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A B S T R A C T

Due to the inaccuracy and significant disturbance of the complex and harsh environment in real industrial
processes, the traditional sensor devices cannot meet the high-performance requirement of measuring key
quality variables. However, in practical industrial thickener cone systems, the underflow concentration is hard
to measure and has a high cost and significant time delay. Furthermore, the higher encoder representation
often causes information loss from the process variables. This paper presents a novel efficient dual long short-
time memory (LSTM) method for concentration prediction in the deep cone thickener system. To this end,
dual feedforward and inverse bidirectional long-short time memory are proposed for feature learning and
long temporal prediction. The proposed framework introduces an averaging moving filtering to pass through
features, therefore the performance of dual LSTM is increased by a large margin. In addition, the feedforward
and reverse bidirectional LSTM are employed to learn the robust information without loss. At last, experimental
verification of the performance of an industrial deep cone thickener demonstrates the proposed dual LSTM
method outperforms other state-of-the-art methods.
. Introduction

Resource mining is a critical industry for societal development and
rogress. Raw mining products have been widely applied to many do-
ains, such as aerospace and medicine. The hierarchical cone thickener

s a critical device for paste filling in the mining industry (Fang, He,
i, Liu, & Wang, 2022; Huan, Ting, Yuning, & Aixiang, 2019; Tan,
etiawan, Bao, & Bickert, 2015). The current mining and paste-filling
ndustry still faces some thorny challenges. For example, the underflow
oncentration of the cone thickener system (CTS) directly determines
he quality of the whole pasting process (Takács, Patry, & Nolasco,
991). The underflow concentration of CTS is a critical key-quality
ariable that is hard to measure because of the multi-couples, high
evice cost, and large time delay (Xiao et al., 2020). The accurate
nd stable underflow concentration can guarantee the stability of the
aste-fill process. An oscillating underflow concentration would cause
n imbalance and mud oscillation in the thickener. In this large-scale
evice, the prior task is to control the underflow concentration in
he CTS. However, the CTS is a large time-delay process in that the
nderflow concentration needs to be increased by the paste gravity
illing. The filling quality largely relies on the underflow concentration
f the CTS. The core requirement of the pump filling is that it should
eep the underflow concentration in a small dynamic range. If the
nderflow concentration is too high, it may cause filling accidents such
s blockage and crushing. If the underflow concentration is too low,
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it cannot meet the requirement of paste filling and results in safety
hazards. Therefore, taking into account the mechanical process of CTS
and then accurately predicting the underflow concentration are serving
as the basis for further control purposes, maintaining the quality of
paste mining filling, and avoiding safety hazards (Yuan, Hu, Wu, & Ban,
2020).

The traditional physical device can hardly achieve the online long
underflow concentration prediction because the current CTS is a multi-
coupled system. The different sampling frequency of pressure and
flow leverages the massive integrated sensors to detect and monitor
the production process. Furthermore, much historical information and
factors among the quality variables should be considered. Based on the
industrial case analysis, some solutions to these problems have been
proposed. To sum up, the existing methods can mainly be classified into
two categories: (1) the mathematical model-centric mechanism (also
called the ‘White Box’) and (2) the model-free data-centric methods
(’Black Box’). In the former case, however, the performance of white
box-based models is determined by the specific mathematical model
of the device, which means the accuracy will be greatly decreased if
the model is incorrect. Furthermore, there are a lot of devices that
do not have a mechanical mathematical model, so these models lose
their significance. As for the latter case, with the development of ma-
chine learning, many data-driven self-supervised and semi-supervised
methods have been proposed in the literature to improve the modeling
of industrial processes (Lei, Karimi, & Chen, 2022; Wang, Yin, Deng,
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Bo, & Shao, 2022). The main advantage of these methods is that they
can learn a nonlinear mapping projection between the input variables
and the target outputs. Compared to traditional physical sensor de-
vices (Barua & Sharma, 2022; Chen, Chen, et al., 2022; Chen, Zhang, &
Ye, 2022; Goh et al., 2022; Hu, Wang, Li, & Wang, 2022; Liang, Chai,
Sun, & Tan, 2022; Lin, Zhang, Li, & Lu, 2022; Shuaiyi, Wang, Zhang, &
Wang, 2022; Sun, Sun, Wang, Zhou, & Cai, 2022; Zhang et al., 2022),
it is the most economical way to measure key quality, which can save
costs and increase profits.

