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Abstract

Numerical simulations of multi-dimensional laminar flames with complex kinetic mech-

anisms are computationally very demanding, because of the large number of species and

the strong non-linearity and sti↵ness of governing equations. In this work, we present and

apply a novel adaptive chemistry methodology for mitigating the computational cost of

such simulations, based on machine-learning algorithms which automatically classify the

composition space via a priori defined classifiers.

The methodology, called SPARC (Sample-Partitioning Adaptive Reduced Chemistry),

is based on four steps: generation of data sets covering the temperature and composition

space which is expected to be visited by the multi-dimensional flame; partitioning of

the composition space in a prescribed number of clusters with similar composition via

Local Principal Component Analysis (LPCA); generation of reduced kinetic mechanisms

for each cluster via Directed Relation Graph with Error Propagation (DRGEP); CFD

simulation of a multi-dimensional flame based on locally reduced mechanisms.

The approach has been firstly demonstrated for the CFD simulations of steady and

transient laminar coflow di↵usion flames fed with a mixture of CH4 and N2 burning in

air. The transient behaviour was artificially induced by di↵erent sinusoidal perturbations

in the velocity profiles. Several numerical tests were carried out to explore the impact of

partitioning parameters and the degree of mechanism reduction on the flame simulation,

and very satisfactory results were observed, both in terms of accuracy and computational
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e�ciency. In particular, even if a relatively small mechanism (84 species) was adopted,

speed-up factors of ⇠ 4 were observed. Larger speed-up factors can be achieved if more

complex fuels are considered, since also larger and sti↵er kinetic mechanisms are required

and a higher level of reduction via DRGEP can be reached.

Keywords: Adaptive-chemistry, Principal Component Analysis, Mechanism reduction,

DRGEP, Laminar flame

1. Introduction

Nowadays, detailed kinetic mechanisms are today recognized as a key element for

the predictive simulation of laminar and turbulent flames, aimed at a more e↵ective

design of combustion devices (such as internal combustion engines and gas turbines).

However, the coupling of Computational Fluid Dynamics (CFD) and detailed chemistry

is computationally demanding, mainly because of the large number of species and the wide

range of chemical times typically involved in complex chemistry [1]. During the last years,

several techniques have been proposed for reducing the computational cost associated

to detailed kinetic mechanisms. Some of the most commonly adopted include skeletal

reduction approaches to generate mechanisms with a reduced number of both species and

reactions [2]. However, they are not always su�cient to bring the computational cost at

an a↵ordable level, especially in case of complex fuels.

When inhomogeneous reactive flows are solved by numerical algorithms based on the

operator-splitting strategy [3], more e↵ective techniques can be considered for reducing

the computational cost of detailed chemistry. In operator-splitting approaches, most of

the CPU time is tipically spent in the chemical step, which corresponds to the solution of

N (with N being the total number of computational cells) independent, sti↵, non linear

systems of ordinary di↵erential equations (ODEs):

d 

dt
= S( ) (1)

where  is the thermo-chemical state vector (composition and temperature) in a single

cell and S( ) the corresponding rate of change due to chemical reactions. Since the ODE

systems above are independent, adaptive chemistry techniques are very e↵ective and easy
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to implement. They are based on the observation that in any small range of temperature

and compositions many species have negligible concentrations and only a limited number

of them is chemically active [4]. This means that the kinetic mechanism locally needed to

describe the chemical evolution may require fewer species and reactions than the complete

mechanism applicable over the whole thermo-chemical space. In principle, the maximum

level of adaptivity (i.e. maximum level of reduction) can be achieved through the Dynamic

Adaptive Chemistry (DAC) approach [5, 6]: at each time step of the simulation, the local

thermo-chemical state is analyzed, the important reactions and species are recognized, and

only the corresponding equations are solved. This means that the evolution in each cell is

described through a local reduced mechanism. Unfortunately, the computational overhead

needed for the on-the-fly reduction of the mechanism can be significant (especially for large

mechanisms).

In order to reduce the cost associated to the adaptive reduction, it is possible to build

a library of reduced mechanisms in a pre-processing step, covering the composition space

which is expected to be visited by the flame of interest [7, 8]. The generated composition

space can be pre-partitioned in a prescribed number of clusters, for which a library of

reduced kinetic mechanisms is created. The di�culty with this approach is to find the

optimal way to partition the derivation of reduced kinetic mechanisms, ensuring that each

individual cluster is su�ciently homogeneous from the kinetic point of view, i.e. that a

single reduced kinetic mechanism is able to correctly describe all the samples belonging

to it [4].

In this paper, a new methodology for the e�cient inclusion of detailed chemistry in

multidimensional CFD simulations, based on the coupling between Local Principal Com-

ponent Analysis (LPCA) [9] and mechanism reduction via DRGEP (Directed Relation

Graph with Error Propagation) [10], is presented. Instead of performing on-the-fly chem-

ical reduction, a classification of the composition space which will be visited during the

CFD simulation is carried out in a pre-processing step. Then, the generated composition

space is pre-partitioned in a prescribed number of clusters via LPCA and for each clus-

ter a reduced kinetic mechanism is generated via DRGEP. The CFD simulation is thus

carried out by transporting the whole set of species in the detailed mechanism. Before

carrying out the chemical step, each cell is classified using the same unsupervised-learning
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algorithm adopted for pre-partitioning, in order to identify the cluster to which the cell

belongs and select the corresponding reduced mechanism.

The paper is organized as reported in the following. In Section 2 the overall procedure

used for the adaptive chemistry is described step-by-step. Then, in Section 3 the results

obtained from the dataset partitioning, the mechanism reduction and the adaptive CFD

simulations are shown and discussed. Lastly, in section 4 the possibility to use data

obtained from lower dimensional simulations (0D and 1D) to perform multidimensional

simulations by means of an adaptive-chemistry approach is investigated.

