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Abstract
For each n ≥ 3 we give examples of infinitesimally rigid projective manifolds of general type
of dimension n with non-contractible universal cover. We provide examples with projective
and examples with non-projective universal cover.
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1 Introduction

In [2] several notions of rigidity have been discussed, the relations among them have been
studied and many questions and conjectures have been proposed. In particular the authors
showed that a rigid compact complex surface has Kodaira dimension−∞ or 2, and observed
that all known examples of rigid surfaces of general type are K (π, 1) spaces. Recall that
a CW complex with fundamental group π is called K (π, 1) space if its universal cover is
contractible, and that these spaces have the property that their homotopy type is uniquely
determined by their fundamental group (cf. [19, §1.B]). This implies that the topological
invariants, such as homology and cohomology, are determined by π . In [2] the following
natural question has been posed.

Question 1 Do there exist infinitesimally rigid surfaces of general type with non-contractible
universal cover?

The aim of this paper is to give a positive answer for the analogous question in higher
dimensions. More precisely, we construct for each n ≥ 3 an infinitesimally rigid manifold of
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general type of dimension n with non-contractible universal cover. For surfaces the question
remains open. We recall now the notions of rigidity that are relevant for our purposes.

Definition 1 Let X be a compact complex manifold of dimension n.

1. A deformation of X is a proper smooth holomorphic map of pairs

f : (X, X) → (B, b0),

where (B, b0) is a connected (possibly not reduced) germ of a complex space.
2. X is said to be rigid if for each deformation of X , f : (X, X) → (B, b0) there is an open

neighbourhood U ⊂ B of b0 such that Xt := f −1(t) � X for all t ∈ U .
3. X is said to be infinitesimally rigid if H1(X ,�X ) = 0, where �X is the sheaf of

holomorphic vector fields on X .
4. X is said to be (infinitesimally) étale rigid if all finite étale covers f : Y → X are

(infinitesimally) rigid.

Remark 1 (i) By Kodaira-Spencer-Kuranishi theory every infinitesimally rigid manifold is
rigid. The converse does not hold in general as it was shown in [6] and [8] (cf. also [24]).

(ii) Beauville surfaces are examples of rigid, but not étale rigid manifolds (see [12]).

Both the examples constructed in [6] and Beauville surfaces are product quotient vari-
eties, i.e. (resolutions of singularities of) finite quotients of product of curves with respect
to a holomorphic group action. In recent years, product quotients turned out to be a very
fruitful source of examples of rigid complex manifolds with additional properties. Besides
the examples above, we mention [4], where the authors construct the first examples of rigid
complex manifolds with Kodaira dimension 1 in arbitrary dimension n ≥ 3, and [5] where
they constructed new rigid three- and four-folds with Kodaira dimension 0. We refer to [11,
16–18, 21, 22] for other interesting examples of product quotient varieties.

The manifolds we construct are also product quotients. More precisely, inspired by the
construction in [6] in Sect. 2 we consider for each n ≥ 3 and d ≥ 4, even and not divisible by
3 the n-fold product Cn of the Fermat curve C of degree d together with a suitable action of
Z
2
d . The quotient Xn,d := Cn/Z

2
d is a normal projective variety with isolated cyclic quotient

singularities of type 1
2 (1, . . . , 1), Kodaira dimension n and

H1(Xn,d ,�Xn,d ) = H1(Cn,�Cn )Z
2
d = 0.

Blowing up the singular points, we obtain a resolution X̂n,d → Xn,d such that H1(Xn,d ,

�Xn,d ) = H1(X̂n,d ,�X̂n,d
). Therefore, X̂n,d is an infinitesimally rigid projective manifold

of general type.
In Sect. 3 we show that the universal cover Un,d of X̂n,d is non-contractible since it

contains several P
n−1 (see Propostion 3). We then discuss the finiteness of the fundamental

group π1(Xn,d) = π1(X̂n,d). The crucial ingredient here is Armstrong’s description of the
fundamental group of a quotient space [1] adapted to product quotients by [3]. The finiteness
ofπ1(̂Xn) is equivalent to the finiteness of certain groups (Proposition 5: Finiteness criterion).
This allows us to prove the following.

