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Abstract
A current trend in industries such as semiconductors and foundry is to shift their visual inspection
processes to Automatic Visual Inspection (AVI) systems, to reduce their costs, mistakes, and dependency
on human experts. This paper proposes a two-staged fault diagnosis framework for AVI systems. In
the first stage, a generation model is designed to synthesize new samples based on real samples. The
proposed augmentation algorithm extracts objects from the real samples and blends them randomly,
to generate new samples and enhance the performance of the image processor. In the second stage, an
improved deep learning architecture based on Faster R-CNN, Feature Pyramid Network (FPN), and a
Residual Network is proposed to perform object detection on the enhanced dataset. The performance of
the algorithm is validated and evaluated on two multi-class datasets. The experimental results performed
over a range of imbalance severities demonstrate the superiority of the proposed framework compared
to other solutions.

1. Introduction

1.1. Motivation

The paper proposes a defect detection framework towards an efficient Automatic Visual Inspec-
tion (AVI) system for industries that lack sufficient amount of annotated samples. Nowadays,
due to their high generalization abilities and easy-to-use nature, AVI systems based on deep
learning (DL) models have been proposed everywhere in the literature. Nonetheless, DL-based
classifiers require an adequate amount of samples to reach high performances. Furthermore,
creating a large and accurately labelled dataset needs a high number of defective samples and a
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considerable amount of time for the annotation. On the other hand, annotation is the require-
ment of any image object detection algorithm. In this paper, therefore, alongside an enhanced
image object detection model for AVI systems, we propose a novel data augmentation model
that alleviates this burden for the practitioners and automatically synthesizes and annotates
new images from a limited number of samples.

1.2. AVI systems

AVI plays a key role in quality control and process monitoring in the automated production line
technologies. It is aimed to ensure that the product is healthy based on a visual control and
there is no defect on its surface. A successful implementation of AVI can drastically lower the
production costs and respond to the increasing demand of high-quality and reliable productions
in different industries. Hence, in recent years, AVI systems have been receiving more and more
research attention in quality control and, as a comprehensive technology, they have been widely
used in industries such as steel and aluminum productions [1], electronic devices and boards [2],
railway health monitoring [3], wood flooring [4], silicon wafers [5], fabric and textile materials
[6] and fruit and vegetable productions [7].
AVI systems are chiefly configured by two parts, represented by optical imaging devices and an
image processing software. These systems can comprise different types of cameras to detect
moving products and their components, and can be regarded as decision support systems able
to conduct quality control based on the images they receive in input. Fundamentally, the image
processing software of an AVI method accomplishes two main tasks: (1) feature extraction,
which contains a set of hand-crafted and automatic encoding-decoding techniques to pull out
the defect signs; (2) classification, which incorporates a set of methods to diagnose the sample
condition based on the extracted features.
Current AVI image processing systems are mostly based on hand-crafted feature extraction
techniques, such as threshold models, statistical methods, filter-based techniques, transform-
based and model-based methods, requiring skilled workers with prior knowledge of the specific
application and domain. Such systems need long development time and more complex installa-
tions, and lack the generalization ability required to be easily applied to other similar settings
and applications. It is worthwhile to observe that, state-of-the-art AVI systems, based on deep
learning (DL) architectures, do not require expert designers and have a satisfactory general-
ization ability. However, they usually get poor results when they are dealing with insufficient
number of samples and imbalanced datasets, as in the case of real-world applications, in which
some defect types happen infrequently. This hinders current AVI systems to perform accurately.

1.3. Related works

Some AVI methods are characterized by spatial distribution of grayscale images: Tsai et al.
[8] proposed a mathematical morphology technique to detect the machine circular tool-mark
textures. [9] introduced a similar mathematical model to extract relevant pixels corresponding to
the presence of a discontinuity for crack recognition. Wu and Hu [10] suggested co-occurrence
matrices of metal grayscale images to access the information of metal surfaces. Despite their
quick runtime, these methods are highly dependent on the interference conditions and presence
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of noise. Moreover, they are not capable of detecting rare patterns. Traditional machine learning
techniques, such as Support Vector Machines [11], Decision Trees[12], Naive Bayesian network
[13], are also widely used in the literature of AVI systems. However, these so-called “shallow
learning”-based systems have shown shortcomings when they are dealing with images of multi
defect types, noisy samples or rare patterns[14].

