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Equation-based modelling is a powerful approach to tame the complexity of large-scale simulation problems. Equation-based
tools automatically translate models into imperative languages. When confronted with nowadays’ problems, however, well
assessed model translation techniques exhibit scalability issues, that are particularly severe when models contain very large
arrays. In fact, such models can be made very compact by enclosing equations into looping constructs, but relecting the same
compactness into the translated imperative code is not trivial. In this paper, we face this issue by concentrating on a key step
of equations-to-code translation, the equation/variable matching. We irst show that an eicient translation of models with
(large) arrays needs awareness of their presence, by deining a igure of merit to measure how much the looping constructs are
preserved along the translation. We then show that the said igure of merit allows to deine an optimal array-aware matching,
and as our main result, that the so stated optimal array-aware matching problem is NP-complete. As an additional result, we
propose a heuristic algorithm capable of performing array-aware matching in polynomial time. The proposed algorithm can
be proiciently used by model translator developers in the implementation of eicient tools for large-scale system simulation.

CCS Concepts: · Computing methodologies→Modeling and simulation; · Theory of computation→ Network lows;
Complexity classes; · Software and its engineering→ Compilers.

1 INTRODUCTION

In modern engineering, dynamic modelling and simulation are ubiquitous [16, 64]. Besides providing łvirtual
prototypesž [52] to streamline plant and control design activities [76, 77], łDigital Twinsž ś signiicantly based
on simulation [9] ś are nowadays the backbone of advanced controls [6, 55], predictive, condition-based and
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autonomous maintenance [10, 24, 43], anomaly detection, forecast and mitigation [37, 49, 72], continuous
integration [54], lifelong asset management [47] and many other applications, see for example the survey in [25].
As a result, unprecedented challenges need facing for rapidly creating, modifying and running simulation models
of steadily growing size and complexity [30].

Focusing on simulation models made of Diferential and Algebraic Equations (DAE), the scenario just sketched
has boosted the adoption of declarative, Equation-Based (EB) modelling languages as opposite to procedural,
imperative programming ones [79]. The key feature of EB languages is the ability of separating the activities of
writing a model and of producing its solution algorithms. This ability stems from the fact that the fundamental
statement in EB languages is the equation. Contrary to the assignment, where an l-value receives the result of
computing the expression on the right hand side, an equation just prescribes that the expressions on the left
and the right hand side must be made equal ś within convenient tolerances ś at every point in time when the
solution of a model is computed during its simulation.

Said otherwise, while assignments directly compose the algorithm to compute the model solution, equations
just impose constraints to that solution, therefore saying nothing about the solver (in general, numeric) that will
be used to compute it. To synthetically express this separation between describing the model and computing its
solution, EB models are called declarative.

In synthesis, then, EB languages relieve the analyst from the task of turning equations into imperative code to
perform their numerical integration, signiicantly helping to tame the complexity and rapid evolution of modern
simulation problems [23]. It is the task of a translator to automatically turn a declarative model into an equivalent
code in some imperative programming language [34], which is then fed to a compiler.
This translator-compiler worklow was devised at the outset of EB languages, with the aim of decoupling

the generation of imperative code (translation) from its optimised compilation into machine codeÐa task for
which e.g. C compilers are very well suited. However, today’s modelling and simulation problems exhibit new
characteristics, that require to re-discuss the above translation worklow. A prominent such characteristic, on
which we focus in this paper, is the presence of large (and possibly multi-dimensional) array variables and
equations. This feature is distinctive of łlarge-scalež models. Think for example of a 3D thermal model for a solid
body with ine-grained spatial discretisation: the model will contain energy dynamic balance equations for each
of the many subvolumes into which the solid will be partitioned, and these equations will account for thermal
exchanges with the adjacent volumes. It is quite natural to write such a model compactly in EB form by deining
suitable array variables and equations, in the latter case by means of looping constructs (examples follow starting
from Section 4).

In such cases, as we will show, a trade-of is easily observed. Writing the model directly as imperative code is
far more complex, error prone and hard to maintain than adopting an EB declarative framework and obtaining the
imperative code by automatic translation. But on the other hand, the code obtained by automatic EB-to-imperative
translation is signiicantly less eicient than the one manually written as imperative.

We argue that the origin of this ineiciency mainly resides in the way EB translators manage array variables
and equations. Current production-grade EB translators just treat each component of an array variable or equation
as an individual scalar one, which results in a loss of structural information that imperative language compilers
cannot eiciently recover [7]. As such, we argue that to improve both the translation time and the eiciency of
the produced imperative code, it is necessary to make the translation process łarray-awarež.
In this paper we ofer a contribution to this end, aiming both for an eicient translation and an eicient

imperative code. In detail,

(1) we deine a igure of merit to quantify how much the looping constructs that make an equation model
compact carry over to its imperative translation; building on this igure of merit, we consequently deine as
optimal an array-aware matching that maximally preserves the said looping constructs;
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(2) we prove that the optimal array-aware matching problem is NP-complete ś contrary to scalar matching,
which can be solved in polynomial time and where no such optimality makes sense;

(3) we propose a heuristic algorithm to approximate optimal array-aware matching in polynomial time.

To the best of our knowledge, we are the irst to introduce an idea of matching optimality tied to the eiciency
of the obtained imperative code, as well as to propose a heuristics that aims for that optimality besides for a fast
matching process.

Organisation of the paper. The rest of the paper is organised as follows. In Section 2 we briely introduce
some deinitions and the architecture of state-of-the-art approaches. Then, we discuss the history of EB model
translators and other array-aware approaches in Section 3. We delineate the scope and purpose of our contribution
in Section 4. In Section 5, we deine array-aware matching and its optimality metric, while we prove its NP-
completeness in Section 6. Finally, in Section 7, we show an approximate algorithm for array-aware matching,
and in Section 8 we draw some conclusions and highlight future research directions.

2 BACKGROUND ON MODEL TRANSLATION

In this section we outline the foundations of automatic EB-to-imperative translation and compilation. To avoid
confusion between scalar and array problems, we irst provide a few deinitions.

Deinition 2.1 (scalar variable). A scalar variable is an instance of a system property, identiied by a name,
whose value at every instant is fully deined by a scalar number and ś possibly ś a unit of measurement.

Deinition 2.2 (array variable). An array variable is a collection, identiied by a name, of one or more scalar
variables, each one referenceable through one or more integer indices.

Deinition 2.3 (array equation). An array equation is a collection of one or more scalar equations, expressed
compactly as a single parametric equation that references by index one or more scalar components of one or
more array variables.

Deinition 2.4 (array dimensionality and size vector). The dimensionality of an array is the number of dimensions
of that array, that is, the number of integer indices needed to reference a single scalar component in it. We assume
by convention that the said indices are 1-based. Their maximum values collectively form the array size vector.

It follows that, in EB modelling languages, array variables are akin to the concept of ordinary multidimensional
arrays, commonly found in many programming languages. Also, in EB modelling languages, an array equation

is obtained by encasing a scalar one in one or more nested looping constructs, that deine the indices of the
contained scalar variables within the arrays of which they are part, as well as the ranges for the said indices.
It is important to highlight that the mentioned looping constructs ś diferently from those of imperative

programming languages ś allows the user to predicate on array equations, such as

� [�] = � [�] ∀� ∈ [1, 3]; (1)

to be intended as an abbreviation of

� [1] = � [1]; � [2] = � [2]; � [3] = � [3]; (2)

This noted, the translation-compilation process ś as per the current state of the art in both research and
production tools, see e.g. [23, 33] and [1, 2, 4, 5] respectively ś can be divided into the following steps.