2. Approach

The overall procedure, called SPARC (Sample-Partitioning Adaptive Reduced Chem-

istry), consists of three training stages, followed by the final step, i.e. the multi-dimensional

CFD simulation:

1. Dataset generation;

2. Clustering via Local Principal Component Analysis (LPCA);

3. Generation of reduced kinetic mechanisms via DRGEP for each cluster resulting

from the LPCA partitioning;

4. CFD simulation of a case of interest.

2.1. Dataset generation

The dataset generation is a step of crucial importance for successfully applying the

LPCA and the reduction procedures. In order to be valuable for the proposed strategy,

the selected dataset must adequately cover the composition space which is expected to be

visited during the simulation of the problem of interest. The training of LPCA algorithm

and the chemical reduction can be done either using a dataset composed by previous

detailed simulations on the system of interest, or simple 0D/1D simulations.

Because of the multivariate nature of the original dataset, preprocessing in the form of

centering and scaling the variables before applying LPCA is a mandatory operation to get

reliable results [11]. By means of these two operations, the original set of thermo-chemical

variables ⇠ is standardized, and a new set of variables � is obtained.
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2.2. Clustering via Local Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to reduce a large

number of interdependent variables to a smaller number of uncorrelated variables, while

retaining as much as possible of the original data variance [12].

Starting from a dataset X of n rows (observations) and p columns (variables), it is

possible to compute the covariance matrix S = 1
(n�1)X

TX, and then to decompose it: S

= ALAT. The eigenvectors of the covariance matrix, which are the columns of the A

matrix, are called Principal Components (PCs) while the eigenvalues, which are located

on the principal diagonal of the L matrix, represent the portion of variance they account

for. The dimensionality reduction comes by considering only a subset of the PCs, whose

size is chosen depending on the variance accounted for. Since each PC is associated to a

certain percentage of variance by the magnitude of its associated eigenvalue, it is possible

to measure the global variance explained by a subset of PCs defining the ratio: tq =
Pq

j=1 lj/
Pp

j=1 lj, where q is the chosen size of the subset and lj is the j th eigenvalue

obtained from the decomposition of the covariance matrix S.

Although the e↵ectiveness of PCA-based techniques in combustion applications has

been already proved both a priori and a posteriori [13, 14, 11, 15], it has to be mentioned

that for strongly non-linear systems, such as reacting flows, a large number of PCs may

be required in order to properly describe the system. The motivation is mainly due

to the intrinsically multi-linear nature of the technique [13, 16]. In order to overcome

this limit, it is possible to adopt a locally linear approach, introduced by Kambhatla

for image-processing applications [9] and previously used in many scientific fields [17,

18, 19], called Local Principal Component Analysis (LPCA). LPCA is an unsupervised-

learning algorithm able to partition the data-space in di↵erent regions (clusters), where

the variables share common features. Then, in each cluster PCA is performed to find a

reduced representation. The higher e↵ectiveness of LPCA in dimensionality reduction,

compared to PCA, has already been proved in the field of combustion [13, 20].

The partitioning of the data-space into di↵erent clusters is achieved by means of an

iterative algorithm minimizing the reconstruction error, ✏GRSE,k = kx̃i � x̃i,qk. Vectors

x̃i and x̃i,q are, respectively, the original and the reconstructed, via PCA, ith centered

and scaled observation of the dataset [20]. The LPCA algorithm can be summarized as
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follows:

1. Initialization: the initial clusters centroids x̄k are chosen from a k-means [21] so-

lution. The eigenvectors matrix in each cluster, sk, is initialized as the identity

matrix.

2. Partition: each observation is assigned to a cluster by means of the calculation of

the ✏GRSE,k.

3. Update: the cluster centroids are updated on the basis of the partitioning carried

out at step 2.

4. Local-PCA: Principal Component Analysis is performed in each cluster found at

step 2.

5. Steps from 2 to 4 are iterated until one of the convergence criteria is met.

Convergence is reached if one of the following criteria is met:

1. The global mean reconstruction error, defined as: ✏GRSE,K = 1
K

PK
k=1 ✏GRSE,k, is

below a fixed threshold: ✏GRSE,K < ✏⇤GRSE,K , with K equal to the total number of

clusters.

2. The variation of the position of all the cluster centroids between two consecutive

iterations is below a fixed threshold (�): �x̄k < �.

3. The �✏GRSE,K between two consecutive iterations is below a fixed threshold (⇢):

�✏GRSE,K < ⇢.

The initialization of the LPCA algorithm from a partition based on k-Means can dras-

tically reduce the CPU-time required to reach convergence, compared to a random or

uniform initialization of the centroids. The k-Means algorithm is only used for the ini-

tialization task because the Euclidean distance, used as objective function, is not optimal

as the reconstruction error used in LPCA to define groups of similar points in a high-

dimensional space. Moreover, k-Means can often provide clusters with lower a number

of observations than variables, not ensuring the statistical meaningfulness of the defined

clusters.

2.3. Reduction via DRGEP

For each cluster identified through the partitioning procedure described above, a reduced

mechanism is generated via DRGEP (Directed Relation Graph with Error Propagation)
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[10]. In particular for each cluster k:

1. After defining the target tolerance ✏ and the list of target species, a reduced mech-

anism is generated for each sample point belonging to the cluster k;

2. A single reduced mechanism for cluster k is generated from the union of the reduced

mechanisms of individual samples belonging to the cluster k.

If the partitioning by means of LPCA is correctly carried out, the individual mechanisms

generated for each sample are expected to be very similar, because their compositions

are similar too. Thus, their union is expected to produce a final mechanism that is

not significantly larger, in terms of number of species and reactions, than the individual

mechanisms.

Considering an ideal case in which the clusters are perfectly uniform from a reacting

point of view, all the individual generated mechanisms would be identical. Because this

almost never happens, a measure of non-uniformity must be introduced. If nit is the

number of observations in a given cluster and nsp is the number of species resulting from

the union of individual mechanisms, it is possible to define xi =
1
nit

Pnit

j=1 �i,j, where �i,j is

equal to 1 if species i is contained in the reduced mechanism for sample j, or equal to 0 if

not. Then, for each group a similarity coe�cient can be defined as: � = 1
nsp

Pnsp

i=1 (xi � 1)2.

The coe�cient � is equal to 0 in case of perfect uniformity, and its upper bound is 1.