In the literature of AVI systems an increasing attention has been paid to DL-based computer
vision algorithms. Convolutional neural networks (CNN) have boosted the image classification
performance and have been employed in different quality control systems. Soukup et al. [15]
introduced a CNN-based setup for rail surface inspection using photometric stereo images.
Weimer et al. [16] investigated different CNN hyper-parameters involved in the process of an
industrial optical inspection. To discriminate defect-free and defective samples, [17] employed
a convolutional auto-encoder (CAE) architecture with two different regularization penalties
which confine the spread of the extracted features in a very limited space from a set of defect-
free samples and divide the background texture. These DL-based models are mostly efficient
when they cope with image classification problems. On the other hand, to locate the defects
in the sample images, image object detection and image segmentation techniques should be
used. Enshaei et al. [18] proposed a U-Net image segmentation architecture for different
surface types. [19] developed an AVI system of steel surfaces based on Fast R-CNN architecture
with a feature fusion network, generating high-quality multi-resolution feature maps for the
inspection of multi-size defects. In comparison with R-CNN and Fast R-CNN, Faster R-CNN
can achieve a higher accuracy with a considerable faster training speed. In terms of runtime,
Faster R-CNN is almost ten times as quick as Fast R-CNN, which makes it suitable for on-line
detection applications. Compared to some one-step detectors such as YOLO-v3, Faster R-CNN
is slightly slower. However, it achieves more accurate solutions in different domains and image
contexts[20]. [21] used a Faster R-CNN to detect and locate the fiber paper tube defects. To
detect the printed circuit boards, [22] also employed a Faster R-CNN architecture, coupled
with a ResNet-50 for its feature extraction ability. In spite of their satisfactory performances,
these solutions require a sufficient number of samples for each defect type, which is in practice
hard to obtain. DL-based solutions need a huge amount of samples representing different
defect types and defect-free conditions. To respond to this need, Niu et al. [23] proposed a
generative algorithm called surface defect-generation adversarial network (SDGAN) which
creates synthetic samples suitable for image classification, since it does not generate image
annotations but only image labels.

1.4. The Key Contributions

The main contributions of this paper are four-fold:

• We propose a new automated visual inspection system combining a generative algorithm
and an image object detection model aimed to conduct the automated surface inspection
on various products and to alleviate the adverse effect of imbalanced datasets.

• We propose a heuristic data augmentation model based on the state-of-the-art GP-WGAN
network, which generates small and medium-sized synthetic defects which are heuris-
tically allocated on the augmented samples and annotated. This algorithm is suitable
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for image object detection and segmentation and creates a sheer amount of high-quality
synthetic images.

• We implement an enhanced Faster R-CNN as the automated object detection tool for
defect detection and localization, using state-of-the-art Feature Pyramid Network (FPN)
with Residual Network (ResNet).

• We analyze the performance of the algorithm with different settings and compare it with
some other state-of-the art methods.

The rest of the paper is organized as follows. Section 2 introduces the Faster R-CNN principle
and the gradient-penalty GAN model. In section 3 the proposed data augmentation and the AVI
model architecture are explained. Section 4 is devoted to illustrate the results of our experiments
and the performance of the tested models. Finally, conclusions and future research paths are
summarized in section 5.

2. Methods and Materials

2.1. Faster R-CNN Principle

In this section the basic idea of Faster R-CNN is introduced, being one of the cores of the
proposed fault localization algorithm.

