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A BACK-PROPAGATED EFFORT METRIC FOR MANEUVERING
SPACE OBJECTS CORRELATION

Riccardo Cipollone*, Pierluigi Di Lizia†

Correlation is one of the first steps of Space object catalog maintenance, aimed at
understanding whether a known target generated an acquired measurement. Sta-
tistical distance-based approaches are not always enough when dealing with con-
trolled objects, leading to alternative correlation metrics that exploit the effort of
linking the track to candidate orbits. This work describes a novel optical mea-
surement correlation tool, exploiting optimal control theory to back-propagate an
admissible region of observables to catalog epochs through a patchwork of Taylor
polynomial expansions. The resulting minimum expense distributions are com-
bined with a standard statistical distance to support the correlation of maneuvering
objects.

INTRODUCTION

The overcrowded status of the near-Earth environment represents a progressively more urgent is-
sue both Space agencies and companies are well-aware of. Due to diverse reasons, mostly linked to
a generally increased probability of intertwined collisions and fragmentations, the Resident Space
Objects (RSO) spanning across every operational orbital regime are very likely to affect and hamper
every phase composing both the design of a new mission and its deployment, from launch to end-
of-life. This increasing concern has led to the spread of dedicated hardware and software solutions
to monitor the evolution of the RSO population and to mitigate its effects on new and ongoing mis-
sions. The final aim of these activities is to achieve a continuous Space Domain Awareness (SDA)
being as comprehensive as possible of the current picture. In this specific framework, Space Surveil-
lance and Tracking (SST) is one way of monitoring Space objects, coordinating international sensor
networks to acquire measurements and processing them to retrieve orbital information. Some by-
products of this process are ESA’s Annual Space Environment Report1 , aimed at regularly assessing
the severity of the situation in terms of debris population trends and figures, and the publicly avail-
able RSO catalog in Space-Track website*, provided and maintained by the US Combined Force
Space Component Command (CFSCC). The pipeline behind catalog updates starts with one or more
new acquisitions, processed into measurements of different kinds, according to the sensor. A first
correlation process between the uncorrelated tracks (UCTs) takes place to cluster them if they are
identified as belonging to the same target. They are then scanned for correlation with cataloged
objects. In case of success, the target orbit is updated by means of a Refined Orbit Determination
process while a second scan on the active spacecraft subset of the catalog can be performed other-
wise to consider a maneuver hypothesis. If this step fails as well, the last resort is an Initial Orbit
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Determination (IOD) process, given that enough UCTs are available. In this way, a first orbit esti-
mate is obtained from the only observables and stored so that the unknown target can be observed
again.

When it comes to operational objects, maneuver detection and characterization play a key role in
the measurement processing chain. Even if the purpose of every method developed in this field is
clear, there are different levels according to which they can be categorized, the most high-level one
being the knowledge of the observed target: methods deeply differ depending on it being cataloged
(or even cooperative) or unknown. The former case covers detection aimed at characterizing a tar-
get’s pattern of life, leveraging past orbital data to provide history-based information to be integrated
into robust tracking and estimation algorithms. The latter instead implies a deep link to the initial
phases of an SST pipeline, involving both the UCT-to-UCT association and the UCT-to-orbit one.
The objective is to assist standard correlation techniques, usually relying on statistical distribution
distances as metrics to compute an index and rank the available candidates. The main line of re-
search on this second aspect identifies the effort associated with the maneuver to link the candidate
couple as a suitable figure to retrieve an alternative correlation index for operational targets. One of
the first works in this direction is the one by M.K. Holzinger et al.2 , where a first formulation of an
effort metric is proposed as the velocity expense associated with the solution of a minimum-energy
low-thrust Optimal Control Problem (OCP). The optimality hypothesis is a strong but reliable cri-
terion because of the high costs associated with fuel in a Space mission context making at the same
time the metric suitable for non-maneuvering targets too. Besides, choosing the minimum-energy
low-thrust version of the problem deliberately overestimates the minimum effort required to con-
nect the boundary conditions (BCs), resulting in a reasonable trade-off. The effort metric concept
has thereby evolved and different techniques have enriched its state of the art. An impulsive ver-
sion is reported by A. Pastor et al.3 , linking an orbit to an optical track by means of a single-burn
impulsive maneuver and two orbits using a double-burn impulsive one. Optimality is assumed in
this case too, leading to an optimization process of the velocity expense ∆V , linearly mapped to
perturbations of the final track (or state). A minimum-energy OCP is formulated by J.A. Siminski et
al.4 to link a known orbit to a new optical track, in the form of an attributable (concatenation of the
target angles and angular rates), by constraining an Admissible Region5 (AR) to a maximum ∆V
expense and embedding a data-driven probability density function of orbital parameters variations
in the process. An alternative approach in this direction is presented by Serra et al.6 , where optical
tracks are correlated by means of a Taylor polynomial expansion of a minimum-energy low-thrust
OCP around a reference trajectory (solution of the nominal OCP), exploiting a constrained AR to
limit the observable space in which to search for the minimum.