2.4. Adaptive simulation

The last step of the procedure is the CFD simulation of the reacting system of interest.

The strategy is particularly e↵ective if operator-splitting (or fractional) algorithms are

adopted. In particular, at the beginning of the chemical step, each computational cell is

classified, i.e. the cluster to which it belongs is recognized.

The classification of each cell is performed by means of an on-the-fly PCA classification,

which consists in assigning each grid point to the pre-computed cluster for which the

reconstruction error is minimized as described in [9]. Then, the evolution of composition

and temperature is computed by adopting the reduced mechanism associated to each

cluster, solving a lower number of ODEs for the chemistry step in each cluster. The key

point in the procedure is the fast classification of cells with a negligible overhead thanks

to the e�ciency of the on-the-fly PCA algorithm.
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3. Results

The simulations were carried out with the laminarSMOKE code, a CFD solver based

on OpenFOAM and specifically conceived for laminar reacting flows with detailed kinetic

mechanisms [22]. The laminarSMOKE solver is based on the operator splitting technique,

which means that advancement in time is carried out through two successive sub-steps:

the transport sub-step (convection and di↵usion) and the chemical sub-step.

The configuration chosen to test the adaptive chemistry methodology here presented

is an axisymmetric, time-varying, non-premixed laminar coflow flame numerically and

experimentally studied by Mohammed et al. [23]. The fuel is nitrogen-diluted consisting of

65% CH4 and 35% N2 (molar basis), while the oxidizer stream is regular air. Both streams

are fed at ambient temperature and atmospheric pressure. The POLIMI C1C3 HT 1412

kinetic mechanism (84 species and 1698 reactions) [24], available in the supplemental

material, was used for the simulations. This mechanism was chosen because despite its

relative small size it also accounts for complex heavy species whose chemistry is relatively

slow (soot precursors such as benzene and naphtalene). Extensive validation and detailed

description of such mechanism can be found in [25].

A CH4/N2 fuel stream enters through a circular nozzle (internal diameter of 4 mm

and thickness of 0.38 mm), while the coflow air stream enters through an annular region

(internal diameter of 50 mm). The transient behavior is induced by a sinusoidal per-

turbation in the velocity profile of the fuel stream with frequency f and amplitude A:

vr(r) = vmax(1 � r2

R2 )(1 + Asin(2⇡ft)), where r is the radial coordinate, R the internal

radius, t the time and vmax equal to 70 cm/s. The coflow air is injected at 35 cm/s. The

2D computational domain (with lengths of 54 mm and 120 mm in the radial and axial

directions) was discretized through a Cartesian mesh whose size was set around ⇠ 25, 000

cells after a mesh sensitivity study.

The pre-partitioning of the composition space and the generation of the reduced kinetic

mechanisms was performed on a dataset consisting of several timesteps of an unsteady

2D simulation with a sinusoidal perturbation (f = 10 Hz and A = 0.25, which will be

referred to as f10A25), previously carried out with the detailed mechanism. In Table 1 all

the frequencies and amplitudes which were used for the adaptive chemistry simulations are

summarized, as well as the ones used for the detailed simulation to generate the training
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dataset, which consisted of ⇠ 131, 000 observations.

The availability of a large number of points does not ensure an adequate description

of the problem: the chosen data shall indeed cover a range of conditions representative of

the statistical variability of the system. The choice of the training data-set for machine-

learning tasks cannot be validated a priori, but the accuracy of the trained model should

be evaluated on new, unobserved data. For the present case, since the training dataset was

built merging several timesteps of an unsteady 2D simulation with sinusoidal perturbation,

the only available parameter to ensure a good statistical description was the time interval

used to sample the time-steps.

Following the work of Mohammed et al. [23], the steady-state conditions (A = 0)

were simulated first, then the approach was tested on four transient flames: two with

a sinusoidal perturbation obtained using di↵erent frequencies and amplitudes, and the

remaining two with non-sinusoidal perturbations. The first, sinusoidal, one was charac-

terized by a perturbation with frequency f = 10 Hz and amplitude A = 0.25, while for

the second one a more complex perturbation was used, obtained as a linear combination

of several frequencies and amplitudes (f = 10, 40, 80 Hz and A = 0.90, 0.50, 0.75); the two

non-sinusoidal perturbations consisted in a squared wave and a sawtooth wave, respec-

tively. The steady-state adaptive simulation was also compared with two steady-state

simulations using globally reduced mechanisms, to assess the true impact of clustering

and of on-the-fly classification steps.

The latter were both generated from the same training dataset used for the adaptive

case, the f10A25.

Before applying the LPCA partitioning algorithm the variables were centered with

their mean values and scaled with their standard deviations (auto-scaling).

Table 1: Amplitudes and frequencies of the sinusoidal perturbation adopted for the adaptive simulations

and the detailed simulations used as training dataset.

Adaptive simulation Detailed simulation for the training
Steady-state (A = 0) f10A25

f10A25 f10A25
f = 10, 40, 80 Hz; A = 0.90, 0.50, 0.75 f10A25

Squared wave f10A25
Sawtooth wave f10A25
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3.1. LPCA training

The parameters to set to perform LPCA are the number of PCs (nPCs) to retain and

the number of clusters (k). As mentioned in the previous paragraph, the criterion to

choose the number of PCs consists in calculating the cumulative variance tq,k explained

in the kth cluster, with tq,k =
Pq

j=1 lj,k/
Pp

j=1 lj,k, ensuring that in all the clusters the

condition tq,k > 0.99 is verified in order to not lose any amount of information after the

dimensionality reduction. If an inadequate number of PCs is considered for the dimen-

sionality reduction during the clustering algorithm, the information loss can be deduced

observing the behaviour of the mean coe�cient of determination and the mean normalized

root mean squared error (NRMSE), averaged for all the variables, between the vectors

representing the original and the reconstructed data (from the reduced-dimensionality

space) for an increasing number of retained PCs in each cluster, reported in Figure 1.

