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Abstract
A machine-learning-based methodology is proposed to delineate the spatial distribution of geomaterials across a large-
scale three-dimensional subsurface system. The study area spans the entire Po River Basin in northern Italy. As uncertainty 
quantification is critical for subsurface characterization, the methodology is specifically designed to provide a quantitative 
evaluation of prediction uncertainty at each location of the reconstructed domain. The analysis is grounded on a unique 
dataset that encompasses lithostratigraphic data obtained from diverse sources of information. A hyperparameter selection 
technique based on a stratified cross-validation procedure is employed to improve model prediction performance. The quality 
of the results is assessed through validation against pointwise information and available hydrogeological cross-sections. The 
large-scale patterns identified are in line with the main features highlighted by typical hydrogeological surveys. Reconstruc-
tion of prediction uncertainty is consistent with the spatial distribution of available data and model accuracy estimates. It 
enables one to identify regions where availability of new information could assist in the constraining of uncertainty. The 
comprehensive dataset provided in this study, complemented by the model-based reconstruction of the subsurface system and 
the assessment of the associated uncertainty, is relevant from a water resources management and protection perspective. As 
such, it can be readily employed in the context of groundwater availability and quality studies aimed at identifying the main 
dynamics and patterns associated with the action of climate drivers in large-scale aquifer systems of the kind here analyzed, 
while fully embedding model and parametric uncertainties that are tied to the scale of investigation.
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Introduction

Global changes are exacerbating stress on water resources, 
both in terms of availability/scarcity and quality (Brus-
seau et al. 2019). Water resources managers face challeng-
ing decisions to meet the growing demand for agricultural, 
industrial, and municipal uses (Harken et al. 2019). While 
quantitative models can assist effective assessment of water 
availability and quality, these require large-scale surface 
and subsurface surveys (de Graaf et al. 2015; Maxwell et al. 
2015; Schulz et al. 2017) to be able to aptly assess hydro-
logical system responses to dynamic climate drivers. In this 

broad context, this work focuses on applications of data-
driven approaches for the characterization of the internal 
make-up (in terms of spatial distribution geomaterials) of 
large-scale three-dimensional (3D) aquifer systems.

The amount and quality of data available for geoscience 
applications have markedly increased in recent years (Bergen 
et al. 2019). Big datasets are becoming promptly accessible, 
yielding a suitable environment for the application of various 
data-driven and/or data-mining approaches for hydrogeologi-
cal scenarios (Tahmasebi et al. 2018; Takbiri-Borujeni et al. 
2020). In this framework, machine learning (ML) provides a 
set of tools enabling learning from data and helps to under-
stand system functioning (Jordan and Mitchell 2015). These 
tools can be used to unveil patterns in large (multidimensional) 
datasets, eventually leading to the discovery and extraction 
of linear and/or nonlinear correlations among various physi-
cal quantities (Tahmasebi et al. 2020). A growing number 
of examples are associated with data-driven ML approaches 
applied to hydrogeological settings. The main objective of 
these works is to improve the ability to conceptualize and 

Published in the special issue “Geostatistics and hydrogeology”.

 *	 Giovanni Michele Porta 
	 giovanni.porta@polimi.it

1	 Dipartimento Di Ingegneria Civile E Ambientale (DICA), 
Politecnico Di Milano, Piazza Leonardo da Vinci 32, 
20133 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10040-023-02677-8&domain=pdf
http://orcid.org/0000-0002-0636-373X


	 Hydrogeology Journal

1 3

depict subsurface hydrological processes (Adombi et al. 2021; 
Dramsch 2020)—for example, knowledge of (often complex) 
groundwater level trends in aquifers are critical for manag-
ing groundwater resources and ensuring a sustainable balance 
between supply and demand (Tahmasebi et al. 2020). ML tech-
niques were employed to reconstruct groundwater levels, rely-
ing on big datasets including historical records (Trichakis et al. 
2011; Zhang et al. 2018b; Afzaal et al. 2019; Vu et al. 2021). 
While these techniques are readily conducive to an assessment 
of groundwater levels, their main drawbacks include (1 the lack 
of insight into the key physical processes driving the dynamics 
of the response of groundwater bodies to external conditions 
and (2) the need for reliable training datasets, associated with 
appropriate sampling frequency in time and space (Ramad-
han et al. 2021). Training data may not be sufficiently dense 
in space and/or time to enable high-quality quantification of 
groundwater flow fields. In such cases, relying on a physically 
based flow model can be key to appropriately characterize the 
dynamics of the groundwater system.

A critical element of a numerical groundwater model is 
the possibility of relying on a robust geological/hydrogeo-
logical model. The latter typically rests on the analysis of 
observed borehole data/stratigraphies and their interpreta-
tion. These types of information are key to assessing the 
system geometry, providing first estimates of some param-
eters, and selecting boundary conditions to be employed in a 
groundwater flow numerical model. Reconstructions of the 
subsurface typically rely on the interpretation of observed 
lithostratigraphic data through a collection of complemen-
tary approaches encompassing, e.g., geological interpreta-
tion through expert analyses and a variety of geostatistical 
approaches. Various ML methods have been recently applied 
to the characterization of the shape/geometry of subsurface 
geological bodies (Fegh et al. 2013; Titus et al. 2021; Jia 
et al. 2021). These methods include support vector machine, 
decision tree with gradient boosting, random forest, and sev-
eral types of neural network schemes (Zhang et al. 2018a; 
Sudakov et al. 2019; Erofeev et al. 2019; Guo et al. 2021; 
Jia et al. 2021; Hillier et al. 2021; Sahoo and Jha 2016). Bai 
and Tahmasebi (2020) and Fegh et al. (2013) propose ML-
based geological modeling strategies that rely on multiple-
point geostatistics to preserve the original distribution of the 
available data. The approaches listed in the preceding are 
typically applied to synthetic test cases or to datasets associ-
ated with a single aquifer or reservoir, thus characterized by 
a spatial extent (as well as a number of data entries) that are 
considerably smaller than the region considered in the work 
here presented. The latter focuses on the development and 
implementation of a methodological workflow aiming at (1) 
characterizing the spatial distribution of geomaterials in a 
large-scale 3D subsurface system via a data-driven ML-based 
technique conditioned on borehole data, and (2) providing 
robust estimates of the associated prediction uncertainty.