Theorem 1 For each n ≥ 3, d ≥ 4, even and not divisible by 3 there exists an infinitesimally
rigid projective n-dimensional manifold of general type X̂n,d , whose universal cover Un,d is
non-contractible. Moreover, the universal cover Un,d is projective if and only if d = 4.

123



Geometriae Dedicata           (2023) 217:49 Page 3 of 10    49 

The construction actually works also for n = 2: the surface X̂2,4 is not rigid, whereas the

surface X̂2,d for d ≥ 8 is rigid but not infinitesimally rigid (see [6]), and its universal cover
is non-contractible.

Notation We work over the field of complex numbers, and we denote by Zn the cyclic
group of order n and by ζn a primitive n-th root of unity. The rest of the notation is standard
in complex algebraic geometry.

2 The families

Let Cd := {xd0 + xd1 + xd2 = 0} ⊂ P
2 be the Fermat curve of degree d . Consider the group

action

φ1 : Z
2
d → Aut(Cd), (a, b) �→ [(x0 : x1 : x2) �→ (ζ ad x0 : ζ b

d x1 : x2)].
There are 3d points on Cd with non-trivial stabilizer. They form three orbits of length d . A
representative of each orbit and a generator of the corresponding stabilizer is given in the
table below:

Point (0 : 1 : ζ2d ) (1 : 0 : ζ2d ) (1 : ζ2d : 0)
Generator (1, 0) (0, 1) (1, 1)

Hence the quotient map

f : Cd → P
1, (x0 : x1 : x2) �→ (xd0 : xd1 )

is branched in (0 : 1), (1 : 0) and (1 : −1), each with branch index d .

2.1 The singular quotients Xn,d

From now on we fix d ≥ 4, even and not divisible by 3, and denote Cd simply by C . Let A
be the automorphism of Z

2
d given by the matrix

(

1 −2
2 −1

)

∈ GL(2, Zd),

and let φ2 := φ1 ◦ A−1. For each n ≥ 2 consider the Z
2
d diagonal action on Cn defined by

g(z1, . . . , zn) := (

φ1(g) · z1, φ2(g) · z2, φ2(g) · z3, . . . , φ2(g) · zn
)

and let Xn,d be the quotient variety Xn,d := Cn/Z
2
d .

Remark 2 The diagonal action is not free, indeed

Fix(φ1(g)) 
= ∅ and Fix(φ2(g)) 
= ∅ ⇐⇒ g ∈ H :=
〈(

d

2
, 0

)

,

(

0,
d

2

)〉

.

Noting that φ1|H = φ2|H , we see that a point (z1, . . . , zn) ∈ Cn has a non-trivial stabilizer
if and only if all its coordinates zi belong to one and only one of the threeZ

2
d -orbits displayed

in the table above.
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Proposition 1 For n ≥ 3 the projective variety Xn,d is infinitesimally rigid and of general
type. The singular locus of Xn,d consists of 6 · dn−2 cyclic quotient singularities of type
1
2 (1, . . . , 1).

Proof By Remark 2 there are 3 · dn points on Cn with non-trivial stabilizer, each generated
by one of the order 2 elements in Z

2
d . Thus, Xn,d has (3 · dn)/(d2/2) = 6 · dn−2 singularities

of type 1
2 (1, . . . , 1).

These singularities are terminal if n ≥ 3, see [26, p. 376 Theorem]. Since the quotient
map Cn → Xn,d is quasi-étale, g(C) = (d − 1)(d − 2)/2 ≥ 3 and Xn,d is terminal, its
Kodaira dimension is κ(Xn,d) = κ(Cn) = n (cf. [13, p. 51]).

According to Schlessinger [27], isolated quotient singularities in dimension at least three
are rigid, i.e. Ext1(�1

Xn,d
,OXn,d ) = 0. Thus the local-to-global Ext spectral sequence yields

H1(Xn,d ,�Xn,d ) � Ext1(�1
Xn,d

,OXn,d ).

Hence it suffices to verify that Xn,d has no equisingular deformations. Since g(C) ≥ 3 we
have H0(C,�C ) = 0, hence by Künneth formula we get

H1(Cn,�Cn ) =
n

⊕

i=1

H1(C,�C ).

Using the fact that the quotient map Cn → Xn,d is quasi-étale and the action is diagonal, we
obtain

H1(Xn,d ,�Xn,d ) = H1(Cn,�Cn )Z
2
d =

n
⊕

i=1

H1(C,�C )Z
2
d .