(a) (b)

Figure 1: (a). Mean coe�cient of determination R
2
for the reconstruction of the original profiles of the

variables using an increasing number of PCs in each cluster and (b). Mean normalized root mean squared

error for the reconstruction of the original profiles of the variables using an increasing number of PCs in

each cluster.

The mean values for both the coe�cient of determination and the NRMSE in Figure

1, for the reconstruction of the original variables, resulted to be not acceptable when the

number of PCs was lower than 8. Considering nPCs = 8, instead, all the original vari-

ables could be recovered with acceptable accuracy (R2 > 0.99 and NRMSE < 0.1) after

the dimensionality reduction, so all the variables of the system were correctly considered

when the state-space was partitioned by means of LPCA. Moreover, increasing the num-

ber of eigenvectors taken into account did not improve considerably the quality of the
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reconstruction, as an asymptotic value was already achieved for nPCs = 8.

The normalized root mean squared error between two vectors ŷ and y, both consisting

of N elements, was defined as: NMRSE = 1
ȳ ·

qPN
i=1(ŷ�y)2

N .

To choose the number of clusters, several LPCA classifications were carried out on

the selected dataset increasing k. Whilst an increase in the number of clusters led to the

reduction of the global reconstruction error ✏GRSE,K , it also resulted in less populated

clusters. To ensure statistically meaningful results, k was chosen as the largest one for

which the condition: nobs > nvar was still verified in each cluster. If this condition is

not satisfied, indeed, the e�ciency of the classification algorithm is undermined and it

can determine an increase of the errors in the adaptive simulation. This aspect is clearly

observable looking at the non-monotonic relation between the error and the number of

clusters used to partition the composition space, reported in the supplemental material.

At first, the error decreases as the number of clusters is increased, because a larger k leads

to smaller groups of points which are also more uniform from a chemical point of view,

as also observable from the behaviour of the mean non-uniformity coe�cient �mean. As

soon as the condition nobs > nvar is violated, the error starts to grow again despite �mean

keeps decreasing, due to the wrong assignment of the points to the clusters. With this

into account, the number of PCs was set to 8 and the samples of the training dataset

were divided in 12 groups. The large variance associated with the distribution of the

observations in the clusters, reported in Table 2, could be explained by considering the

presence of one cluster (cluster number 2) grouping all the reactive points located on the

tail of the flame for each time-step, i.e. ⇠ 50, 000 in total. Other clusters obtained after

the partitioning, instead, were relatively small as they grouped very few points of the

reactive layer.

Table 2: Cluster population statistics for the partitioning of the composition space spanned by the

unsteady 2D detailed simulation obtained by means of a sinusoidal perturbation with f = 10 Hz and

A = 0.25 with LPCA (k = 12).

Total number of clusters 12
Total number of observations of the dataset ⇠ 131, 000
Maximum number of observations in a cluster ⇠ 50, 000
Minimum number of observations in a cluster 128
Mean number of observations in a cluster ⇠ 11, 000
Variance of the observations distribution 2.73 · 108
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3.2. Mechanism reduction via DRGEP

After the partitioning algorithm, DRGEP was applied in each cluster to generate the

reduced mechanisms.

For each sample point a reduced mechanism was generated. A single reduced mecha-

nism for each cluster was created as the union of species and reactions corresponding to

the individual reduced mechanisms of each sample point for that cluster. Fuel and oxidizer

were assumed as target species for DRGEP, and several tolerance thresholds were tested

(✏DRGEP from 0.005 to 0.3) to examine the impact of the reduction on the reliability of

the simulation and the CPU time. Table 3 shows the mean and the maximum uniformity

coe�cients (�mean and �max, respectively), resulting from the DRGEP procedure, as a

function of the DRGEP thresholds. The table also reports the maximum and mean num-

bers of species of reduced mechanisms (respectively nmax
sp and nmean

sp ). The mean and the

maximum number of species obviously increase with decreasing in the DRGEP tolerance,

but it is possible to notice that the �mean coe�cient also decreases, i.e. the mechanisms

in each cluster start to be more and more uniform.

Table 3: Partitioning of composition space by LPCA with k = 12: number of species and uniformity

coe�cients for prescribed tolerances ✏ in DRGEP

✏DRGEP nmean
sp nmax

sp �mean �max

0.03 31 38 0.08 0.11
0.02 34 42 0.079 0.11
0.01 39 44 0.075 0.11
0.005 43 50 0.071 0.11

3.3. CFD results: steady-state flame

As explained in the previous paragraph, the steady-state conditions (A = 0) were sim-

ulated first, adopting both the complete mechanism and the proposed adaptive-chemistry

methodology. In order to assess the quality of all the simulations carried out with the

reduced mechanisms, two approaches were proposed: firstly a qualitative comparison of

the contours between detailed and adaptive was carried out; then, a quantitative analysis

based on the evaluation of the parity plots, as well as the normalized root mean squared

error for selected variables, was pursued.

From the analysis of the maps in Figures 2 and 3, it is possible to recognize an

excellent agreement between the steady-state simulations carried out using the detailed
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mechanism and the adaptive-chemistry. Negligible discrepancies can only be observed in

terms of lift-o↵ height, and therefore localized to a very small region of the domain, just

for ✏DRGEP = 0.03 and 0.02.

(a) (b) (c) (d)

Figure 2: Comparison of temperature maps (in Kelvin) for detailed (left part of each contour) and adaptive

(right part of each contour) steady-state (A = 0) simulations with prescribed DRGEP tolerances. (a)

✏DRGEP = 0.03; (b) ✏DRGEP = 0.02; (c) ✏DRGEP = 0.01; (d) ✏DRGEP = 0.005 .

For a more extensive error analysis, Figure 4 reports the parity plots, while in Table 4

the relative NRMSE for the selected variables (temperature and main species) are reported

for the simulation with ✏DRGEP = 0.005.

Table 4: Normalized root mean squared error for temperature and selected species for the steady-state

adaptive simulation carried out with ✏DRGEP = 0.005.

