
1

Hierarchical Control in Islanded DC Microgrids
with Flexible Structures

Pulkit Nahata∗, Alessio La Bella∗, Riccardo Scattolini, Giancarlo Ferrari-Trecate

Abstract—A comprehensive hierarchical control architecture
for islanded DC microgrids (DCmG) is proposed, achieving a
well scheduled and balanced utilization of various resources.
Unlike previous contributions, we discuss a top-to-bottom control
scheme guaranteeing voltage stability and allowing for generic
topologies. Our supervisory control layer comprises a secondary
and a tertiary layer and it rests on top of a primary voltage layer.
The tertiary layer is governed by an Energy Management System
(EMS), which generates optimal power references and decision
variables for generation units by solving an MPC problem at
every sampling instant. In particular, the generated decision
variables take decisions on turning ON/OFF dispatchable gen-
erators, and operation modes of PV generators and batteries.
The secondary layer receives power references from the EMS
and translates them into appropriate voltage references for the
primary layer by solving an optimization problem. We show that
a simplified version of the secondary optimization problem is
guaranteed to be always feasible. Moreover, since the voltages
can only be enforced at the generator nodes, we provide a
novel condition to guarantee the uniqueness of the solution for
load voltages and power injection of the generation units. This
uniqueness condition can be verified at each load node by utilizing
local load parameters, and does not require any information
about microgrid topology. Notwithstanding that EMS commands
can alter the topology of the DCmG, switching on or off some
generation nodes, the overall voltage stability is maintained
by decentralized primary controllers. The functioning of the
proposed architecture is validated via simulations on a modified
16-bus DC system [1].

I. INTRODUCTION

Microgrids (mGs) are small-scale electric networks con-
sisting of Distributed Generation Units (DGUs) interfaced
with power-electronic converters and of different loads. Apart
from their manifold advantages like integration of renewable
energy sources, enhanced power quality, reduced transmission
losses and capability to operate in grid-connected and islanded
modes, mGs are compatible with both AC and DC operating
standards [2]–[4]. In particular, DC microgrids (DCmGs),
have gained traction in recent times. Their rising popularity
can be attributed to the development of efficient converters,
natural interfaces with renewable energy sources (for instance
PV modules), batteries, and many electronic loads (various
appliances, LEDs, electric vehicles, computers etc), inherently
DC in nature [5], [6].
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A stable and economic operation of an islanded DC mi-
crogrid (DCmG) is a multi-objective problem and necessitates
to properly regulate the internal voltages and to efficiently
coordinate DGU operations while taking into consideration the
non-deterministic absorption/production of loads and renew-
able energy sources. To this aim, a hierarchical architecture
spanning different control stages, time scales, and physical
layers is often employed [5]–[8].

Generally, a primary control layer, acting at the component
level, is responsible for voltage stability, which is crucial in
islanded DCmGs interfaced with nonlinear loads [9]. Many
research studies have aimed at designing decentralized stabiliz-
ing primary controllers, implemented at each DGU with a view
to tracking suitable voltage references. For this purpose, dif-
ferent techniques such as droop control [3], [5], plug-and-play
[9], [10] and sliding-mode control [11] have been explored.
Primary controllers nonetheless are blind voltage emulators
and are incapable of incorporating various operational and
economic constraints necessary for ensuring the continuous
and proper functioning of the islanded DCmG. High-level
supervisory control architectures are, therefore, necessary to
coordinate the voltage references provided to the primary lay-
ers. Consensus-based controllers assigning appropriate voltage
references to guarantee proportional load sharing and voltage
balancing are discussed in [12], [13]. Despite their distributed
structure, these controllers assume load satisfiability and un-
saturated inputs at all times. Supervising control strategies
considering saturated inputs for primary voltage controllers
are proposed in [14], however neglecting DGUs capability
limits and dynamics. These limitations can be overcome by
designing an energy management system (EMS), which can
meet specified power and energy management strategies while
respecting generation constraints and other economic objec-
tives like optimal power dispatch, load sharing, and battery
management. Flowchart-based EMS encompassing multiple
case scenarios are discussed in [15], [16] whereas the use of
optimization methods and predictive algorithms to design an
EMS is investigated in [8], [17].

In general, EMS, notably when based on complex optimiza-
tion algorithms such as stochastic or mixed-integer techniques,
utilize power balance equations to provide optimal power set-
points to the DGU units [18]–[21]. When the primary layer is
voltage controlled, these EMS cannot be directly implemented
in DCmG as the optimal power references must somehow be
translated into suitable voltage set-points. Such a translation
is not straightforward for mGs with meshed topologies and,
effectively, requires the solution of power-flow equations.
Moreover, considering that the voltages can solely be enforced
by the DGUs, a unique voltage equilibrium may fail to exist at
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the load buses in the presence of nonlinear loads (for example
constant power loads) [22].