The branch locus B of f : C → C/Z
2
d � P

1 consists of 3 points pi with branch indices
mpi = d , thus by [7, Ex.VI.12] we have

dim H1(C,�C )Z
2
d = dim H0(C, 2KC )Z

2
d = h0(P1, 2KP1 +

∑

pi∈B
pi · �2(1 − 1

mpi
)�)

= h0(P1,O(−1)) = 0.

��

2.2 Resolution of singularities of type 1
2 (1, . . . , 1)

Proposition 2 A singularityU := C
n/Z2 of type

1
2 (1, . . . , 1) admits a resolution ρ : ̂U → U

by a single blow-up, with exceptional prime divisor P
n−1. If n ≥ 3,

ρ∗�̂U = �U and R1ρ∗�̂U = 0.

For a proof we refer to [27, proof of Theorem 4], see also [4, Corollary 5.9, Proposition
5.10].

Remark 3 (see [4, Remark 5.4]) Both properties are not obvious and in general even false.
For any resolution ρ : Z ′ → Z of a normal variety Z , the direct image ρ∗�Z ′ is a subsheaf
of the reflexive sheaf �Z , and this inclusion is in general strict: e.g. take the blow-up of the
origin of C

2.
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The vanishing of R1ρ∗�Z ′ is also not automatic: take the resolution of an A1 surface sin-
gularity (i.e. 12 (1, 1)) by a−2 curve, then R1ρ∗�Z ′ is a skyscraper sheaf at the singular point
with value H1(P1,O(−2)) ∼= C. More generally, for canonical ADE surface singularities
R1ρ∗�Z ′ is never zero, cf. [10, 25, 27].

Corollary 1 Let Zn be a projective variety of dimension n ≥ 3 with only singularities of type
1
2 (1, . . . , 1). Then there exists a resolution ρ : ̂Zn → Zn, such that

H1(Zn,�Zn ) � H1(̂Zn,�̂Zn
).

In particular, if Zn is infinitesimally rigid, so is ̂Zn.

Proof Since the singularities of Zn are isolated, we resolve them simultaneously using
Proposition 2 and we get a resolution ρ : ̂Zn → Zn having the same properties:

ρ∗�̂Zn
= �Zn and R1ρ∗�̂Zn

= 0.

Leray’s spectral sequence implies H1(̂Zn,�̂Zn
) � H1(Zn,�Zn ). ��

By the corollary, for n ≥ 3 there exists a resolution X̂n,d → Xn,d of the singularities of
Xn,d , which is infinitesimally rigid. By Remark 3, for n = 2 the minimal resolution X̂2,d

of X2,d is not infinitesimally rigid, nevertheless the main theorem of [6] shows that X̂2,d is
rigid for d ≥ 8, whereas X̂2,4 is a numerical Campedelli surface, whose Kuranishi family
has dimension 6.

2.3 Non-étale infinitesimally rigidity

We conclude this section constructing an étale cover of X̂n,d which is not infinitesimally
rigid, thus X̂n,d is not étale infinitesimally rigid.

Let H := 〈( d
2 , 0

)

,
(

0, d
2

)〉

be as in Remark 2.

Lemma 1 Let Yn,d := Cn/H be the quotient with respect to the restricted diagonal action,
then:

1. The natural morphism ψ : Yn,d → Xn,d is an unramified Galois cover with group Z
2
d/2.

2. h1(Yn,d ,�Yn,d ) = 3n ·
(

d2−2d
8

)

.

Proof (1) Since H is a normal subgroup of Z
2
d the map ψ is a Galois cover with group

Z
2
d/H

∼= Z
2
d/2. By Remark 2 the stabilizer of a point z ∈ Cn with respect to theZ

2
d -action

is contained in H , whence the map ψ is unramified.
(2) Since C → C/H is branched in 3d

2 points, we have

dim
(

H1(Cn,�Cn )H ) = n · dim (

H1(C,�C )H
) = 3n ·

(

d2 − 2d

8

)

arguing as in Proposition 1. ��
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3 The universal cover of ̂Xn,d

In this section we prove that the universal cover Un,d of X̂n,d is non-contractible, and then
we discuss whether it is projective or not.