Over the last decades, deep learning technology has become a
hot topic in various research fields. For some time-series tasks, many
temporal models have emerged. For example, recurrent neural network
(RNN) (Qin et al., 2017), long short-time memory (LSTM) (Hochreiter
& Schmidhuber, 1997), gated recurrent unit (GRU) (Li, Tang, Xue,
Saeed, & Hu, 2019), Transformer (Jaderberg et al., 2015), feature
representation (Liu, Wang, Wang, & Yuan, 2021), etc. In Jiang and Yin
(2018)’s work, the time series factors have been considered for many
plant-wide applications (Zhu et al., 2023). For instance, some improved
attention mechanism has been applied to the models (Zhang, Xiong,
& Su, 2018). However, in the specific CTS system, some research has
been put into the deep cone thickener systems, and the time instant
key factor has been ignored. For example, Huan et al. (2019) proposed
an underflow concentration prediction method based on the XGBoost
model, which achieves satisfactory performance in the underflow con-
centration of CTS. Nevertheless, the results in Huan et al. (2019) are
based on a static prediction method and the historical and temporal
information has been lost during the network training stages. The
information contained in time-instant factors has been underestimated.
Recently, a dual-attention RNN method is used for the deep cone
thickener application, their prediction approach considers the temporal
pertain to the same quality factors and achieves comparative accuracy
and efficiency, while its performance relies on fine-tuning the hyper-
parameters and the generation ability has been greatly decreased. Yuan,
Hu, et al. (2020) introduces a spatiotemporal attention-based LSTM
for industrial soft sensor model, which achieves great development
in the processes industry. Chen, Li, Xiao, Chen, and Zhao (2022)
investigates an automatic identification system (AIS) data-driven LSTM
method based on the fusion of the forward sub-network and the reverse
sub-network (termed as FRA-LSTM) to predict the vessel trajectory,
however, their methods did not consider the noise processing and
time-spatial factors. Geng, Yang, Li, Lan, and Luo (2022) proposes a
novel attention-based recurrent neural network for nitrogen prediction,
where three kinds of attention mechanisms are used in the MPA-RNN
model. In Greff, Srivastava, Koutník, Steunebrink, and Schmidhuber
(2016), the specific investigation of the forward and backward gra-
dient of the LSTM unit is reported, it covers the implementation of
the training step with the backpropagation through time. Some other
variants of the recent LSTM-based model can be found in Barua and
Sharma (2022), Chen, Chen, et al. (2022), Liu, Wang, Wang, Xie, and
Yang (2021) and Yuan, Li, Shardt, Wang, and Yang (2020). Compared
to the traditional industry (Lei, Karimi, Cen, Chen, & Xie, 2021; Lei
et al., 2022), the data collected directly by the exogenous infrequent
sensor in CTS has large disturbances, errors, and occasional sudden
outliers. In the proposed framework, this problem can be alleviated
with appropriate filter processing.

Based on the aforementioned analysis, the time series prediction
of the underflow concentration of CTS has not been yet completely
studied. Developed from Yuan, Hu, et al. (2020), a novel underflow
concentration method based on deep LSTM and average smooth filter-
ing is proposed. The motivation is that the average smooth filtering
is used to prepossess the industrial CTS data, and then a dual bidi-
rectional LSTM (BiLSTM) with that integrated attention mechanism is
generated for the underflow concentration prediction. The main solid
bullet benefits of this paper are:

∙ Unlike the traditional RNN, LSTM, and bidirectional LSTM, a new
prediction model architecture (DualLSTM) is proposed. The proposed
2

Fig. 1. Test bench of deep cone thickener treatment plant process and the role of our
method. All the main process variables have been specified in Table 1. Sensor Type 1
represents the different process sensors, while Sensor Type 2 represents the different
speed sensor categories, respectively.

architecture uses the feedforward and reverse BiLSTM as the basic
units, which implement the new information learning. Average smooth-
ing filtering is considered in the plant-wide process and thus Gaussian
white noise cannot affect the performance of the proposed model. The
robustness and generalization ability has been verified. The prediction
accuracy has improved by a large margin compared to the existing
state-of-the-art methods.

∙ Distinct from the previous prediction method in Xie et al. (2020),
Yuan, Hu, et al. (2020), Yuan, Li, et al. (2020) and Yuan, Qi, Wang, and
Xia (2020), a novel back-propagation through time (BPTT) algorithm is
designed for the DualLSTM. The proposed solution for the new method
is another key contribution of this brief.

∙ To the best of our knowledge, we first employ the DualLSTM to
ackle the underflow concentration prediction in industrial CTS. The
roposed model can be a core part of further intelligent control, which
s the basis for further optimization control in an integrated platform.

To verify the feasibility and effectiveness of the proposed method,
realistic industrial application in Beijing, China, is covered by the

ore DualLSTM verification. The following is the structure of the paper.
ection 2 contains the foundational efforts, which include the problem
escription, LSTM unit basics, and average smooth filtering techniques.
ection 3 and Section 4 address the prediction methodology and ex-
erimental case studies, respectively. Finally, Section 5 concludes the
aper.

. Preliminary foundations

This section provides an introduction to the deep thickener system
nd the paste-filling process problem. It also gives the contents of
he LSTM unit and the average smooth filtering. Both aspects are the
oundation for the further development of the model framework.