A. Main Contributions

The mentioned issues motivated the design of a compre-
hensive three-layered hierarchical control architecture for the
overall operation and control of an islanded DCmG with
arbitrary topologies. A schematic of the proposed architecture
is depicted in Figure 2, and it is structured as follows.
• Tertiary layer: An EMS sits at the upper level, designed

with a Model Predictive Control (MPC) strategy to de-
fine the optimal power references for DGU units, and
their operating modes, based on system constraints and
objectives.

• Secondary layer: A novel secondary control scheme,
acting as an interface between the primary and the tertiary
layer, converts the power signals provided by the tertiary
level into voltage references for them to be tracked by
the primary voltage regulators.

• Primary layer: The low-level layer is constituted by the
decentralized voltage controllers, assumed to be present
at all DGUs.

Different from [15], [16], [21], we study an islanded
DCmG with a generic topology in the presence ZIP (constant
impedance, constant current, and constant power) loads. In
particular, we consider DGUs interfaced with nonrenewable
dispatchable resources, batteries, and PV modules. In order to
leverage the advances in grid-stabilizing decentralized primary
voltage control, we assume that all DGUs are equipped with
primary voltage regulators. We note that the control scheme
can also incorporate scenarios where some DGUs are current-
controlled [23], without compromising its validity. The struc-
ture and design of primary voltage controllers along with
stability certificates and proofs are skipped in this work. A
detailed analysis can be found in [9], [24], which show control
design based on the Plug-n-Play paradigm, allowing DGUs
to effortlessly enter/leave the DCmG without spoiling overall
voltage stability.

The EMS generates optimal power references and the op-
erating modes of DGUs by solving an MPC mixed-integer
problem at every sampling instant while taking into account
forecasts and system parameters. The considered integer vari-
ables serve to turn ON/OFF dispatchable DGUs, switch the
PV DGUs between Maximum Power Point Tracking (MPPT)
and power curtailment modes, and control the operation mode
of batteries by either charging or discharging them. In spite of
a change in topology that may take place due to EMS com-
mands, the collective voltage stability of the DCmG network
is ensured by decentralized Plug-n-Play primary controllers.

The secondary layer utilizes the optimal power references
transmitted by the EMS and translates them into appropriate
voltage references for the primary controllers. This power-
voltage conversion at the secondary layer is facilitated by
an optimization problem, which is based on the power-flow
equations and takes into account the converter and network
losses. We prove that this optimization problem, although
nonlinear and non-convex, is always feasible if nodal voltages

and power injections are not bounded. The existence of a
solution to the power-flow equations, necessary for the feasi-
bility of the optimization problem, has been addressed in [25],
[26] with fixed DGUs voltages. Nevertheless, the provided
conditions for existence can not be used directly as the DGU
voltage references are here free optimization variables and
not known a priori. Furthermore, as a complement, we also
state a necessary condition for the solvability of the stated
optimization problem.

We highlight that the voltages can only be enforced at
the DGUs nodes and therefore, the uniqueness of voltages
appearing at the load nodes is necessary for attaining the
predefined operational objectives. Indeed, if the load voltages
are different from the ones anticipated by the secondary layer,
permissible voltage limits may be violated and DGUs may
fail to track the optimal power set-points provided by the
EMS. In this respect, we provide a novel condition for the
uniqueness of load voltages and DGU power injections. The
uniqueness of voltages has also been addressed in [25], where
the deduced condition depends on the generator voltages and
the topological parameters of the overall network. Here, we
provide a novel and simpler condition that depends only on
local load parameters and can be easily taken into account
while designing the DCmG network. Finally, the robustness
of the proposed control scheme in the presence of inaccurate
generation and load forecasts is tested on a modified 16-bus
feeder [1].

Preliminary results concerning this work have been reported
in [27] where (i) design of an EMS was deferred to future
work, (ii) interface between secondary and tertiary layers was
not discussed, (ii) no distinction was made on the type of DGU
and their dynamics was not modelled, and (iv) detailed proofs
of main theorems and propositions were skipped. Furthermore,
this article demonstrates a coordinated operation of multiple
control layers on a 16-node DCmG.

