configuration a competitive alternative, it is 
conceivable to identify a break-even distance for each examined point of 
the Pareto curve that makes the NPC of the grid-connected case equal to 
that of the off-grid scenario (Table 8). 

Each point on the Pareto curve has a different break-even distance 
based on the NPC of the grid-connected and off-grid configurations. 
Since the Intermediate point has the smallest difference, a greater dis-
tance can be accepted to maintain the competitiveness of the grid- 
connected design. 

4.1.1. Sensitivity on fuel price 
These days, the global rise in fuel prices is having a significant 

impact. Fuel (particularly diesel) is continuously utilized in this type of 
application to power fuel-fired gensets that significantly boost the en-
ergy system’s reliability by meeting peak energy demand or during the 
night. 

Because of this, it could be useful to conduct a sensitivity analysis on 
fuel prices to determine how a potential rise of 10%, 20%, or 25% in fuel 
prices might affect the development and operation of an off-grid energy 
system. 

In Table 9, only the point at minimum NPC is taken into consider-
ation. Due to the rising cost of fuel, genset capacity is being roughly 
reduced in favour of PV panels and batteries, which are required to meet 
a larger portion of the night load in place of genset production. Natu-
rally, this results in greater expenditures, mostly in the form of higher 
investment costs, but it also results in a decrease in CO2 emissions due to 
fuel use and a decline in the average annual genset share. 

Fuel price fluctuations in the grid-connected example have minimal 
effects on system size and expenses. This is because the diesel generator 
is generally used briefly and is typically only employed in cases of na-
tional grid failure. As a result, the microgrid’s energy plan dispatch is 
unaffected continuously by fuel price increases, and NPC growth is not 
very noteworthy. 

4.1.2. Sensitivity on distance and selling price 
The distance of the microgrid from the nearest point of the main grid 

and the price at which any excess electricity generated by the microgrid 
might be sold to the national authority (electricity selling price) are two 
crucial elements in the description of the connection of the national grid 
to the off-grid system. These two factors have an impact on the micro-
grid’s size, energy dispatch strategy, and subsequently, associated costs 
and emissions. 

For each Pareto point, Fig. 6 shows the linear variation of the NPC in 
relation to the distance between the microgrid and the nearest national 
grid point. The NPC modification based on the selling price of electricity 
produces more interesting results. The NPC increases progressively as 
expected when it moves from an electricity selling price equal to the 
electricity buying price (100% case) to the no selling case. 

At the same way, the variation of the CO2 emissions can be observed 
in Fig. 7, where a different trend can be noticed with respect the NPC 
one. The distance fluctuation has no impact on CO2 emissions since it 
has no bearing on the microgrid’s energy dispatch strategy. The lowest 
emissions are found at the point when the price of electricity sold is 
equal to 50% of the price of power purchased, followed by the point 
where no electricity is sold and the point where the price is 100%. 
Furthermore, regardless of the price at which power is sold, emissions 

are always zero for the alternatives with the lowest CO2 emissions. The 
reasons of these trends can be better explained analysing the results for a 
specific distance, which are showed in Table 10. 

So first of all, it is possible to see that the larger NPC in the no-selling 
case due to the lack of grid profits is the only difference for the points at 
minimum CO2. The PV and BESS capacities significantly rise in the 50% 
case in the Intermediate and Min_NPC points (with respect the no 
selling case and the 100% case), significantly reducing the energy sup-
plied by the grid. The higher PV capacity installed determines a greater 
amount of electricity sold, even though the power selling price is lower 
than in the 100% case. Because of the considerable increase in the 
amount of electricity sold and consequent rise in associated revenues, it 
is still convenient to oversize the microgrid and produce more electricity 
than in the 100% case. This is because the increase in investment costs is 
less significant than the decrease in variable expenses. In the 50% sce-
nario, the larger share of PV generation enables a reduction in the grid 
share and diesel genset capacity (and, as a result, in the grid cost asso-
ciated with acquiring power from the grid), resulting in fewer emissions 
compared to the other two options. As there is no way to cut the variable 
cost through the sale of energy, the no selling situation instead tends to 
install lesser capacity, decreasing the investment cost. 