.1. Problem statement

For subsurface paste filling, a deep cone thickener is essential. The
iagram of CTS is shown in Fig. 1. CTS is a key method for achieving
consistent concentration for underground mining fills. Pipe-blocking
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Table 1
Variable candidates specification.

Symbol Quality Description

1⃝ Mud pressure KPa
2⃝ Mud height level m
3⃝ Feed flow concentration 𝐶%
4⃝ Feed flow amount 𝑄
5⃝ The rake torque N M
6⃝ Tailings t
7⃝ The amount of flocculant g/t
8⃝ Flocculant flowrate m/s
9⃝ Overflow turbidity ppm
10⃝ The rotation speed of rake r/min
11⃝ Frontier 𝑡th underflow concentration 𝐶%
12⃝ Underflow flow amount 𝑄
13⃝ Underflow pressure KPa
14⃝ Overflow channel 𝐶%

mishaps might occur during the thickening process if the subterranean
concentration is too high. On the other hand, a low subterranean
concentration reduces the quality of the entire backfilled paste and, as a
result, the overall safety of the mining operation. Therefore, developing
a model to forecast subterranean concentrations in the CTS system
is critical. The whole mining paste filling operates on a continuous
and hierarchical concept. The CTS was fed with the crude unstable
low-concentration slurry flow (almost 20%–30%), which was combined
with a flocculant to speed up the sinking rate. A mud bed can collect
dissolved particles. The suitable concentration and volume feed flow
are created at the bottom of the CTS. The top clean water from the
overflow pipe has also been recycled for future use. The CTS’s primary
control need is to provide a consistent and precise underflow concen-
tration. The concentration of underflow is a key metric for assessing
the effectiveness and efficiency of the industrial underground pasting
process. It is necessary to identify changes in the different variables
due to the inner link for the production quality variable in the deep
cone thickening process. This time-series architecture may be used to
acquire some prior knowledge and historical information, which can
subsequently be utilized to anticipate the underflow concentration. The
specific statement of the problem is

Given:
(

𝐱1, 𝐱2,… , 𝐱𝑛,𝐘
)

redict: �̂� =
(

𝑦𝑇+1, 𝑦𝑇+2,… , 𝑦𝑇+𝑡
)T ∈ R𝑡. where

(

𝐱1, 𝐱2,… , 𝐱𝑛,𝐘
)

is the sequential and historical quality variables series. 𝑇 denotes as
the instant of the underflow concentration. Specifically, we need to
learn a nonlinear mapping representation with

(

�̂�𝑇+1, �̂�𝑇+2,… , �̂�𝑇+𝜏
)

=
(

𝑦1,… , 𝑦𝑇 , 𝑥1,… , 𝑥𝑛
)

.

.2. Model motivation formulation

The underflow concentration is challenging to estimate using ex-
sting methods, so we propose a new data-centric model to address
he problem. The underflow concentration is detected using some flow
witch put on the unit in the practical plant, which means the online
orecast is not possible. Our motivation stems from the fact that the
rocess variables are inextricably linked, allowing us to construct a time
equence model for the key-quality prediction. Furthermore, there is a
ignificant time delay in the processes that deal with the past data.

As shown in Greff et al. (2016), the LSTM unit is a time sequence
odel that preserves historical data while avoiding recurrent neu-

al network long-dependency. It memorizes the information from the
revious circumstance via the memory gate. Three gates protect and
ontrol the cell state in the basic LSTM unit, and some repeating
odules are added in an LSTM with four interacting layers. To avoid

radient vanishing, the LSTM has the capacity to establish temporal
emory through gate switching.
 a

3

Denote the input historical vector 𝑥(𝑡) and the precious hidden state
(𝑡−1), and the external inputs are inherited from the previous cell state
(𝑡−1). Then, the forget gate is triggered as:

(𝑡) = 𝜎(𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓 ) (1)

new formation from the input gate and new candidate vectors are
alculated as:
𝑖𝑡 = 𝜎

(

𝑊𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

,
�̃�𝑡 = tanh

(

𝑊(𝐶) ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝐶
)

.
(2)

he new state of an LSTM cell is updated by

𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡. (3)

he output gate vector can be given by

𝑜𝑡 = 𝜎
(

𝑊𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

,
ℎ𝑡 = 𝑜𝑡 ∗ tanh

(

𝐶𝑡
)