The structure of DCmG along with proposed hierarchical
control scheme is described in Section II. The EMS-based
tertiary layer and its interaction with the secondary control
layer is detailed in Section III. The in-depth functioning
of secondary layer and related derivations are presented in
Section IV. Simulations validating theoretical results are pro-
vided in Section V, testing the proposed control architecture
on a modified 16-bus DC feeder, described in [1]. Finally,
conclusions are drawn in Section VI.

B. Preliminaries and notation

Sets, vectors, and functions: We let R (resp. R>0) denote
the set of real (resp. strictly positive real) numbers. Given
x ∈ Rn, [x] ∈ Rn×n is the associated diagonal matrix with x
on the diagonal. The inequality x ≤ y for vectors x, y ∈ Rn
is component-wise, that is, xi ≤ yi, ∀i ∈ 1, ..., n. For a finite
set V , let |V| denote its cardinality. Given a matrix A ∈ Rn×m,
(A)i denotes the ith row. The notation A � 0 , A � 0, A > 0,
and A ≥ 0 represents a positive definite, positive semidefinite,
positive, and nonnegative matrix, respectively. Throughout, 1n
and 0n are the n-dimensional vectors of unit and zero entries,
and 0 is a matrix of all zeros of appropriate dimensions. Given
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Fig. 1: Representative diagram of the DCmG network with DGUs and loads.

a weighted directed graph G(V, E), with V the set of nodes
and E the set of edges, its Laplacian matrix L ∈ R|V|×|V| is
defined as

L = A1|V| −A,

where A is the adjacency matrix of G collecting edges weights
and is defined as

aij =

{
wij if (i, j) ∈ E

0 otherwise
.

II. DC MICROGRID STRUCTURE AND HIERARCHICAL
CONTROL SCHEME

In this section, we describe the DCmG structure and provide
an outline of the hierarchical control structure used to ensure
optimal, safe, and uninterrupted operation of the network.

Structure of the DC microgrid: The electric interconnections
in an DCmG, comprising multiple DGUs connected to each
other via power lines, are modeled as an undirected connected
graph mG = (V, E). V is partitioned into two sets: G is the
set of DGUs and L is the set of loads. The edges represent
the interconnecting lines of the mG. As shown in Figure 1,
each DGU and load is interfaced with the DCmG through a
point of common coupling (PCC).

Distributed generation units (DGUs): The DGUs comprise
a DC voltage source, a DC-DC converter, and a series RLC
filter. Additionally, depending upon the type of DC voltage
source, we define GD as the set of dispatchable DGUs, GB as
the set of DGUs interfaced with batteries, and GP as the set
of DGUs connected to PV panels, where GD ∪GB ∪GP = G.

Load model: Depending upon the type of load, the func-
tional dependence on the PCC voltage changes and the term
ILj(Vj) takes different expressions. Prototypical load models
that are of interest include the following:

1) constant-current loads: ILI,j = ĪL,j ,
2) constant-impedance loads: ILZ,j(Vj) = YL,jVj , where

YL,j = 1/RL,j > 0 is the conductance of the jth load,
and

3) constant-power loads:

ILP,j(Vj) = V −1j P̄L,j , (1)

where P̄L,j > 0 is the power demand of the load j.
To refer to the three load cases above, the abbreviations “I”,
“Z”, and “P” are often used [28]. The analysis presented in this
article will focus on the general case of a parallel combination

of the three loads, thus on the case of “ZIP” loads, which are
modeled as

IL,j(Vj) = ĪL,j + YL,jVj + V −1j P̄L,j . (2)

The net power absorbed by the jth load is given as

PL,j(Vj) = ĪL,jVj + YL,jV
2
j + P̄L,j . (3)

A. Hierarchical control in DC microgrids

In this work, we propose the hierarchical control archi-
tecture depicted in Figure 2. The controller is split into
three distinct layers viz. primary, secondary, and tertiary. The
secondary and tertiary layers together form the supervisory
control layer of the DCmG network.

All DGUs are equipped with local voltage regulators (not
shown in Figure 1) forming the primary control layer. The
main objective of these controllers is to ensure that the voltage
at each DGU’s PCC tracks a reference voltage V ∗i provided
by the supervisory control layer.

Assumption II.1. (Stability under primary voltage control). It
is assumed that the primary controllers, under constant voltage
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Fig. 2: Hierarchical control scheme for DC microgrids.
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reference V ∗i , i ∈ G, achieve offset-free voltage tracking and
guarantee the stability of the entire DCmG network. The
reader is deferred to [6], [9], [24] and the references therein
for further details concerning design of stabilizing primary
controllers.