4.1.3. Sensitivity on year of connection 
The year that the microgrid is connected to the national grid has an 

impact on both the system’s size and energy dispatch strategy. 
Depending on the Pareto curve point taken into consideration, con-
necting the microgrid to the national grid after ten years from the off- 
grid system’s construction results in different outcomes. 

Comparing the configurations for year 10 of connection with respect 
year 1 Fig. 8:  

• At Min_NPC point, despite the grid’s absence for the first nine years, 
the PV capacity and diesel genset capacity are both lowered, but 
overall their annual average share of total production is increased 
(respectively, 70.13% versus 65.34% and 10.76% versus 0.04%) and 
also batteries play a larger role (19.21% versus 1.45%). Despite the 
decrease in investment costs, the sharp rise in fuel and battery 
replacement costs, as well as the inability to sell surplus power in the 
early years (cutting curtailment), leads in a moderate rise in NPC and 
CO2 emissions.  

• At Intermediate point, connecting the microgrid at the year 10 leads, 
instead, to an increase of the PV and battery bank capacities in favour 
of the diesel genset. The diesel genset share is still higher (3.98% vs 
0.03%) increasing the fuel cost, which when combined with reduced 
power sales revenues results in a rough increase of the NPC despite 
the lower actualized investment cost. In terms of emission the 
connection at the year 10 determines a total CO2 emissions three 
times higher than the case with the year of connection 1, mainly due 
to the important increase of fuel consumption in the first years.  

• Finally, at Min_CO2 point, the microgrid to the main grid at the year 
10 results in a smaller PV capacity installed in order to reduce the 
investment cost taking into account the lack of potential earnings in 

Table 8 
Break-even distances for each point of the Pareto curve.   

Break-even distance (km) 

Min NPC 16.09 
Intermediate 16.76 
Min CO2 15.18  

Table 9 
Variation of system size, CO2 emissions and NPC according to fuel price 
increment.  

Min NPC point 

Component Unit Base case 10% case 20% case 25% case 

PV panels kW 119.03 123.83 128.42 131.13 
Battery bank kWh 464.61 486.84 511.59 529.75 
Diesel Genset kW 34.86 33.34 32.74 32.32  

Objectives Unit Base case 10% case 20% case 25% case 

NPC kUSD 341.22 355.91 369.76 376.18 
CO2 emissions ton 1269.75 1188.60 1110.01 1060.64  
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the initial years. Overall, given the lower NPC in this situation, pri-
marily because of the lower investment cost, it ends up being more 
convenient to connect the microgrid to the main grid at year 10. 

4.2. Rutenderi village 

Optimization results for the off-grid configuration show a moderate 
increase of NPC (Fig. 9) shifting from Min_NPC point to the Interme-
diate (+3 kUSD). The achieved 50% reduction in direct CO2 emissions is 

obtained with additional PV and battery capacity (Table 11) and lower 
diesel consumption (− 5%). In the Min_CO2 point further PV and battery 
capacity is added and diesel genset is excluded, leading to a much higher 
NPC (82 kUSD) and no direct emissions. 

Grid-connected configuration, at 1:1 selling/buying price ratio, 
shows a significantly lower NPC (Fig. 10) compared to off-grid for both 
Min_NPC and Intermediate points. This is due firstly to the use of 
cheaper national grid electricity instead of batteries to satisfy the de-
mand in no PV production periods and secondly to the possibility of 

Fig. 6. Net Present Cost as function of grid distance and electricity selling price for maximum CO2, minimum CO2 and intermediate point (Chissinguana microgrid). 
The black dashed line represents the break-even distance for the intermediate point at 100% selling price. 

Fig. 7. Direct CO2 emissions as function of grid distance and electricity selling price for maximum NPC, minimum NPC and intermediate point (Chis-
singuana microgrid). 
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selling electricity to the grid. In Min_NPC point indeed no batteries are 
installed (Table 12) and diesel genset is sized as back-up for grid out-
ages. In the Intermediate point, both grid electricity and batteries are 
used to satisfy the night-time demand, with outages covered either by 
batteries or diesel genset depending on the available SOC. At Min_CO2, 
electricity is only sold to the grid relying on large PV and battery 
capacity. 

Assumed input data for off-grid and grid-connected configurations 
are available in Supplementary information SI-1. 