R-CNN, proposed by [24], is intrinsically a Convolutional Neural Network (CNN) coupled
with a region-proposal algorithm that suggests the object locations within an image. A selective
search is designed to extract a fixed number of regions. The similar regions are merged together
afterwards to obtain the candidate regions to be fed into the object detection algorithm. To
cope with the slow runtime due to the comprehensive CNN feature extraction, [25] introduced
Fast R-CNN, which employs a shared convolutional feature map as the output of the the CNN
layer. This let the region of interests (RoI) to be extracted from these feature maps subsequently
and faster.

By combining R-CNN and Fast R-CNN, [26] proposed Faster R-CNN which demonstrated
superior object detection capabilities in different domains. Like R-CNN and Fast R-CNN, Faster
R-CNN divides the detection problem into two parts: (1) the region proposal stage, whose
goal is to suggest the regions where objects may exist, and (2) the detection stage, where each
selected region proposal is classified into different classes. In the first stage, the algorithm
outputs the locations alongside with a binary object score which indicates if the region contains
the corresponding object. In the detector stage, the algorithm generates class probabilities and
refined region locations. By substituting the traditional region proposal stage with a CNN block,
called Region Proposal Network (RPN), the network is able to share its layers with the object
detector network, resulting in a reduced detection time.

Faster R-CNN architecture can be divided into three parts: the convolutional layer, which
serves as a feature extractor, the RPN module, which tells the Fast R-CNN network where to
look, and the Fast R-CNN network, which performs the classification and the bounding box
estimation tasks.
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2.2. GP-GAN Principle

In a typical GAN model there are two networks being trained simultaneously: (1) the discrim-
inator, 𝐷, which is aimed to identify the real and false images as accurately as possible and
to maximize the discriminant accuracy, and (2) the generator, 𝐺, which strives to deceive the
discriminator. Essentially, the Nash equilibrium is obtained as follows:

min
𝐺

max
𝐷

E𝑥∼P𝑟 [log(𝐷(𝑥))] + E𝑥̃∼P𝑔 [log(1−𝐷(𝑥̃))] (1)

where 𝑥̃ = 𝐺(𝑧) denotes a sample generated from random noise 𝑧 ∼P𝑧 , while P𝑟 , P𝑔 and
P𝑧 indicate the data distribution of the real samples, generated samples and the random noise,
respectively. There are two general issues that traditional GAN models encounter during the
training: first, when the discriminator becomes more accurate and gets higher performances,
there’s a higher probability that the generator gradient vanishes. Second, minimizing the loss
function of the generator is equivalent to minimizing an unreasonable distance measure, leading
to gradient instability.

In order to improve the stability of the GAN learning and cope with the mentioned issues,
Arjovsky et al. [27] proposed a Wasserstein GAN, which employs the Earth-Mover distance,
𝒲(P𝑟,P𝑔), instead of the Jensen-Shannon divergence. The Earth-Mover distance can be
interpreted as the minimum cost of transporting mass to transform the distribution P𝑟 into
the distribution P𝑔 .

𝒲(P𝑟,P𝑔) = sup
‖ℒ‖𝐿≤1

E𝑥∼P𝑟 [ℒ(𝑥)]− E𝑥∼P𝑔 [ℒ(𝑥)] (2)

where the supremum is over all the 1-Lipschitz functions ℒ : 𝒳 → R. The optimal set of
1-Lipschitz functions, ℒ*, yield the optimal solutions of the following maximization problem:

max
‖ℒ‖𝐿≤1

E𝑥̃∼P𝑟 [ℒ(𝑥̃)]− E𝑥∼P𝑔 [ℒ(𝑥)] (3)

Using the Kantorovich-Rubinstein duality, the WGAN objective function can be determined as:

min
𝐺

max
𝐷∈ℒ*

E𝑥∼P𝑟 [𝐷(𝑥)]− E𝑥̃∼P𝑔 [𝐷(𝑥̃)] (4)

Let 𝛿 ∼ 𝑈 [0, 1] be a random number to linearly interpolate between 𝑥 and 𝑥̃:

𝑥̂ = 𝛿𝑥+ (1− 𝛿)𝑥̃ (5)

Consequently, the loss function of the discriminator, L𝐷 , can be determined as follows:

L𝐷 = E𝑥̃∼P𝑔 [𝐷(𝑥̃)]− E𝑥∼P𝑟 [𝐷(𝑥)] + 𝜆E𝑥̂∼P𝑧 [(‖∇𝑥̂𝐷(𝑥̂)‖2 − 1)2] (6)

where𝜆 stands for the gradient penalty coefficient. The last part of Eq. 6, 𝜆E𝑥̂∼P𝑧 [(‖∇𝑥̂𝐷(𝑥̂)‖2−
1)2], denotes the gradient penalty. Table 1 shows the pseudo-code of GP-WGAN.
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Table 1
GP-WGAN pseudo-code

Input: 𝜆, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐,𝑚, 𝛼, 𝛽1, 𝛽2, 𝜔0, 𝜃0
1 while 𝜃 is not converged do
2 for 𝑡← 1, ..., 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do
3 for 𝑖← 1, ...,𝑚 do
4 Sample from real dataset 𝑥 ∼P𝑥,
5 Generate noise samples 𝑧 ∼P𝑧 ,
6 Generate a random number 𝛿 ∼ 𝑈 [0, 1]
7 𝑥̃← 𝐺𝜃(𝑧)
8 𝑥̂← 𝜖𝑥+ (1− 𝛿)𝑥̃

9 L (𝑖) ← 𝐷𝜔(𝑥̃)−𝐷𝜔(𝑥) + 𝜆(‖∇𝑥̃𝐷𝜔(𝑥̂)‖2 − 1)2

10 𝜔 ← 𝐴𝑑𝑎𝑚(∇𝜔
1
𝑚

∑︀𝑚
𝑖=1 𝐿

𝑖, 𝜔, 𝛼, 𝛽1, 𝛽2)

11 Sample batch of 𝑚 noise samples {𝑧𝑖}𝑚𝑖=1 ∼P𝑧

12 𝜃 ← 𝐴𝑑𝑎𝑚(∇𝜃
1
𝑚

∑︀𝑚
𝑖=1−𝐷𝜔(𝐺𝜃(𝑧)), 𝜔, 𝛼, 𝛽1, 𝛽2)

3. The Proposed Framework

3.1. Data Augmentation

In this paper, in order to cope with insufficient number of samples for some fault types, we
propose a framework which generates new high-quality synthetic samples with multiple defect
types and annotates them subsequently. The sequence of this generative algorithm is illustrated
in Fig. 1.

By feeding the preprocessed bounding boxes to the GP-WGAN model, the model generates
high-quality defects which are suitable to be processed afterwards, and to be randomly allocated
on the synthetic and real defect-free image beds.

3.2. Fault Diagnosis System

The depth of the deep learning architecture is a key factor in achieving good results. Yet,
when the network depth increases, the feature level correspondingly rises, which generates the
gradient vanishing issue. To avoid that, we resort to ResNet-101 which uses the layers that are
basically composed of a series of residual errors, degenerating the neural network model into a
shallow network that solves the vanishing gradient problem. In our framework, the ResNet101
architecture aims at extracting the initial feature maps of the raw images, based on which the
region proposal networks of the Faster R-CNN model can work more effectively. Furthermore,
we use a Feature Pyramid Network (FPN) layer that utilizes a hierarchical feature layers and
generates integrated feature maps that can push up the detection accuracy, more specifically
on the small objects[28]. The overall structure of the proposed FPN ResNet-101 Faster R-CNN
model is shown in Fig. 2.
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Figure 1: The proposed data augmentation framework based on GP-WGAN

Figure 2: The architecture of FPN ResNet Faster R-CNN

4. Experimental Results and Discussions

All the experiments were run on python 3.8 (PyTorch 1.8) on an Ubuntu 18, with CUDA10.2,
GPU of Nvidia Tesla K80, and 12GB of memory as well as a CPU of Intel(R) Xenon with 2.30GHz
of frequency.