Flattening The model equations, independently of the way they were input by the user ś e.g. as a single set, by
hierarchically instantiating and interconnecting subsystems, or anyhow else ś are brought to be one set
of scalar DAEs. This step contains a sub-step named loop unrolling, in which each expression in the form
shown in Eq. (1) is replaced by its set of scalar components, as shown in Eq. (2). The outcome of lattening
is thus a DAE system with scalar equations and variables.
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Matching This step (hereinafter denoted as scalar matching when confusionmay occur) consists of coupling each
(scalar) equation to one (scalar) variable, meaning that the equation is the initial candidate for computing the
variable at simulation time. A failure in matching indicates a model inconsistency (e.g. and most typically,
an equations/variables imbalance). In the general case, matching may also require an index reduction
sub-process, implemented by methods such as the Pantelides algorithm [58]. Our paper does not address
index reduction.

Scheduling This step determines the order in which the equations are solved. The (scalar) equations of the
system are ordered accordingly to their mutual dependencies, as established by the matching process. For
example, the equation matched with variable � ś that is, the candidate one to compute � ś is scheduled
before all other equations in which � appears. The ideal result would allow to compute the solution
variable by variable, in sequence. This is hardly ever obtained, however. During the scheduling step, some
cyclic dependency among variables may arise, and as a result the one-to-one relationship established
by the matching process between those variables and their candidate equations cannot be maintained.
Cyclic dependencies indicate the existence of a so-called Strongly Connected Component (SCC): the involved
variables will need computing all together, most often numerically. The Tarjan algorithm [73] is a commonly
used means to determine the equation solution order and to identify SCCs.

Code generation The last step is the generation of imperative simulation code for a speciic choice of the
numerical integration algorithm. The simulation code can be self-contained for certain numerical integration
algorithms, such as explicit ones, or can rely on external solver libraries, such as those in the SUNDIALS
suite [38].

After the translation and compilation process is complete, the obtained executable code is run to produce the
simulation output, in the form of a table with the value of the model variables as a function of simulation time.
This process is often part of a graphical modelling environment for rapid prototyping. Once the modeller decides
to perform a simulation, all the translation, compilation and execution steps are on the critical path toward
getting the simulation results. Consequently, the shortening of compilation and simulation times is especially
important for this kind of use-cases.

3 RELATED WORK

In this section we spend some words to relate our proposal to the research scenario on EB modelling in general,
and to neighbouring research on EB-to-imperative translation in particular.
In the landscape of simulation languages, EB ones appeared and gained visibility in the 80s/90s of the last

century; notable examples are Omola [11], Dymola [28] and gPROMS [15]. A taxonomy would stray from the
scope of this paper; the reader interested in the historical panorama can refer e.g. to [22]. Worth noticing, however,
is the common ancestor for the boost of the declarative approach stemming from studies such as [13] and [29],
where the idea that simulation languages had to abandon the imperative setting was set forth and preliminarily
exploited. Research on the matter thus focused at irst on the model manipulation [41, 50] required by going
declarative, and after a long systematisation process, this resulted in the birth of the Modelica language [51] to
which we refer herein (though all the ideas we propose are general to the EB context).

The engineering use of EB languages and tools sustainably spread out in various domains, ranging from the
chemical [12] and process industry [35] to power generation [21] and transmission [71], mechatronics [75] and
robotics [39], automotive [42], and vehicles at large [26], aerospace [53], buildings [68] and more, including
control design [20] and diagnostics [17]; the papers in the necessarily limited list above also contain interesting
bibliographies for the reader willing to investigate further.
Together with testifying the success of the EB approach, however, the expansion just mentioned also shed

light on some relevant limitations of the existing EB tools [62] ś not of EB languages by themselves, it is worth
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stressing ś especially when dealing with large-size models [19, 46]. This was the motivation for a irst wave of tool
optimisation, having as a major point the introduction of sparse solvers, a well-treated and long-lasting matter in
domain-speciic tools ś see e.g. [32, 45, 69, 70] ś but a source of challenges in the inherently multi-domain EB
one [57, 78]. Examples of this research ś with speciic reference to Modelica given our scope ś are [18, 63].

The possibility of solving large models fast enough to widen the EB applicability perimeter evidenced however
a second type of tool limitation, concerning the translation rather than the solution of such models [66, 67].
The matter became critical in recent years, together with the emergence of problems that require model-based
prototyping [48] and can scale up to the order of 105 equations. When such models become part of the inherently
iterative engineering process, the time spent in translating and compiling them can be comparable to that spent
in running simulations, if not even dominant [14]. For the sake of clarity it is worth noticing that the million
equation barrier was already approached in the past [74] and in some domains nowadays well trespassed [61] by
simulation tools, but these tools are not of the EB type, and most notably, do not separate model description and
solutionÐwhich is a primary goal of the EB approach.

As a result, EB tools are nowadays undergoing a second wave of optimisation, directed to eicient translation.
Open-source parsers [59] for EB languages such as Modelica are available providing some degree of array
preservation, thereby enabling the research community to experiment with making the translation pipeline
array-aware. In this relatively new efort, a primary objective is to achieve an O(1) scaling of the translation time
with the size of the model arrays, that as already noted are the main cause for the ineiciency of scalar-only
model manipulation. In this context, the nearest neighbouring work to our research is the paper by Zimmermann
et al. [80], who introduce the concept of łset-based graphž as a means to re-state the matching problem (originally
scalar) in such a way to achieve an O(1) translation, together with proposing algorithms for other manipulation
steps related to matching, such as the management of strongly connected components and scheduling.
The main diference of our research with respect to [80] is a twofold instead of a single goal. More precisely,

we do not aim just for an eicient translation, but also for an eicient simulation code. If the eiciency of the
simulation code is taken into account, the number of looping constructs in the EB model that are preserved in
the imperative one comes to matter a lot. The set-based approach of [80] is not designed to take this aspect into
account. Aiming at loop preservation straightforwardly entails the introduction of an idea of optimality. This
moves the focus from array-aware matching to optimal array-aware matching, and owing to its NP completeness,
to the need for heuristics.
Other works have addressed the array-aware-matching problem, such as [65] which correctly noticed that

preserving looping constructs can positively impact both translation and simulation time. They also present a
prototype translator that is limited to handling systems without algebraic loops and resorts to lattening the
model completely in cases where their array-aware-matching algorithm does not produce a solution. The paper
[56] addresses array-aware index reduction, and the corresponding Modia implementation [3] also includes an
array-aware-matching algorithm that however is very simple and cannot split variable and equation nodes, thus
requiring the modeller to pre-process the input model so as to make sure that every array variable can be matched
to exactly one array equation. Compared to the two previously quoted works, our paper introduces the concept
of optimal array-aware-matching and proves that achieving such optimality is an NP complete problem, as well
as presenting a more complete array-aware-matching algorithm.

4 RESEARCH MOTIVATION

In this section, we discuss the ineiciencies that arise from a non array-aware model translation. To ground the
discussion on an example, consider the model of a thermally insulated metal wire with prescribed temperatures
at its ends. The evolution of this system is ruled by the one-dimensional Fourier equation. Carrying out a uniform
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spatial discretisation with the inite-volume approach results in the following system of diferential equations:

� ¤�� =




�(2�left − 3�� +��+1) � = 1

�(��−1 − 2�� +��+1) ∀ � ∈ [2, � − 1]

�(��−1 − 3�� + 2�right) � = �

(3)

where � > 3 is the number of inite volumes, � is the thermal capacity of a volume, � the thermal conductance
between the centres of two adjacent volumes, �� is the temperature of volume � , with �1 being the leftmost and
�� being the rightmost volume, and inally �left and �right are the prescribed side temperatures.