Variable NRMSE
T 1.15 · 10�3

O2 9.50 · 10�4

CO 1.77 · 10�2

CO2 2.22 · 10�3

CH4 1.77 · 10�3

O 9.04 · 10�3

H2O 2.03 · 10�3

OH 7.78 · 10�3

Parity plots in Figure 4 and the accuracy statistics in Table 4 confirm the excellent
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Figure 3: Comparison of selected species maps (from left to right: O2, CO, O) for detailed (left part of

each contour) and adaptive (right part of each contour) steady-state (A = 0) simulations, with ✏DRGEP =

0.005.

agreement between the detailed and the steady-state adaptive simulation observed in the

qualitative analysis. As expected, the lowest errors were registered for temperature and

the target species (fuel and oxidizer). Nevertheless, also for the main radical species the

errors can be considered small, since they are of the same order of magnitude of the target

species and the fully oxidized products (CO2 and H2O). The same analysis with parity

plots for all the selected values of ✏DRGEP is presented in the supplemental material.

The relation between the overall accuracy for the temperature and the selected chem-

ical species of the reduced model and the degree of reduction (i.e. the tolerance used for

DRGEP) is shown in the boxplots in Figure 5. From the latter it is possible to notice

that the error behaviour is globally not linear with the reduction threshold and, in this

particular case, the results for large ✏DRGEP (✏DRGEP = 0.03 and ✏DRGEP = 0.02) seem not

to be acceptable in terms of accuracy, as the error for some species can reach up to 40%

and 30%, respectively. The normalized root mean square error decreases if the DRGEP

tolerance is decreased, since more species are included locally in the mechanism. Analyz-

ing the behaviour of the error with the reduction for the individual species (Figure 5b),

it is possible to notice that non-radical species (CH4, O2, CO) and temperature exhibit
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Figure 4: Parity plots of temperature and selected species for ✏DRGEP = 0.005, steady-state conditions

(A = 0).

a distinct linear trend, while the error for radical species like O and OH has a non-linear

relation with the reduction, for 0.01 < ✏DRGEP < 0.03. The non-linear behaviour of the

error related to the radicals in this range could be explained by the lift-o↵ height shift for

these values of ✏DRGEP observed in Figure 2. Thus, since these species are formed and

react in a less extended region of space, if compared to all the reported stable species and
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temperature, the mean errors between the adaptive and the detailed simulation are more

pronounced.

(a) (b)

Figure 5: (a). Boxplots of the normalized root mean squared error for selected species calculated for

several reduction tolerances; (b). Relation between the error and the reduction tolerance for temperature

and several species.

The details about the computational performances reported in Table 5 show that

the mean CPU-time for carrying out the chemical step (⌧̄chem) is strongly dependent on

the DRGEP tolerance, obviously increasing when decreasing the tolerance ✏DRGEP . The

corresponding chemical speed-up Schem is large (⇠ 4) even adopting the largest number

of species (✏DRGEP = 0.005). The chemical step usually has a massive impact on the

CPU-time of a numerical simulation of a reacting flow with a detailed chemistry. In this

specific case, it accounted for about the 85% of the total CPU-time, while the remaining

15% was taken by the transport step.

Table 5: Performances of adaptive-chemistry algorithm: average CPU-time per cell (in ms) for chemical

step integration (⌧̄chem) and relative mean speed-up factor (Schem) for the steady flame with k = 12.

✏DRGEP ⌧̄chem Schem

0.03 2.78 5.39
0.02 3.03 4.94
0.01 3.25 4.61
0.005 3.78 3.97

detailed 15.02 -

As mentioned in Section 3, two additional steady-state simulations were implemented

using two globally reduced mechanisms, to assess the impact of clustering and on-the-

fly classification steps on the results. The first, globally reduced, mechanism (Global

1) consisted of 59 species, and it was generated with a ✏DRGEP = 0.005. The second

one (Global 2), instead, was generated using a DRGEP tolerance ✏DRGEP = 0.05, to
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approximately retrieve the same average number of species (nGlobal2
sp = 44) of the adaptive

approach in the case of reduction using ✏DRGEP = 0.005. The boxplots in Figure 6 show

the NRMSE for the aforementioned three cases, clearly showing the superior performances

associated to a local and adaptive chemical mechanism reduction.

Figure 6: Boxplots of the normalized root mean squared error for selected species calculated for:

steady-state adaptive simulation with SPARC approach (Adaptive), globally reduced mechanism using

✏DRGEP = 0.005 (Global 1) and globally reduced mechanism with ✏DRGEP = 0.05 (Global 2).

The higher accuracy of the adaptive simulation can be easily explained considering

that the chemistry reduction is performed on disjoint regions of the thermochemical space,

leading to locally optimized mechanisms and accounting for local phenomena which are

usually overlooked by global reduction approaches. Finally, the adaptive simulations also

ensure the highest speed-up factor Schem = 3.97, compared to the one obtained with

Global 1, Schem = 2.11, and Global 2, Schem = 3.46.

3.4. CFD results: unsteady flames

In order to analyze in greater depth the accuracy and the reliability of the proposed

procedure, the adaptive-chemistry approach was then applied to two unsteady methane

flames with a sinusoidal perturbation of the fuel velocity profile. As also described in

the previous paragraph, the first unsteady flame was obtained imposing a continuous

simple sinusoidal perturbation with fixed frequency f = 10 Hz and amplitude A = 0.25

to the parabolic fuel velocity profile (f10A25), while for the second flame a sinusoidal

perturbation was still imposed, but it was obtained as linear combination of di↵erent

frequencies and amplitudes (f = 10, 40, 80 Hz and A = 0.90, 0.50, 0.75).
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Also for the f10A25 case a qualitative and a quantitative assessment of the model

was carried out. The qualitative assessment for this simulation is proposed in Figures 7

and 8, where the maps of temperature and species of the detailed simulation (left side of

each contour) are compared with the maps obtained by means of an adaptive-chemistry

approach using ✏DRGEP = 0.005 (right side of each contour). No lift-o↵ height shift

between the detailed and the adaptive simulation was observed, and the shapes of the

examined profiles have a satisfactory agreement. In Figure 9 and in Table 6 a quantitative

analysis of the error is proposed for the time-step t = 0.09 s for the f10A25 simulation

carried out with the reduced mechanisms using ✏DRGEP = 0.005. Also in this case, as

for the steady-state simulation, the lowest NRMSE were registered for the target species,

but the errors for the radicals had the same order of magnitude so they could be again

considered satisfactory.