The approach is exemplified within a well-defined system. 
The latter corresponds to the Po River district in Italy and 
encompasses a planar surface of about 87,000 km2. This area 
includes highly industrialized and cultivated regions and a 
large number of borehole observations is available. Numerous 
studies have targeted this area where groundwater is a critical 
resource; however, these are usually focused on individual 
aquifer systems (some recent examples are found in Bianchi 
Janetti et al. 2019; de Caro et al. 2020; Musacchio et al. 2021). 
Otherwise, this study is keyed to the reconstruction of the 
entire (large-scale) subsurface system, hosting various aquifer 
bodies. Selection of this spatial domain is motivated by the 
observation that studies documenting the links between global 
change and subsurface-water-resource dynamics are gaining 
increasing attention (e.g., de Graaf et al. 2015; Maxwell et al. 
2015). These studies require considering large geographi-
cal domains and consequently a large-scale reconstruction 
of hydrogeological properties. By its nature, the approach 
proposed here targets the description of large-scale features 
rather than being devoted to a detailed description of small-
scale systems. As such, the work is complementary to detailed 
local studies targeting individual aquifers and is not designed 
to replace these. A unified and categorized lithostratigraphic 
dataset is constructed to accomplish the objective of the large-
scale hydrological reconstruction associated with the entire 
area analyzed. Such a dataset includes a comprehensive col-
lection of regional databases available across the area inves-
tigated. Various sources of information are analyzed, which 
need to be properly integrated, as geological/lithological data 
are stored mainly at regional/local levels and are classified 
through vastly heterogeneous nomenclatures and conventions. 
These data are here presented in a unified structure and analy-
sis for the first time.

From a methodological standpoint, the approach 
considered in this work relies on an ML-based method 
because of the large size of the considered database. ML 
methods are designed to cope with big datasets which 
are not suited to the application of standard geostatisti-
cal methods (Tahmasebi et al. 2020). Relying on a data-
driven approach allows relaxing hypotheses on the spatial 
distribution of quantities of interest (e.g., statistical sta-
tionarity). In turn, one of the main disadvantages of many 
ML-based studies is the lack of embedded uncertainty 
quantification strategies, which is otherwise possible with 
classical geostatistical approaches. The proposed meth-
odology is specifically designed to provide a quantifi-
cation of model prediction uncertainty. Bayesian neural 
networks are a possible option to address this issue. How-
ever, these types of approaches entail additional com-
plexities and often require estimating a larger number of 
parameters (Gal 2016) than other ML approaches, such 
as, e.g., neural networks. An alternative uncertainty quan-
tification methodology is proposed. The latter is based on 
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an iterative training and prediction procedure with ran-
dom initialization of parameters.

The structure of the work is described in the follow-
ing. The study area is defined in Sect. “Study area and 
data preprocessing” together with data preprocessing. Sec-
tion “Setup and training of the artificial neural network” 
illustrates the model training process employed in valida-
tion, model prediction, and uncertainty quantification. The 
cross-validation strategy and model hyperparameters’ tun-
ing are detailed in section “Model tuning and cross-valida-
tion”. Model results and the approach for quantifying clas-
sification uncertainty are presented in section “Prediction 
and uncertainty quantification”. Key results and compari-
sons against previous geological surveys are presented in 
section “Comparison with hydrogeological interpretation”. 
Final remarks and future perspectives are then presented 
in section “Concluding remarks and future developments”.

Materials and methods

A classifier based on an artificial neural network (ANN) is 
employed to reconstruct the 3D spatial distribution of geo-
materials (or macro-categories of lithological facies) within 
the large-scale aquifer system described in section “Study 
area and data preprocessing”. Figure  1 illustrates the 

workflow of the adopted methodology, which includes: (1) 
data preparation and categorization (see section “Study area 
and data preprocessing”); (2) selection of the ANN architec-
ture (model tuning) (see section “Model tuning and cross-
validation”); (3) prediction and uncertainty quantification 
(see section “Prediction and uncertainty quantification”). 
Steps 2–3 require a training phase. The latter is described in 
section “Setup and training of the artificial neural network”. 
All these steps are detailed in the following subsections.

Study area and data preprocessing

The study area (Fig. 2a) encompasses a planar surface 
of about 87,000 km2. It includes the Po River basin 
(⁓74,000 km2), which is one of the largest basins in 
Europe. The region accounts for nearly one-third of the 
population of Italy (Zwingle 2002) and is the main indus-
trial and agricultural area. These activities are mark-
edly dependent on groundwater resources. The Po River 
comprises 141 tributaries and the total amount of water 
resources across the basin is estimated at about 80 bil-
lion m3/year (Raggi et al. 2009). The overall Po basin 
is mainly located within the Piemonte, Lombardia, and 
Emilia-Romagna Regions. The remaining portions of 
the basin lie within Valle d’Aosta, Veneto, Liguria, and 
Trentino-Alto Adige Regions, Switzerland, and France. 

Fig. 1   Workflow of the adopted methodology



	 Hydrogeology Journal

1 3

The study area also includes a few smaller river basins 
(⁓13,000 km2) flowing towards the Adriatic Sea in the 
central-southern part of the Emilia-Romagna Region. 
These river basins are comprised within the same river 
basin district as the Po River (PdG Po 2015) and the 
related groundwater system is expected to interact with 
that of the Po River Basin.