.
(4)

here 𝜎 is the nonlinear activation function, usually, the Sigmoid
unction, tanh represents the nonlinear tangent activation function,
nd ∗ represents the point-wise multiplication operation. Parameters
uch as 𝑊𝑐 , 𝑊𝑜, 𝑊𝑖 are the related weights and 𝑏𝑖, 𝑏𝑐 , 𝑏𝑜 are the
ias, respectively. The whole weight parameters can be learned with
ome gradient descent algorithms. So the LSTM can be organized as
he basic unit for the network design. However, the existing literature
bout the prediction with time sequences has been reproduced, their
esult shows a shortcoming of low prediction accuracy in long-time
rediction, which is hard to apply to the industrial CTS for key-quality
rediction. Due to the reason that the traditional LSTM can only effec-
ively predict the short time influence between these variables, some
istorical spatiotemporal sequences are commonly ignored. Besides,
n industrial CTS, there are a bunch of outliers, and bidirectional
STM can give a superior and robust representation of the feature
mbedding, and the simultaneous feedforward and reverse training
an jointly improve the whole accuracy, so we build the BiLSTM as
he basic unit. Consider in a far way, the original output of BiLSTM
annot balance the influence of the different weights for the underflow
oncentration prediction. The frontier encoder representation should be
urther assigned with different attention. Therefore, in the underflow
rediction model design, we employ the blocks of attention mecha-
isms. Compared to the traditional BiLSTM, in each sliding window,
e deploy a dual BiLSTM with an attention mechanism to achieve a

obust representation of the entire underflow period. The embedding
f the underflow concentration in CTS at each point in time is focused
n the proposed DualLSTM method. On the other hand, the underflow
oncentration is greatly influenced by the frontier time sequences,
hich also motivates us to build the dual BiLSTM attention method.

Another factor to consider is that our goal is to enhance long-term
orecast accuracy by a significant margin, and data is a vital com-
onent. Average moving filters are further included in the developed
odel to smooth and process the training and testing data in order to

mprove the overall quality of the acquired data and optimize the sug-
ested DualLSTM’s performance. As a result, we are able to maximize
he proposed DualLSTM performance to an extremely high level. The
resented average moving filtering overcomes the outlier’s drawbacks
nd proposes a long-term prediction of underflow concentration in
he CTS, which provides us with a strong motivation to develop the
ualLSTM method. The entire proposed model framework emerges
ased on the preceding principles and is likewise formulated in Fig. 4
see Figs. 2 and 3).

. Methodology

The core idea of this paper is to propose a prediction method
or the underflow concentration of the industrial CTS process. The
ormulation of the proposed method covers the variables selection, pre-
rocessing and averaging smooth filtering, and whole model training

nd prediction implementation.
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Fig. 2. The model flowchart illustration of DualLSTM for the underflow quality prediction. The original data collected from the industrial plant are transmitted to the preprocessing
unit, and then the training process is implemented by the proposed gradient descent algorithm, the testing process is marked in blue, while the training process is marked in red.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
i
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Fig. 3. The basic illustration of BiLSTM unit. The BiLSTM is a bi-directional feature
architecture that accepts the feedforward and reverses inputs, the higher feature
representations are extracted by the stacked unit.

3.1. Variable analysis

Consider the practical scenario, the number of various variables is
consecutively coupled with each other. To achieve an efficient vari-
able quality of the cone thickener variable, a coefficient analysis was
performed. The auxiliary variables in the production process should
be analyzed for further modeling training. Therefore, the choices of
auxiliary variables are the first step in generating the data-driven
prediction model. The necessary and vital factors we added to the
model are the mud height and pressure. From the basis of mechanical
analysis, there is a nonlinear link between these two variables.

The final selection of the dominant variables is the mud pres-
sure, the mud height, the last-instant feed flow, the top volume flow,
underflow density, and the front instant underflow concentration.

3.2. Prepossessing policy and average smooth filtering

Because of noisy and non-uniform data in the practical measure-
ment and sampling process with the different sensors, data samples
accuracy is limited by the physical device’s sampling frequency. Ef-
ficient and effective smooth filtering algorithms are utilized in the
proposed method. As in Greff et al. (2016), the same 𝑁 rounds in-
put signals are expectation sampled. In our practical evaluation, the
sequence of underflow concentration and feed flow series are tackled
with the average filtering algorithm to reduce the Gaussian white
noise and smooth the whole signal. The idea of the mean filtering
is developed from the convolution kernels, during the training of the
whole sequence model, the moving multiple-pass average filters are

utilized. The specific moving window is set by ourselves.

4

3.3. Designed BPTT for DualLSTM

The framework and flowchart of the whole proposed algorithms
are given as follows. Two stages of mechanisms are used for the
training. The first stage is coordinate training, which means all the
historical variable data are used to train the DualLSTM model for
acquiring the optimal parameters. The solution process is fine-tuned
with a background gradient algorithm. The backpropagation through
time (BPTT) (Yuan, Li, et al., 2020) training process is given. With
BPTT, the maximum number of instant steps is set along with errors
that can be propagated.