The work described in this paper stems from this last research path, tailoring the maneuver hy-
pothesis and detection step to the pipelines scanning cataloged objects for correlation. A novel
method is thus proposed to both define suitable candidates for optical UCTs correlation and detect
whether they have been subject to active control. By exploiting Taylor Differential Algebra (TDA)
and an Automatic Domain Splitting (ADS) technique, a set of minimum-energy OCP solution Tay-
lor polynomial expansions is defined to sample a constrained AR. The propagation flow runs back
in time propagating the entire AR to the candidate epochs. In this way, the number of integrations
needed to scan the catalog is converted to the one required to properly map the whole AR back to
every given epoch. The method is able to provide a first ranking of the candidate objects by retriev-
ing the minimum thrust energy expense and its coordinates in terms of range and range rate. BCs
uncertainty is embedded in the process thanks to TDA formulation itself, allowing for the definition
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of the expense distributions used to define a robust metric.

MATHEMATICAL TOOLS

This section covers the theoretical basis of the approach. Firstly, a brief introduction to the
minimum-energy OCP formulation for the case at hand is provided together with some insights on
the AR definition and the boundaries used to further constrain it. Therefore, a description of TDA
fundamentals and their relationship to the ADS process is provided.

Minimum-Energy Optimal Control Problem setup

Two main sources of information are involved in a UCT-to-orbit correlation framework, com-
posing the problem BCs. On the one hand, the catalog of RSOs is used as a pool to search for
suitable candidates, each one represented by its last orbital state and corresponding epoch. On the
other hand, the incoming measurement, according to the nature of the sensor, gives a partial or
complete description of an orbital state at observation epoch. The complete set required to uniquely
characterize the orbital state is composed of range (ρ) range-rate (ρ̇), angles (α, δ), and their time
derivatives (α̇, δ̇). The equations connecting them to the state, assuming Earth-Centered Inertial
(ECI) reference frame coordinates and Right Ascension and Declination as angles, are:

r = Rs + ρ s

v = Vs + ρ̇ s+ ρ ṡ

s = (cosα cos δ, sinα cos δ, sin δ)

(1)

where r is the target position in ECI, v its velocity, Rs and Vs the ground station position and
velocity and s the line-of-sight unit vector. In the case at hand, the focus is on optical measurements
in the shape of an attributable a = (α, δ, α̇, δ̇), resulting from a fitting process of a sequence of
observed angles, whose sampling and time span can deeply affect the quality of the measurement
itself. Given one available attributable, the observed state can be only partially defined, becoming a
function of the missing observables ρ, ρ̇.

To link these two BCs, the optimality assumption is inherited from the state of the art. Not only
is it deemed reliable because of the tendency to save fuel to perform any kind of operation, but also
due to the ultimate objective of correlation itself, that is to find associations through trajectories (and
corresponding expenses) that are usually close to ballistic motion. In this way, even non-operational
targets can be included in the analysis, their control action being the one derived from the only BCs
uncertainty. An energy-optimal OCP is thus chosen and its cost is expressed as a thrust energy:

J =

∫ tf

ti

1

2
u(τ)Tu(τ) dτ (2)

Where u(t) is the acceleration profile while ti and tf define the initial and final epoch respectively.

Despite the optimality assumption, this cost index represents a conservative option, due to the
fact that it is proven to constitute an upper bound on the equivalent fuel-optimal OCP solution
∆Vf =

∫ tf
ti

||u(τ)||2 dτ , by enforcing Chauchy-Schwartz inequality. In addition, the fuel-optimal
∆Vf bounds the impulsive OCP from above due to the infinite acceleration magnitudes involved in
the latter, making the minimum-energy low-thrust choice the most expensive of the three.
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The resulting OCP formulation is:

min
u(τ)

J =

∫ tf

ti

1

2
u(τ)Tu(τ) s.t.


ẋ = f(t,x(t),u(t))

x(ti) = xi

ti, tf given

(3)

Where xi stands for the state at initial time ti and ẋ(t) = f(t,x(t),u(t)) represents the problem’s
dynamics.