The lithological data included in the Italian National 
dataset (ISPRA 2021) and the three comprehensive regional 
datasets from the study area (i.e., Piemonte, Lombardia, and 
Emilia-Romagna) are collected and organized to assist the 
reconstruction of the 3D internal architecture of the sub-
surface system. Duplicate information available within the 
diverse (National and Regional) datasets as well as data 

located at planar distances less than 50 m have been merged, 
i.e. only the stratigraphy information related to the deep-
est borehole has been retained. Overall, only about 3% of 
the data was discarded. The final database comprises about 
450,000 entries of lithological data distributed along 51,557 
boreholes. Most of the boreholes (about 70%) are less than 
50 m deep, while only 17% of them reach a depth of more 
than 100 m. The thickness, d [m], associated with each litho-
logical information (i.e., related to a single geomaterial) var-
ies between 1 and 1,615 m and typically increases with depth 
(values of d > 100 m are mainly associated with oil and gas 
exploration wells). In order to homogenize the dataset, each 
lithological information associated with a value of d > 1 m 
is subdivided into layers of thickness equal to 1 m, resulting 

Fig. 2   a Location of the study 
area; b color grading cor-
responding to the number of 
lithostratigraphic data per cell. 
Coordinates reference system 
(CRS) = ESRI:54012
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in a total dataset comprising NT = 2.81 × 106 lithological 
information entries.

The final database includes (1) planar coordinates (x, y) 
(CRS, ESRI:54012), surface elevation above sea level (m 
asl), and total depth of each borehole; (2) top and bottom 
elevation (m asl) of each layer and (3) geomaterial descrip-
tion. The latter has been assessed as detailed in the electronic 
supplementary material (ESM), resulting in six macro-cat-
egories, corresponding to gravel, sand, silt, clay, permeable 
rock, and impermeable rock.

Setup and training of the artificial neural network

A multilayer perceptron (MLP) classifier is used to recon-
struct the subsurface distribution of geomaterials. This is 
a feedforward approach that is widely used in ANN-based 
hydrogeological modeling (Hecht-Nielsen 1989; Hallinan 
2013; Yang and Yang 2014). Key elements of ANN are an 
input and an output layer as well as a set of hidden layers. A 
fully connected network is here considered. By definition, 
this is characterized by a connection between each node of 
the input layer (usually labeled as input nodes) and each 
node of the first hidden layer, as well as between each node 
of two consecutive hidden layers (if there is more than one 
hidden layer) and between each node of the last hidden layer 
and each node of the output layer (or output nodes).

Input variables are taken from the network through the 
input layer, where a single type of input is assigned to each 
node. The proposed procedure relies on four input nodes. 
These are tied to the spatial organization of the data, notably 
comprising: (1) depth with respect to the ground surface; 
(2) vertical position above sea level (asl); and (3) latitude 
and (4) longitude of the considered location. Topography is 
therefore embedded in the network by a combination of the 
first two inputs. The inputs are assessed for each lithologi-
cal information entry available in the dataset described in 
section “Study area and data preprocessing”. Inputs 1–2 are 
evaluated upon combining topographic information at the 
well location and average layer depth, which is computed on 
the basis of the top and bottom elevations of each geological 
layer. Variation in the planar coordinates of the layers with 
respect to the borehole coordinates is considered as negligi-
ble, i.e. 3–4 coincide with the borehole coordinates. These 
four input variables are then normalized, consistent with 
the observation that this assists in improving the predictive 
power of the classifier (Singh and Singh 2020).

Data from the input layer are received and processed by the 
hidden layer(s). These are then transferred to the output layer, 
which in turn processes the information content and renders 
the final results (Imran and Alsuhaibani 2019). The number 
of nodes within the output layer is equal to the number of 
geomaterials, here fixed to six.

Each i-th node of the j-th layer is associated with a bias 
term, bi,j , whereby the input layer is excluded. Each connec-
tion between two nodes of two neighbor layers is associated 
with a weight, w . The output of node i at layer j, i.e., ai,j , 
is obtained as a nonlinear function, f, of all node values of 
layer (j–1) as

where ar,j−1 is the output evaluated at the r-th node of layer 
(j–1) and the sum is performed considering all nodes of layer 
(j–1). Here, the commonly used hyperbolic tangent func-
tion is selected as the nonlinear neuron processing function 
f (Venkateswarlu and Karri 2022). Note that j ranges from 
1 to n + 1, where n is the number of hidden layers. The geo-
material assigned to a target location is the one associated 
with node i* of the output layer (j = n + 1) that provides the 
maximum value of the function

The weight and bias terms in Eq. (1) must be estimated 
during the training phase upon relying on available data. At 
the beginning of the training phase, b and w are set to random 
values sampled from a standard Gaussian distribution. Train-
ing is performed by evaluating Eq. (2) at locations where data 
are available and minimizing the cross-entropy loss function, 
H , defined as

where �q is the value obtained by the classifier (Eq. 2) at 
data point q for the observed category, and Nd is the size of 
the training dataset. The gradient-descent-based back-prop-
agation algorithm proposed by Kingma and Ba (2014) is 
selected to train the network and calibrate the ANN param-
eters defined in Eq. (1). This approach is employed during 
model tuning, where various ANN architectures are tested 
, and in the prediction  phase. During the prediction and 
uncertainty quantification phase (see section “Prediction 
and uncertainty quantification”) Nd coincides with the size 
of the full dataset (i.e., Nd = NT ), while Nd < NT during the 
model tuning process (see section “Model tuning and cross-
validation”). As suggested by Kipf and Welling (2016), for 
all training processes (i.e., during the tuning and the predic-
tion phases) a learning rate of 0.001, an early stop with a 
window size of 10 (i.e., training is halted if the value of H 
does not decrease after 10 consecutive training iterations, 
also denoted as epochs), and a maximum number of 2,000 
epochs are selected.