In the proposed framework, ℎ(𝑡−1) is the hidden state, 𝑥(𝑡) is the
nput variable vector, and 𝑇(𝑡) is the prediction time. Assume the
ey variables for training and underflow concentration sequences are
𝑥(1), 𝑥(2),… 𝑥(𝑁)

}

and
{

𝑇(1), 𝑇(2),… 𝑇(𝑁)
}

, where 𝑁 is the total number
f training data in the time sequence. Suppose that the intended behav-
or of the learning process is to observe the memory gate state at the
nd of the epoch [𝑡, 𝑡 + 𝑠]. The desired underflow concentration or the
utput loss is:

⟨𝑡⟩ (𝑦, �̂�) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑦(𝑡) − �̂�(𝑡)
)2 (5)

The next target is to train the whole network parameters. Consider
the dual Bi-LSTM has two embeddings with feedforward LSTM and the
reverse LSTM. Thus, developed from Greff et al. (2016), the DualLSTM
fine-tuning policy for the hyper-parameters is designed in the sequel.

Suppose the feedforward and reverse input weights:
→

𝐖𝑧,
→

𝐖𝑖,
→

𝐖𝑓 ,
→

𝑜,
←

𝐖𝑧,
←

𝐖𝑖,
←

𝐖𝑓 ,
←

𝐖0 ∈ R𝑁×𝑀 .

Recurrent feedforward and reverse weights:
→

𝐑𝑧,
→

𝐑𝑖,
→

𝐑𝑓 ,
→

𝐑𝑜,
←

𝐑𝑧,
←

𝐑𝑖,
←

𝐑𝑓 ,
←

𝐑𝑜 ∈ R𝑁×𝑁 .
Output feedforward and reverse weights:

→
𝐩𝑖,

→
𝐩𝑓 ,

→
𝐩𝑜,

→
𝐩𝑖,

←
𝐩𝑓 ,

←
𝐩𝑜 ∈

R𝑁 .
Bias weights:

→

𝐛𝑧,
→

𝐛𝑖,
→

𝐛𝑓 ,
→

𝐛𝑜,
←

𝐛𝑧,
←

𝐛𝑖,
←

𝐛𝑓 ,
←

𝐛𝑜 ∈ R𝑁 .
The piecewise epoch equations 𝐳 are expressed as:

𝐳𝑡𝑓 =
←

𝐖𝑧𝐱𝑓 𝑡 +
←

𝐑𝑧𝐲𝑓 𝑡−1 +
←

𝐛𝑧,
𝐳𝑓 𝑡 = 𝑔(𝐳𝑡𝑓 ).

(6)

The dual forward and reverse input gates 𝐢s are:

𝐢𝑓
𝑡
=

∼
𝐖𝑖𝐱𝑓 𝑡 +

∼
𝐑𝑖𝐲𝑓 𝑡−1 +

∼
𝐩𝑖 ⊙

∼
𝐜
𝑡−1

+
∼
𝐛𝑖,

𝐢𝑓 𝑡 = 𝜎(�̄�𝑡𝑓 )
(7)

𝐢𝑟
𝑡
=

←

𝐖𝑖𝐱𝑡𝑟 +
←

𝐑𝑖𝐲𝑡−1𝑟 +
←
𝐩𝑖 ⊙

←
𝐜
𝑡−1

+
←

𝐛𝑖,

𝐢𝑟𝑡 = 𝜎(
←

𝐢 𝑟).
(8)

The dual forward and reverse forgot gates 𝐟s are

𝐟𝑓
𝑡
=

∼
𝐖𝑓 𝐱𝑓 𝑡 +

∼
𝐑𝑓 𝐲𝑓 𝑡−1 +

∼
𝐩𝑓 ⊙

∼
𝐜
𝑡−1

+
∼
𝐛𝑓 ,

𝑡 𝑡 (9)

𝐟𝑓 = 𝜎(𝐟𝑓 )
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Fig. 4. Flowchart of the proposed underflow concentration prediction method for the deep cone thicker production. In this framework, a feedforward and reverse bi-directional
stacked long-short time memory is constructed for obtaining a complex temporal feature extraction, then, the attention mechanism is integrated for the robust feature aggregation,
and the output for the prediction is obtained from the high-level abstract features.
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Then the forward and reverse cell states can be represented, respec-
ively, by

𝐜𝑓 𝑡 = 𝐳𝑓 𝑡 ⊙ 𝐢𝑓 𝑡 + 𝐜𝑓 𝑡−1 ⊙ 𝐟𝑓 𝑡,
𝐜𝑟𝑡 = 𝐳𝑟𝑡 ⊙ 𝐢𝑟𝑡 + 𝐜𝑟𝑡−1 ⊙ 𝐟𝑟𝑡.

(11)

The forward and reverse outputs 𝐨s are

𝐨𝑓
𝑡 = �⃗�𝑜𝐱𝑓 𝑡 + �⃗�𝑜𝐲𝑓 𝑡−1 + �⃗�𝑜 ⊙ 𝐜𝑓 𝑡 + �⃗�𝑜,

𝐨𝑓 𝑡 = 𝜎(𝐨𝑓
𝑡)

(12)

𝐨𝑟
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𝐖𝑜𝐱𝑟𝑡 +
←
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(13)

ℎ𝑖𝑡 = ℎ(𝐜𝑓 𝑡)⊙ 𝐨𝑓 𝑡,
(

ℎ′
)

𝑖
𝑡 = ℎ(𝐜𝑟𝑡)⊙ 𝐨𝑟𝑡.