Since this is not a steady-state case, it is not su�cient to examine the error statistics

for just one timestep, as previously done: the accuracy of the results, as well as the

number of species (nsp), reactions (nr) and, consequently, the speed-up of the simulation,

can vary at each step. For this reason, the NRMSE was averaged, taking into account all

the previously selected variables, and monitored at each timestep to observe its behaviour.

By looking at Figure 10a, where the mean NRMSE is reported for several timestep of the

f10A25 simulation, it is possible to conclude that, even if a minimal oscillatory behaviour

is observed, the error does not amplify with time: after reaching a maximum at t = 0.07 s

it starts to decay again, staying always bounded in the order of magnitude of ⇠ 10�3. In

the supplemental material it is possible to find the parity plots for the selected variables

for several timesteps of the considered interval of time. Comparing the behaviour of the

mean error with time and the mean number of species and reactions reported in Figure

10b, it is possible to observe that the error does not depend exclusively on the degree

of reduction adopted for the prescribed timestep. Indeed, even if the timestep t = 0.12

s was characterized by the lowest number of species and reactions, the error was lower

than the one registered for the timestep t = 0.07 s, where a larger number of species

was considered. Comparing Figures 10b and 10c, instead, the direct relation between

the mean number of species and reactions and the speed-up over time can be explicitely

observed, since the mean-CPU time (and, consequently, the speed-up) only depends on
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(a) t = 0.01 s (b) t = 0.03 s (c) t = 0.05 s (d) t = 0.06 s

(e) t = 0.07 s (f) t = 0.08 s (g) t = 0.09 s (h) t = 0.1 s

Figure 7: Comparison of temperature maps (in Kelvin) for detailed (left part of each contour) and

adaptive (right part of each contour) unsteady simulations obtained with a sinusoidal perturbation in the

velocity profile (f = 10 Hz and A = 0.25), with ✏DRGEP = 0.005, for several timesteps.

the number of species to consider at each time-step.

The same quantitative assessment, analyzing the behaviour of the mean NRMSE over

time, was applied to the second unsteady flame, obtained with a complex sinusoidal per-

turbation which linearly combines several frequencies and amplitudes. The good results
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Figure 8: Comparison of selected species maps (from left to right: O2, CO, O) for detailed (left part of

each contour) and adaptive (right part of each contour) unsteady simulations obtained with a sinusoidal

perturbation in the velocity profile (f = 10 Hz and A = 0.25), with ✏DRGEP = 0.005, at time t = 0.09 s.

obtained for the steady-state and the f10A25 flame represented a verification of the ap-

proach, since the partitioning and the mechanism reduction steps were carried out on the

data obtained from the detailed simulation of the same flame. Testing the approach on

other flames (i.e. changing the flame dynamics), then, was necessary to fully prove the

e↵ectiveness of the method and extend its applicability. It is possible to see from Figure

11a that the errors show the same oscillatory behaviour, even if they are slightly larger.

Also in this case, the same considerations about the nature of the error can be made:

analyzing Figures 11a and 11b it is possible to see that the lowest accuracy for a timestep

does not correspond to the lowest number of species adopted: therefore the contribute of

a time-varying e�ciency of the classification algorithm must be also considered. Anyway,

despite the moderately larger errors, these results can once again be considered acceptable

if it is taken into account that for this last simulation the training phase (the partitioning

and the generation of reduced kinetic mechanisms) was made with data obtained from

a di↵erent flame. The parity plots and the error statistics for several timesteps of the

complex simulation are available in the supplemental material.

The adaptive-chemistry approach was finally tested on two unsteady flames obtained
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Figure 9: Parity plots for temperature and selected species for an unsteady adaptive simulation obtained

with a sinusoidal perturbation in the velocity profile (f = 10 Hz and A = 0.25), with ✏DRGEP = 0.005,

at time t = 0.09 s.

by means of non-sinusoidal perturbations to the fuel parabolic velocity profile: a squared

wave and a sawtooth wave, whose dynamics is reported in Figure 12. The CFD simulations

were carried out using the reduced mechanisms previously obtained from the f10A25

dataset. Analyzing the behaviour of the mean NRMSE over time for these two additional

adaptive simulations, reported in Figure 13, one can observe that the accuracy is in line
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Table 6: Normalized root mean squared error for temperature and selected species for an unsteady

adaptive simulation obtained with a sinusoidal perturbation in the velocity profile (f = 10 Hz and

A = 0.25), with ✏DRGEP = 0.005, at time t = 0.09 s.

Variable NRMSE
T 1.24 · 10�3

O2 1.07 · 10�3

CO 2.50 · 10�2

CO2 2.94 · 10�3

CH4 1.37 · 10�3

O 6.44 · 10�3

H2O 2.97 · 10�3

OH 6.99 · 10�3

with the one obtained using sinusoidal perturbations, and the error does not amplify over

time.

The results obtained with the adaptive-chemistry approach for both the steady and

unsteady simulations can be considered satisfying, as it was possible to obtain accurate

results using not only reduced mechanisms generated from previous 2D simulations of the

same chemical system, but also from previous simulations of similar chemical systems.

Moreover, PCA appears to be a very promising tool either for the partitioning phase by

means of its local algorithm, as well as for the on-the-fly computation because, although

its classification e�ciency does not have a constant value in time, it does not alter the

overall accuracy of the simulation significantly.
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(a)

(b)

(c)

Figure 10: Statistics for several timesteps of the unsteady adaptive simulation obtained with a sinusoidal

perturbation in the velocity profile (f = 10 Hz and A = 0.25), using the reduced mechanisms (✏DRGEP =

0.005) obtained from the detailed unsteady simulation with f = 10 Hz and A = 0.25. (a). Averaged

normalized root mean squared error over time; (b). Mean number of species and reactions over time; (c).

