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Abstract  This study evaluates the influence of 
micropollutant chemical characteristics on the 
removal of pharmaceutical substances through three 
different treatments: membrane bioreactor, full waste-
water treatment with final filtration (WWTP), and 
secondary treatment through a conventional acti-
vated sludges system, operated in parallel at realis-
tic sludge retention time (SRT) over three years and 
four sampling campaigns. Treated wastewater from 
the WWTP enters the local canal with a low dilution 
ratio. Therefore, the monitoring of water contamina-
tion is of particular interest for a reliable assessment 
of environmental risk. A total of 39 pharmaceutical 
substances were screened. While differences among 
the three types of treatments were found statistically 
not significant, data analysis performed through a 
generalized linear model showed that both the influent 

concentration and the physicochemical characteristics 
are strong predictors for the removal of micropollut-
ant. SRT had no significance for the three types of 
treatment of this study. Finally, pharmaceuticals were 
divided into three major classes based on their influ-
ent concentration and removal. A canonical discri-
minant analysis was used to predict the removals and 
showed that the pharmaceuticals removal rates are 
strongly influenced by their hydrophobicity/hydrophi-
licity and enabled to predict their removal categories 
with high accuracy (i.e., 65% of correct predictions).

Keywords  Conventional activated sludge · MBR · 
Pharmaceutical substances · Physicochemical 
properties · Wastewater treatment

1  Introduction

Pharmaceutically active substances are referred to as 
“pseudo-persistent” in the environment (Ebele et al., 
2017) since their removal in aquatic ecosystems is 
balanced by a continuous discharge into water bod-
ies, where they pose risks on ecosystem and human 
health. In the last decade, the growing population 
and the related increasing consumption of medicines 
(Alvarino et al., 2018), together with a rising public 
concern, have elevated the interest in the occurrence 
and associated risks related to pharmaceutically 
active substances in the environment (Kosek et  al., 
2020).
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Wastewater treatment plants (WWTP) were indi-
cated as hot spots for the release of such substances 
into the environment (Gutiérrez et al., 2022; Xu et al., 
2016) either through discharge of treated effluent or 
by dispersion of digested sludge on agricultural fields. 
Knowledge about their fate in WWTP is still insuf-
ficient and pharmaceutical discharges are still not 
regulated in different European countries, but phar-
maceuticals are already mentioned in the EU water 
reuse legislation (EU 2020/741) and included in the 
Watch list system since EU 2015/495 until the recent 
EU 2022/1307.

The removal of pharmaceutical substances, and 
in fact of any compounds, in biological wastewater 
treatment is imputable to different removal mecha-
nisms. The removal is due either to biodegradation/
transformation, adsorption on sludge, or volatilization 
(Gurung et al., 2019). In fact, biodegradation is gen-
erally the major removal process for hydrophilic sub-
stances. It was shown that co-metabolism is the most 
probable microbial degradation process occurring in 
bioreactors (Bouju et  al., 2008). Indeed, as at such 
low concentrations (Kumar et  al., 2019; Tran et  al., 
2018), the biomass activity is hardly sustained by the 
pharmaceutical substances themselves.

Adsorption on the biomass did not appear to be a 
major removal process for most of the targeted phar-
maceuticals. Moreover, it was shown that at neutral 
pH conditions, which is the case in a majority of 
municipal WWTP, the water-sludge partition coeffi-
cient of acidic pharmaceuticals is low, and they likely 
remain in the water phase (Urase et al., 2005). Still, 
some of them, hydrophobic or presenting a positive 
charge, are likely to be adsorbed onto sludge par-
ticles (Grabic et  al., 2022; Radjenović et  al., 2009). 
Nevertheless, in general, the substances adsorbed to 
the sludge do not accumulate in the reactor and are 
successively biodegraded. As far as volatilization and 
stripping are concerned, it was shown that given their 
Henry’s constant and their octanol–water partition 
coefficient, it should be negligible for a large major-
ity of pharmaceutical substances (Besha et al., 2017; 
Gurung et al., 2019).