(14)

here 𝜎, 𝑔 and ℎ are the piecewise nonlinear activation projections,
espectively. Since the backward and forward processes are the same
n principle but in opposite series order, the equation of the backward
rocess could be derived similarly by replacing → with ←. Then we
inished the encoder representation of the underflow key quality fea-
ures, the attention mechanism inherited from the BiLSTM output can
e given as the following embedding feedforward process:

𝑜𝑓𝑡𝑖 = tanh
(

→
𝑊 ℎℎ𝑖 +

→
𝑏ℎ

)

+ tanh
(

←
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′
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) (15)
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hen, the final output of DualLSTM would be:

𝑗 =
𝑠
∑

𝑗=1
𝑊𝑗 ⋅ 𝑦𝑖 ⟨1,… , 𝐿⟩ =

𝑠
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𝑗=1

𝐿
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𝑊𝑗𝑊𝑦 ⋅

⟨

𝑦𝑖, 𝑦
′
𝑖
⟩

(18)

here 𝑊𝑗 and 𝑊𝑦 are the weight parameters that connect the dense
ayer and attention layer, respectively. Thus, the aim of the Eqs. (6)–
18) is to learn a mapping prediction function:

𝑝
(

𝑦𝑡+𝑠|𝑋1, 𝑋2,…𝑋𝐿, 𝑋𝐿+𝑘, 𝑋𝐿+𝑘+1,… , 𝑋2𝐿+𝑘−1
)

= 𝑝(𝑦𝑡+𝑠|⟨𝐂𝑖(𝑡),𝐐𝑖(𝑡),𝐅(𝑡),𝐂𝑜(𝑡),𝐐𝑜(𝑡)⟩)

= 𝑝
(

𝑦|𝑊 ⋅
𝐿
∑

𝑖=1

⟨

𝑦𝑖, 𝑦
′
𝑖
⟩)

(19)

The backpropagation algorithm with Adam optimizer is employed to
train the corresponding parameters in the DualLSTM model.

The training algorithm for DualLSTM can be summarized for the
real-time propagation to perform the following steps at each time 𝑡: (1)
Collect the sufficient samples with the input variables matrix [𝐶𝑖, 𝑄𝑖, 𝐹 ,
𝐶𝑜, 𝑄𝑜]; (2) Initialize the network parameters which include the time
sliding window 𝑇 , the prediction steps 𝑠, the input time sequence 𝐿,
the layers of forward and reverse BiLSTM, and the average filter step
matrix; (3) Preprocess the whole data with an average moving filter,
split all the data into a long sequence, and divide it into the training
dataset, validation dataset and the test dataset according to the ratio of
7:2:1, which is decided by the expert experience; (4) Training the whole
network according to the designed equations (6)−(18), all the gradients
of the partial derivative of the error can be computed and the weights
are tuned accordingly; (5) Build a training window with the duration 𝑇 ,
slide the data loaded for neural network training, and the loss function
is the root mean square error between the predicted value and the true
value; (6) After the training, the end-to-end underflow concentration
prediction model in industrial CTS is obtained, which can predict the

underflow concentration at the next 𝑇 moment according to the feed
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concentration, feed flow rate, underflow flow rate, thickener pressure,
and underflow concentration at the previous time of 𝑇 duration.

Among them, 𝑇 is an adjustable key hyperparameter, which has a
more significant impact on prediction accuracy. In addition, the depth
of the feedforward and reverse BiLSTM layer and the size of the hidden
layer of the BiLSTM are all key weights that need to be adjusted through
training experiments. The attention mechanism captures the attention
intensity of 𝑎 in the sequence at each time point. In the training
procedure, we employ the Adam optimizer to acquire the learnable
weight parameter with the learning rate 𝑙𝑟.

4. Case study

To evaluate the performance of the proposed method, two cases are
studied. The proposed DualLSTM is evaluated by the industrial applica-
tion of long-time underflow prediction for the CTS system. Some public
methods such as support vector regression (SVR), Artificial Neural
Networks (ANN), BiLSTM, and the temporal recurrent network such as
recurrent neural network (RNN), XGBOOST (Huan et al., 2019), LSTM
and gated recurrent unit (GRU) and DARNN (Yuan, Li, et al., 2020)
are also compared during the experiments. The evaluation indexes are
selected from the literature. The RMSE can be given as:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(⌢𝑦 𝑖𝑡 − 𝑦𝑖𝑡)

2 (20)

Also, another index for the evaluation is MAE, which is rewritten as
follows:

𝑀𝐴𝐸 = 1
𝑁𝑢

𝑁𝑢
∑

𝑖=1
|

⌢𝑦 𝑡 − 𝑦𝑡| (21)