(1)ai,j = f
(
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∑
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Model tuning and cross‑validation

Model tuning refers to the selection of hyperparameters 
defining the ANN, such as the number of hidden layers and 
hidden nodes. This step is here performed via a stratified 
k-fold cross-validation procedure applied to multiple ANN 
architectures. A k-fold cross-validation is a classification 
and validation method that is broadly applied within ML 
approaches (e.g., Belyadi and Haghighat 2021; Chandra 
2016; Poggio et al. 2021; Kamble and Dale 2022).

The original dataset of size NT is partitioned into k mutu-
ally exclusive subsets (or folds)D1, ...,Dk , of equal size NV 
= NT/k. The training and validation processes are repeated k 
times (i.e., k iterations are performed). Subset Dl is used as 
a validation set at iteration l, while the remaining k–1 folds 
are employed to train the model. Note that, in a k-fold cross-
validation method, each fold is employed the same number 
of times during the training process.

The first critical step in implementing cross-valida-
tion is related to the choice of the number of folds to be 
employed, which is also tied to the sample size of each 
fold. In this case, a value of k = 5 is selected. This choice 
ensures that a sufficiently large amount of data is con-
sidered during the validation process ( NV = 5.62 × 105), 
reducing the chance of biased training (Han et al. 2012). A 
second element is then related to the selection of the cri-
terion employed to sample observations to be included in 
each fold. Purely random sampling may lead to inaccurate 
results in the presence of data displaying heterogeneous 
properties. Given the nonuniform distribution of available 
data across the area, a random splitting of observations 
amongst the k-folds may result in biased findings (Brus 
2014). Stratified sampling techniques are often employed 
in cases where one (or more) specific attribute/property of 
the data entries can be used to guide sampling and avoid 
such bias effects. Here, the stratified cross-validation pro-
cedure employed by Poggio et al. (2021) is implemented 
to ensure a balanced geographic distribution within each 
cross-validation fold. The stratified approach ensures that 
each fold contains an approximately equal proportion of 
each area of the domain.

To ensure a balanced geographic distribution within 
each cross-validation fold, the domain is subdivided 
into regular cells of uniform size and area equal to 1,037 
km2 (i.e., with side ⁓32.2 km), as depicted in Fig. 2b. 
These subsamples are commonly denoted as strata. An 
approximately similar amount of data from a stratum is 
then considered in each fold. This yields a similar spatial 
distribution of training and validation data across the 
cross-validation steps. Strata located in highly urban-
ized and industrialized areas are then characterized by a 
large number (typically larger than 10,000) of lithostrati-
graphic data, while data availability is limited (2,500 

or lower) for strata located in mountainous regions. 
Note that the folds are not constrained along the vertical 
direction.

Model tuning is performed by considering various ANN 
architectures, formed by an increasing (from 1 to 8) number 
of hidden layers. The number of nodes in each hidden layer 
is kept constant among layers of the same architecture and 
values equal to 5, 15, 25, 50, 100, or 250 are tested, yielding 
a total of 48 diverse ANN architectures that are then con-
sidered in the study. The number of parameters (i.e., weight 
and bias terms) to be calibrated during the training phase 
(performed as described in section “Setup and training of 
the artificial neural network”) for each ANN architecture is 
listed in Table S1 in the ESM.

The cross-validation procedure described previously is 
applied for each candidate ANN model, based on quantita-
tive indicators of efficiency and quality. The accuracy, A , of 
each tested ANN architecture is quantified as

where Nl is the number of correct predictions obtained for 
the validation set Dl . In this context, the accuracy of each 
ANN architecture in predicting the ith geomaterial is evalu-
ated as

where NI,l and N
V,I,l are the number of correct and total pre-

dictions of the I-th geomaterial obtained for the validation 
set Dl , respectively.

To further investigate model performance associated 
with each ANN architecture, the average value (obtained 
among the k iterations) of (1) the computational cost 
needed for the training phase and (2) the training per-
formance metric, i.e., the cross-entropy loss function 
(Eq. 3) evaluated at the end of the training phase, are also 
computed.

The ANN architecture that provides the best balance 
between efficiency and prediction accuracy is selected on 
the basis of the combination of these indicators. The model 
is then employed in the prediction and uncertainty quantifi-
cation phase as described in section “Prediction and uncer-
tainty quantification”.

Prediction and uncertainty quantification

The selected ANN model is applied to reconstruct the 3D 
distribution of geomaterials within a rectangular domain 
with longitudinal (along x) and transverse (along y) extents 
of 534 and 330 km, respectively (for a total planar area of 
176,220 km2, see Fig. 2b), and up to a depth of 400 m below 
ground level. The domain is discretized with a uniform 

(4)A =
∑k

l=1
Nl

kNV

, with k = 5

(5)AI =
∑k

l=1

NI,l

NV,I,l

, with k = 5; I = 1,… , 6
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structured Cartesian grid of cells of size Δx = Δy = 1,000 m 
along the horizontal and Δz = 1 m along the vertical direc-
tion. A single geomaterial is assigned to each cell.