Several studies have reported the removal of 
pharmaceuticals in membrane bioreactors (MBR) 
(Femina Carolin et al., 2021; Ji et al., 2020; Nguyen 
et  al., 2017; Park et  al., 2017). Theoretically, MBR 
present few advantages, with respect to conventional 
processes, when facing pharmaceutical substances 

removal. Indeed, operating conditions observed in 
MBR may favor their adsorption and biodegradation. 
Moreover, MBR are usually operated at large SRT, 
which gives the possibility to the slowly growing bio-
mass to develop, and therefore the biomass presents 
a larger biodiversity and broader physiological capa-
bilities (Alvarino et  al., 2018; Bhattacharyya et  al., 
2022; Bouju et  al., 2008; Clara et  al., 2005; Gos-
wami et  al., 2018). Elevated biomass concentrations 
may enhance the elimination of hardly biodegradable 
substances and lead to a better biodegradation rate 
(Bernhard et  al., 2006; Hatoum et  al., 2019). As for 
MBR, since the membrane retains big particles such 
as colloids inside the bioreactor, this increases the 
adsorption surface and therefore, micropollutants that 
present a tendency to sorb to the biomass will more 
likely adsorb onto suspended solids (Nghiem et  al., 
2020).

Some authors reported higher removal efficien-
cies in MBR, with respect to conventional processes 
(Besha et al., 2017; Monsalvo et al., 2014; Park et al., 
2017). It was highlighted that MBR may show higher 
capabilities in removing pharmaceutical substances 
which are partially degraded in conventional activated 
sludge (CAS), but it does not impact the removal nei-
ther of recalcitrant substances, nor of readily biode-
gradable ones (Besha et al., 2017; Radjenović et al., 
2009). Adversely, other authors have also shown that 
the use of MBR did not improve the removal of phar-
maceutical substances (Sipma et  al., 2010) and the 
different behaviors for each substance makes it diffi-
cult to establish a general trend (Melvin et al., 2016). 
As a matter of fact, in many studies MBR were oper-
ated at unrealistically high SRT or fed with synthetic 
feed. Hence, when comparing both processes oper-
ated in parallel and in comparable conditions, these 
results tend to show that the secondary treatment is 
critical for micropollutant removal.

The removal of micropollutants can also be 
viewed from another angle, linking the efficiency of 
removal to molecular physicochemical properties 
of substances. Three main properties were reported 
as important factors in micropollutant removal pKa, 
logKow, and logKoc (Ofrydopoulou et al., 2022). Sim-
ilarly, it is firmly established that pharmaceutically 
active compounds removal is partly ascribed to their 
physicochemical characteristics (Ebele et  al., 2017), 
specifically hydrophobicity and hydrophilicity (Couto 
et al., 2019). However, few published studies consider 
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properties such as molar volume, water solubility, etc. 
Even more, most of these studies did not provide a 
robust statistical analysis of their data especially due 
to a short period of monitoring and the lack of vali-
dation data. In this perspective, the aim of this work 
is to assess the influence of various physicochemical 
parameters on the removal of different pharmaceuti-
cals under three different treatment processes. Four 
2-days sampling campaigns in three different years 
were performed.

In this study, two processes (a MBR pilot plant 
and a full-scale CAS /WWTP) were operated in par-
allel, receiving the same influent, and at comparable 
conditions, over three years. Moreover, different but 
realistic sludge retention times (SRTs) were applied 
to the MBR. The pharmaceutical substances removal 
efficiencies of the three systems are compared and 
discussed. The assessment of a large WWTP (Milano 
Nosedo) effluent quality, being poorly diluted and 
reused for irrigation, is of high importance particu-
larly for what concerns emerging micropollutants, 
including pharmaceuticals.

2 � Materials and Methods

2.1 � Full Scale Treatment Plant (WWTP)

The full-scale wastewater treatment of Milano 
Nosedo (1,250,000 PE) is situated in the South-East 
of Milan, close to the Vettabbia channel and collects 
wastewater from the central-oriental area of Milan. It 
was operated at yearly average SRT of 35 days and an 
hydraulic retention time of 23 h calculated based on 
the average daily inflow of 432,000 m3/d.