The OCP is solved by leveraging an indirect formulation, augmenting the state with an adjoint
one λ to obtain a Two-Point Boundary Value Problem (TPBVP). Assuming affine control, and
defining the Hamiltonian as H = l(t,x(t),u(t)) + λ(t)T f(t,u(t),x(t)) (where l = 1

2u
Tu), the

null Hamiltonian derivative with respect to the control provides the relation u(t) = −Bλ(t) (where
B is a constant coupling coefficient), while its partial derivatives with respect to the adjoint state
Hλ and state Hx define the TPBVP equations (dependencies are dropped for the sake of clarity):


ẋ = Hλ

λ̇ = −Hx

x(ti) = xi

λ(tf ) = λf

(4)

The initial value for λ(t) has to be retrieved to solve the problem, leading to the target continuous
control profile and the corresponding energy expense by integration in time.

Given the BCs of an optical track correlation (xi completely described, xf (ρ, ρ̇)), there are two
ways to exploit them to solve the TPBVP and find the optimal expense. The former enforces
transversality conditions, taking the only observables available into account to obtain an optimal
solution, while the latter is based on a nested optimization process, finding the minimum optimal
expense across a search space defined in the missing observables’ space. In this case, the second
method is employed to provide a complete description of the state at final time, by expressing it as
a function of ρ, ρ̇:

min
ρ,ρ̇

J(xi,xf (ρ, ρ̇),u
∗(t)) (5)

where u∗(t) is an optimal control profile, given a set of BCs.

This choice is mainly driven by the reduced number of optimization variables involved, granting
an easier interaction with the domain-splitting process and a direct link with the AR formulation.

Constrained Admissible Region

The original AR formulation by A. Milani5 has been further developed by DeMars7 with the
definition of strict constraints stemming from the orbital regime of interest. More specifically, semi-
major axis a and eccentricity e are expressed as a function of range and range rate:
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− µ

2(v
2

2 − µ
r )

− ā = 0∥∥∥∥v × h

µ
− r

r

∥∥∥∥− ē = 0

(6)

where µ is the Earth gravitational parameter, ā and ē identify the boundary semi-major axis and
eccentricity and h is the specific angular momentum. r and v represent the state position and
velocity (r and v being their norm) and they can be easily expressed as a function of ρ and ρ̇
by means of Eq. 1. These equations can be used as constraints by setting (in the case of Earth-
bound RSOs) a maximum and minimum value for the semi-major axis and a maximum value for
eccentricity. These constraints can be conveniently employed to restrain the search space in case
the target set of operational objects is known to cover a specific orbital region.

Taylor Differential Algebra

The basic concept behind TDA is the conversion of numerical problems into an approximate
analytical counterpart by means of progressive composition of Taylor Truncated Power Series (TPA)
as reported by A. Witting.8 Given a function f of v variables that is C(k+1) in the domain of interest
[−1, 1]v (scaled as required by the problem at hand), a TDA transform can be applied, converting it
to a polynomial expansion around a reference value x0, truncated to an arbitrary order N :

f(x) =
N∑
k=0

f (k)(x)

k!
(x− x0)

k (7)

This formulation allows for the definition of results that are typically iteration-driven to be re-
trieved as an equivalent function evaluation. The clearest examples are numerical integration schemes,
whose flow can be condensed in a single function evaluation thanks to the recurrent TPS composi-
tion at each of its steps. The basic unit of TDA resides in the definition of a variable [x] as comprised
of two parts: a constant one x̄, linked to the expansion center, and a perturbed term δx, related to
the expansion. Every operation performed on this kind of variable generates results featuring the
same structure, including a reference and the related expansion.

The library used to apply TDA to the current method is the C++ Differential Algebra Core En-
gine* (DACE), defining a DA variable type through the coefficients of the underlying expansion.
This type allows for easier computation of gradients, derivatives, and integrals of function TDA
approximations as well as root-finding and optimization techniques using a fixed-point polynomial
inversion algorithm9 as their core.

There are two main aspects to focus on to obtain a reliable approximation of a given function
with this tool. The former consists in assessing how well the TPS approximation follows the real
function non-linearities. This kind of analysis can be performed by monitoring the truncation error
associated with the TPS by enforcing Taylor’s theorem8 . Consequently, given a TPS of order N ,
the magnitude of the N+1 term provides hints about the need to increase or decrease the expansion
order of the polynomial map to better fit the real function. The latter aspect is instead the stability
of the map across the domain of interest. High orders of expansion can lead to instability at its
boundaries and polynomial inversion algorithms can diverge for the same reason. These two issues

*https://github.com/dacelib/dace
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are the main reasons why domain-splitting techniques are employed to cover large domains, given
a target truncation error and expansion order.

Automatic Domain Splitting

The ADS technique employed in this work leverages Taylor’s theorem to decrease the truncation
error of a polynomial map over an initial domain by splitting it iteratively. Its working principle
is based on the fact that bisecting the original domain causes the error’s upper bound on the new
domains to shrink by a factor of 2N+1, amplified by the expansion order N . The split, from a
practical point of view, consists of a remapping of the initial domain D in the two subdomains Dxi,1

Dxi,2 across the selected direction i with the following linear functions:

Dxi,1(x) =
1

2
x+

1

2

Dxi,2(x) =
1

2
x− 1

2

(8)

Doing this recursively results in a bisection method aimed at reaching a target accuracy, the main
drawback being the integrations required for the definition of new centers of expansion at each
iteration.