4.2.1. National grid extension 
National grid extension is considered to evaluate the profitability of 

exploiting the national power grid without the installation of a micro-
grid. NPC for grid extension Fig. 11) is a linear function of connection 
distance (Eqs. (20) and ((23)). The electricity from the national grid is 
used to supply the demand except for outage periods, where batteries 
(Min_CO2) or the diesel generator (Min_NPC) are employed. For the 
Min_CO2 point the achievable reduction in emissions is negligible (- 4 
ton) compared to a large increase in investment and fixed costs for large 
battery capacity (+97 kUSD). The break-even PCC distance, calculated 
with respect to the off-grid system in the Intermediate point, is lower 
(1.18 km) than the actual connection distance thus grid extension results 
to be less profitable than the off-grid solution. 

4.2.2. Sensitivity to battery bank capital cost 
An increase in battery bank capital cost may be determined by 

fluctuations in the price of components raw materials such as lithium. 
The recent increase in lithium price is considered a potential driver for 
the rise of lead-acid batteries price as well [39]. A sensitivity analysis has 
been thus performed for the off-grid configuration considering 3 

Table 10 
Capacities installed and main microgrid parameters with 2 km of distance.   

Min CO2 Intermediate Min NPC  

100% 50% NO 100% 50% NO 100% 50% NO 

PV panels (kW) 721.23 721.24 721.22 156.94 211.49 144.66 142.22 208.98 98.33 
BESS (kWh) 1176.94 1176.89 1177.01 436.17 658.36 624.79 403.20 403.20 403.20 
Diesel Genset (kW) 0.00 0.00 0.00 24.68 9.91 14.10 27.43 25.43 29.12   

Min CO2 Intermediate Min NPC  

100% 50% NO 100% 50% NO 100% 50% NO 

NPC (kUSD) 907.93 907.93 1110.90 174.15 273.40 339.28 152.82 232.23 294.72 
CO2 emissions (ton) 0.00 0.00 0.00 77.58 38.42 56.23 155.17 76.85 112.46 
Grid cost (kUSD) 0.00 0.00 0.00 88.80 39.67 59.77 206.37 89.03 129.60 
Grid revenues (kUSD) 360.19 275.37 0.00 160.65 135.08 0.00 251.75 155.99 0.00  

Fig. 8. NPC (red) and direct CO2 emissions (green) for year 1 and 10 of 
connection to the grid, for the three considered Pareto curve points. 

Fig. 9. Pareto frontier for off-grid configuration (Rutenderi microgrid).  

Table 11 
Comparison of system size in the off-grid configuration for three Pareto curve 
points.  

Component Min NPC Intermediate Min CO2 

PV capacity [kW] 58.5 65.6 93 
Battery capacity [kWh] 207.1 221.3 356 
Diesel genset capacity [kW] 3.9 3.4 0  
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percentage increments in battery cost. Results for the Min_CO2 point are 
reported in Table 13. Optimal PV installed capacity increases and bat-
tery capacity decreases until 20% growth in battery cost, after which 
components size remains fixed. This occurs since batteries are progres-
sively less used to support minimum PV production hours (at sunrise and 
sunset) and the gap is filled with additional PV capacity, until saturation. 

In Min_NPC and Intermediate points, higher battery cost leads 
instead to larger deployment of diesel genset and thus higher CO2 
emissions. 

4.2.3. Grid-connected: sensitivity to distance and selling price 
For different combinations of PCC distance and selling price, the NPC 

results (Fig. 12) show how selling electricity to the grid, even at 50% of 
buying price, leads to a 14% reduction (average for the 3 CO2 points) of 
NPC compared to only-purchase connection. Selling price determines 
different system sizes (Table 14) and CO2 emissions (Fig. 13): in 
Min_NPC at 1:2 selling/buying price ratio the optimal PV capacity is 
almost 5 times than in no-selling case, due to the profitability of over-
sizing the PV system and selling to the grid. Shifting from 1:2 to 1:1 price 
ratio optimal PV capacity is reduced by 40% while the revenues from 
electricity selling remain constant, i.e. electricity sold to the grid is 
halved. CO2 emissions, at fixed Pareto point, are constant with distance 
(no changes in system size and dispatch) and almost constant for 
different price ratios: the minimum is obtained at 50% owing to the 
maximum PV capacity installed. 