Training of the ANN is performed following the proce-
dure described in section “Setup and training of the artificial 
neural network”. At this stage, the identified model is trained 
upon resting on the whole dataset, i.e., Nd = NT in Eq. (3). 
Training is repeated N times with different random initiali-
zations of weight and bias. As a result, a set of N trained 
models is obtained, yielding N different 3D reconstructions 
of the hydrogeological system. A similar strategy has been 
employed to quantify the uncertainty related to parameter 
estimates resulting from the application of a particle swarm 
optimization algorithm to large-scale geological models 
(Patani et al. 2021). This procedure yields an empirical 
probability distribution of categories at any given cell across 
the system. The latter can then be employed, for example, 
to identify the most recurring category at each cell and/or 
quantify uncertainty. In this context, the final reconstruction 
of the subsurface environment (which is considered as the 
best estimate) is obtained by assigning to each cell the most 
frequent category (modal category) therein attained within 
the N reconstructions. A suitable total number of reconstruc-
tions is determined by monitoring the fraction of cells where 
a change of the corresponding modal category is observed 
as a function of N. The normalized Shannon entropy metric 
(Shannon 1948; Kempen et al. 2009) is employed as an indi-
cator to assess classification uncertainty within each cell of 
the domain. Such a metric is defined as

where ni,c is the number of simulations assigning category i 
at cell c (with c = 1, …, 7.0 × 107).

Software and computational framework

All numerical analyses described in this study are imple-
mented in a Python 3 environment. Data normalization, 
stratified cross-validation, as well as model training and 
prediction are coded by relying on the free software scikit-
learn ML library (Pedregosa et al. 2011). The computa-
tion (CPU) time associated with multiple model training 
and prediction required by the selected validation proce-
dure and stochastic reconstruction approach is minimized 
upon relying on a parallel computing strategy implemented 
through the parallel module of the Python joblib library 
(Varoquaux 2022). All computational costs mentioned in 
section “Results and discussion” are related to an intel core 
i9-10900X CPU. The results of the 3D reconstructions are 
visualized via an open-source Visualization Toolkit format 
for 3D structured grids through the Python VKT library 
(Schroeder et al. 2006).

(6)Ec = −
∑I

i=1
pi,clogI pi,c, with pi,c =

ni,c

N
, I = 6

Results and discussion

Results of model tuning (section “Model tuning”) are here 
illustrated together with model predictions and the associ-
ated uncertainty (section “Prediction under uncertainty”). 
Model results are also discussed in relation to available 
hydrogeological reconstructions resulting from a detailed 
geological survey and expert interpretation (section “Com-
parison with hydrogeological interpretations”).

Model tuning

As described in section “Model tuning and cross-validation”, 
48 ANN architectures are compared in terms of accuracy, A
(Eq. 4). Moreover, training CPU time and cross-entropy loss 
function, H (Eq. 3) are evaluated k times (with k = 5) within 
the k-fold cross-validation procedure. Mean values obtained 
over all k-iterations, i.e., mean CPU time and Ĥ (where the 
hat symbol denotes averaging), are reported in the following.

Figure 3a depicts A versus the level of ANN complexity, 
here expressed in terms of the number of model parame-
ters, NANN , and reveals that the first increases with the lat-
ter to then remain virtually constant when NANN > 1,000. 
This result suggests that introducing further complexity in 
the model does not correspond to an increase of accuracy. 
Note that NANN ≈ 1,000 corresponds to quite simple ANN 
architectures (see Table S1 in the ESM), characterized by a 
sufficiently low number of hidden layers or/and a low num-
ber of hidden nodes. Otherwise, Ĥ (see Fig. 3b) decreases 
with NANN until NANN ≈ 105 to then increase. This result 
is complemented by Fig. 3c which depicts A versus Ĥ for 
each tested model. Here, it can be noted that accuracy dis-
plays a distinct peak for Ĥ ≈ 0.8. It should be noted that 
large values of Ĥ are tied to low performance of the ANN 
model in the training phase, whereby a decreased accuracy 
is expected. Otherwise, low values of Ĥ correspond to good 
performance in the training and decreasing values of accu-
racy. This denotes overfitting of training data and reduced 
prediction performances for validation data (which are not 
included in the training phase).

Overall, Fig. 3 shows that similar values of the considered 
indices are observed amongst models associated with a simi-
lar number of parameters (and a different number of hidden 
layers/nodes). On the basis of these results, the ANN archi-
tecture formed by seven hidden layers and 15 hidden nodes 
is selected (corresponding to NANN = 1,531; see Table S1 in 
the ESM). The latter is highlighted with a solid red circle 
in Fig. 3 and is characterized by (1) a high accuracy value 
(Fig. 3a) and (2) a competitive CPU time (Fig. 3d). This 
choice corresponds to a good tradeoff between the desired 
level of accuracy in reconstructing the distribution of geo-
materials and the need to maintain a low CPU cost. This 
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latter element is particularly relevant for uncertainty quanti-
fication, where N realizations are required (see section “Pre-
diction and uncertainty quantification”).

Values of A , Ĥ , and CPU time assessed for all tested 
ANN architectures are included in the ESM. The latter 
also includes details about the accuracy of each tested 
ANN architecture and related to each geomaterial, AI (see 
Tables S5–S10 in the ESM), as computed via Eq. (5). The 
highest level of accuracy is associated with the geomateri-
als that are most represented in the training dataset, i.e., 
gravel, sand, and clay, which correspond to 26.1, 24.5, and 
42.0% of the dataset, respectively. The lowest accuracy is 
associated with silt, and permeable and impermeable rock, 
corresponding to 3.2, 3.1 and 1.1% of the dataset, respec-
tively. However, it is noted that values of AI associated 
with permeable and impermeable rocks are higher than 
their counterpart related to silt. This behavior is linked 
to the location of permeable and impermeable rock data, 
which are mainly concentrated in/near mountain regions 
(and their presence in space can thus be captured with 

some ease by the ANN model), while silt occurrences are 
distributed throughout the entire domain.