Even if the rationale for this technique is the same, the strategies to efficiently implement it are
diverse. The algorithm selected for this tool10 selects when the expansion needs to be split according
to the L-infinity norm of the N + 1 terms of the expansion. As for the split direction in the case of
a multivariate function, the choice is based on a refactoring of the polynomial, performed for every
xi variable of x ∈ Rv as follows:

P (x) =
N∑
k=0

xki ci,k(x1, x2, ..., xi−1, xi+1, ...xv) (9)

Where ci,k is the k-order term coefficient of the i-th variable. The N + 1 term L-infinity norm is
then computed for each refactoring and the variable corresponding to the highest one is selected as
the splitting direction.

METHOD

This section details the steps followed to build the pipeline, from dynamics back-propagation to
the TPS linking perturbations in thrust energy expense ∆E to the ones in ρ and ρ̇. Therefore, the
optimization and the uncertainty integration steps are described as well as the selected correlation
and maneuver detection test metrics.

Backwards dynamics

Traditional correlation pipelines often involve the computation of a statistical distance between
candidate known objects and one or more new measurements. This distance is usually computed
at observation time, projecting the propagated candidate state onto the measurement space. This
procedure implies a large number of propagations, given the typical size of an RSO catalog. Not
only does this affects the required computational power, forcing a trade-off between processing
time and dynamics model fidelity, but it also leads to the propagation of typically inaccurate TLE
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(Two-Line Element) state uncertainties. Both these aspects can deeply affect correlation statistical
significance. A way to address these shortcomings could be a single propagation of a measurement-
derived state distribution at the observation epoch back to every correlation candidate epoch. Nev-
ertheless, this state would derive from available observables (and their accuracy) and its complete
description would depend on the sensor type. In the case at hand, this concept is leveraged by the
definition of a bounded AR, sampled through TDA to map the corresponding orbital state manifold,
and back-propagated to retrieve it at target epochs. The dynamics is thus a time-reversed version of
the Keplerian Two-Body Problem with the adjoint state λ of Eq. 4, where every equation and time
dependency gets a negative sign as in ẋ = −f(−t,u,x).

TDA setup

The ultimate aim of the following steps is to retrieve a polynomial map of the optimal thrust
energy ∆E as a function of BC perturbations. A single candidate object case is considered as a
baseline to better explain the steps of the algorithm, but the tool is meant to generate a solution
thrust energy expense ∆En(δρ, δρ̇) for every n-th candidate object and epoch.

After the initialization of [ρ], [ρ̇] and [λf ] variables to expansion order 4, the polynomial map M
is obtained by composition of the measurement-to-state one H, embedding Eq. 1, and the back-
propagation flow P , as follows:

δxf = H(δρ, δρ̇)[
δxi

δλi

]
= P(δxf , δλf )[

δxi

δλi

]
= M(δρ, δρ̇, δλf ) with M = P ◦ H

(10)

The expansion center corresponds to the ballistic trajectory, given a first guess of ρ0, and ρ̇0 at
tf . This implies that any optimal δλ∗

f coincides with the actual optimal adjoint state λ∗
f , the same

holding for thrust energy perturbations and the actual expense ∆E.

A polynomial inversion strategy is then applied on M to obtain λf as function of ρ, ρ̇ and xi

perturbations11 :

δxi

δρ
δρ̇

 =

[
Mx(δλf , δρ, δρ̇)

I(δρ, δρ̇)

]
= S(δλf , δρ, δρ̇)

δλf

δρ
δρ̇

 = S−1(δxi, δρ, δρ̇)

(11)

where I is the 2-by-2 identity map of ρ and ρ̇ perturbations and Mx includes the elements of M
defining δxi. This last term is known to be the difference δx̄i between the candidate cataloged state
and the reference ballistic one at the same epoch. As a consequence, S−1 map is evaluated in δx̄i so
as to obtain the adjoint state at observation epoch λf as function of the only ρ and ρ̇ perturbations.
Plugging it in the state maps coming from the back-propagation flow P leads to the desired control
profile and the corresponding expense ∆E(δρ, δρ̇) as defined in Eq. 2.
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ADS and optimization

The objective of the optimization pipeline is to obtain the minimum optimal expense ∆E∗ across
the observables search space of interest for a candidate object.