This municipal sewage treatment plant consists of 
a mechanical pretreatment; a conventional activated 
sludge process followed by sedimentation. Finally, 
the treated effluent goes through sand filtration (com-
posed of two sections in parallel made of ten filter-
ing cells, with homogeneous sand at a granulom-
etry equals to 1.35 mm; their height is of 1.5 m) and 
chemical oxidation (peracetic acid). The biological 
treatment handles nitrogen removal through pre-den-
itrification (anoxic) and nitrification (aerobic) tanks. 
Average total suspended solids (TSS) and  chemical 
oxygen demand (COD) concentration in the effluent 
were 5 ± 3 mgTSS/L and 12 ± 4 mgCOD/L, respec-
tively. Regarding the sludge loading rate (SLR), 

it did not vary significantly during the four cam-
paigns, remaining between 0.101 and 0.135 gCOD/
gSST/d. The aerobic/anoxic biomass ratio was of 3.3 
gTSSAER/gTSSANOX.

2.2 � MBR Pilot Plant

The MBR pilot plant was operated in parallel to 
the biological treatment of the full scale munici-
pal WWTP of Nosedo located in the south-east area 
of Milan, Italy, and fed by the same influent as the 
WWTP biological treatment. To limit clogging of the 
membrane, the influent was pre-filtered in a filter bag 
(1  mm mesh, 20  cm diameter, 100  cm height) and 
collected in a 200 L cylindrical PVC tank.

The pilot consisted of an anoxic zone of 90 L and 
an aerobic one of 190 L (Fig.  1). The anoxic zone, 
for denitrification purposes, was connected to the 
aerobic zone via a gravity drain. A stainless-steel stir-
rer was placed in the middle of the tank to provide 
a continuous mixing of the mixed liquor. Operational 
parameters were monitored through temperature, pH, 
and dissolved oxygen sensor, as well as a manometer 
for the transmembrane pressure. Twice the inflow 
was recirculated continuously from the aerobic to 
the anoxic zone. After a stabilization phase of three 
times the SRT, the aerobic/anoxic biomass ratio was 
3.1 gTSSAER/gTSSANOX for the four sampling peri-
ods. The calculated SLR variates from 0.064 gCOD/
gSST/d during the third campaign to 0.173 gCOD/
gSST/d during the first campaign.

The hollow fiber module (GE Healthcare Zee-
Weed 10®) was submerged in the aerobic zone; it is 
characterized by a surface area of 0.93 m2 and a nom-
inal cut-off of 0.2  µm, microfiltration. Average TSS 
and COD concentration in the effluent were below 1 
mgTSS/L and 8 ± 3 mgCOD/L, respectively.

2.3 � Sampling and Analyses

In the whole three-years period, four sampling cam-
paigns were performed (April year 1, April year 2, 
July year 3, December year 3). Sampling points were 
placed at the feeding points (MBR and CAS), the 
MBR permeate, the effluent of the biological treat-
ment (CAS) and the final effluent of the WWTP 
(WWTP). The first and the third campaign had 
similar SRT for MBR and CAS of 35 and 25  days, 
respectively. The second campaign had an SRT of 
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15 days for MBR and 43 days for CAS. Finally, the 
fourth campaign had an SRT of 50 days for MBR and 
29 days for CAS. The data of this study can be found 
in Table  S1. Samples were time-proportional 24  h 
composite samples. Immediately after collection, 
each sample was filtered on a 0.45 µm fiber glass fil-
ter and frozen at -20 °C until analyzed. Analyses were 
performed by means of HPLC/MS/MS by the Mario 
Negri Institute (Milan, Italy) as previously described 
(Castiglioni et al., 2006).

2.4 � Statistical Analysis

All statistical analyses were performed using IBM 
SPSS Statistics. Firstly, Factor Analysis was applied 
through a preliminary principal component analy-
sis (PCA) in order to reduce the number of variables 
while retaining most of variability in the original data 
(Afifi et  al., 2003). For rotating the PCA axes, the 
Varimax rotation criterion was used which turns PCA 
into a Factor Analysis.

Then, Hierarchical Cluster Analysis (HCA) was 
run based on the extracted factors to group pharma-
ceuticals into similar subsets of removal values.

Moreover, in the attempt to develop a predictive 
model of pharmaceuticals removal as response of 
the physicochemical properties, influent concentra-
tion, and the type of treatment as predictors, a gen-
eralized linear model (GLM) regression analysis was 
run. GLMs are flexible linear models where residu-
als can follow a probability pattern other than normal 

distribution and qualitative predictors (i.e., factors) 
can be also included. Finally, to predict micropollut-
ant’s removal categories determined through HCA, a 
canonical discriminant analysis was run. This latter 
is a dimension-reduction method like principal com-
ponent analysis. Canonical discriminant analysis pro-
duces canonical variables (linear combinations of the 
interval variables) from a classification variable and 
several interval variables that summarize between-
class variation and separate among categories in a 
manner similar to how principal components summa-
rize total variance.