When expressed in Modelica, the wire model reads as follows.

model Thermal1D

parameter Integer N = 5;

parameter Real g = 0.00314785; // W/K

parameter Real c = 0.2707936; // J/K

parameter Real Tleft = 400 + 273.15; // K

parameter Real Tright = 20 + 273.15; // K

Real T[N](each start=Tright); // array variable

equation

c*der(T[1]) = g*(2*Tleft - 3*T[1] + T[2]);

for i in 2:N-1 loop // looping construct to express

c*der(T[i]) = g*(T[i-1] - 2*T[i] + T[i+1]); // an array equation

end for;

c*der(T[N]) = g*(T[N-1] - 3*T[N] + 2*Tright);

end Thermal1D;

Listing 1. The model of a wire, as shown in Eq. (3), as expressed in Modelica code.

The remarkable similarity between the Modelica model and original system of equations is apparent; the der
operator is used for expressing the derivative with time.
It is evident that the availability of array equations make EB models assume a compact and easily readable

form. However, present state-of-the-art translators provide looping constructs only as a convenience for the
modeller, and do not take advantage of this structural information to improve the translation eiciency, nor
that of the generated simulation code. As a consequence, some ineiciencies arise that would be completely
unexpected in the world of imperative programming languages.

A irst such ineiciency is that the amount of both time and memory needed for the translation scale superlin-
early with the size of array equations, rather than exhibiting the expected O(1) scaling typical of imperative
languages. In fact, the compilation of imperative programming languages treats looping constructs explicitly.
The instructions inside a loop are represented in the compiler data structures just once, irrespective of the loop
iteration count, and all subsequent compilation steps are performed on this compact data structure.
On the contrary, state-of-the-art EB translation algorithms are designed to only work in terms of scalar

equations (see Flattening in Section 2), which are stored in the translator data structures individually. These
scalar equations are then passed on to subsequent translation steps, some of which scale superlinearly. It is not
uncommon for models exceeding the 105 equations mark to require translation times in the order of hours, and
working memory in the order of hundreds of gigabytes [14].

A second and consequent ineiciency is that the size of the produced imperative code scales linearly with
the size of array variables and equations. Since the original EB model is scalarised, the simulation consists of
procedures containing repetitive code instead of looping constructs, often amounting to several gigabytes for
large-scale models. Although imperative compilers are very eicient and can achieve O(1) scaling in compilation
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with respect to array sizes, this is only possible if they are given a source code with loops, not long lists of
repetitive statements.
The last ineiciency regards the performance of the machine code produced by the compiler when fed with

the automatically generated imperative code. Modern computer architectures are built upon assumptions such
as the locality principle for both data and code, which are the theoretical foundations for caches [27] and other
microarchitectural optimisations. However, the code produced by current-generation model translators is not
able to exploit these optimisations. First, the execution of large blocks of straight-line code requires frequent
instruction cache invalidation. Furthermore, the loss of structural information about arrays leads to the generation
of code that exhibits irregular data access patterns. Therefore, repetitive machine code is not only large, but runs
signiicantly slower than equivalent hand-written code, in some cases 100 times or more [8].

Both translators and compilers can in principle infer looping constructs and improve access locality, but their
ability to perform this kind of optimisation is limited [44]. Additionally, such inferences require to repetitively
scan the list of lattened statements, making O(1) scaling apparently impossible. We thus argue that a far better
approach would be to preserve array-awareness throughout the translation process, rather than try to regain it a
posteriori.

Summing up, all the presented ineiciencies share their root cause in the fact that existing model translation
algorithms are not array-aware. In this paper, we begin an efort to ill this gap. Since the lattening step is trivial
to extend for array-awareness ś it suices to not unroll looping constructs ś we focus on the second and irst
truly key step, i.e., the matching problem.

5 GRAPH REPRESENTATION AND PROBLEM STATEMENT

In this section, we introduce the notation to describe array-aware algorithms, and present the formal statement
of the array-aware matching, the algorithm we focus on in this paper.

We denote with� = (�, �) a generic graph having set of nodes � and set of arcs � . Any set of scalar equations
� in the scalar variables � can be represented with a bipartite graph in which

• � = � ∪ �,
• � ∩ � = ∅,
• � ⊆ � × �,
• the presence of an arc (�� , � � ) indicates that variable �� appears in equation � � .

In this context, the set of arcs � represents dependencies between variable and equation nodes.
To include array variables and equations ś including multidimensional ones ś we extend the above notation as

follows. We indicate with �� the generic multidimensional array variable, whose scalar components in the physical
problems we target are invariantly real numbers. We denote by �� the dimensionality of �� . We denote with
� = {�1, . . . , �� , . . . , ��� } the sequence of positive integers needed to reference a scalar component within the array
variable �� . Each generic index �� ranges from 1 to the size of the corresponding dimension � , with 1 ≤ � ≤ �� .
For compactness, we synthetically write ��,� to indicate the scalar component in �� of indices {�1 . . . ��� }.

Consistently with the above notation, we deine the following.

• � is the set of array variables {�� }, � = 1, . . . , |� | in the model; if the model contains scalar variables, these
are considered array variables of unitary dimensionality and size;
• � is the set of array equations {� � }, � = 1, . . . , |� | in the model; if the model contains scalar equations, they
are considered array equations of unitary dimensionality and size.

A model containing both scalar and array variables and equations can thus be represented with any of the two
equivalent bipartite graphs deined as follows.

(1) The irst one is obtained by just setting � = {��,� } ∪ {� �,�}, and � ⊆ � × � as the scalar dependencies.
The presence of an arc (��,� , � �,�) indicates that the scalar variable ��,� appears in the scalar equation � �,� .

ACM Trans. Math. Softw.



8 • Massimo Fioravanti et al.

c*der(T[1]) = g*(2*Tleft - 3*T[1] + T[2]); // e1

for i in 2:N-1 loop

c*der(T[i]) = g*(T[i-1] - 2*T[i] + T[i+1]); // e2

end for;

c*der(T[N]) = g*(T[N-1] - 3*T[N] + 2*Tright); // e3

 

Fig. 1. The array equations of the Modelica model of a wire previously shown in Listing 1, and its corresponding array graph.

Variable �1 is
¤� , the only non-state array variable in the model. Thus the columns of the � matrices correspond to ¤�1, ¤�2, ¤�3

and so on.

Observe that in the topology of such a graph any information concerning the existence of array variables
and equations is lost. We name this the lattened graph.

(2) The second one is obtained by setting � = � ∪ �, and � ⊆ � × � as the array dependencies. In this case
the presence of an arc (�� , � � ) indicates that at least one scalar variable in �� appears in at least one scalar
equation in � � . We name this the array graph.

The above deinitions imply that the array graph is homomorphic to the lattened one. However, for the two
graphs to be equivalent, each arc in the array one needs to carry information about which components of the
connected array variable and equation it refers to Ð a matter that does not pertain to the scalar case. Therefore,
the arcs of the array graph must be endowed with the information needed to reconstruct the arcs of the lattened
graph. To formalise this, we introduce the concept of local multidimensional incidence matrix. Given an array
equation �� and an array variable � � of dimensionality �� and � � respectively, let �� = {��,1, ...��,�� } be the sequence
of indices for �� , and � � = {� �,1, ...� �,� � } be the sequence of indices for � � . The multidimensional local incidence
matrix ��, � has dimensionality �� � = �� + � � , and its sequence of indices �� � is the concatenation of �� and � � . Its
generic element is 1 if the scalar variable � �,� appears in the scalar equation ��,� , else it is 0. We name� the set of
local multidimensional incidence matrices. An example of a Modelica model and the corresponding array graph
can be found in Fig. 1.
The notation we just provided is capable of representing arbitrary multidimensional incidence matrices.