For the competing panel, we selected some state-of-the-art defect detection architectures
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which have been recently proposed in the literature and represented by Deconvolutional single
shot detector (DSSD) [29], YOLO-v3 [30], and Faster R-CNN [26] with three different backbones:
VGG16, FPN-ResNet-50, and FPN-ResNet-101. Running each network one time with the classic
data augmentation strategy (e.g. by flipping, rotating and changing the image contrast), and
the other time with the proposed data augmentation algorithm, the impact of the proposed
GP-GAN-based technique on the results was examined. We also conducted a sensitivity analysis
on the number of real samples (𝑚𝑟) and the number of generated samples (𝑚𝑔) to assess the
detection ability of the proposed framework on the minority classes.

4.1. The Performance Metrics

To evaluate the performance of different algorithms, we used the mean Average Precision
(𝑚𝐴𝑃 ) metric, which is the average of the Average Precision(𝐴𝑃 ) values of 𝒞 different defect
types. AP values are in fact the area under the ROC curve, determined using the following
formula:

𝐴𝑃 =

∫︁ 1

0
𝑝(𝑟) 𝑑𝑟 =

𝑀∑︁
𝑘=1

𝑃 (𝑘)Δ𝑟(𝑘) (7)

Using Eq. 7, the 𝑚𝐴𝑃 values are calculated as follows:

𝑚𝐴𝑃 =

∑︀𝒞
𝑖=1𝐴𝑃𝑖

𝒞
(8)

4.2. Case Study 1

For the first case study we analysed a steel surface defect dataset named NEU, containing six
types of defects: scratches, rolled-in scale, inclusion, crazing, pitted surface and patches. For
each defect type the dataset includes 300 images. In this experiment three-fold cross-validation
was used. At each run, therefore, the test set comprised 100 images. In order to evaluate
the performance of the model in imbalanced conditions, we randomly dropped out, from the
training set, 25, 50, 75, 100 and 150 images related to the “inclusion” defect type.

Table 2 reports the overall 𝑚𝐴𝑃 values and the 𝐴𝑃𝑖𝑛𝑐., for the minority class, “inclusion”,
when 𝑚𝑖𝑛𝑐.

𝑟 = 50. As it can be clearly seen in the table, the proposed data augmentation tech-
nique effectively improved the detection performance of all the five architectures. Specifically,
it boosted the 𝐴𝑃 values of DSSD-513 by 16%, of YOLOv3 by 13% and of different Faster R-CNN
networks by more than 18%. In this case, the proposed network reached an 𝑚𝐴𝑃 equal to
80.9%, significantly outperforming the other algorithms. Fig. 3 shows the sensitivity analysis
of 𝐴𝑃 for the class “inclusion” on 25 points with respect to different 𝑚𝑖𝑛𝑐.

𝑟 and 𝑚𝑔 . When
𝑚𝑖𝑛𝑐.

𝑟 = 250 and 𝑚𝑔 = 1600, the proposed framework achieves an average precision of 90.2%
on the minority class.

4.3. Case Study 2

In the second case study we used a magnetic tile surface defect dataset [31] of 1344 images,
composed of five types of defects: blowhole, crack, fray, break and uneven. We translated
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Table 2
Inspection results on the NEU dataset

Detector Backbone Aug. 𝑚𝐴𝑃 𝐴𝑃𝑖𝑛𝑐.