4.2.4. Grid-connected: sensitivity to year of connection 
The year of connection to the national grid strongly influences sys-

tem costs and configuration. The NPC, in case of connection at half of 

Fig. 10. Pareto frontier for grid-connected configuration (Rutenderi microgrid).  

Table 12 
Comparison of system size in the grid-connected configuration (1:1 selling/ 
buying price ratio) for three Pareto curve points.  

Component Min NPC Intermediate Min CO2 

PV capacity [kW] 57.4 66 93 
Battery capacity [kWh] 0 106.1 356.2 
Diesel genset capacity [kW] 22.6 5.3 0  

Fig. 11. Net Present Cost as function of connection distance for the 3 selected Pareto curve points (Min_CO2 emissions, Intermediate, Min_NPC) in the case of 
national grid extension. The dashed line represents the break-even distance with the off-grid system for the Intermediate point. 
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microgrid lifetime (year 10), results always higher than at the beginning 
of lifetime (Fig. 14). In the Min_NPC point, the optimization must ac-
count indeed for a period of off-grid operation, in which installing a 
storage system should be more convenient than diesel genset (Table 11) 
and a period of grid-connected operation, where diesel genset is more 
convenient than batteries (Table 12). The dispatch is thus characterized 
by the reliance on PV+batteries for the first 10 years of operation and on 
PV+grid in the remaining lifetime, with grid outages covered by 
installed batteries. Total CO2 emissions are instead higher connecting at 
the first year due to larger utilization of grid electricity. The same holds 
for the Intermediate CO2 point, which only differentiates for the smaller 
deployment of diesel. In the Min_CO2 point the difference in NPC is 

small and due only to electricity selling, which in the case of year 10- 
connection leads to higher PV and battery optimal capacity. 

5. Conclusions 

The goal of this paper was to propose a new set of features to an 
existing microgrid sizing tool in order to obtain a methodology up to 
date with the new challenges that the sector is facing. From an already 
established methodology of multi-year capacity expansion optimization 
of off-grid energy systems, able to work with two-stage stochastic opti-
mization, three different implementations are carried out. 

In order to include in the sizing logic the direct CO2 emissions related 
with the power generation of the microgrid, and allow the developers to 
consider a variety of options ranging from the least cost to the net-zero 
direct emission option, a two-objective optimization is introduced. 

The multi-objective optimization allowing for the evaluation of the 
lowest cost option, lowest CO2 options and an equilibrium between the 
two provides a policymaker both on national and local levels with a 
wider array of options and solutions. Such a flexibility of the model not 
only can help solving urgent problems and satisfy basic needs of the 
population, namely access to energy, but applying Maslow’s hierarchy 
of needs to energy sector, once these needs are covered, the develop-
ment process and the societal challenges like climate change may incite 
new demands, like conscious energy consumption and environmental 

Table 13 
Variation of system size, CO2 emissions and NPC according to fuel price 
increment.  

Min CO2 point 

Component Unit Base case 10% case 20% case 25% case 

PV panels kW 93 103.1 126 126 
Battery bank kWh 356 324.4 256.7 256.7 
Diesel Genset kW 0 0 0 0  

Objectives Unit Base case 10% case 20% case 25% case 

NPC kUSD 293.7 314.9 333.1 341.8  

Fig. 12. Net Present Cost as function of grid distance and electricity selling price for Min_NPC, Min_CO2 and Intermediate point (Rutenderi microgrid). The black 
dashed line represents the break-even distance for the Intermediate point at 100% selling price. 

Table 14 
Comparison of the optimal system size with no selling and selling price equal to 100% buying price, for the Min_NPC point.   

Min CO2 Intermediate Min NPC 

Component 100% 50% NO 100% 50% NO 100% 50% NO 

PV panels (kW) 93 93 93 66 96 42.2 57.4 95.3 21.9 
BESS (kWh) 356 356 356 106.1 107.3 118.6 10.3 0 0 
Diesel Genset (kW) 0 0 0 5.3 5.2 4.6 20.6 22.6 22.6  
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awareness. Thus, the possibility to choose or balance between cost and 
CO2 emissions (a crucial factor for the system’s sustainability and the 
ongoing energy transition), gives a policymaker a valuable tool for a 
medium- and long-term strategic planning in line with the 2030 UN 
Sustainable Development Goals and the objectives of the African 
Union’s Agenda 2063 able to guarantee long-term sustainability and 
resilience of the energy system and within communities. 