However, it should be noted that those produced by EB models coming from equations of physics are signiicantly
structured, and present patterns that arise out of the looping constructs and expressions used for accessing array
variables within array equations. It follows that, although from a theoretical standpoint it is convenient to reason
in terms of multidimensional incidence matrices, an industry-grade implementation would rely on an eicient
pattern-based data structure to achieve O(1) scaling. This important matter is discussed in Section 7.4.

5.1 The array-aware-matching problem

The array-aware-matching is an operation that takes as input an array graph� = (� ∪�, �), where we recall that
� is the set of dependencies between array variables � and array equations �. Additionally, every dependence �
has an associated local multidimensional incidence matrix ��, � . The array-aware-matching produces as output an
array graph � ′ = (� ∪ �, � ′) with the following properties.

(1) � ′ ⊆ �
(2) Each arc (�� , � � ) ∈ �

′ has an associated local multidimensional incidence matrix��, � , where��, � (��,� , � �,�) ∈

{0, 1}. We call� the set of��, � .
(3) ∀��, � ∈ � ,��, � has the same size and dimensionality of ��, � ∈ �
(4) �(�� , � � ) ∈ �

′ :��, � is a zero matrix
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(5) ��, � (��,� , � �,�) = 0 =⇒ ��, � (��,� , � �,�) = 0
(6) ∀��,� ∈ � : ∃!��, � (��,� , � �,�) = 1

Property (1) states that no new arcs are added to the graph, (2ś3) denote as łmatching matricesž� the local
incidence matrices of the output graph, (4) states that ś consistently ś arcs fully unmatched are removed, (5)
ensures that a scalar equation is matched only with a scalar variable it contains, and (6) that each scalar equation
is matched to one and only one scalar variable.

Deinition 5.1 (optimal array-aware matching). Let us deine the expansion function �� (�), which maps a local
incidence matrix� to the number of looping constructs required to implement the matching it expresses. �� (�)
has a value of zero if and only if� is a zero matrix, otherwise �� (�) ≥ 1. We say that a matching (� ′, �) is
optimal if it minimizes the following:

Ω(�,�) =
︁

�∈�

�� (�) (4)

For the purpose of this work, it is not necessary to fully specify the expansion function, because diferent model
translators may be able to łeicientlyž handle only a subset of all possible matching matrices. In this discussion,
the metric of łeiciencyž is therefore the ability to represent the matching described by��, � as a single looping
construct consisting of the scalar equations of the node adjacent to the corresponding arc ��, � . Without loss of
generality we can consider the ideal case in which every matching matrix maintains its correspondence with
exactly one looping construct. In this case, the �� function takes this form:

�� (�) =

{
0 if� is a zero matrix
1 otherwise

(5)

In this case, the optimality metric Ω is equal to the number of arcs where at least one equation is matched.
Intuitively, the more arcs have a matching, the higher the number of times the same array equation has been
matched with multiple variables, and for each variable matched with the same array equation a separate looping
construct must be introduced. Therefore, minimizing Ω means minimizing the number of looping constructs.

5.1.1 Just enough, but not too much. It is important to stress that the optimality metric Ω is but a proxy for
identifying the matching that best improves both translation and simulation time. With the deinition we gave of
array equation in this paper (Deinition 2.3 in Section 2) where individual scalar equations in an array equation
difer only by the array indices, reducing the number of looping constructs does indeed result in more eicient
code. Other works however, such as [56] and the corresponding Modia implementation [3] allow if statements in
array equations thereby allowing to merge in a single array equation also scalar equations that are structurally
diferent. For example, the wire model written with such an extended deinition of array equations would read as

for i in 1:N loop

c*der(T[i]) = if(i == 1) then g*(2*Tleft - 3*T[1] + T[2])

else if(i == N) then g*(T[N-1] - 3*T[N] + 2*Tright)

else g*(T[i-1] - 2*T[i] + T[i+1]);

end for;

Although it would appear that such an array equation could improve the optimality metric by requiring a single
looping construct that handles all the wire inite volumes instead of requiring one looping construct plus two
scalar equations for the irst and last volume, this would not result in eicient code. Indeed, if such an array
equation were brought as-is till code generation, the imperative code would need if statements in the loop to
handle the diferences in the equation structure, and the cost at run-time of the if statements would need to be
paid multiplied by every loop iteration and additionally multiplied by every simulated time step. This is a strong
point in favour of our deinition of array equations, that explicitly disallows grouping structurally diferent scalar
equations in a single array equation. Moreover, to achieve the best eiciency, a translator would need to perform
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(a) (b) (c)

Fig. 2. Subgraphs used by the procedure for building the intermediate graph � from a list of AND clauses.

symbolic manipulations to transform ineicient code such as the one above by moving the structurally dissimilar
equations outside of the loop before the matching step, should the modeller decide to write the model in that
form.

6 COMPLEXITY OF OPTIMAL ARRAY-AWARE-MATCHING

In this section we show that for what concerns the matching problem, preserving the array structure of both
equations and variables results in NP-completeness. This theoretical result motivates the need for heuristic
algorithms, that will be presented in Section 7.

Theorem 6.1 (Complexity of optimal array-aware-matching). The problem of producing an optimal array-

aware-matching is NP-complete.

Proof. We prove Theorem 6.1 by reducing the max-2-sat problem to optimal array-aware-matching. Max-2-sat
was proven NP-complete by Garey, Johnson and Stockmeyer [36], and reads as follows: given a Boolean formula
in conjunctive normal form, where each clause contains at most two literals, ind a literal assignment such that
the maximum number of clauses is satisied.
First of all, we establish a procedure that allows to represent a max-2-sat problem in terms of array-aware-

matching. To this end we introduce three formal modiications to the way max-2-sat is expressed in order to
simplify the reduction process.

(1) Every clause in the form (�) is rewritten as (� ∨ �). It is evident that this rewriting does not change the
value of that clause for any literal assignment.

(2) Instead of considering the input to max-2-sat as a conjunction of clauses, we consider it as an ordered list.
This is legitimate, as maximising the number of satisied clauses does not require knowing if the entire
formula is satisied.

(3) We assume that, when traversing the list of clauses, the irst encountered occurrence of each literal is not
negated. Should this be false, one would simply have to replace that literal with another one deined as its
complement.

The above said, to encode a max-2-sat instance into a array-aware-matching one, we start by recalling that

(� ∨ �) = (� ∧ ¬�) ∨ (¬� ∧ �) ∨ (� ∧ �)

and we replace each OR clause in the list with the above deined equivalent triple of AND ones. Observe that
only one of the three AND clauses can be true, hence maximising the number of satisied AND clauses in the
reformulated list is equivalent to the original problem.
Let us start with two empty sets of nodes � = ∅, � = ∅. Then, we build an intermediate lattened bipartite

graph� = (�∪�, �) by traversing the list of AND clauses. By construction, we will retain the invariant�∩� = ∅.
For each clause � we operate as follows.
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First, we consider the irst literal ℓ in the clause. If this is the irst occurrence of ℓ , we add to� the subgraph
shown in Fig. 2 (a). In doing so, � nodes should be considered belonging to the � set while � nodes should be
considered part of the � set. We name �ℓ,1 the irst edge associated to literal ℓ . We name �ℓ,1 and �ℓ,2, respectively
the start and the end node for that literal.