An EMS sits at the tertiary level, and utilizes the forecasts of
PV generation P fPV , and loads’ power and current absorption
terms P̄ fL , Ī

f
L. At each time step, it measures the nominal PV

generation P oPV , the state of charge (SOC) of batteries SB and
the actual power and current absorption of ZIP loads P̄L, ĪL.
Solving an MPC optimization problem, the EMS generates
optimal power references P̄G,i, i ∈ G, for the DGUs. In
addition, it produces decision variables δi ∈ {0, 1}, i ∈ G,
which can either turn on/off DGUs or change their operation
mode. Since the primary layer operates only with voltage
references, the secondary control layer translates the power
references into appropriate voltage references V ∗. The detailed
structure and functioning of the secondary and tertiary control
layers are discussed in Sections IV and III, respectively.

We highlight that different layers work at different time
scales. In a typical scenario, the primary controllers operates
in a range varying from 10−6 to 10−3 s, the secondary layer
ranges from 100 to 300 s, and the tertiary layer ranges from
5 to 15 mins. At each high level sampling time, the controller
provides a reference to its corresponding lower layer.

III. TERTIARY CONTROL LAYER: THE EMS

This section details the functioning of the MPC-based EMS,
sitting at the top of the proposed hierarchical structure. The
forecasts, parameters, and decision variables are described in
Table I. As a convention, all the power values are defined to
be positive if delivered from a DGU. Moreover, the upper and
lower bounds of each variable are denoted with superscripts
max and min, respectively.

A. MPC-based EMS for islanded DCmGs

The MPC-based EMS controller is responsible for energy
management and coordination of resources in the islanded
DCmG. The core of this controller is a receding horizon op-
timization problem, which enables load satisfiability, optimal
scheduling of dispatchable and storage DGUs, and maximum
possible utilization of PV DGUs.

The EMS is formulated as a mixed integer optimization
problem, executed at the generic time instant k, with a finite
prediction horizon [k, . . . , k + N ], where N indicates the
number of prediction steps. In the following discussion, the
index i is used to define variables and constraints spanning
all prediction horizon, i.e. i ∈ [0, . . . , N ]. The MPC-based
EMS, at each time step, defines an optimal plan is formulated
on power dispatch, storage schedule, and operational modes
of the units for the whole prediction horizon. However, only
the first sample of the input sequence is implemented and
subsequently the horizon is shifted. At the next sampling
time, using updated information on forecasts and mG initial
condition, a new optimization problem is solved. Next, we
describe the EMS in detail.

TABLE I: Optimization variables and system parameters for
the EMS

Symbol Description
PDH , PCH Charging and discharging power of the battery [kW]
PB Power output of battery DGUs [kW]
PD Power output of dispatchable DGUs [kW]
PPV Power output of PV DGUs [kW]
P o
PV Nominal power production of PV DGUs [kW]

P f
PV Power production forecast of PV DGUs [kW]
P o
L Nominal total power absorption for ZIP loads [kW]

ĪfL Current absorption forecast for I load [kVar]

P̄ f
L Power absorption forecast for P load [kW]
SB State of charge (SOC) of battery
So
B Nominal SOC of battery
ηCH , ηDH Charging and discharging efficiency of battery
CB MG battery capacity [kWh]
V o Nominal network voltage [V]
δB Operation mode of battery DGU [boolean]
δD Operation mode of dispatachable DGU [boolean]
δPV Operation mode of PV DGU [boolean]
V Nodal voltage magnitude [V]
I Nodal current magnitude [A]

1) DGUs: Based upon the type of voltage source, the DGUs
are characterized differently for the EMS.

a) Storage DGUs: For these DGUs, a battery serves as
the voltage source. The SOC dynamics of a battery
b ∈ GB , considering both the charging and discharging
efficiencies, are given as

SB,b(k + 1 + i) = SB,b(k + i) −

τ

CB,b

(
1

ηDH,b
PDH,b(k + i) + ηCH,bPCH,b(k + i)

)
,

(4)

with battery power output

PB,b(k + i) = PDH,b(k + i)− PCH,b(k + i). (5)

Since battery DGUs can operate either in charging or
discharging mode, the following constraints are stated

0 ≤PDH,b(k + i) ≤ P max
B,b (k + i) δB,b(k + i), (6)

0 ≤PCH,b(k + i) ≤ −P min
B,b (k + i) (1− δB,b(k + i)),

(7)

where δB,i = 1 indicates discharging mode while
δB,i = 0 represents the charging mode. In order to ensure
longevity of batteries, the SOC is constrained between
minimum and maximum bounds

SminB,b ≤ SB,b(k + i) ≤ SmaxB,b . (8)