3 � Results

3.1 � Occurrence of Pharmaceuticals in South Milan 
Sewage Water

Out of the 39 substances analyzed, 10 were not 
detected at all (clofibric acid, estradiol, ethynilestra-
diol, omeprazole, oxytetracycline, sildenafil, spiramy-
cin, tamoxifen, tilmicosine, and tylosin). Among the 
29 substances detected at least once, 19 were detected 
in all the 4 sampling campaigns (i.e., atenolol (ATE), 
bezafibrate (BZF), carbamazepine (CBZ), ciprofloxa-
cin (COF), clarithromycin (CLA), cyclophosphamide 
(CYC), diazepam (DZP), diclofenac (DF), enalapril 
(ENA), estrone (EST), furosemide (FUR), gemfibro-
zil (GEM), ibuprofen (IBU), ketoprofen (KET), lin-
comycin (LCM), naproxen (NAP), ofloxacin (OFL), 

Fig. 1   Scheme of the MBR pilot plant
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ranitidine (RAN), and salbutamol (SAL)). More 
detailed information is provided in Table S1.

A great variability of influent concentrations 
between the various sampling campaigns were 
observed in general, and from one day to the other 
one, for all the sampling campaigns between low 
ng/L up to several µg/L (Fig. 2 and Table S1). Indeed, 
when considering each single sampling campaign, 
standard deviations up to 0.378 µg/L were observed, 
mostly for the substances present at concentrations 
in the higher range (e.g., ibuprofen, atenolol, and 
ofloxacin). This could be explained by high variations 
in consumption rates between years and seasons, as 
previously reported (Collado et  al., 2014). It is also 
important to note that the sewage network system 

going to the Nosedo WWTP covers a large area of 
Milan where the water table is close to the surface, 
likely causing infiltrations. Hence the influent arriv-
ing at the WWTP is quite diluted. Variations in the 
dilution ratio are also likely leading to influent con-
centration variability.

3.1.1 � Pharmaceutical removal rate in MBR, CAS, 
and WWTP.

High variability in terms of removal was also 
observed (Fig.  3), generally in line with the litera-
ture. Many pharmaceutical compounds were highly 
removed. The highest removal rate was found for 
enalapril with 100% in the three types of treatment, 

Fig. 2   Influent concentra-
tion of detected pharmaceu-
tical compounds, average 
and standard deviation of 
the four sampling cam-
paigns, logarithmic scale
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in agreement with the literature (97%, Tadkaew et al., 
2011). Also, atenolol (87%), naproxen (90%), ibu-
profen (99%), were highly removed, in line with the 
literature (Wang et al., 2018). On the other hand, the 
lowest removal was for diazepam (-51% by CAS and 
-31% by WWTP), as also reported elsewhere (Sun 
et al., 2014; Wang et al., 2017). Carbamazepine had 
a low removal by MBR (5%), and diclofenac was par-
tially removed (42%). Similar results can be found 
in the literature for carbamazepine, and higher for 
diclofenac (10% and 5%, respectively, Chon et  al., 
2011). Generally, carbamazepine is known for its 
relatively poor elimination in biologically-based treat-
ments (Joss et al., 2005; Wang et al., 2018). It is worth 
pointing out that negative removal rates for some 
compounds can occur due to several reasons (Verlic-
chi et al., 2012). Microorganisms may transform con-
jugated forms back into parent compounds, increas-
ing their concentration (Jelic et al., 2011). Adsorbed 
pharmaceuticals on suspended solids or biofilms can 
desorb into the water (Göbel et al., 2007). Addition-
ally, some compounds are resistant to conventional 
treatment processes, resulting in their persistence in 
treated water (Vieno et al., 2007). Lastly, operational 
changes can cause the release of accumulated com-
pounds from biofilms or sludge (Hou et al., 2019).