If ℓ was already encountered and appears here in non-negated form, we add to� the subgraph shown in Fig. 2
(b), and we connect �ℓ,� to the end node of the literal. The start node of the literal does not change, while its end
node becomes �ℓ,� .

If ℓ was already encountered and appears here in negated form, we add to � the subgraph shown in Fig. 2 (c),
and we connect �ℓ,� to the end node of the literal. The start node of the literal does not change, while its end node
becomes �ℓ,� .

We repeat the subgraph insertion process for the second literal in the clause.
For each clause � , we deine a set of four nodes ś taken from the two subgraphs just added ś as the union of

nodes highlighted in red in Fig. 2. We name this set clause nodes of � and we name it �� .
We repeat the above for all clauses. When the end of the list is reached, we connect the end node of each literal

with its start one. Doing so, we create for each literal a simple cycle �ℓ,1, �ℓ,1, . . ., �ℓ,�ℓ , �ℓ,1 of even cardinality �ℓ ,
ordered as just indicated. We number the edges of each cycle as �ℓ,1 through �ℓ,�ℓ . This concludes the construction
of graph � .

Graph � is a lattened graph and as such does not have the form required by array-aware-matching, thus we
need to construct a diferent graph� = (� ∪� , �) homomorphic to� , and expressed in terms of array equations
and variables. Therefore, � will satisfy the following properties:

• For each node �ℓ,� ∈ � not part of a clause node �� , there exists a variable �� ∈ � with dimensionality 1
and size 1.
• For each node �ℓ, � ∈ � not part of a clause node �� , there exists an equation �� ∈ � with dimensionality 1
and size 1.
• For each clause node �� there exists a variable �� ∈ � and an equation �� ∈ �, both with dimensionality 1
and size 2.
• The local incidence matrix ��,� is a square identity matrix in order to represent the original relationship
found in the scalar graph.
• No other variables nor equations exist in � .
• Dependencies arcs � are constructed so as to make � homomorphic to � .

In other words, all the � nodes are considered variables, all the � nodes are considered equations, and each
labelled set of four nodes �� forms an array equation of size 2, and a corresponding array variable of size 2, while
unlabelled nodes translate to scalars.

To carry on, we now need the following lemma.

Lemma 6.2 (Complexity of the construction of �). The graphs � and � can be constructed in polynomial

time.

Proof. The construction process which deines � is linear with the number of clauses and the creation of �
can be done by simply enumerating the nodes and edges of � . □

Back to the main proof, once we obtained the matched graph by executing array-aware-matching on � , we
assign to each literal ℓ the boolean value true if arc �ℓ,1 has been selected for the matching, false otherwise. This
last step can also be performed in polynomial time.
Given the deinition of optimal array-aware-matching of Deinition 5.1, an algorithm capable of solving the

problem will maximise the number of (�ℓ1,� , �ℓ2, � ) arc pairs between nodes belonging to the clause node sets �� . In
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Clause 1 Clause 2 Clause 3

(a)

(b)

Fig. 3. Bipartite graphs representing the list of AND literals shown in Eq. (6). Graph (a) shows the correspondence between

each clause and literal and the nodes and arcs in the graph. Graph (b) shows an optimal matching for this graph. Solid lines

represent matched arcs, dashed lines represent non-matched arcs.

fact, each pair contributes only an unitary weight to the optimality metric Ω, while two non-paired arcs will
contribute a weight of two.
By construction of the bipartite graph � , each node, be it an equation or a variable, has exactly two adjacent

edges. Thus, the matching choice is binary. Since we have built a simple cycle for each literal, there are only two
matching solutions for each cycle, one selecting �ℓ,1 and all the odd numbered arcs, the other one selecting all the
even numbered ones.

Additionally, due to how we constructed each cycle, the arc connecting the nodes belonging to a clause node
set �� for cases (a) and (b) of Fig. 2 is odd, while in case (c) it is even. Thus if the arc in the red box of Fig. 2 (a) is
selected, then all the arcs in boxes of subgraph type (b) will also be selected, the arcs in boxes of subgraph type
(c) will not be selected, and vice versa.

It follows that an arc pair inside a labelled node set can be selected if and only if the literal assignment ś
as read from the graph ś satisies the corresponding clause. As such, the objective functions of max-2-sat and
array-aware-matching, given the proposed graph construction and interpretation, are equivalent. This implies
that array-aware-matching is NP-complete. □

Example. For the convenience of the reader, we complement the formal proof with an example of how the
intermediate bipartite graph can be built from the following list of AND clauses:

{� ∧ �, ¬� ∧ �, � ∧ �} (6)

The list of clauses is scanned left to right. The irst clause encountered is (� ∧ �), and both � and � are literals
being encountered for the irst time. As a result, in the graph we add two structures of type (a) shown in Fig. 2.
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The start node of � is ��,1, the end node of � is ��,2. In the same way, the start node of � is ��,1, the end node of �
is ��,2.
Now, the second clause (¬� ∧ �) is processed. The literal � was already encountered, and appears in negated

form; as a result, a structure of type (c) from Fig. 2 is inserted, and the ��,2 end node is connected with ��,3. The
end node of � is changed to the newly inserted ��,3. Instead, the literal � is newly encountered, and therefore we
insert a structure of type (a) from Fig. 2. The start node of � is ��,1, and the end node of � is ��,2.

The process has now arrived at the third and last clause (� ∧ �). The literal � makes a reappearance in positive
form, and therefore a structure of type (b) is inserted. The end node ��,2 is connected to the new node ��,3, and
��,3 becomes the new end node of � . Finally, the literal � is encountered for the irst time, and a structure of type
(a) is inserted. At this point the list of clauses is exhausted.

The last step for constructing the scalar graph consists in connecting the end node of each literal with its
corresponding start node. For literal �, we connect ��,1 with ��,3. For literal �, we connect ��,1 with ��,2. For
literal � , we connect ��,1 with ��,3. Finally, for literal � , we connect ��,1 with ��,2.
Figure 3 (a) shows the bipartite graph generated through the steps we have just outlined. Additionally, the

igure outlines in red each clause node, and highlights the irst arc of each cycle, which is used to determine the
value of each literal from the matching.

Figure 3 (b) highlights the optimal matching of the same graph, alongside with the value of each clause and
each literal. Since arc ��,1 has not been used in the matching, � is assigned value 0. Instead, literals �, � and � are
assigned a value of 1, since the arcs ��,1, ��,1, and ��,1 are all used in the matching. This matching maximises the
number of array equations and variables matched, and therefore also minimizes Ω: two arrays are matched, out
of the three arrays in the input graph. Each array corresponds to a clause, and the matched arrays represent
clauses whose value is one. In fact, the literal assignment makes the second and third clause true, and the irst
clause false.

7 ARRAY-AWARE MATCHING ALGORITHM

The NP-completeness proof of optimal matching highlights how, in order to eiciently handle large-scale problems,
there is a need to introduce suitable heuristics. In this section, we propose an algorithm of reduced complexity1.