Finally, the prediction uncertainty is quantified by the confidence
interval:

𝐶𝐼 = ⌢𝑦 ± 𝑎 𝑠
√

𝑁
(22)

where 𝑎 is the value from the standard normal distribution for the
selected confidence level, and 𝑠 is the standard deviation. All the
evaluations are conducted on the i7-PC Python 3.9 with the package
Keras (version 3.8.6) with Tensorflow (version 2.4.1) backend and
running on 4 NVIDIA GeForce RTX 2080 Ti GPU and 198 GB RAM. The
data is standardized by a standard scaler, which transforms the data
by removing its mean value and scaling to unit variance. The default
learning rate 𝑙𝑟 is set to 0.0001 with an increase of the batch size of 5 for
each epoch. To make a complete comparison, the network hyperparam-
eter for the RNN, LSTM, and BiLSTM are both settled in an input layer
(constructed by RNN, LSTM, or BiLSTM) with 128 hidden neurons,
which are connected by a fully-connected layer with 64 neurons and
finally, an output layer with 1 neuron. An ANN model is constructed
by 128 − 64 − 8 − 1 dense architecture. The input size for these models
s both normalized as a vector [𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑡𝑖𝑚𝑒_𝑠𝑒𝑞, 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒], and

the 𝑡𝑖𝑚𝑒_𝑠𝑒𝑞 is set as the same length with sliding window 𝑇 , which
is 20, 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 is set as 12. According to the standard normal
distribution coefficient, 𝑎 is chosen as 1.96 for obtaining the 95%
onfidence interval.

.1. Industrial CTS application case

In the practical application, the variable coefficient should be con-
idered. According to the worker’s experiences, 12 variables are col-
ected from the database which is sampled from the sensors and can
atisfy the same distribution. The main influencing factors of underflow
oncentration are feed amount, feed concentration, underflow flow
ate, mud layer height, rake speed, flocculant ton consumption, etc.
mong them, the feed concentration is restricted by the dressing plant’s
roduction conditions; the rake’s speed is generally determined by
he yield stress of the paste and depends on the characteristics of
6

Fig. 5. The proposed ANN model for industrial underflow prediction results. (a)
Training dataset; (b) Validation dataset; (c) Testing dataset. All the simulation results
are based on the 95% confidence interval.

the aggregate; the amount of additive flocculant is determined by
laboratory experiments. The presented framework is combined with
existing data to build an end-to-end machine learning model which uses
feed concentration, feed flow, previously detected underflow flow, and
thickener pressure as the original input. Since in the dense process, the
current concentration has a strong correlation with the control amount
and system state in the past period, therefore, a machine learning
model with time series is constructed. The model inputs are feed
concentration, feed flow rate, underflow flow rate, thickener pressure,
and underflow concentration for a period of time before this time. In
the DualLSTM model, to balance the network architecture, the weights
of 𝑊𝑗 , 𝑊 ′

𝑗 are set as 0.5.

4.2. Result analysis

During this period, through training experiments, the influence of
training batch size and sliding window length 𝑇 on prediction accuracy
was explored. The corresponding comparison results are shown in
Figs. 5–7. On the way, 3000 epochs were trained, the 3 layers of
BiLSTM layer that concatenates the hidden features to the encoder
representation, and the hidden layer size is 256. The sliding window
length and the batch size are set as 4 and 8, respectively.

The data collected directly by the actual industrial sensor is subject
to certain restrictions such as disturbances, random errors, or occa-
sional sudden outliers, which is the original motivation for developing
the proposed model. In the proposed DualLSTM framework, this prob-
lem can be alleviated with appropriate filter processing. Experimental
results show that using a moving average filter of length [20, 40, 20,
10, 20] can significantly improve the prediction accuracy and reduce
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Fig. 6. The proposed GRU model for industrial underflow prediction results. (a)
Training dataset; (b) Validation dataset; (c) Testing dataset.

the root mean square error (about-96%). Fig. 8 evaluates the measured
evaluation loss indexes comparison for different algorithms with GRU,
LSTM, ANN, Ours, and RMSE loss is also illustrated. The traditional
ANN has the largest loss during the training process. Figs. 9 and 10
further verify the prediction efficacy of the proposed framework. All
the experiments are conducted based on the 95% confidence interval.
In Fig. 9, compared to the LSTM and GRU, our proposed DualL-
STM acquires smoother prediction performance in the training dataset.
Fig. 9(e) outperforms Fig. 9(a)–(d) in the testing dataset performance,
which means our proposed DualLSTM achieves the highest accurate
prediction. Fig. 10 compares the DualLSTM’s whole performance in the
training, validation and testing datasets. It shows that the proposed
DualLSTM gives a more stable and robust prediction (The confidence
interval is smaller than BiLSTM), which means underflow concentration
prediction is more confidential.