The constraints (4)-(8) must be stated ∀i ∈ [0, . . . , N −
1]. To avoid complete charging or discharging of batter-
ies, not ideal for guaranteeing voltage stability and load
satisfiability for all possible contingencies, a terminal
constraint on the SOC is imposed

SB,b(k +N) = SoB,b + ∆SB,b , (9)



5

where SoB,b is the nominal SOC of battery b ∈ GB , while
∆SB,b is a slack variable introduced to ensure feasibility.

b) Dispatchable DGUs: These DGUs are interfaced with a
nonrenewable energy resource, and these can be switched
on, or off, based on the DCmG necessity. The operational
mode is governed by the variable δD,d, d ∈ DD, with
values 1 and 0 indicating on and off states, respectively.
The power produced by the dispatchable DGU lies within
a range defined by lower and upper bounds

δD,d(k + i)P min
D,j ≤ PD,d(k + i)

PD,d(k + i) ≤ P max
D,d δD,d(k + i), d ∈ GD,

(10)

defined ∀i ∈ [0, . . . , N − 1].
c) PV DGUs: We note that the pth DGU, p ∈ GP , has two

distinct modes of operation: power curtailment mode and
MPPT. In power curtailment mode, the DGU’s power
is curtailed in order to respect the operational limits
whereas the maximum possible power is injected into
the grid when PV DGUs are operated in MPPT mode.
To preserve internal power balance during periods of
peak PV generation, power curtailment is sometimes
unavoidable. Since, at a given time instant, the EMS
utilizes both the actual nominal PV generation and the
forecast for future time instants, the PV power output
expressed as

PPV,p(k) = P oPV,p(k)∆PPV,p(k), p ∈ GP , (11)

PPV,p(k + i) = P fPV,p(k + i)−∆PPV,p(k + i), (12)

∀i ∈ [1, . . . , N − 1], where ∆PPV,p expresses the
amount of curtailed power. The curtailed power cannot
be arbitrary and fulfills the constraints

∆PPV,p(k) ≥ (1− δPV,p(k)) ε, (13)
∆PPV,p(k) ≤ (1− δPV,p(k))P oPV,p(k), (14)

∆PPV,p(k + i) ≥ (1− δPV,p(k + i))ε, (15)

∆PPV,p(k + i) ≤ (1− δPV,p(k + i))P fPV,p(k + i),

(16)

∀i ∈ [1, . . . , N − 1], where ε > 0 is a sufficiently small
number and δPV,p is a decision variable. The rationale
behind constraints (13)-(16) is not only to limit power
curtailment but also to enable just one of the operation
modes. Clearly, if δPV,p = 1, ∆PPV,p is forced to
zero meaning that the MPPT mode is activated, whereas
if δPV,p = 0, the curtailed power must be strictly
greater than zero and lower than the effective PV power
production. For more details on logic and mixed-integer
constraints, the reader is referred to [29].

2) Loads: The nominal power absorption of the lth ZIP load,
l ∈ L, is computed at nominal voltage by utilizing the
current state of the system for the first time step

P oL,l(k) = ĪL,l(k)V o + YL,lV
o2 + P̄L,l(k), l ∈ L, (17)

while forecasts are used for future time instants
i ∈ [1, . . . , N − 1] as

P oL,l(k+ i) = ĪfL,l(k+ i)V o+YL,lV
o2+ P̄ fL,l(k+ i). (18)

It is worth noticing that P oL,l is just an estimate, as net
power absorption of ZIP loads depends on the actual
DCmG voltages, as reported in (3).

3) Power balance: In an islanded DCmG, the internal power
balance must be maintained. Hence, the following con-
straint is expressed∑

b∈DB

PB,b(k + i) +
∑
d∈DD

PD,d(k + i)

+
∑
p∈DP

PPV,p(k + i) +
∑
l∈L

P oL,l(k + i) = 0,
(19)

which is stated ∀i ∈ [0, . . . , N − 1]. We highlight that
the converter and network losses are neglected at the EMS
level.