Our proposal is a partially heuristic two-step procedure. The irst step identiies obligatory matching choices
and removes them from the problem, thereby reducing its size. We call this irst step, presented in Section 7.2, the
simpliication step. No heuristics are involved in it.
For the second step, that we call the matching step, we propose an extension of the Hopcroft-Karp [40]

algorithm to array graphs, which allows to exploit local incidence matrices in such a way to preserve the existing
looping constructs. The matching step, described in Section 7.3, terminates at the irst solution found, whence its
heuristic nature.
Before presenting the simpliication and matching algorithms, it is necessary to deine some operations on

local incidence matrices that are used throughout the said algorithms. This is done in Section 7.1, but requires an
important preliminary remark. When dealing with matching problems that contain multidimensional arrays,
incidence matrices become multidimensional as well. To lighten the treatise, in this work we nonetheless stick to
talking about łrowsž and łcolumnsž. This notation does not cause any generality loss, however. All the proposed
algorithms can work in the case of multidimensional incidence matrices by simply interpreting łrowsž and
łcolumnsž as sets of dimensions, referring respectively to equations and variables. We also talk about łrowž and
łcolumn vectorsž, that generalize to matrices having only one of the two sets of dimensions.

1A proof of concept implementation can be found at https://github.com/modelica-polimi/array-aware-matching-poc
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7.1 Operations on local incidence matrices

Since incidence matrices are boolean, it is trivial to deine the logical operators conjunction (and, ∧), disjunction (or,
∨) as well as negation (not, ¬) on matrices of the same dimensions as the element-wise operations. Additionally,
for convenience, we deine the operation � \ � (subtraction) as � ∧ ¬�.

We also deine the ∧ and \ operator where the irst argument is a matrix and the second is a row vector. The
behaviour in this case is equivalent to replacing the vector with a matrix where every element in each row is
equal to the corresponding element in the vector. Equivalently, these operations are also deined with column
vectors.

We further deine the lattenRows and lattenColumns operations, each taking a matrix and producing, respec-
tively, a column and row vector. Each element of these vectors is 1 if there is at least a 1 in the corresponding
row or column, respectively.

The last operation that we need to deine is solveLocalMatchingProblem, which given a local incidence matrix �
returns a list of possible match matrices, called match options. More in detail, each of the returned options is a
valid match, that satisies the following properties:

(1) ��, � = 1 =⇒ ��, � = 1,
(2) Each option has at most one element at 1 for each row and column.

For example, applying solveLocalMatchingProblem to matrix

� =



1 0 0

1 1 0

1 0 1


(7)

returns the set of possible match matrices






1 0 0

0 1 0

0 0 1


,



0 0 0

0 0 0

1 0 0


,



0 0 0

1 0 0

0 0 0


,



1 0 0

0 0 0

0 0 0






(8)

where, depending on the solveLocalMatchingProblem implementation but without any efect on the proposed
algorithms, the last match may or may not be returned as it can be considered part of the irst (larger) one. As
an additional constraint, solveLocalMatchingProblem shall try to return the largest possible match, that is, the
one that matches the largest number of equation/variable pairs. This is not meant as a strong requirement ś in
other words, it is acceptable to provide an implementation of solveLocalMatchingProblem that does not return the
largest possible match options in all cases. However, the largest the single options provided by this primitive, the
higher quality the inal matching will be.

7.2 Simplification algorithm

The simpliication step is dedicated to performing all the obligatory matches. Its importance in the handling of
real-world problems becomes evident when considering that, as explained in [23, Chapter 7, and more speciically
Section 7.2], when matching diferential equations, the state variables of the system are considered to be known
and need not be matched. Thus, the variables to be matched are either non-state variables, or derivatives of state
variables. In modelling the evolution of physical systems over time, it is very common to write equations in the
form

¤�� = f (�,�)

where � and � are respectively the sets of state variables and inputs. These equations introduce equation nodes
in the bipartite matching graph with a single arc connecting them to the corresponding derivative, and that thus
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Function simplify

Input: � = (� = � ∪ �, �);

Output: � ;

� ← ∅;

foreach � ∈ � do

if deg(�) = 1 then � ← � ∪ {�};

while � ≠ ∅ do
�1 ← getElementIn(�);

� ← � \ {�1};

�2 ← unmatched node reached from �1;

����ℎ������� ← solveLocalMatchingProblem(�12);

if |����ℎ������� | = 1 then
�����������ℎ��1← vector of size |�1 | where �����������ℎ��1� = 1 if �1, � is matched;

�����������ℎ��2← vector of size |�2 | where �����������ℎ��2� = 1 if �2, � is matched;

�12 ← getElementIn(����ℎ�������) \ �����������ℎ��1 \ �����������ℎ��2;

if all components of �2 are matched then

� ← � \ {�2};

foreach � �� ������ℎ������ℎ������� (�2) do
if unmatchedDegree(�) = 1 then � ← � ∪ {�};

else

if unmatchedDegree(�2) = 1 then � ← � ∪ {�2};

ALGORITHM 1: Array matching simplify algorithm.

can only be matched with one variable. For example, this applies to all the three arcs in Fig. 1. The commonplace
presence of obligatory matching options motivates the introduction of an eicient simpliication step.
The proposed simpliication step is shown in Algorithm 1. It takes as input the array graph � , and operates

as follows. First, it constructs a set � from every node in the graph with only one arc, regardless of it being an
equation or a variable.
Then, for every node �1 in the set, it uses the solveLocalMatchingProblem procedure to attempt to match the

only arc adjacent to that (array) node.
In the case of multiple matching options, the simpliication step skips the considered node, because at this stage

any matching choice would be arbitrary, and may afect the feasibility of the array-aware-matching problem.
Conversely, if only one option is found that that fully matches �1, that option is included in the solution. Attention
then shifts to �2, the only node reached by �1.

Since we have fully matched one node and matched some variables from �2, the simplify procedure now checks
whether also �2 is fully matched. If it is, �2 is removed from the set in case it was there, and since having fully
matched �2 may result in neighboring nodes with only one unmatched arc, all such nodes are added to the set.
Even if �2 is not fully matched, it too may end up having only one unmatched arc (if it previously had two), and
in this case �2 is added to the set. The simplify algorithm thus recursively eliminates all nodes with a constrained
match, leaving only irreducible connected components, as well as nodes where arcs have multiple matching
options. After the simplify step all matches found are removed from the graph, and only the remaining part of
the graph is passed to the subsequent matching algorithm.
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7.2.1 Optimal matching in polynomial time. It is evident from the formulation of the simpliication step that its
algorithm executes in polynomial time with respect to the number of nodes and arcs in the array graph and, with
a suitable data structures to represent incidence matrices, in O(1) time with respect to the size of the arrays. We
also notice that there is a class of array graphs that can be completely matched by application of the simpliication
algorithm alone. The model of a wire previously shown in Listing 1 is an example of that. By construction of the
simpliication algorithm, such graphs must have a single solution to the array-aware-matching problem, and
that solution is therefore optimal. It follows that such models can be optimally matched in polynomial time with
respect to the number of nodes and arcs in the array graph, and in O(1) time with respect to the size of the arrays.

Finding other classes of graphs which can be optimally matched in polynomial time is an open research issue.

7.3 Matching algorithm

Now we illustrate the complete array-aware matching algorithm. This algorithm must be able to match any
valid array graph, and additionally it must attempt to approximate the optimal matching as much as possible.
The algorithm we present is based on the well-known Hopcroft-Karp one for bipartite graph matching, with
adaptations to support array graphs. Its main procedure is shown in Algorithm 2.

Function matching

Input: � = (� = � ∪ �, �);

Output: � ;

P = augmentingPaths(�);

while � ≠ ∅ do
foreach � ∈ � do

applyPath(� , �)

� = augmentingPaths(�);

ALGORITHM 2: Main procedure of the matching algorithm.