Mean CPU-time for chemistry step and relative speed-up factor compared to detailed simulation over

time.
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(a)

(b)

(c)

Figure 11: Statistics for several timesteps of the unsteady adaptive simulation obtained with a complex

sinusoidal perturbation (f = 10, 40, 80 Hz and A = 0.90, 0.50, 0.75), using the reduced mechanisms

(✏DRGEP = 0.005) obtained from the detailed unsteady simulation with f = 10 Hz and A = 0.25. (a).

Averaged normalized root mean squared error over time; (b). Mean number of species and reactions

over time; (c). Mean CPU-time for chemistry step and relative speed-up factor compared to detailed

simulation over time.
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(a) (b)

Figure 12: (a). Squared wave perturbation imposed to the fuel parabolic velocity profile in time; (b).

Sawtooth wave perturbation imposed to the fuel parabolic velocity profile in time.

(a) (b)

Figure 13: (a). Averaged normalized root mean squared error over time for several timesteps of the

unsteady adaptive simulation obtained with a squared wave perturbation imposed to the fuel parabolic

velocity profile; (b). Averaged normalized root mean squared error over time for several timesteps of the

unsteady adaptive simulation obtained with a sawtooth wave perturbation imposed to the fuel parabolic

velocity profile.
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4. E↵ects of the training dataset on adaptive-chemistry simulations

According to the results showed in the previous paragraphs, it is possible to accurately

simulate steady or unsteady reactive flows using reduced mechanisms obtained from simi-

lar chemical systems, as long as the latter adequately cover the composition space which is

expected to be visited during the simulation of interest. This section explores the possibil-

ity of using also lower dimensional detailed simulations (0D and 1D) of the same chemical

system for the generation of the training data, the classification and the generation of

reduced mechanisms to use in a multidimensional simulation (2D or 3D) carried out by

means of an adaptive-chemistry approach. In fact, given the low computational cost asso-

ciated with 0D and 1D simulations, the possibility to perform the aforementioned training

steps of the adaptive-chemistry approach on this data can constitute a viable option in

case no multidimensional simulation previously carried out with detailed mechanism is

available.

A dataset consisting of observations generated by means of steady-state counter-flow

simulations (CFDF) was considered. A range of strain rates from 10 s�1 to 330 s�1

(corresponding to extinction conditions) was simulated, using the same inlet conditions

in terms of temperature and compositions used for the multidimensional simulation. As

suggested by Franke et al. [26], to avoid prescribing patterns in the dataset, the strain

rates were randomly chosen in the range above. This new dataset consisted of ⇠ 11, 000

points, corresponding to 30 di↵erent strain rates. The simulations were carried out using

a in-house code based on the OpenSMOKE++ framework [27].

The same procedure used for the previous 2D dataset was adopted to find the number

of components to retain and the number of clusters for the composition space, which

led to 5 PCs and 35 clusters. Also in this case, as for the 2D training, increasing the

number of clusters led to a progressive decrease of the number of species and an increase

of the accuracy, while as soon as the constraint nobs > nvar was violated the accuracy

of the simulation started to decrease, confirming the existence of an optimum for k. For

each cluster, a reduced mechanism was then generated again as the union of species and

reactions corresponding to the individual reduced mechanisms from the sample points

constituting them. The same target species were kept (fuel and oxidizer) for the DRGEP,

as well as the same tolerance thresholds, to have a proper comparison beteween the
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simulations. Table 7 reports the statistics from the DRGEP reduction regarding the

number of species and the uniformity of the mechanisms in each cluster.

Table 7: Partitioning of composition space by means of LPCA for the CFDF dataset: number of species

and uniformity coe�cients for prescribed tolerances ✏DRGEP , with k = 35

✏DRGEP nmean
sp nmax

sp �mean �max

0.03 29 45 0.074 0.14
0.02 32 49 0.071 0.14
0.01 37 55 0.063 0.14
0.005 41 59 0.057 0.13

From a first analysis of the reduction results from DRGEP in Table 7, it emerges

that the mechanisms generated from 1D simulations were more sensitive to the reduction

threshold. Lowering the reduction tolerances from 0.03 to 0.005 led to a reduction of the

disuniformity factor �mean of the 23%, while with the same tolerances �mean was reduced

by 11% for the 2D dataset. At the same time, the maximum number of species and the

maximum value of disuniformity coe�cient � were up to ⇠ 20% larger than the DRGEP

reduction based on the 2D dataset. Given that, in this case it is fair to expect larger

speed-up factors due to the lower mean number of species.

Steady-state conditions (A = 0) were firstly simulated using the new reduced mecha-

nisms derived from the detailed 1D CFDF simulations. The adaptive simulations showed

a moderately lower accuracy compared to the ones based on the 2D training, on equal

terms of reduction tolerance (✏DRGEP = 0.005), but at the same time a larger speed-up

factor due to the lower number of species, as also expected from the reduction statistics.

The results obtained with relatively large reduction tolerances (✏DRGEP from 0.03 to 0.01)

were characterized by very large mean NRMSE (averaged over all the selected species) as

shown in Figure 14a, and they seem to be not acceptable especially with respect to the

one obtained using the same reduction tolerance on a 2D training dataset. The accuracy

of the simulation carried out with ✏DRGEP = 0.005, instead, seems somehow comparable

for the two cases, as shown in Figures 14a and 14b. As regards the error dependence of

specific variables with the reduction tolerance ✏DRGEP in Figure 14c, also in this case, as

for the 2D training, target species (fuel and oxidizer), temperature and CO had a linear

dependence with the degree of the reduction, while for the radicals a non-linear pattern

was observed again because of the lift-o↵ height shift for large values of the tolerance.
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(a) (b)

(c)

Figure 14: (a). Averaged root mean squared error for several DRGEP tolerances obtained from steady-

state simulations (A = 0) trained on 1D and 2D datasets; (b). Boxplots of the NRMSE for steady-state

simulations (A = 0) trained on 1D and 2D datasets with ✏DRGEP = 0.005; (c). Relation between the

error and the degree of the reduction of the mechanisms for temperature and selected species.