In order to provide a spatial distribution of the model 
accuracy, a cell-based accuracy metric is computed as

where Nl,p is the number of correct predictions obtained for 
validation points comprised within cell p for iteration l of 
the k-fold; NV,l,p is the total number of validation data points 
available at cell p for iteration l. Figure 4 provides a two-
dimensional (2D) depiction of the spatial distribution of Ac 
for the selected ANN architecture (and corresponds to the 
grid described in section “Prediction and uncertainty quan-
tification”). The highest Ac values are observed in the south-
east part of the watershed, while the lowest values are asso-
ciated with mountain areas (Alps and Apennines), where 
data density is low (see Fig. 2b). It is noted that, even though 
observation density is high close to urban areas (such as the 
cities of Milan and Turin), these areas are not associated 

(7)Ac =
∑k

l=1
Nl,p∑k

l=1
NV ,l,p

, with k = 5

Fig. 3   Comparison of different ANN architectures: a accuracy, A , ver-
sus number of ANN parameters, N

ANN
 ; b average cross-entropy loss 

function, Ĥ , versus N
ANN

 ; c accuracy,A , versus average cross-entropy 

loss function, Ĥ ; d mean training CPU time versus N
ANN

 . Symbols 
distinguish outputs of ANNs with diverse  number of layers. The 
selected ANN architecture is depicted with solid red circles
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with Ac values close to 1. This behavior is due to the high 
heterogeneity of data categories available across these areas 
and possibly corresponds to localized small-scale patterns 
that cannot be captured by a large-scale model. Spatially 
heterogeneous data, which are typically associated with 
small-scale patterns, are typically found at shallow depths. 
Consistent with this element, the spatially averaged accuracy 
is slightly smaller across the first 10 m of depth (about 56%) 
than at deeper locations (larger than 60%).

Prediction under uncertainty

The 3D spatial distributions of macro-categories of geo-
materials are assessed as described in section “Prediction 
and uncertainty quantification”. In order to set the sam-
ple size (i.e., the number of system reconstructions) N, 
the most probable category (or modal category) obtained 
at each cell of the study area is evaluated for increasing 
values of N. The fraction of cells whose modal category 

Fig. 4   Two-dimensional 
representation of the spatial 
distribution of the average accu-
racy ( A

c
 ) of the selected ANN 

architecture

Fig. 5   a Bivariate histogram of moving averaged accuracy, ⟨A
c
⟩(cal-

culated with a period of 5 km on the X and Y axes), and vertically 
averaged uncertainty,E

c
 , associated with all planar locations of the 

domain; b the spatial distribution ofA
c
 , its moving average ⟨A

c
⟩ (cal-

culated with a period of five samples on the section line), and E
c
 (cor-

responding to vertically averaged values of E
c
 ) computed along the 

exemplary cross-section identified on the geological map of Compag-
noni et al. (2004) (see inset in the upper right corner)
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varies with the addition of a new reconstruction is then 
evaluated. This quantity decreases with N and tends to 
zero for N > 80 (details not shown). On this basis, the 
value N = 100 is selected.

As a starting point, the performance of the uncertainty 
quantification approach in relation to prediction accuracy 
is analyzed. The overall relationship between accuracy and 
uncertainty is further analyzed in Fig. 5a. The latter depicts 
the bivariate (sample) histogram of Ec (corresponding to 
vertically averaged values of Ec ) and spatially averaged 
accuracy ⟨Ac⟩ , which is evaluated as a moving average based 
on a window of uniform size of 5 km along the longitudi-
nal (i.e., x) and transverse (i.e., y) directions throughout the 
study area (see Fig. 2b). The Pearson correlation coefficient 
between the accuracy and prediction uncertainty values is 

approximately equal to –0.5. This result suggests that there 
is a nonnegligible relationship between these two metrics. 
It otherwise indicates that the proposed modeling approach 
can identify locations where the lithological reconstruction 
is characterized by considerable uncertainty, these areas 
being associated with increased prediction errors (i.e., low 
accuracy). Conversely, geomaterial predictions character-
ized by low uncertainty are associated with high accuracy. 
To provide an additional visual appraisal of this result at 
local scale, Fig. 5b includes the spatial distribution along 
an exemplary cross-section (see inset in Fig. 5) of Ac , its 
corresponding moving average ⟨Ac⟩ and Ec . Figure 5 clearly 
shows that high values of Ac are generally associated with 
small values of Ec . This behavior is even more evident upon 

Table 1   Aggregated 
performance metrics of the 
model for each subdomain. The 
stratigraphic units are those 
reported by Compagnoni et al. 
2004

Subdomain Stratigraphic unit Data [%] Surface [%] Accuracy Uncertainty Data entropy

1 Deltaic, floodplain, 
coastal, and wind 
deposits

35% 21% 68% 0.24 0.62

2 Terraced alluvium, 
aeolian deposits

52% 20% 58% 0.25 0.72

3 Other units 13% 59% 45% 0.45 0.79

Fig. 6   North–south and west–east (vertical exaggeration = 150) cross-sec-
tions of a spatial distribution of predicted modal categories and b uncer-
tainty associated with these predictions. Planar maps at different depths of 

the distribution of c predicted modal categories and d uncertainty associ-
ated with these predictions. Planar maps are selected at 5, 10, 25, 50, 100, 
150, 200, 350 m below the ground surface. CRS = ESRI:54012
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considering the moving average of Ac , ⟨Ac⟩ , which allows 
for local fluctuations to be smoothed out.