As we will see in the following, procedure augmentingPaths computes a list of non-intersecting augmenting

paths in the graph to be applied later by the applyPath procedure. When no augmenting paths are found, the
matching is considered complete.

Function applyPath

Input: �, �;

Output: � ;

foreach (�,��, � ,�
′
�, � ) ∈ � do

if � is the equation �� then
��, � ←��, � ∨�

′
�, �

else if � is the variable � � then

��, � ←��, � \�
′
�, �

ALGORITHM 3: Procedure for adding an augmenting path to the matching.

Each augmenting path � , when applied, adds or removes matching from the graph. It consists of a list of tuples
called steps �� = (�,��, � ,�

′
�, � ) where � ∈ � is the starting node of the step, ��, � is the arc being traversed, and�

′
�, �

is the incidence matrix that speciies which elements of the local matching incidence matrix��, � are modiied
by the step. In a similar way to the Hopcroft-Karp algorithm, steps starting from an equation node (� ∈ �) add
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non-zero matrix entries to the matching, and steps starting from a variable node (� ∈ � ) remove entries from the
matching. In other words, in a step starting from an equation node, the elements set to 1 in�′�, � are added to the
matching matrix��, � . On the contrary, in a step starting from a variable node, the elements set to 1 in�′�, � are
removed from��, � .

The computation of the augmenting paths is performed through a breadth-irst-search in the residual graph. In
contrast to the conventional scalar matching process performed by the Hopcroft-Karp algorithm, when computing
the augmenting path we also need to keep track of the matching matrices that express the set of equivalent scalar
variables and equations that are being matched or un-matched.

Function augmentingPaths

Input: � ;

Output: � ;

(Calculation of the initial frontier)
� ← {};

foreach �� do

� ← vector of size |�� | where �� = 1 if ��, � is not currently matched;

if � ≠ ∅ then
� ← append(� , {(�� , � )});

(Calculation of the augmenting paths with breadth-irst-search)
���� = (�, �), � ← bfs(�, � );

(Heuristic sort of the augmenting paths)
� ← heuristicSort(�)

(Restriction of the low of each augmenting path and removal of overlapping paths)
� ← ∅;

foreach �0 = (�, �0) ∈ � do

� ← {}, � ← �0, � ← �0;

while ∃(� ′,�, �) ∈ � do

� ← � ′, �′ ← � ∧�;

if �′, � are equations and variable �� , � � then

� ← lattenRows(�′);
� ← append(�, {(�� , ��, � ,�

′)})

else if �′, � are variable and equation � � , �� then

� ← lattenColumns(�′);
� ← append(�, {(� � , ��, � ,�

′)})

(Scalar arc intersection test between augmenting paths)
if ��� ∈ �, �

′ ∈ � : (�� , ��, � ,�) ∈ �, (�� , ��, � ,�
′) ∈ �′, lattenRows(�) ∧ lattenRows(�′) ≠ ∅

∧�� � ∈ � , �
′ ∈ � : (� � , ��, � ,�) ∈ �, (� � , ��, � ,�

′) ∈ �′, lattenColumns(�) ∧ lattenColumns(�′) ≠ ∅ then

� ← append(�, {�});

ALGORITHM 4: Procedure for computing an augmenting path from a partial state of the matching.

The breadth-irst-search procedure must irst be seeded with an initial frontier � by collecting the list of array
equation nodes with at least one free scalar equation. This initial frontier is then passed to the bfs procedure,
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which computes both the initial list of augmenting path candidates � and the forest of search trees���� traversed
during the search. In ���� , � is the list of nodes in the forest, and � is the list of arcs. Each node � ∈ � is a tuple
(�, �) where � is a node in the matching graph, and � is a binary vector with size and dimensionality equivalent to
the one of � specifying which scalar equations are being traversed in the path. Similarly, each arc � ∈ � is a triple
(�,�, �′) where � is the parent node, �′ the child node, and� is the local incidence matrix that describes the
equivalent traversed path in the homomorphic scalar graph. The augmenting path candidates � ∈ � are actually
just leaves of the ���� forest.

In contrast to the basic Hopcroft-Karp matching algorithm, but similarly to the Ford-Fulkerson low maximiza-
tion algorithm [31], the initial łlowž in the irst steps of the path can be diferent from the inal łlowž at the last
step. In this context the łlowž of a given step is simply the number of scalar equations afected. To perform this
operation, each path is traversed backwards ś from the end to the beginning ś and it is modiied such that the
following invariant is respected:

latenRows(�) = latenRows(�′) ∀ (�,�, �′), (�′,�′, �′′) ∈ � : �′ equation node
latenColumns(�) = latenColumns(�′) ∀ (�,�, �′), (�′,�′, �′′) ∈ � : �′ variable node

During this process, we build the augmenting path � from the nodes, arcs, and matching matrices traversed.
Additionally, the breadth-irst-search does not immediately return a set of paths that respect the non-intersection

condition already present in the Hopcroft-Karp algorithm. An augmenting path intersects another if the two
paths, in at least one point, traverse the same node with intersecting matching matrices. In order to guarantee
this property, each augmenting path is tested against the others. If two paths are intersecting, one of the two is
discarded.

Discarding intersecting paths has the efect of eliminating multiple candidates which are in mutual exclusion
between each other. The speciic candidates being discarded at each step inluence the solution Ω, and thus how
close the solution is to the optimum. Additionally, they impact the number of steps required by the matching
algorithm. In our current implementation, such selection depends on the ordering of �. Our heuristic (implemented
in the heuristicSort procedure) sorts � based on the number of ones in the matching matrices of the path (paths
with more ones are prioritized). Other heuristics could be devised to improve the solution Ω and the number of
steps required to complete the matching, and this could be an interesting direction for future work.
The breadth-irst-search procedure is shown in Algorithm 3. It operates in the conventional way, with three

additional constraints:

(1) Each move in the search is associated with a vector of tangent elements � to the destination node � of the
move. � is a vertical vector if � is an equation, otherwise � is an horizontal vector.

(2) Each move in the search must be associated with an incidence matrix � called path matrix that satisies the
same conditions imposed on matching matrices��, � (see Section 5.1, conditions (3ś6)).

(3) The incidence matrix � only afects the scalar variables or equations speciied by � .

These constraints ensure that each path traversed during the search corresponds to a set of one or more equivalent
paths in the scalar graph. As a result, multiple diferent moves can start at the same moment from the same
node and through the same arc, but with diferent path matrices. The computation of the set of possible moves
at each iteration is performed by enumerating the adjacent edges to the current node, and then by using
solveLocalMatchingProblem to compute the set of distinct valid ways to traverse that edge. When a path reaches a
variable node, and the path matrix contains at least one non-zero column not corresponding to any matched
scalar variable, then it allows to augment the matching and the search is stopped. Since the search process is
stopped for the entire frontier, all paths returned by the bfs procedure have the same length in terms of number
of steps.
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Function bfs

Input: �, � ;

Output: ���� = (�, �), �;

� ′ ← {};

� ← {};

while � ≠ {} ∧ � = {} do
foreach � = (�, � ) ∈ � do

foreach ��, � adjacent to � do

if � is the equation �� then move from equation to variable
� ← solveLocalMatchingProblem((��, � \��, � ) ∧ � );

foreach � ∈ � do

� ← vertical vector of size |� � | where �� = 1 if � �,� is not currently matched;

� ← � ∧ � ;

if � ≠ ∅ then
�′ = (�� , latenRows(�));

�← � ∪ {�′}, � ← � ∪ {(�,�, �′)}, � ← append(�, {�′});

else

�′ = (�� , latenRows(�));

�← � ∪ {�′}, � ← � ∪ {(�, �, �′)}, � ′ ← append(� ′, {�′});

else if � is the variable � � then move from variable to equation

� ← solveLocalMatchingProblem(��, � ∧ � );

foreach � ∈ � do

�′ = (� � , latenColumns(�));

�← � ∪ {�′}, � ← � ∪ {(�, �, �′)}, � ′ ← append(� ′, {�′});

� ← � ′, � ′ ← {};

ALGORITHM 5: Breadth-irst-search of augmenting paths in the matching graph.