4) Cost function: The aim is to minimize the cost of satisfying
the electrical loads, hence the cost function is

J(k) =∑
b∈DB

(∆SB,b)
2wS,b +

N−1∑
i=0

∑
b∈DB

(PB,b(k + i))2wB,b

+

N−1∑
i=0

∑
d∈DD

(PD,d(k + i))2wD,d

+

N−1∑
i=0

∑
p∈DP

(∆PPV,p(k + i))2 wPV,p

+

N−1∑
i=0

∑
p∈DP

(δPV,p(k + i)− δPV,p(k + i− 1))2wδPV,p︸ ︷︷ ︸
α

+

N−1∑
i=0

∑
b∈DB

(δB,b(k + i)− δB,b(k + i− 1))2wδB,b︸ ︷︷ ︸
β

+

N−1∑
i=0

∑
d∈DD

(δD,d(k + i)− δD,d(k + i− 1))2wδD,d︸ ︷︷ ︸
γ

,

(20)

where wS , wPV , . . . are positive weights. We intend on
keeping batteries close to their nominal SOCs and using
power curtailment as the last resort. Thus, the weights wS,B
and wPV are set to much higher values with respect to
others, enabling ∆SB,b and ∆PPV,p to be nonzero only
when necessary for preserving feasibility. The terms α, β
and γ are included in the cost to avoid frequent changes
in modes of operation of different DGUs.

At every EMS time instant, the following optimization is
solved to obtain optimal power set points P̄B,i, P̄D,j , P̄PV,p
and decision variables δB,i, δD,j , δPV,p.

JEMS(k) = min J(k) (21a)
subject to

(4)− (19). (21b)
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B. Interaction between tertiary and secondary layers

The EMS produces power references as well as decision
variables, both of which are passed down to the secondary
control layer. The value of these decision variables essentially
determines the topology of the DCmG network. This is due
to the fact that dispatchable generator nodes can be con-
nected/disconnected from the network based on the value of
δD,j . Moreover, based on the value of δPV,p, the PV DGUs can
either inject maximum power or undergo power curtailment.
While injecting maximum power, the PV DGU is governed by
standard MPPT algorithms and automatically alters its output
voltage in order to inject maximum power. Thus, in this mode,
the DGU operates as a P load injecting power. When the DGU
experiences a power curtailment, it injects the requested power
and operates as a voltage-controlled DGU.

As mentioned earlier, the EMS power references are not
directly perceivable by the primary controllers. Thus, a power-
to-voltage translation is performed by the secondary controller
by utilizing topology-based power-flow equations (see Section
IV). Therefore, at every EMS time instant, the secondary
controller uses the decision variables to update the DCmG
topology in order to accommodate the turning ON/OFF of
dispatchable generators as well as operation mode of PV
DGUs.

Remark III.1. (Connectivity of the DCmG network). It is
assumed that the turning ON/OFF of dispatchable DGUs does
not impact the connectivity of the rest of the DCmG network. In
other words, addition or removal of a dispatchable DGUs must
not split the remainder of the network into two or more disjoint
islanded mGs. In case, critical DGUs affecting the connectivity
of graph are present in the network, one can restrict their
operation modes by adding additional constraints to the EMS
optimization problem (see Section V for an example).

IV. SECONDARY CONTROL BASED ON POWER-FLOW
EQUATIONS

The secondary control is designed to make DGUs track the
power references provided by the EMS, now denoted as P̄G.
We highlight that the decision variables communicated by the
EMS at a given sampling instant define the topology of the
network over the next EMS sampling period.

Remark IV.1. The secondary layer, operating on a faster
time scale in comparison to the EMS, utilizes a fixed DCmG
topology over an EMS sampling period to perform power-
voltage translation. The topology is updated when a new set
of decision variables is received.

To perform the power-to-voltage translation, such that
proper references can be sent to primary controllers, we first
start by deducing the equations linking power and voltage.
The relation between power and voltage in an islanded DCmG
is defined by the power-flow equations dependent on mG
parameters and topology.

We let the undirected connected graph mG̃ = (Ṽ, Ẽ) define
the topology of the DCmG for a specified EMS sampling
period. The set Ṽ is partitioned into two sets: G̃ = {1, . . . , n}
is the set of DGUs and L̃ = {n + 1, . . . , n + m} is the

set of loads. The set G̃ = G̃D ∪ G̃B ∪ G̃GP , where G̃D is
the set of connected dispatchable DGUs, G̃B is the set of
batteries, and G̃DP is the set of voltage-controlled PV DGUs.
In steady state, the inductances and capacitances can be
neglected and the current-voltage relation is given by the
identity I = BΓBTV = Y V , where B ∈ R(n+m)×|E| is the
incidence matrix of mG̃, I is the vector of PCC currents, V
is the vector containing PCC voltages (see Figure 1), Γ is the
diagonal matrix of line conductances, and Y ∈ R(n+m)×(n+m)

is the network admittance matrix [30]. On partitioning the
nodes into DGUs and loads, the relation can be rewritten as[

IG
IL

]
=

[
BGR

−1BTG BGR
−1BTG

BLR
−1BTG BLR

−1BTG

] [
VG
VL

]
:=

[
YGG YGL
YLG YLL

] [
VG
VL

] , (22)

where VG = [V1, . . . , Vn]T , VL = [Vn+1, . . . , Vn+m]T , IG =
[I1, . . . , In]T , and IL = [In+1, . . . , In+m]T . The subscripts G
and L indicate the DGUs and loads, respectively. Throughout
this work, the following assumption is made.