Proposition 3 Let X be a compact Kähler manifold, containing a P
m. Then the universal

cover U of X is non-contractible.

Proof Since P
m is simply connected, the inclusion map i : P

m ↪→ X lifts to a map f : P
m →

U . Looking for a contradiction, assume that U is contractible, then f is homotopic to a
constant map, therefore the inclusion i is also homotopic to a constant map. In particular
we see that the induced linear map i∗ : H2(X , C) → H2(Pm, C) is the zero map. Now let
[ω] be a Kähler class of X . Its restriction i∗([ω]) is a Kähler class of P

m , whence non zero,
contradiction. ��

Corollary 2 The universal cover Un,d of X̂n,d is non-contractible.

Proof By Proposition 2 the manifold X̂n,d contains several P
n−1. ��

3.1 The Fundamental Group

In this section we discuss the finiteness of the fundamental group π1(X̂n,d). In order to do
this we use the main theorem of [1] in the case of product quotient varieties following [3,
15]. We briefly recall their strategy and we refer to them for further details.

Let G be a finite group acting diagonally on a product Z := C1 × . . . × Cn of curves
of genus at least 2, and consider the group G of all possible lifts of automorphisms induced
by the action of G on Z to the universal cover u : H

n → Z . The group G acts properly
discontinuously onH

n and u is equivariant with respect to the natural mapG → G, hence we
have an isomorphismH

n/G ∼= Z/G. SinceH
n is simply connectedwe can applyArmstrong’s

results (see [1]) and get the following.

Proposition 4 Let Fix(G) be the normal subgroup of G generated by the elements having
non-empty fixed locus. Then

π1(Z/G) = G/Fix(G).

Assume that the G-action on Z restricts to a faithful action φi on each factor Ci . Let Ti

be the group of all possible lifts of automorphisms induced by the action of G on Ci to the
universal cover H of Ci , and let ϕi : Ti → G be the natural map. In this setting, the above
group G is the preimage of the diagonal subgroup 
G ⊂ Gn under ϕ1 × . . . × ϕn :

G = {(x1, . . . , xn) ∈ T1 × · · · × Tn | ϕ1(x1) = . . . = ϕn(xn)}.
There is also a similar description of G in the non-faithful case, see [15, Proposition 3.3].

Remark 4 (i) The group Ti has a simple presentation (see also [14, Example 29]): let g′ be
the genus of Ci/G and m1, . . . ,mr be the ramification indices of the branch points of
the covering map Ci → Ci/G, then
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Ti = T(g′;m1, . . . ,mr ) :=
〈

a1, b1, . . . , ag′ , bg′ , c1, . . . , cr | cm1
1 , . . . , cmr

r ,

g′
∏

i=1

[ai , bi ] · c1 · · · cr
〉

.

(ii) The group T(g′;m1, . . . ,mr ) is called the orbifold surface group of type
[g′;m1, . . . ,mr ].
The non-trivial stabilizers of theTi -action onH are cyclic and generated by the conjugates

of the elements ck . The restriction of ϕi to each one of these subgroups is an isomorphism
onto its image, which is the stabilizer of a point in Ci . Conversely, all non-trivial stabilizers
of the G-action on Ci are of this form (see [3]).

Definition 2 Let Li ⊂ Ti be set of the elements c
l j
j ∈ Ti such thatϕi (c

l j
j ) ∈ G has non-empty

fixed locus on Z = C1 × . . . × Cn , where j ∈ {1, . . . , r} and l j ∈ {1, . . . ,m j − 1}.
We denote by 〈〈Li 〉〉Ti the normal subgroup of Ti generated by Li .

Proposition 5 (Finiteness criterion) The group π1(Z/G) = G/Fix(G) is finite if and only
if the groups Ti/〈〈Li 〉〉Ti are finite.

Proof According to [3, pag.1018-1019] the group G/Fix(G) fits in an exact sequence

1 → E → G/Fix(G) → H → 1,

where E is a finite group and H is a subgroup of finite index of the product

T1/〈〈L1〉〉T1 × · · · × Tn/〈〈Ln〉〉Tn .

��
Remark 5 Let X be a normal variety with only quotient singularities, and let ρ : ̂X → X be a
resolution of singularities. Then ρ∗ : π1(̂X) → π1(X) is an isomorphism, by [20, Theorem
7.8]. In particular, π1(X̂n,d) � π1(Xn,d).