ADS is used to split across ρ and ρ̇ by fixing a maximum truncation error to ensure a reliable
approximation of the thrust energy expense over the whole domain, at the expense of multiple
propagations. In this regard, an a priori filtering step is performed to prevent an excessive increase
in integration number. It consists in using the functions describing AR constraints throughout the
iterative process to keep splitting the only subdomains compliant with boundary values of the semi-
major axis (amin, amax) and eccentricity (emax):

a(ρ, ρ̇)− amax ≤ 0

a(ρ, ρ̇)− amin ≥ 0

e(ρ, ρ̇)− emax ≤ 0

(12)

This is done by estimating the range bounds of each function within the current subdomain and
enforcing Bolzano’s theorem.

A similar selection process is applied as a posterior filtering step to keep the only subdomains
containing stationary points, through gradient analysis: each of them complying with the required
truncation error is scanned for null derivatives with respect to range and range-rate, being kept or
discarded accordingly. This process does not directly relieve ADS computational burden, since
derivatives are approximate polynomials stemming from the expansion, but represents a fundamen-
tal step of the optimization process.

A polynomial inversion is therefore performed on the gradient maps G defined in the selected
subdomains so that the coordinates for each optimum can be retrieved as follows:

[
0
0

]
= G(δρ, δρ̇)[

δρ
δρ̇

]
= G−1(0, 0)

(13)

In case δρ and δρ̇ values are outside the subdomain in which the map is defined, the stationary
point is discarded. After a Hessian check to assess the stationary points type, the minima coordinates
ρ∗, ρ̇∗ and their magnitude ∆E∗ are assigned to the candidate.

Uncertainty integration

Uncertainty flows in the process from the OCP boundary conditions and propagates throughout
the whole pipeline, generating distributions of solutions. As for the catalog BC, in case a TLE
is available, a covariance is usually computed according to the object orbital parameters ranges12

while the acquired measurement uncertainty at observation epoch is derived from ground station
accuracy data, usually expressed in terms of observables’ standard deviation.

In order to propagate them to the ∆E∗ solution and its ρ∗, ρ̇∗ coordinates, TDA is exploited
once again. Following the State Transition Tensor (STT) Theory13 , the TPS coefficients used to
approximate the non-linear transformations involved in the procedure can be used to obtain an N -th
order expansion of the available covariances as the Jacobian projection does in the first order case.
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To model uncertainty, these new polynomial maps have to be expanded around the nominal solu-
tions retrieved in the previous section and the input state has to include the attributable perturbations
δa so that its uncertainty can affect the output distribution as well. The procedure follows the same
steps as the nominal case up to Eq. 13 with a selected expansion order of 3. The available mean and
covariance are in this way propagated through the coefficients of the following TPSs:

[
δρ
δρ̇

]
= G∗−1

(0, 0, δxi, δa)

∆E = E∗(δρ, δρ̇, δxi, δa)

(14)

Where G∗−1
links them to the minima coordinates while E∗ to the corresponding expense.

Once the solution distribution is computed, the complete measurement vector zf = (ρ, ρ̇, α, δ, α̇, δ̇)
mean and covariance are back-propagated with a ballistic dynamics to the cataloged object epoch.
A new TLE-derived covariance is assigned to the resulting state and the thrust energy distribution
associated with the trajectory N (∆Eb, C∆E,b) is retrieved to be used as an approximate background
expense related to the only BCs uncertainty.

Maneuver Detection

The obtained solution distribution can be used as a correlation metric on its own, identifying the
RSO corresponding to the cheapest trajectory as the most likely correlation candidate. Nevertheless,
a test to assess maneuver probability can be used to give contextual information on correlation. Two
maneuver detection metrics are considered, so as to take two aspects of the maneuvering event
into account: the underlying expense and the maneuver effect on the trajectory. As regards the
former, the distributions involved in its formulation are converted from thrust energy to an equivalent
approximate velocity expense, retrieved from Cauchy-Schwarz inequality:

∆V =
√
2(tf − ti)∆E (15)

With this new index, not only is the effort weighed on the time distance between BCs, but the
orders of magnitude involved are far more suitable to the detection process. The quantities involved
are thus ∆Vnom being the solution for the nominal BCs case, the solution distribution N (∆V,C∆V )
and the background ballistic one N0(∆Vb, C∆V,b).