Table 8: Performances of adaptive-chemistry algorithm: average CPU-time per cell (in µs) for chemical

step integration (⌧̄chem) and relative mean speed-up factor (Schem) for the steady flame (A = 0) using

the reduced mechanisms obtained with the training of a 1D CFDF dataset, using k = 35.

✏DRGEP ⌧̄chem Schem

0.03 1.55 9.67
0.02 2.02 7.40
0.01 2.50 6.01
0.005 3.04 4.93

detailed 15.02 -

Lastly, the adaptive-chemistry approach was tested for an unsteady case: the flame

obtained by means of a perturbation of the velocity profile with frequency f = 10 Hz

and amplitude A = 0.25 was simulated using the reduced mechanisms obtained from the

partitioning of the 1D CFDF dataset. From Figure 15a, where the analysis of the mean

NRMSE over time is shown, it is possible to see that also in this case the accuracy using

mechanisms obtained from a lower dimensional training dataset was large, even if slightly

lower than the one obtained using the training of the 2D simulation, as also verified for the

simulation in steady conditions. The error curve behaviour has a less oscillatory nature
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than the curves examined in the previous paragraphs since, after a maximum at t = 0.01

s, it seems to reach a stable, asymptotic value of 1%. In Figure 15b, it is possible to

see that in this last case the di↵erence between the minimum and the maximum mean

number of species for the considered timesteps is bigger than the one registered in case

of 2D training. From the same figure, also the number of reactions for the mechanisms

generated with 1D training data appears to be significantly lower than the one reported

for the adaptive simulation using mechanisms generated with 2D training data. While

the minimum mean number of reactions for the 1D case was equal to ⇠ 240 and the

maximum mean number to ⇠ 290, for the first simulation using the 2D training data the

minimum mean number of reactions was 365 and the maximum ⇠ 390.

Thus, at this point it is clear that it is possible to perform multidimensional simulations

(2D and 3D) of steady and unsteady reacting flows with a training dataset obtained from

a lower dimensional simulation, at two conditions. The first, necessary condition, is

that the dataset should cover the thermo-chemical conditions met in the application of

interest. The second is the appropriate choice of the reduction tolerance. In this case,

the 1D CFDF dataset covered a very wide region of the composition space for radicals

and for heavier species like benzene, as shown in Figure 16, where the composition spaces

visited by the 2D simulation and the 1D CFDF simulations used as training dataset are

compared. Anyway, for some species like HO2 or CH2O there were still some zones in

the composition space spanned by the 2D laminar coflow flame which were not properly

covered by the 1D CFDF simulations, as shown in Figure 17. In this case, the reduction

becomes the limiting factor, since the calculated DRGEP coe�cients are calculated on a

less comprehensive set of compositions. This could explain the results, using the reduced

mechanisms obtained from 1D simulations, characterized by a slightly lower accuracy if

compared to the ones obtained using a training dataset obtained from 2D simulations

(parity plots included in the supplemental material).
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(a)

(b)

(c)

Figure 15: (a). Averaged normalized root mean squared error; (b). Mean number of species and reactions;

(c). Mean CPU-time for chemistry step and relative speed-up factor compared to detailed simulation.

All the images refer to several timesteps of the unsteady adaptive simulation obtained with a sinusoidal

perturbation in the velocity profile (f = 10 Hz, A = 0.25), with the training made on the 1D CFDF

dataset, ✏DRGEP = 0.005.
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Figure 16: Generated dataset: mass fraction of selected species as a function of temperature for the 2D

detailed simulation (black dots) and the 1D couterflow (CFDF) simulation (red cross).

Figure 17: Generated dataset: mass fraction of selected species as a function of temperature for the 2D

detailed simulation (black dots) and the 1D couterflow (CFDF) simulation (red cross).
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5. Conclusions

The main objective of the SPARC methodology proposed in this work is paving the

way for multi-dimensional CFD simulations of laminar flames with complex kinetic mech-

anisms (hundreds of species), which are currently virtually unfeasible because of the com-

putational cost. The methodology is based on the pre-partitioning of a composition sample

space (obtained from previous simulation of the same system or generated via counterflow

di↵usion flames) in clusters via LPCA. Then, a reduced kinetic mechanism, generated via

DRGEP, is associated to each cluster. During the CFD simulation, each cell is properly

classified (in order to recognize the cluster to which it belongs) and the corresponding

reduced mechanism is adopted. This results in a reduction of CPU time, with minimal

loss of accuracy.

The method was successfully applied for the simulation of a 2D laminar coflow di↵usion

flame burning methane in air. The proposed approach was able to correctly describe the

flame, both in steady-state and unsteady conditions. Despite the relatively small size of

the adopted mechanisms (84 species), a significant reduction of CPU time was observed:

in particular, results showed speed-up factors for the chemical step of ⇠ 4, thus indicating

that chemistry was no longer the bottleneck in the flame under investigation, compared

to the time for the transport step. The performances from a speed-up point of view are

expected to improve if more complex fuels are adopted: since larger and sti↵er kinetic

mechanisms are required, a higher level of reduction via DRGEP can be reached, with

corresponding larger speed-up factors. This approach could also be exploited to include

realistic chemistry in the context of Direct Numerical Simulations (DNS). Alleviating

the cost of detailed chemical kinetics in these context, indeed, would allow to include

more realistic chemistry within the simulations, thus providing very valuable data for the

validation of turbulent combustion models for RANS and LES.

Several improvements and extensions of the proposed technique are possible. In par-

ticular, coupling with ISAT (In Situ Adaptive Tabulation) [28] is relatively easy to imple-

ment: for each cluster, a separate ISAT table can be created and updated for performing

the chemical step. A second extension may consist in applying an on-the-fly additional

mechanism reduction through a fast reduction technique for clusters showing a high level

of non-uniformity, for which the union of mechanisms would lead to large mechanisms.
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Moreover, the computational savings can be further (and significantly) increased if the

number of transport equations to be solved are also reduced, based on the local condi-

tions. However, this task requires the development of appropriate techniques to ensure

that the profiles of the chemical species are continuous throughout the computational do-

main and can be done using mapping methods based on the combination of PCA, LPCA

and non-linear regression techniques.
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