According to the description of Xn,d given in the previous section its associated orbifold
surface groups Ti are all of type [0; d, d, d], and applying this discussion to our situation we
get the following.

Theorem 2 The universal cover Un,d of X̂n,d is projective if and only if d = 4.

Proof The universal cover Un,d of X̂n,d is projective if and only if the fundamental group
π1(X̂n,d) is finite. Therefore, by Proposition 5 the universal cover Un,d is projective if and
only if the groups Ti/〈〈Li 〉〉Ti are finite. Let k := d

2 . Since the elements in Z
2
d fixing

points on Cn are exactly the elements in H = 〈(k, 0), (0, k)〉, by Remark 4 (ii) we see that
Li = {ck1, ck2, ck3}, whence
Ti/〈〈Li 〉〉Ti

∼= T(0; d, d, d)/〈〈ck1, ck2, ck3〉〉 = 〈c1, c2, c3|ck1, ck2, ck3, c1c2c3〉 ∼= T(0; k, k, k).
The statement follows since the group T(0; 2, 2, 2) ∼= Z

2
2 is finite, whereas T(0; k, k, k) is

infinite for k > 2. ��
Remark 6 By Lemma 1 the universal cover Un,4 of X̂n,4 is not infinitesimally rigid.
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Remark 7 (i) ThefirstBetti number b1 ofYn,4 is zero, because the quotientC/H is isomorphic
to the projective line. Indeed by Künneth formula and [23, §1.2] we have

H1(Yn,4, C) = H1(Cn, C)H =
⊕

H1(C, C)H =
⊕

H1(P1, C) = 0.

Assuming d = 4, we can actually prove that g2 = 1 for all g ∈ π1(Yn,4) = G/Fix(G).

This tells us that π1(Yn,4) = π1(̂Yn,4) ∼= Z
s
2 for some s ∈ N.

The element g is represented by an n-tuple

(w1, . . . , wn) ∈ G = T1 ×H · · · ×H Tn

where Tk = T(0; 2, 2, 2, 2, 2, 2) and all the maps ϕk : Tk → H are equal, as we consider
the same action on each factor (see Remark 2). Since ϕk(w

2
k ) = (0, 0) ∈ H = Z

2
2, the tuple

(1, . . . , 1, w2
k , 1 . . . , 1)

belongs to G, and to prove the claim it suffices to show that this tuple is contained in Fix(G).
Note that the number of occurrences ni of the letter ci in the word w2

k is even. Observe
now, that in any group a product a · b can be written as b · (b−1 · a · b), hence we can write
w2
k as

w2
k =

( n1
∏

i=1

g−1
i c1gi

)

· . . . ·
( n6

∏

j=1

h−1
j c6h j

)

, (1)

for certain gi , . . . , h j ∈ Tk .
By Remark 4 (ii) and since H is abelian, we get (c1, . . . , c1, g

−1
i c1gi , c1, . . . , c1) ∈

Fix(G). We conclude that

(1, . . . , 1,
n1
∏

i=1

g−1
i c1gi , 1 . . . , 1) =

n1
∏

i=1

(c1, . . . , c1, g
−1
i c1gi , c1, . . . , c1) ∈ Fix(G) .

The same applies to each factor in the RHS of (1) and so (1, . . . , 1, w2
k , 1 . . . , 1) ∈ Fix(G).

This shows g2 = 1, whenceπ1(Yn,4) is abelian, and it is finite sinceπ1(Yn,4) = π1(Yn,4)
ab =

H1(Yn,4, Z) has rank 0.

(ii) We implemented Proposition 4 using the computer algebra system MAGMA [9], and
we found π1(Yn,4) = Z

n−1
2 and π1(Xn,4) = Z

n+1
2 for n = 2, 3, 4, 5. In particular, the

universal cover of the varieties Xn,4 andYn,4 has 3·23n−2 singularities of type 1
2 (1, . . . , 1).

We expect the above to generalize to any dimension.

Remark 8 The surfaces X̂2,d with d ≥ 8 are rigid but not infinitesimally rigid (see [6]),
and their universal cover is non-contractible. This answer partially the question posed in the
Introduction in the case of surfaces.
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