To further investigate the relationship between uncer-
tainty, accuracy, and local hydrogeological features, the 
study area is subdivided into three different subdomains 
using the geological map provided by Compagnoni et al. 
(2004) and included in Fig. 5. The first two subdomains are 
associated with (1) deltaic, floodplain, coastal and wind 
deposits, (subdomain 1 in Fig. 5) and (2) terraced alluvium, 
aeolian deposits (subdomain 2). Subdomains 1 and 2 are 
typically characterized by flat topography and sufficiently 
high data density (they account for 87% of the available data 
entries). The remaining portion of the system (subdomain 3) 
comprises more complex geological structures and a typi-
cally irregular geomorphology. To provide a quantitative 
evaluation of data variability in these three subdomains, 
the entropy of data categories (hereafter referred to as data 
entropy, for simplicity) contained in each cell (of a planar 
surface of 1 km2) and considering all data along the vertical 
is assessed. This quantity is computed as:

where N∗
i,c

 is the amount of data associated with the ith cat-
egory in cell c, N∗

c
 being the total amount of data in the cell. 

Note that superscript * indicates that all quantities in Eq. (8) 
refer to data entries rather than predictions.

As indicated in Table 1, subdomain 1 is characterized 
by the lowest average (evaluated over the whole subdo-
main) data entropy, indicating that its geological structure 

(8)E∗
c
= −

∑I

i=1
p∗
i,c
logIp

∗
i,c
, where p∗

i,c
=

N∗
i,c

N∗
c

, I = 6

is less complex than subdomains 2 and 3. This results in 
above-average accuracy (68%) and below-average uncer-
tainty (0.24). Subdomain 3, which comprises only 13% 
of the training dataset, is characterized by high data vari-
ability (data entropy of 0.79). As a result, it is associated 
with the lowest accuracy (45%) and the highest uncer-
tainty. Most of the data are associated with subdomain 
2, which is characterized by intermediate values of all 
quantities analyzed. Figure 5b highlights the relationship 
between geological structure, accuracy and uncertainty 
at a local scale such as those of the exemplary transect 
highlighted in the figure (the different subdomains along 
the transect are here represented as background colors). 
Notably, subdomain 2 is here associated with areas closer 
to topographic reliefs which are therefore expected to dis-
play increased local variability in the sediment succes-
sion. These locations tend to be related to larger values 
of prediction uncertainty when compared with results 
associated with subdomain 1.

Figure  6a, c depicts examples of north–south and 
west–east cross-sections together with planar maps at dif-
ferent depths of the spatial distribution of predicted modal 
categories obtained across the study area. Furthermore, the 
uncertainty associated with these predictions is quantified 
through Eq. (6) and depicted in Fig. 6b, d. The highest uncer-
tainties are detected in the north-east and south-west parts 
of the domain, characterized by a relatively small amount 
of data and the lowest values of accuracy (see Figs. 2b and 
4). A global overview of the uncertainty analysis is offered 
in Fig. 7, depicting a planar map of E

c
.

Fig. 7   Planar map of the verti-
cally averaged classification 
uncertainty ( E

c
)
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Figure 8 provides a visual comparison of two recon-
structions of geomaterial distributions, randomly selected 
across the sample of size N (Fig. 8b, c). Their location in 
the domain corresponds to the cross-section highlighted 
in Fig. 8a. The final reconstruction, which is obtained by 
retaining geomaterials associated with modal categories, 
is then depicted in Fig. 8d. The main differences between 
the two randomly selected reconstructions in Fig. 8b, c are 
visible in mountain areas (corresponding to subdomain 3). 
These regions are also associated with high uncertainty 
values (Fig. 8e). Minor differences can also be observed 
within areas close to the boundaries of the two main geo-
materials detected in the area, i.e., sand and clay. The 
location and overall size of the identified sand bodies is 
consistent between the different reconstructions, the shape 
of such bodies being instead dependent on the realization 
considered. This suggests that the methodology may be 

integrated in future works with some topological indica-
tors to discriminate between different reconstructions.

Comparison with hydrogeological interpretations

Here, the consistency of the results obtained in section 
“Prediction under uncertainty” is assessed with reference to 
corresponding results that can be obtained through typical 
interpretations of the available geological/stratigraphic data 
based on expert analysis. The comparison is performed to 
provide an appraisal of the ability of the ANN model to cap-
ture the spatial arrangement of the main geological bodies. 
As such, this type of analysis can be considered as a com-
plement and enrichment to the quality metrics illustrated in 
section “Prediction under uncertainty”. The geological sec-
tions published by Maione et al. (1991) and ISPRA-CARG 
(2022) (Figs. 9, 10, and 11) are employed in this analysis. 

Fig. 8   Results associated with the trace A–A reported in (a); b–c Reports 
two randomly selected reconstructions of geomaterial distributions; d Final 
reconstruction associated with modal categories; e Associated uncertainty. 

Subdomains 1, 2, and 3 are represented as background colors (i.e., white, 
green, and blue, respectively) in panels b–e. CRS = 54012, A: 5680004 N, 
830000 E; A′: 5506000 N, 830000 E. Vertical exaggeration = 25
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To facilitate the comparison, all cross-sections have been 
adapted so that all geomaterials match the six categories 
embedded in the ANN model. Planar locations of these 
cross-sections are depicted in Fig. 9a. Cross-sections cor-
responding to the traces B–B′ and C–C′ therein are depicted 
in Figs. 9 and 10, respectively. These enable one to identify 
two main aquifers, i.e., (1) an (upper) unconfined aquifer, 
formed by a more permeable geomaterial, and (2) a (lower) 
confined aquifer, formed by a less permeable geomaterial 
(see Figs. 9b and 10a). The red continuous curves in Figs. 9 

and 10 identify the separation between these two systems. 
These red curves closely follow the demarcation of a perme-
able (gravel) and an impermeable (clay) macro-category as 
detected by the proposed methodology (Figs. 9c and 10b). 
It should be noted that inclusions characterized by a thick-
ness smaller than 10–20 m are not completely captured 
through the ANN model. Thus, while ANN-based results 
are globally consistent with the main traits evidenced by 
the type of soft information provided by a typical hydro-
geological reconstruction, some differences appear with 