As shown in Table 2, compared to the other competitive methods,
DualLSTM shows the best performance with the lowest RMSE and MAE,
0.2234 and 0.1735 respectively. The SVR with a multi-polynomial acti-
vation function achieves the second-best performance, compared with
the basic LSTM and GRU network. However, if we use other kernels,
like linear kernel or Gaussian kernel, the RMSE and MAE are very
high (0.9763 in RMSE, 0.7236 in MAE respectively). In our industrial
case, the performance of the LSTM is lower than the GRU network.
Compared with the attention additive, the performance improved by a
satisfactory amount which means that the attention mechanism learns
other complex representations with the different attention in the under-
flow concentration process variables. The multi-layer attention in those
modules also helped to improve the overall prediction performance.

On the other side, the addition of the average moving filter in the
industrial case study shows that the prediction accuracy has improved
by a large margin (approximately 90%). The different sliding time
7

Fig. 7. ARMA model for industrial underflow prediction, a noticeable time lag can be
seen in these results. (a) Validation dataset; (b) Testing dataset.

Table 2
Evaluation indexes for the different competitive prediction methods.

Methods RMSE MAE

RNN 0.6712 ± 0.0124 0.3488 ± 0.0082
GRU 0.4634 ± 0.0078 0.2499 ± 0.0345
LSTM 0.7533 ± 0.0030 0.5119 ± 0.0079
SVR Yuan, Qi, et al. (2020) 0.8133 ± 0.0002 0.6003 ± 0.0013
LGB Jing, Hu, Guo, Wang, and
Chen (2020)

0.8091 ± 0.0092 0.6083 ± 0.0118

VAEWGAN Hou, Sun, Shen, and
Qiu (2019)

0.7985 ± 0.0116 0.5847 ± 0.0164

GSTAE Prastyo, Nabila, Lee,
Suhermi, and Fam (2019)

0.7735 ± 0.0068 0.5296 ± 0.0097

SS-PdeepFM Ren, Wang, Laili,
and Zhang (2021)

0.7650 ± 0.0036 0.5206 ± 0.0073

MSWR-LRCN Chen, Zhang, and
Zhang (2022)

0.7571 ± 0.0033 0.5235 ± 0.0092

LSTM-DeepFM Ren et al. (2021) 0.7497 ± 0.0026 0.5091 ± 0.0071
MPA-RNN Geng et al. (2022) 0.7515 ± 0.0034 0.2074 ± 0.0072
DA-RNN Qin et al. (2017) 0.851 ± 0.0029 0.2322 ± 0.0052
Attention 0.9086 ± 0.0021 0.2445 ± 0.0031
DSTP-RNN Liu, Gong, Yang, and
Chen (2020)

0.8496 ± 0.0051 0.2254 ± 0.0042

Suggested DualLSTM 0.2234 ± 0.0021 0.1731 ± 0.0013

window was used in our experiment and the result shows that the
best parameters are [20, 40, 20, 10, 20]. In DualLSTM, the front of
the underflow concentration instant is considered to train the whole
model with the attention mechanism. The experiment results show
that we have leveraged the proposed prediction model in a state-of-
the-art fashion. The other prediction model is also compared in our
experiments, the LSTM’s performance outperforms the RNN’s based
model, and the specific RMSE and MAE are 0.7533, and 0.5119,
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Fig. 8. The measured evaluation loss indexes comparison for different algorithms with
(a) GRU (b) LSTM (c) BiLSTM (d) Ours and RMSE loss illustration.

respectively. Our DualLSTM outperforms the other prediction methods
because the hidden information from the hidden variables is fully
captured by the proposed average moving filter, encoder, attention, and
finally softmax transmission without loss. Besides, the front underflow
concentration and reverse input variables are mutually and jointly to
be used to train the whole and achieve superior performance and ro-
bustness. A remarkable performance has been achieved in this proposed
architecture.

5. Conclusion

This work provides a high-efficiency key-quality underflow predic-
tion model for the deep cone thickener system to address the challenges
of underflow prediction in industrial CTS plants. In the industrial case,
compared with other competitive algorithms, the proposed DualLSTM
proposed a new architecture with feedforward and inverse dual BiL-
STM, and the final MAE and RMSE are 0.2234 and 0.1731, respectively.
8

Fig. 9. The underflow prediction comparison with competitive algorithms. (a) ANN;
(b) LSTM (c) BiLSTM; (d) GRU; (e) Ours.

The proposed algorithms additionally take into account time-invariant
elements and improved the prediction performance by a large margin.
DCT’s underflow concentration prediction assesses the presented algo-
rithms’ industrial feasibility and effectiveness. The DualLSTM can be
extended to implement some other similar process industrial domains
such as nonferrous, process manufacturing, and chemical production.
For further research, we will continue to investigate this model and
apply it to optimal control, as well as establish a comprehensive in-
telligent integrated platform to promote the development of the smart
mining and paste-filling industry.
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