Given the latest trend in minigrid development that saw the come to 
the market of a new generation of minigrids, able to connect to the 
national grid, it is important for planners and developers to take into 
account this possible change in the structure of the operating system 
during its lifetime. For this reason the possibility to account for the 
connection of the off-grid system to the main grid is added to the tool. In 
this way it is possible to plan the installation of the grid taking into 
account that at a certain point of the operating lifetime a new energy 
source will become available. In addition to that is possible to model 
both mono and bidirectional grid connections, and specific grid 

reliability, different for different parts of the African continent. 
Lastly, another issue often encountered in off-grid system sizing is 

the presence of already existing systems, in this situation it is necessary 
to plan an expansion of the existing system in order to meet the new 
needs emerged from the community, the so-called brownfield sizing. For 
this reason the possibility to perform brownfield optimization has been 
developed. This represents an important advancement under the prac-
tical point of view, especially for practitioner involved in the field, that 
many times face this situation. 

Data availability 

In accordance with the latest trends of open science and open source 
modelling [40], the release of the model is available at: https://github. 
com/SESAM-Polimi/MicroGridsPy-SESAM/releases/tag/v0.2.0. 
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Fig. 13. Direct CO2 emissions as function of grid distance and electricity selling price for Min_CO2, Min_NPC and Intermediate point (Rutenderi microgrid).  

Fig. 14. NPC (red) and direct CO2 emissions (green) for year 1 and 10 of 
connection to the grid, for the three considered Pareto curve points. 

N. Stevanato et al.                                                                                                                                                                                                                              

https://github.com/SESAM-Polimi/MicroGridsPy-SESAM/releases/tag/v0.2.0
https://github.com/SESAM-Polimi/MicroGridsPy-SESAM/releases/tag/v0.2.0


Renewable and Sustainable Energy Transition 3 (2023) 100053

15

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.rset.2023.100053. 

References 

[1] World Bank Group, COP26 Climate Brief - Energy Transition and Universal Access, 
World Bank, 2021. Consultato: 31 maggio 2022. [Online]. Disponibile su, https://t 
hedocs.worldbank.org/en/doc/e7fbd4099b9a937ff2d775e0f38aaa98-00200120 
21/original/COP26-ClimateBriefs-EnergyTransition-Final-2610.pdf. 

[2] IEA, IRENA, UNDS, T. W. Bank, e WHO, Tracking SDG7: The Energy Progress 
Report, International Bank for Reconstruction and Development, 2021 [Online]. 
Disponibile su, www.worldbank.org. 

[3] IEA, Africa Energy Outlook 2019, IEA, 2019. 
[4] S. Mandelli, J. Barbieri, R. Mereu, E. Colombo, Off-grid systems for rural 

electrification in developing countries: definitions, classification and a 
comprehensive literature review, Renew. Sustain. Energy Rev. 58 (2016) 
1621–1646, https://doi.org/10.1016/j.rser.2015.12.338. 

[5] ESMAP, Mini Grids for Half a Billion People: Market Outlook and Handbook for 
Decision Makers, The World Bank, 2019. ESMAP Technical Report; 014/19 
[Online]. Disponibile su: https://openknowledge.worldbank.org/handle/10 
986/31926. 

[6] International Renewable Energy Agency (IRENA), Policies and Regulations for 
Renewable Mini-Grids, International Renewable Energy Agency (IRENA), 2018. 

[7] IRENA, Innovation Outlook Mini-Grids, IRENA, 2016 [Online]. Disponibile su, 
www.irena.org%0Awww.irena.org/publications. 

[8] ESMAP, Mini Grids and the Arrival of the Main Grid: Lessons from Cambodia, 
ESMAP, Sri Lanka, and Indonesia, 2018. 

[9] J. Peters, M. Sievert, M.A. Toman, Rural electrification through mini-grids: 
challenges ahead, Energy Policy 132 (May) (2019) 27–31, https://doi.org/ 
10.1016/j.enpol.2019.05.016. 

[10] B. Akbas, A.S. Kocaman, D. Nock, P.A. Trotter, Rural electrification: an overview of 
optimization methods, Renew. Sustain. Energy Rev. 156 (2022), https://doi.org/ 
10.1016/j.rser.2021.111935. 
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