Assumption IV.1. The PCC voltage Vi is strictly positive for
all i ∈ V .

We remark that Assumption IV.1 is not a limitation, and
rather reflects a common constraint in microgrid operation.
Notice that, in Figure 1, one end of the load is connected to the
PCC and the other to the ground, assumed be at zero potential
by convention. Since the electric current flows from higher to
lower potential, negative references and PCC voltages would
reverse the role of loads and make them power generators.
In order to ensure power balance in the network, this power
would be absorbed by the generators. This, in effect, defeats
the fundamental goal of the mG, that is, the satisfiability of
the loads by virtue of the power generated by the DGUs.
Furthermore, if Vi ∈ RN , then a zero-crossing for the voltages
may take place. At zero voltage, the power consumed by the
ZIP loads tends to infinity.

Based on the current directions depicted in Figure 1, it is
evident that IL,j(Vj) = −Ij , j ∈ L. Using (2), one can
simplify (22) as

IG = YGGVG + YGL VL (23a)

0 = YLGVG + YLL VL + YLVL + ĪL + [VL]−1 P̄L, (23b)

where YL ∈ Rm×m is the diagonal matrix of load admit-
tances. The vectors ĪL and P̄L collect consumptions of I and
P loads, respectively. Note that the power PG,i, i ∈ G̃ produced
by an individual DGU is the sum of power injected into the
network and the filter losses. Equivalently,

PG = [VG]IG + [IG]RGIG (24)

where RG ∈ Rn×n is a diagonal matrix collecting filter
resistances and IG is the vector of DGU filter currents. On
pre-multiplying (23a) with [VG], and by using (24), one can
rewrite (23) as

fG(VG, VL, PG) = [VG]YGG VG + [VG]YGL VL

+ [IG]RG IG − PG = 0,
(25)
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fL(VG, VL) = YLG VG + YLL VL + YLVL

+ YLVL + ĪL + [VL]−1 P̄L = 0.
(26)

The equations (25) and (26) fundamentally depict the power
balance and current balance at DGU and load nodes, respec-
tively. These equations depend on the topology-dependent Y
matrix, and are updated once a new set of decision variable is
received.

In order to translate the power references into suitable
voltage references, the secondary layer solves an optimization
problem, whose objective is to minimize the difference
between the reference power P̄G and the DGU input power
PG under the equilibrium relations (25) and (26). We first
consider the following simplified version of the optimization
problem, where nodal voltages and generator power are not
bounded.

Secondary Power Flow (SPF):

JSPF (P̄G, P̄L, ĪL) = min
VG, VL,PG

||PG − P̄G||2 (27a)

subject to
fG(VG, VL, PG) = 0 (27b)
fL(VG, VL) = 0 (27c)

As noticeable from Figure 2, the SPF layer requires the
updated load consumption (P̄L, ĪL) and the power references
P̄G in order to solve (27). We define X to be the set
of all (VG, VL, PG) that satisfy (27b)-(27c) simultaneously.
Hereafter, we will discuss necessary and sufficient conditions
ensuring that the set X is nonempty. We start by introducing
two preliminary Lemmas.

Lemma IV.1. The matrix YLL can be written as

YLL = ŶLL + [−YLG1n], (28)

where ŶLL is a Laplacian matrix .

Proof. The network admittance matrix Y is a Laplacian with
zero row sum [30]. Matrix YLL, a submatrix of Y , is sym-
metric with positive diagonal and non-negative off-diagonal
entries. Since the network graph G is connected, YLL has
at least one row with strictly positive row sum. YLL is a
Laplacian matrix with self loops [31] and, therefore, can be
written as (28).

Lemma IV.2. The matrix −(YLL + YL)−1 YLG has no rows
with all zero entries and is nonnegative.

Proof. The matrix −YLG is a non-negative matrix and, since
the graph is connected, has at least one row with non-zero row
sum. The statement of the above Lemma follows from the fact
that YLL + YL is a Laplacian matrix with self loops and its
inverse is strictly positive [31].

Next, we show that SPF is always feasible.

Proposition IV.1. (Feasibility of SPF). The feasible set X is
non-empty . In particular, for all P̄L ∈ Rm and ĪL ∈ Rm, the
following statements hold:

1) The equation (27c) is always solvable.