The first metric is computed by evaluating ∆Vnom in N0 Cumulative Distribution Function (CDF)
to retrieve the probability that the nominal expense is higher than the uncertainty-derived one.
PMD = P(∆V ≤ ∆Vnom) thus represents the confidence with which the nominal solution can-
not be explained by the problem uncertainty. The N0 mean value ∆Vb represents the limitations
imposed by BCs uncertainty and, as a consequence, the minimum detectable expense. The actual
maneuver detection index is defined by amplifying every probability that is higher than 50% while
putting to zero every value below this threshold to limit false positive cases:

P50 = max(0, 2(PMD − 0.5)) (16)

This first metric is expected to be monitored together with an additional one based on the Squared
Mahalanobis Distance (SMD) between the cataloged state at hand and the ballistic back-propagated
one xb:
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SMD(x) = (x− xb)
T (Px +Px,b)

−1(x− xb) (17)

SMD(x) can be directly compared with a n-variable χ2
n,c distribution quantifying its distance

through a predefined confidence level c (related to a σ factor distance from its mean), leading to the
definition of the correlation index PSMD = SMD(x)/χ2

n,c. The rationale for this metric lies in
the fact that, following the optimal policy assumption, if the target BCs are connected by ballistic
motion, the method is able to obtain a fairly accurate estimate of both post-maneuver state (from
the minimum coordinates ρ, ρ̇) and ∆E expense associated with the trajectory. Alternatively, in
case the obtained solution diverges to a certain extent from the ballistic one (according to the in-
volved uncertainties), it means that a control of some kind can be used to explain that difference.
Consequently, PSMD tries to quantifies this deviation, allowing for a better understanding of how
much they can be mistaken. The main difference with respect to a standard correlation index resides
in the space and epoch at which the distance is set up and in the uncertainties involved, avoiding
TLE-derived uncertainty propagation and consequent over-inflation by relying more on sensor ac-
curacy specifications. This provides an amplified SMD value for the same mean deviation due to
the smaller inverted covariances involved, resulting in a stricter test.

RESULTS

In this section, several scenarios are used to test the algorithm’s capability to perform correlation
and maneuver hypothesis testing for the candidate object. They consist of an optical track (in the
form of an attributable) sampled from a GEO object at different time spans from its last available
orbital states. The target performs a different impulsive maneuver immediately after the cataloged
epoch for each case. Their magnitude comprises values between 0 to 10m/s, ranging from ballistic
trajectory to high-thrust maneuvers. The focus lies on the method’s effort distribution processing,
but some considerations regarding its orbit determination capabilities are reported as well, to under-
stand how this approach could suit that kind of task. The propagation is based on plain Keplerian
dynamics, augmented with the OCP adjoint state. This simplification is deemed reasonable mostly
because the method working principle does not rely on the kind of dynamics used: according to the
fidelity requirements, a fully perturbed trajectory could be used as an expansion center of a purely
Keplerian OCP expansion, or the expansion itself could embed a more accurate dynamics model.
Moreover, due to the specific objective of the technique, the analyzed orbital regime, and the time
span of interest, Keplerian motion is assumed to be a reliable first guess to identify correlation can-
didates. In any case, every unmodeled contribution used to generate the BCs would results in a
parasitic term adding up to the expense.

As previously mentioned, while uncertainties associated with the candidate orbital state are com-
puted for each scenario, assuming TLEs are used as orbital data, the measurement ones are fixed
according to sensor accuracy. For the simulated scenarios, the selected sensor angles covariance
comes from the French TAROT Calern ground station while the angular rates one is obtained by
projecting the former across the time derivative computation step. The resulting orders of mag-
nitude of the employed attributable standard deviation are σa = [1e − 06 rad, 1e − 06 rad, 1e −
10 rad/s, 1e− 07 rad/s].

Ballistic trajectory case

The first scenario aims at assessing the method’s performance when it comes to the correlation
of an object following its ballistic trajectory without any maneuver being performed in the time
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Figure 1: Plot (a) shows a comparison between ρ, ρ̇ Monte Carlo distribution (both displayed
in blue) and the computed mean value and covariance (in red). In (b) a similar comparison
between thrust energy expense CDFs is displayed.

window of interest. The optical track acquisition is simulated at a fixed epoch, while the candidate
state is sampled at a progressively prior epoch, with a time window spanning from 0.25 to 2 days.
The GEO target orbit is defined by the following orbital parameters:

ekep = [42166 km, 4.18e− 04, 0.14 deg, 68 deg, 235.5 deg] (18)

With true anomaly θ changing according to the selected candidate state. The corresponding
state standard deviation changes as well according to the state but, to give a figure of its order of
magnitude σxi = [100m, 100m, 100m, 0.1m/s, 0.1m/s, 0.1m/s].