Similar removals were generally observed in the 
three treatments, with few exceptions like ofloxacin, 
ranitidine, or lincomycin. All the substances with a 
slightly higher removal either in the WWTP or in the 
MBR were partially removed (average removal rate 
below 80%) and exhibited large removal variability 
over the four sampling campaigns, as formerly con-
firmed (Urase et al., 2005; Tadkaew et al., 2011).

Other studies investigated the influence of some 
properties (Dolar et al., 2012; Wang et al., 2018) but it 
appears of great interest to evaluate, by means of mul-
tivariate statistical techniques, the influence of several 
physicochemical characteristics on the removal rate 
of active substances. In this work, 20 physicochemi-
cal characteristics, believed to have a certain level of 
impact on different removal mechanisms, have been 
considered. Table S2 summarizes the data subject to 
analysis.

Scientific studies indicate that ultrafiltration 
membranes, such as GE Healthcare Zee-Weed, 
remove pharmaceutical compounds from water 
without high impacts on their hydrophobicity and 
hydrophilicity. For example, Ren et  al. (2021) 

describe the contribution of adsorption and catalytic 
oxidation in the decontamination of wastewater 
using high-performance ultrafiltration membranes. 
Yu et  al. (2020) evaluates the long-term perfor-
mance of hollow fiber membranes for contaminant 
removal in a full-scale drinking water treatment 
plant in China. Issaka et  al. (2022) discuss inter-
action between pharmaceuticals and membrane 
surfaces in advanced catalytic ozonation, while 
Adewuyi et  al. (2020) review the development 
related to pharmaceutical removal for nanocom-
posite membranes. These studies have finally con-
cluded that ultrafiltration works mainly through size 
exclusion and adsorption, which does not alter any 
inherent hydrophobic or hydrophilic properties of 
pharmaceuticals.

3.2 � Principal Component Analysis and Factorial 
Analysis

PCA analysis allowed the extraction of five compo-
nents accounting for 89.41% of the cumulative vari-
ance. The first two principal components accounted 
for most of the information (i.e., total explained vari-
ance of 53.08%). Table 1 presents the rotated compo-
nent matrix that regroups all physicochemical prop-
erties into the five extracted varifactors. They can be 
described as follows:

•	 F1: accounts for 30.87% of the variance and is 
loaded by MW, MV, polarizability, refractivity, 
boiling point, flash point; it is representative for 
the largest pharmaceutical compounds.

•	 F2: accounts for 22.21% of the variance and is 
loaded by melting point, surface tension, index of 
refraction, density.

•	 F3: accounts for 19.37% of the variance and is 
loaded by biodegradation half-life, soil absorption, 
LogKoa, LogD, and Koc; it is representative of 
the more persistent and potentially accumulating 
in soil and in living organism fatty tissues (bioac-
cumulation).

•	 F4: accounts for 10.49% of the total variance and 
is inversely loaded by pKa, and solubility and 
directly loaded by logKow; it is representative of 
the most hydrophobic compounds.
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•	 F5: accounts for 6.45% of the total variance and is 
loaded by Henry’s law constant; it is representa-
tive of the most volatile compounds.

HCA applied to the five factors indicated the pres-
ence of 8 natural clusters. As shown in Fig. 4, Clus-
ter 1 and 2 are the two most populated clusters (e.g., 
including more than 30 measurements correspond-
ing to 5 to 4 compounds), and have average charac-
teristics, being one almost the opposite of the other. 
Cluster 1 in fact contains larger and less hydrophobic 
compounds with respect to Cluster 2.

Clusters 4, 5, 6, 7, and 8 show factor scores 
above average, however only Clusters 4, 6, and 7 
are strong outliers including extremes respectively 
for F1, F3, and F5 and are made of measurements 
of single compounds (e.g., respectively (CLA, DZP 
and EST). Cluster 3 has 4 out of 5 factors below 
average values, precisely the parameters loading the 
fourth varifactor (i.e., pKa, logKow, and solubility). 
The cluster can be characterized as hydrophilic and 
groups only two compounds (CYC and SAL). Clus-
ter 5 is made by high density, melting point, and 
surface tension compounds and includes COF, FUR 
and OFL. Finally, Cluster 8 is characterized by fac-
tor scores below average except for the fourth vari-
factor, loaded by pKa and logKow, with value above 
average. Cluster 8 is in fact made of GEM and IBU 
measurements. The eight clusters issued from clus-
ter analysis composition of pharmaceuticals are 
shown in Figure S1.