7.4 Data representation to achieve O(1) complexity

To guarantee constant-time scaling with the size of array variables and equations, every operation performed
on incidence matrices described in Section 7.1 can be completed in constant time with respect to the size of the
matrices themselves.

However, it can be easily recognised that in reality this is not possible without at least setting an upper bound
on the size of the matrices, and setting such a bound would limit the applicability of our approach to large
equation systems (which is precisely our goal).

As a consequence, while multidimensional incidence matrices and vectors proved useful as a conceptual tool
for explaining our methodology, as a data structure they are not suitable as is for implementation.

In order to achieve O(1) scaling we thus introduce two data structures to replace multidimensional incidence
matrices and vectors, named Multidimensional Compressed Index Set (MCIS) and Multidimensional Compressed

Index Map (MCIM). The irst data structure, the MCIS, replaces multidimensional vectors, and the second (MCIM)
replaces multidimensional incidence matrices.

These two data structures are able to represent the entire range of possible vectors and matrices that can appear
in a matching problem, but the operations on them are not constant-time in general. However, the operations are
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largely constant-time wherever the arrays in a model come from the spatial discretisation of partial-derivatives
diferential equations, which cover virtually the totality of the modelling cases of engineering interest.
Let us consider the set of multidimensional indices corresponding to the 1-elements of a multidimensional

vector. Multidimensional Compressed Index Sets are data structures representing sets of multidimensional indices
as lists of multidimensional intervals or ranges.

A multidimensional range deined over ield K = N
� is a list of tuples {(�1, �1), (�2, �2), . . . (��, ��)}, one tuple

for each dimension in K. It represents the set

{�1, �1 + 1, �1 + 2, . . . �1} × {�2, �2 + 1, �2 + 2, . . . �2} × . . .

where × indicates the Cartesian product. For example, the multidimensional range {(1, 3), (2, 4)} represents the
following set of indices:

{(1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}

In other words, a multidimensional range is deined as an hyperrectangle over ield K represented with the
coordinates of its vertices.

An MCIS is a list of multidimensional ranges, and it represents the union of the hyperrectangles represented
in turn by each range in the list. Additionally, the ranges do not intersect. A single multidimensional range of
volume greater than 1 can also be represented as multiple adjacent ranges, and ranges may appear in any order.
As a result, the same index set can be represented with MCISes in multiple ways.

Let us now consider the set of multidimensional indices corresponding to the 1-elements of a multidimen-
sional incidence matrix. Multidimensional Compressed Index Maps are data structures representing this set of
multidimensional indices, again as lists of intervals.

Each index in the set can be split in two parts: the sub-index corresponding to the irst set of dimensions � , and
the sub-index corresponding to the second set of dimensions � . For brevity wewill represent eachmultidimensional
index in the set as (�, �). Now, to obtain an MCIM from a set of indices � = {(�1, �1), (�2, �2), . . . (��, ��)}, irst we
split � in sub-sets �1, �2, . . . �� where each index (�� , �� ) satisies the following identity:

�0 = min1<�≤� ��
� = �0 − �0
�� = �� + � ∀� : 1 < � ≤ �

(9)

In other words, the � sub-indices in each subset �� must be such that they can be obtained just from the
corresponding � sub-indices and the �� , computed as described in Eq. (9). �� must be constant for all elements of
each subset, but may be diferent between one subset and another. To make another comparison for the sake of
explanation, each subset �� represents a diagonal of an incidence matrix.
At this point, for each sub-set �� = {(��,1, ��,1), . . . (��,�, ��,�)} consider the set �� = {��,0, . . . ��,�}. We call a

MCIM element the tuple Σ� = (�� , �� ), where �� is represented as a Multidimensional Compressed Index Set.
Finally, an MCIM is the set of MCIM elements {Σ1, Σ2, . . . Σ�}, each of which corresponds to one of the sub-sets
�� .

The development of algorithms implementing the operations on the data structures we have described is largely
an engineering problem, and we do not wish to delve into it. Depending on the speciic algorithms being chosen,
the complexity of most operations can range from an upper bound of O(�2), to O(�) in the single-dimensional
case if the list of indices in each MCIS is kept ordered. Better computational costs can be achieved by adopting
well-known interval-tree representations [60], which allow operations on MCISes to reach � (log�) complexity
in some speciic cases.
However, independently from the implementation we choose for operations on MCISes, we can straightfor-

wardly state that any operation on sets containing a single range can be implemented in constant time. The
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same holds for MCIMs with a single element Σ1 containing a MCIS �1 with a single range. This will be the case
for any model where the matching heuristic algorithm manages to preserve all array equations and variables.
Therefore, we expect that in such cases ś which are typical in physical models [7] ś the compilation process will
be performed in constant time with respect to the size of array equations and variables.

The only operation that can be performed in constant O(1) time on any arbitrary MCIM is solveLocalMatching-

Problem. In fact, it is trivial to prove that each MCIM element Σ� represents a matrix that satisies the properties
outlined in Section 7.1 for valid matrices returned by solveLocalMatchingProblem. Therefore, solveLocalMatching-

Problem can be elided from the simplify and matching algorithms, and the iteration on the matching options can
be replaced with the iteration of each Σ� in the input MCIM.

8 CONCLUSIONS AND FUTURE WORK

We discussed the problem of translating declarative EB models into imperative code, concentrating on the
crucial step of equation/variable matching. Relating our work to the research scenario, we evidenced two issues
to address. First, currently established approaches to EB-to-imperative translation handle array variables and
equation looping constructs in an extremely ineicient manner. Second, array-aware proposals in the literature
aim for a fast translation, but not for obtaining an eicient imperative code.
We showed that to pursue both the objectives above, one needs to translate an EB model in such a way to

maximise the preservation of looping constructs in the imperative code, and we introduced a metric to measure
the said preservation. This led us to deine the concept of optimal array-aware matching, as the one that maximises
that metric.
As our main methodological contribution, we proved that the problem of computing an optimal matching

in the sense just stated is NP-complete. Motivated by this completeness, we proposed an algorithm to compute
an array-aware matching in polynomial time, whose rationale is to stop at the irst solution found, privileging
however the preservation of looping constructs when choices need to be taken.

The ideas we presented are currently being put to work within the implementation of an experimental Modelica
compiler [7, 8]. Indeed, based also on the efort that such a realisation entails, we do hope that in the next years
the developments we described will be adopted in the EB modelling community at large. In fact, the advantages
of an array-aware EB-to-imperative translation are essential for addressing large-scale models in an industrial
context.
In the future, we also plan to extend our approach to the rest of the translation pipeline, addressing other

problems such as equation scheduling and SCC resolution. Additionally, a more precise characterization of the
set of array graphs that can be optimally matched in polynomial time is also of great interest, as well as better
heuristics for the array-aware-matching algorithm.
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