The first of the performed tests consists in validating the normal assumption on both ρ, ρ̇ and ∆E
expense distributions and the choice of the order 3 expansion used in the uncertainty propagation
section. Since the correlated object trajectories are in general expected to be close to a ballistic
trajectory, the current scenario with BCs span ∆t = 2 days is considered to be a reasonable first
test for Gaussianity. To set up the comparison, a Monte Carlo simulation of 200 BCs is used
to generate the reference distributions. They are thus standardized and a Kolmogorov-Smirnov
hypothesis test is performed to assess if the samples can be identified as a normal distribution with
a given level of significance (chosen as 5%). Both distributions pass the test as expected, due to
the slow GEO dynamics and restrained non-linearity involved in the target integration time span.
The following step consists in comparing the reference distributions with the ones given as output
by the uncertainty propagation step of the algorithm. Comparing the resulting ρ, ρ̇ distribution to
the corresponding Monte Carlo, the SMD between them (0.0415) is well below the 1-σ distance
(2.2173 for 2 degrees of freedom and ∼ 68% confidence). The same happens for the SMD between
∆E distributions (0.0012 SMD value vs. 0.9372 value for 1 degree of freedom at 1-σ distance)
so the two distributions are very close to being mistaken for the same one, as graphically shown in
Figure 1.

As for the actual correlation and maneuver detection method validation, the procedure is orga-
nized as follows. The OCP is solved for every ∆t (from 0.25 to 2 days) and the minimum expense
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Figure 2: Plot (a) shows the error values for ρ for every analyzed time span, while the one for
ρ̇ is displayed in plot (b). As expected by the ballistic case error magnitude is comparable with
the 3-σ threshold of the solution coordinates distribution, represented by the diamond-shaped
markers for every ∆t.

∆E∗ and ρ∗, ρ̇∗ coordinates are obtained for every set of BCs. The corresponding distributions are
therefore derived by recomputing the TPSs around the solutions to retrieve uncertainty.

Figure 2 shows the solution coordinates error with respect to the actual ρ, ρ̇ values changing
with the considered time span. As expected, since the optimal trajectory tends toward ballistic
motion, the maneuver optimality hypothesis helps the correlation process in this case, leading in
turn to a more reliable post-maneuver state estimate. Figure 3 shows how the thrust energy expense
distributions seem to coincide no matter the time span, meaning a minimum value plateau due
to the only BC uncertainty has been reached even for the shortest ∆t considered. Moreover, this
distribution systematically overestimates the actual expense associated with the impulsive maneuver
(null in this instance) even in the nominal case, due to the minimum-energy formulation of the OCP
and the low-thrust finite accelerations involved.

In this ballistic scenario, P50 is null for every time span due to the 50% threshold set to filter out
false positives, so its values are not reported directly. Nonetheless, probability PMD = P(∆V ≤
∆Vnom) together with correlation index PSMD are displayed in Figure 4. A clear trend, similar to
the one in ρ, ρ̇ errors, can be noticed, reflecting the fact that uncertainty only is not enough to trigger
P50 metric and, at the same time, the target would be correlated by PSMD in any case.

Maneuvering case

The maneuvering cases consist of the simulation of different impulsive maneuvers, performed at
the above-mentioned ∆t distances (0.25 to 2 days) from the observation epoch. Maneuver intensity
spans from −10 m/s to 10 m/s along Radial, Transverse, and Normal (RTN) components respec-
tively, to carry out a sensitivity analysis to both maneuver magnitude, direction, and firing epoch.
The solving process is identical to the one followed for the ballistic scenario.

The analysis of ρ and ρ̇ errors is reported in Figure 5 for a series of radial, normal, and transverse
maneuvers. In this maneuvering case, a further dimension is added to the plots, ranging across the
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Figure 3: The plot displays the thrust energy normal distributions associated with every ∆t.
They seem to coincide almost completely since the only factor driving their shape is the uncer-
tainty level of the problem BCs.
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Figure 4: In plot (a) the values for PMD are reported for every analyzed time span, with the
minimum threshold for detection set to 50% (red horizontal line). Plot (b) shows the corre-
sponding SMD-derived correlation index, the lower the more likely the object is correlated.
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Figure 5: The upper row shows ρ error values corresponding to every analyzed time span
and maneuver magnitude for radial (a), transverse (b) and normal (c) maneuver direction. ρ̇
errors are reported in the lower row instead. As expected, error magnitude decreases with
decreasing ∆V magnitude (except for the normal case, showing generally lower errors).

magnitude of the ∆Vimp component involved in the simulation. The xy plane of each graph spans
the grid of all possible combinations of this last value with ∆ts. For radial maneuvers, since a
larger time window between BCs allows for lower expenses, the trajectory becomes progressively
close to the ballistic one with increasing ∆t. The same happens with decreasing ∆Vimp magnitude,
meaning that the OCP hypothesis becomes progressively closer to reality while diverging from
the actual impulsive maneuver trajectory otherwise. For the transverse maneuver case, the same
effect can be noticed in terms of ∆Vimp magnitude, but the trend is different in terms of ∆t since
changing the application point of a transverse impulsive maneuver can cause post-maneuver orbit
changes of different intensity (this is the reason behind the sparse low error values across ∆t in the
radial maneuvers case as well). As a consequence, optimality weighs differently on the connection
between the two orbits, causing the post-maneuver state to diverge from the impulsive solution. As
for the normal one instead, the ∆Vimp magnitudes involved are low enough to allow the optimal
trajectory not to get far from the ballistic one, leading to errors that are comparable to the ρ and ρ̇
standard deviation order of magnitude.