3.3 � Generalized linear model

A GLM was fitted to compound-specific remov-
als, having influent concentrations as covariate, 
and treatment (e.g., MBR, CAS, or full WWTP), 
and physicochemical properties clusters as factors. 
GLM analysis clearly showed that the physico-
chemical properties cluster was the most important 
predictor for the removal (F: 32.4, p-value < 0.001), 
followed by the influent concentration (F: 20.4, 
p-value < 0.001). GLM also showed that the type of 
treatment is not a significant factor of influence for 
the removal (p-value > 0.05). This is confirmed by 
the fact that the SLR showed minimal variations for 
both the WWTP and the MBR. Also, the aerobic/
anoxic biomass ratio was 3.1 gTSSAER/gTSSANOX 
for the four sampling periods in the MBR and very 
similar (3.3 gTSSAER/gTSSANOX) in the full-scale 
CAS.

If GLM was extremely informative in identify-
ing the most relevant predictors of pharmaceuticals’ 
removal, it was not as satisfactory in terms of accu-
racy. GLM R2 was in fact 44%, leaving unexplained 
most of the removal variance. This is probably due 
to the great variability affecting the data of the stud-
ied substances. Nevertheless, this model illustrates 
the importance of the influent concentration and 

Table 1   Principal Component/Factor Analysis: the factor 
loadings higher than 0.6 of the 20 physicochemical proper-
ties are shown for the five rotated varifactors: MV: molar 
volume;  MW: molecular weight; KOC: organic carbon parti-
tion coefficient; Kow: octanol–water partition coefficient; Koa: 
octanol–air partition coefficient; LogD: octanol–water distribu-
tion coefficient; pKa: acid dissociation constant. The explained 
and cumulative percent variances are also shown for all the five 
varifactors

Rotated Component matrix

F1 F2 F3 F4 F5

MW (g/mol) 0.988
logKow 0.837
Melting point 0.903
Boiling point 0.870
Water solubility -0.847
Flash point 0.880
Surface tension 0.933
Index of refraction 0.903
Molar refractivity 0.986
Polarizability (cm3) 0.986
Density (g/cm3) 0.907
MV (cm3) 0.968
Henrys law (atm 

m3/mol)
0.978

LogKoa 0.638
Biodeg. half-life (days) 0.944
Soil adsorp. coeff (L/kg) 0.942
LogD_pH7.4 0.654
KOC_pH7.4 0.897
pKa -0.702
% of variance 30.87 22.17 19.37 10.49 6.45
Cumulative % 30.87 53.08 72.64 82.95 89.41
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physicochemical characteristics as significant influ-
encing parameters on micropollutants removal.

3.4 � Canonical Discriminant analysis

Since the GLM was not adequately accurate to 
predict the removal rates of each compound, the 
19 compounds were subdivided into three classes: 
1) removal rate lower than 47%, 2) removal rate 
between 48 and 90% and 3) removal rates above 
91%. Canonical Discriminant Analysis (CDA) was 
used to predict these removal classes. As shown in 
Table  2, the five varifactors and the influent con-
centrations were the six predictors used in the CDA 
with the first Discriminant Function (DF) explain-
ing 79.4% of the variance and the second account-
ing for the remaining 20.6%. Table  2 also shows 
that the first discriminant function (DF1) is directly 
correlated with F4 (e.g., hydrophobicity, LogKow) 
and inversely correlated with influent concentration. 
On the other hand, the second discriminant function 

(DF2) is directly correlated with F1 (e.g., MW, MV 
and polarizability) and with F2 (e.g., melting point, 
surface tension, and density) and inversely corre-
lated with F5 (i.e., Henry’s law constant), and F3 
(e.g., biodegradation halftime and affinity for soil 
accumulation).