Fig. 9   a Planar locations of 
cross-sections; Section B–B′: 
b lithostratigraphy (modified 
from Maione et al. 1991); c 
final reconstruction associ-
ated with modal categories; 
and d associated uncertainty. 
Vertical exaggeration = 25. 
CRS = ESRI:54012; B: 798644 
N, 5632007 E, B’: 797141 N, 
5596712 E. The solid red curves 
delimit the bottom of the uncon-
fined aquifer
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respect to small-scale elements. Furthermore, it is noted that 
the highest uncertainty values associated with the ANN-
based reconstruction of macro-categories are located around 
the boundaries between the two aquifer systems identified 
through hydrogeological interpretation (corresponding to the 
red curves in Figs. 9d and 10c). Overall, these results sug-
gest that the quantitative appraisal of uncertainty associated 
with the proposed reconstruction approach can effectively 
complement the available hydrogeological interpretation, 
thus strengthening the ability to characterize the subsurface 
system in the presence of scarce information.

The lithostratigraphic cross section corresponding to 
trace D–D′ (see Fig. 11a) indicates a clear prevalence of an 
impermeable material (clay). Otherwise, sandy geomaterial 
layers are observed at shallow locations across the northwest 
regions and a gravel-based aquifer body is evidenced within 
the southeast portion of the domain. The main traits of the 
system are captured by the proposed approach also in this 
case, as shown in Fig. 11b. High uncertainty values can be 
found in the proximity of the boundary of the gravel aquifer 
body, in line with results depicted in Figs. 9 and 10. In addi-
tion, a relevant uncertainty is found close to the thin sandy 
layers and at the bottom of the domain. While the alternation 

of the different layers associated with the former area leads 
to uncertainty in the interpretation of the data through the 
ANN model, the high uncertainty associated with regions 
at the bottom of the system is mainly due to the lack of data 
at such depths.

Concluding remarks and future 
development

An original approach relying on a typical machine learning 
(ML) methodology is presented and discussed with the aim 
of jointly (1) modeling the 3D spatial distribution of geoma-
terials within a large-scale aquifer system (encompassing the 
Po River plain in Italy) and (2) providing uncertainty quanti-
fication therein. The study describes a robust and reproduc-
ible data-driven workflow based on an ANN classifier which 
includes: (1) the use of a unique and categorized large and 
exhaustive dataset that encompasses lithostratigraphic data 
collected along a remarkable number of boreholes associ-
ated with diverse sources and (2) a stratified cross-validation 
procedure conducive to set up the ANN architecture through 
a balance of accuracy and performance. These analyses are 

Fig. 10   Section C–C′: a 
lithostratigraphy (modified 
from Maione et al. 1991); b 
final reconstruction associated 
with modal categories; and c 
associated uncertainty. Vertical 
exaggeration = 25. The location 
of the cross-section is depicted 
in Fig. 9a. CRS = ESRI:54012; 
C: 782299 N, 5614314 E; C′: 
808870 N, 5614373 E. The 
solid red curve identifies the 
bottom of the unconfined 
aquifer
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complemented by a qualitative comparison with the major 
patterns revealed by typical historical hydrogeological sec-
tions which are available within the reconstructed domain and 
can be considered as soft information based on expert assess-
ment. The work leads to the following major conclusions:

1.	 The quality of the reconstruction of the subsurface sys-
tem, as expressed through spatial distribution of geoma-
terials therein, is a result of a trade-off between accuracy 
and efficiency of the modeling approach. ANNs with a 
similar number of parameters and different architectures 
(i.e., differing numbers of layers/nodes) yield similar 
performances in the large-scale scenario analyzed. Note 
that too simple ANNs typically lead to poor consistency 
with the data. Otherwise, a very complex model leads 
to overfitting of training data, reduced prediction per-
formances, and high computational cost. Comparing the 
performance of different ANN architectures on the basis 
of multiple indicators enables one to select the optimal 
(in terms of CPU time and accuracy) hyperparameters.

2.	 The proposed modeling strategy provides a reliable inter-
pretation of large-scale patterns, as evidenced by point-wise 

and spatially distributed validation results. The estimated 
accuracy across space provides a framework to identify 
limitations of the model in terms of data availability and 
scale constraints. Low data density and small-scale patterns 
are the main causes of low prediction accuracy related to 
specific locations. Comparisons with available hydrogeo-
logical sections suggest that the approach herein introduced 
tends to neglect local inclusions characterized by a thick-
ness of less than 2–5% of the total depth of the system.

3.	 Classification uncertainty allows quantifying the 
degree of reliability of model predictions. The results 
show strong consistency with interpreted lithostrati-
graphic maps. Geological structures directly influence 
the accuracy of the model. Structures characterized by 
greater geological complexity led to lower accuracy 
values, while stratified geomaterials are characterized 
by above-average accuracy. The spatial distribution of 
prediction uncertainty provides critical information on 
the local quality of the reconstruction. Highly uncertain 
results are mainly located close to the boundaries of the 
aquifer systems and across portions of the domain with 
low data availability. As such, the approach can also be 

Fig. 11   Section D–D′: a lithostratigraphy (modified from ISPRA-
CARG 2022); b final reconstruction associated with modal 
categories; and c associated uncertainty. Vertical exaggera-

tion = 10. The location of the cross-section is depicted in Fig.  9a. 
CRS = ESRI:54012; D: 849297 N, 5534213 E; D′: 826977 N, 
5555557 E
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employed to quantify the uncertainty tied to the location 
of internal boundaries between different aquifer bodies. 
This information can be readily used in process-based 
quantitative models aimed, e.g., at characterizing flow 
or contaminant transport across a large-scale system.
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