DSSD-513 - classic 59.8 51.9
YOLOv3 DarkNet classic 59.2 49.3

Faster RCNN VGG16 classic 59.0 45.7
Faster RCNN FPN ResNet50 classic 68.5 48.1
Faster RCNN FPN ResNet101 classic 72.8 54.5

DSSD-513 - ours 66.1 67.7
YOLOv3 DarkNet ours 66.3 62.1

Faster RCNN VGG16 ours 74.4 65.3
Faster RCNN FPN ResNet50 ours 78.1 67.6
Faster RCNN FPN ResNet101 ours 80.9 72.5

Figure 3: Sensitivity analysis of 𝐴𝑃𝑖𝑛𝑐. on the NEU dataset

the segmentation annotations to the bounding box annotations making it compatible with the
object detection algorithms. Three-fold cross-validation was applied also in this case, to have
even-handed results. In order to evaluate the performance of the model in different imbalanced
conditions, we randomly selected 50, 75, 125, 150 and 175 samples from the “fray” class to
construct the dataset.

Table 3 compares the performance of different models in terms of 𝑚𝐴𝑃 values and 𝐴𝑃𝑓𝑟𝑎𝑦

corresponding to the minority class (fray), when 𝑚𝑓𝑟𝑎𝑦
𝑟 = 50. As for the first case study, this

comparison demonstrates the effectiveness of the proposed data augmentation technique on the
performance of the detectors. Without any augmentation, Faster R-CNN with FPN backbones
and the DSSD-513 dominate the other two detectors. In this situation, compared to the others,
DSSD-513 gets the highest 𝐴𝑃 value on the minority class. However, with the proposed data
augmentation, it is Faster R-CNN with FPN ResNet-101 that outperforms the others in terms
of both 𝑚𝐴𝑃 and 𝐴𝑃 for the “fray” class. Fig. 4 illustrates the performance of the proposed
model on the minority class with different 𝑚𝑓𝑟𝑎𝑦

𝑟 and 𝑚𝑔 values.
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Table 3
Inspection results on the magnet tile dataset

Detector Backbone Aug. 𝑚𝐴𝑃 𝐴𝑃𝑓𝑟𝑎𝑦

DSSD-513 - classic 59.4 44.5
YOLOv3 DarkNet classic 49.5 37.8

Faster RCNN VGG16 classic 54.3 35.4
Faster RCNN FPN ResNet50 classic 60 39.7
Faster RCNN FPN ResNet101 classic 62.8 41.2

DSSD-513 - ours 69.7 64.2
YOLOv3 DarkNet ours 66.3 53.1

Faster RCNN VGG16 ours 71.8 55.8
Faster RCNN FPN ResNet50 ours 73 62.5
Faster RCNN FPN ResNet101 ours 76.9 69.1

Figure 4: Sensitivity analysis of 𝐴𝑃𝑓𝑟𝑎𝑦 on the magnetic tile dataset

Fig. 5 and Fig. 6 depict some of the fake defective samples generated by the proposed model
on the first and second case studies, respectively.

5. Conclusions and Future Directions

Efficient AVI systems are one of the highly demanded parts in the realization of Industry 4.0
and smart manufacturing systems. Deep learning-based object detection algorithms require a
plethora of samples for their training phase, whereas the real-world datasets lack a sufficient
number of annotated defects to be used. This problem hinders the proposed algorithms from
attaining satisfactory results. The main contribution of this paper is to present a generative
algorithm based on GP-WGAN architecture, which generates high-quality defect images and
defect-free images. The algorithm then blends them and synthesizes new images with their
corresponding annotations. In this paper, we also used a powerful object detection architecture,
named Faster R-CNN with a state of the art backbone, FPN-ResNet-101, which can extract the
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Figure 5: Three fake images with different synthetic defects

Figure 6: Three fake images with random defect allocations on the same defect-free image

complex features that the object detector needs and enhance its accuracy. The comparison results
on two industrial datasets applying a range of imbalanced severities indicate the effectiveness of
the proposed augmentation technique and of the detection algorithm. Therefore, the industrial
practitioners with a limited number of annotated samples or highly imbalanced data can benefit
from the implementation of our data generation model. For future work, we will investigate the
opportunities to reduce the training time and the inference time of the detection algorithm to
work with higher frame per-second (FPS) rates.
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