As shown in Table  3, the canonical discriminant 
model revealed quite accurate classification perfor-
mances (overall 65.3%) with better classifications for 
the highest removals (72.9% of correct classifications 
for removals over 90%) and intermediate removals 
(63.4% of correct classifications for removals between 
48 and 90%), and almost 60% of correct classifica-
tions for the removals lower than 47%. The accuracy 
of the canonical discriminant model was also evalu-
ated through a leave-one-out cross-validation (i.e., 
each case is classified by the functions derived from 
all cases other than that case) which confirmed the 
accuracies previously estimated. Figure S2 shows the 
DF scores biplot with the removal classes shown in 
colors. The DF scores biplot clearly shows that the 

Fig. 4   Factor-score char-
acteristics of the 8 main 
clusters of pharmaceuticals
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Table 2   Canonical 
Discriminant Function 
correlations with predictors

DF1 DF2

F1: MW, MV, polarizability, boiling point, flash point, molar refractivity 0.528
F2: Melting point, surface tension, density, index of refraction 0.397
F3: Biodegradability, KOC, Log D, soil adsorption, log Kao -0.288
F4: LogKow, (-) solubility, (-) pKa -0.560
F5: Henry’s law -0.526
Influent concentration -0.325
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highest removal compounds have DF scores lower 
than the average for both DF1 (e.g., soluble and polar 
light-weighted compounds) and DF2 (e.g., heavier-
weighted hydrophobic, and higher biodegradability 
compounds).

4 � Discussion

This case study, comparing a MBR pilot plant and 
a full scale WWTP with final filtration, operated in 
parallel, confirms that for most of the substances 
the MBR technology did not significantly enhance 
their removal rates, especially for those which are 
well removed above 80%, as previously highlighted 
elsewhere (Sipma et  al., 2010). As mentioned in 
few previous works, MBR may show slightly higher 
capabilities in removing the substances which are 
already partially removed in CAS. Good removal was 
reported for a variety of pharmaceuticals with MBR 
treatment; nevertheless carbamazepine, diclofenac, 
and diazepam removal ranged between 24 and 68% 
(Trinh et  al., 2016). With a slightly lower removal 
efficiency, these results are in good agreement with 
their reported work. Also, naproxen, ibuprofen, 
and ketoprofen showed high overall removal effi-
ciency > 90%, due to their hydrophilicity character 
(Komesli et al., 2015; Trinh et al., 2012).

Contrary to some previous studies (Melvin et  al., 
2016; Liu et  al., 2021), any significant influence of 

process type was not proven when comparing the 
efficiency of the MBR pilot plant with that of the full 
scale WWTP equipped with final filtration. It does not 
really impact the removals neither of recalcitrant sub-
stances, nor of well removed ones, in agreement with 
the literature (Verlicchi et  al., 2012). Indeed, really 
few substances displayed significantly enhanced 
removal in one or the other process. Consequently, it 
seems that MBR, when operated at realistic SRTs (in 
this work from 15 to 50 days) and fed with the same 
influent than a municipal WWTP with filtration, do 
not exhibit a higher potential in removing pharma-
ceutical substances. This can be highlighted, accord-
ing to GLM results presented above, by the fact that 
the type of treatment was not a significant predictor 
of pollutant’s removal. The influent concentration as 
a process parameter is confirmed to affect transforma-
tions pathways (Onesios-Barry et  al., 2014). This is 
in good agreement with the GLM results having the 
influent concentration considered as the second most 
important predictor.

The lack of in-depth insights on the influence of 
physicochemical properties on removal efficiency 
of pharmaceuticals presents one of the biggest chal-
lenges in optimizing their removal under different 
processes. Multiple research papers are reported 
discussing the influence of different properties such 
as MW, solubility, logKow, KOC, log Dow, pKa, and 
charge on removal mechanism (Bayati et  al., 2021; 
Ilyas et al., 2021; Luo et al., 2014; Wang et al., 2020). 

Table 3   Canonical 
Discriminant Analysis: 
classification performance 
for the three classes of 
pharmaceutical removals

a. 65,3% of original 
grouped cases correctly 
classified.
b. In cross validation, each 
case is classified by the 
functions derived from all 
cases other than that case.