In Figure 6 the thrust energy expense distributions for 24 of the simulated cases (3.33 m/s ma-
neuver magnitude in the radial, transverse, and normal directions respectively, with different firing
epochs) are reported, showing how the ∆E distribution shifts with different time spans, indepen-
dently from the firing application point. As a higher ∆t between BCs is available to perform an
optimal maneuver, the thrust energy resulting from the OCP becomes progressively lower, flatten-
ing out on the uncertainty-only expense. The red vertical line in the plots represents the actual thrust
energy solution retrieved from the impulsive ∆Vimp used to generate the maneuvers, always within
the distribution despite being overestimated by the corresponding ∆Vnom, as in the ballistic case.
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Figure 6: The plot displays the thrust energy normal distributions associated with every ∆t
covering a radial (a), transverse (b), and normal (c) 3.33m/s magnitude maneuver. As ∆t be-
tween BCs increases, a shift towards lower magnitudes is noticeable as progressively cheaper
maneuvers are found as optimal solutions. The vertical red line represents the impulsive ma-
neuver thrust energy, acting as a lower bound.

0

"t [days]

10

-10
-5

"V [m/s]

0
5 210

50

P
5
0

[%
]

100

0

"t [days]

10

-10

"V [m/s]

0
210

50

P
50

[%
]

100

0

"t [days]

10

-10
-5

"V [m/s]

0
5 210

50

P
5
0

[%
]

100

0

"t [days]

10

-10
-5

"V [m/s]

0
5 210

P
S
M

D
[-
]

500

(a)

0

"t [days]

10

-10

"V [m/s]

0
210

P
S
M

D
[-
]

5000

(b)

0

"t [days]

10

-10
-5

"V [m/s]

0
5 210

50

P
S
M

D
[-
] 100

(c)

Figure 7: In the upper row, P50 metric values are reported, covering every analyzed time span
and maneuver magnitude for radial (a), transverse (b) and normal (c) maneuver direction. In
the lower one the same results for correlation index PSMD are displayed. The symmetry with
respect to ∆V magnitude values highlights how complementary the two metrics are.
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Concerning the metrics, they are displayed in Figure 7. P50 metric achieves detection by over-
coming the fixed 50% threshold on PMD, namely when enough ∆Vimp is spent to perform the ma-
neuver and the ∆t available to the OCP forces it to increase the solution above the uncertainty-only
expense level. On the other hand, while PSMD mostly depends on ∆Vimp magnitude as well, some
additional patterns can be noticed across ∆t values. They are caused by changes in the impulsive
maneuver application point, increasing or decreasing the deviation between pre- and post-maneuver
orbits, and time span between BCs, generally mitigating the metric sensitivity to the firing epoch.

As a general remark, the two metrics can be seen as complementary, especially in an operational
framework: an active spacecraft performing low-thrust maintenance maneuvers does not hinder
standard correlation techniques such as PSMD metric, since the energy-optimal trajectory is close to
ballistic one enough to fall within its state distribution at the cataloged epoch. Only if a high enough
thrust maneuver or several consecutive ones are performed without any acquisition in between, the
distance between the distributions builds up so much that statistical distance-based correlation fails
and OCP assumption starts to affect the result. In this case P50 metric comes into play to quantify
the maneuver probability associated with every candidate, providing a reasonable first ranking of
the most likely correlation candidates, while PSMD provides a reliability check on P50, allowing to
understand how far from ballistic every optimal trajectory is: the higher its value the more significant
P50 will be.

CONCLUSION

In this work, a novel method to integrate an optimal effort metric definition with a stricter SMD
metric has been described as a robust way to perform correlation in an RSO catalog maintenance
framework. A patchwork of Taylor polynomial expansions, ensuring a maximum truncation error,
has been generated by means of an ADS technique to propagate a constrained AR back in time
across the OCP integration flow. Uncertainty has been taken into account by propagating BCs
distributions throughout the whole process to the target spaces. Two metrics have been formulated as
an attempt for robust correlation supporting both frequent orbit maintenance low-thrust maneuvers
and sparse high-thrust ones. Results state that these metrics are able to give a complete picture for
every correlation candidate if used side by side. Current developments are aiming at integrating
known objects orbital and maneuvering history as a further source of information, covering the lack
of interaction between data-driven techniques and the maneuver optimality hypothesis, giving a first
reasonable criterion to pick candidates.
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