Classification Results a

RR (Binned) Predicted Group Membership Total

 <  = 0.47 0.48—0.90 0.91 + 

Original Count  <  = 0.47 77 31 23 131
0.48—0.90 10 85 39 134
0.91 +  0 39 105 144

% Original  <  = 0.47 58.8 23.7 17.6 100
0.48—0.90 7.5 63.4 29.1 100
0.91 +  0.0 27.1 72.9 100

Cross-validated b Count  <  = 0.47 77 31 23 131
0.48—0.90 10 83 41 134
0.91 +  0 39 105 144

%  <  = 0.47 58.8 23.7 17.6 100
0.48—0.90 7.5 61.9 30.6 100
0.91 +  0.0 27.1 72.9 100
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With this regard, taking into consideration more than 
one or two properties may probably lead to better 
understanding. According to previous studies (Wang 
et  al., 2021), four out of 20 properties included in 
the current study namely (MW, solubility, logKow, 
Henry’s law) were found to be good predictors for 
micropollutants removal by biotransformation. High 
molecular weight compounds are difficult to remove, 
which is the case for cluster 4 compounds (contain-
ing only clarithromycin with a removal rate < 70% in 
MBR and CAS). This falls in line with previous stud-
ies reporting a removal efficiency of > 60% for high 
MW pharmaceuticals (Tadkaew et al., 2011).

Hydrophobicity/hydrophilicity described by 
LogKow values contribute significantly to removal 
(Couto et  al., 2019; Ofrydopoulou et  al., 2022). 
Hydrophobic compounds with Log D > 3.2 are gener-
ally highly removed, which is the case for cluster 7 
(estrone, EST with a removal rate of 98%). This result 
is in agreement with the literature (Gutiérrez et  al., 
2022). On the contrary, cluster 3 contains hydrophilic 
compounds with a removal rate less than 40% (cyclo-
phosphamide and salbutamol). Diazepam, forming 

its own cluster 6, is characterized by a high Henry’s 
law constant and it is indeed a hydrophilic compound 
with a poor removal rate of 2% in the MBR. Multi-
ple studies confirmed the minimal elimination of this 
particular micropollutant (Besha et  al., 2017; Carta-
gena et  al., 2013; Joss et  al., 2006; Serrano et  al., 
2011; Wang et al., 2017). It is worth mentioning that 
the clusters including a variety of compounds, espe-
cially cluster 1 and 2, may demand additional moni-
toring campaigns and further analysis.

As previously mentioned, CDA is a dimensional-
ity reduction technique that is used to transform a set 
of possibly correlated variables into a smaller number 
of uncorrelated variables, known as "canonical vari-
ates". The purpose of CDA is to find linear combi-
nations of the original variables that can best distin-
guish between two or more groups of samples based 
on the class labels. Based on CDA results, the first 
discriminant function (Wilk’s Lamba = 0.45) has a 
better discriminating power over the second function 
(Wilk’s Lamba = 0.82), which mean that molecular 
weight, LogKow, pKa, and solubility are good predic-
tors of removal classification. These findings line up 

Fig. 5   Varifactors distribution among the three classes of pharmaceutical removal (RR)
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with previous studies (Matamoros et  al., 2017) that 
revealed a positive correlation between the removal 
efficiency of 16 micropollutants in constructed wet-
lands and their MW and LogKow. As shown in Fig. 5, 
it is obvious that the higher removal rate class mostly 
concerns hydrophobic compounds (above average 
LogKow). This is also the class that has the highest 
prediction accuracy (> 70%). As for the intermediate 
removal rate class, it concerns compounds less hydro-
phobic with high MW and density. Finally, the lower 
removal class concerns lower MW and hydrophilic 
compounds.

5 � Conclusions

This work is an attempt to address the challenges 
regarding the hypothesis of the influence of phar-
maceuticals’ properties on their removal to predict 
removal efficiency. In general terms, the aforemen-
tioned statistical results imply that:

•	 Removal of pharmaceuticals not significantly dif-
ferent among the three types of treatments

•	 Influent concentration and physicochemical char-
acteristics (LogKow, log D) strongly predict phar-
maceuticals removal.

•	 Further research incorporating additional param-
eters like seasonal variation may improve removal 
efficiency prediction.

Into details, the monitoring of the given WWTP 
has led to the following observations:

•	 19 out of 39 targeted substances were detected in 
WWTP influent at relevant concentration.

•	 A high variability in influent concentrations were 
observed across sampling campaigns and within 
the same campaign.

•	 The observed variability can be attributed to con-
sumption patterns, dilution rates, and transport 
duration in the sewer system, also considering that 
the WWTP influent is diluted due to a large zone 
with close water-table and potential infiltrations.
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