2) The solvability of (27c) implies that (27b) is solvable.

Proof. Under Assumption IV.1, the equation (27c) can be
written as follows:

[VL] ỸLL VL + [VL]YLG VG + [VL] ĪL + P̄L = 0, (29)

where ỸLL = YLL + YL. Using Banach fixed-point theorem,
as shown in [25], it can be proven that for a fixed VG, a
corresponding VL solving (27c) exists if

∆ = ||P−1crit P̄L||∞ < 1 (30)

where

Pcrit =
1

4
[Ṽ ] ỸLL [Ṽ ] (31)

and
Ṽ = −Ỹ −1LL YLGVG − Ỹ

−1
LL ĪL. (32)

Different from [25], here VG is a free variable. Therefore, for
the solvability of (27c), it is enough to show that a VG can be
always found such that (30) is satisfied for any ĪL and P̄L.
Consider V αG = α1n, with α ∈ R>0. Therefore,

Ṽ α = −Ỹ −1LL YLGV
α
G −Ỹ −1LL ĪL = α(−Ỹ −1LL YLG1n)−Ỹ −1LL ĪL.

Given Lemma IV.2, (−Ỹ −1LL YLG1n) is a positive vector.
Hence, there exists an ᾱ ∈ R>0 such that Ṽ α > 0 ∀α > ᾱ.

Considering i, j ∈ L, any element (i, j) of the matrix
(P α
crit)

−1 can be expressed as follows

(P α
crit)

−1
ij = 4 (ỸLL)−1i,j /(Ṽ

α
i Ṽ αj ). (33)

It is evident that (P α
crit)

−1
ij is inversely proportional to the

parameter α, for α > ᾱ. As a result, it is always possible
to increase α such that (30) is verified for any P̄L and ĪL.
Consequently, a voltage solution (V ∗G, V

∗
L ) of (27c) always

exists, proving statement 1.
Regarding statement 2, it is evident that (27b) is linear with
respect to PG. This implies that, for any solution (V ∗G, V

∗
L ) of

(27c), a corresponding P ∗G solving (27b) always exists.

Proposition IV.1 guarantees the feasibility of SPF. We now
discuss optimality. If SPF achieves the optimal cost J∗SPF = 0,
it implies that a voltage solution exists such that the power
references P̄G are exactly tracked by the DGUs. This condition
can not be achieved for any value of (P̄L, ĪL, P̄G). The
following proposition, inspired by [32], presents a necessary
condition that must hold for J∗SPF = 0. The proof nonetheless
is different as here DGU filter losses are also taken into
account.

Proposition IV.2. If the SPF achieves the optimal cost
J∗SPF = 0, then∑

∀i∈D

P̄G ≥
∑
∀i∈L

P̄L −
1

4
Ī TL Ỹ −1GG ĪL, (34)

where ỸGG = YGG − Y TGL(YLL + YL)YGL.



8

Proof. Under Assumption 1, equations (27b) and (27c) can be
expressed in a single matrix equality as follows

f(V, PG) = [V ] Ỹ V + [V ]Ĩ +

[
[IG]RIG

0

]
+

[
−PG
P̄L

]
= 0n+m,

(35)

where Ĩ =
[
0Tn Ī TL

]T
, and Ỹ = Y +

[
0 0
0 YL

]
. To achieve

J∗SPF = 0, a solution (V, PG) to SPF must exist such that
PG = P̄G and

f(V, P̄G) = 0n+m. (36)

On multiplying the above equation by 1Tn+m on both sides,
one obtains

1Tn+m f(V, P̄G) = V T Ỹ V + V T Ĩ + ITG RIG

− 1Tn PG + 1Tm P̄L = 0 .
(37)

If the solution exists for (35), then, one can also verify (36).
Using simple computations, equation (37) can be rewritten as

(V +
1

2
Ỹ −1Ĩ)T Ỹ (V +

1

2
Ỹ −1Ĩ) + ITG RG IG

=
1

4
ĨT Ỹ −1 Ĩ +

∑
∀i∈D

P̄G −
∑
∀i∈L

P̄L.
(38)

Note that the matrices Ỹ � 0 and RG � 0, and hence, if a
voltage solution V exists, then

(V +
1

2
Ỹ −1Ĩ)T Ỹ (V +

1

2
Ỹ −1Ĩ) + ITG RIG ≥ 0. (39)

We highlight that IG is a function of V (see (23a)). This further
implies that

1

4
Ĩ T Ỹ −1 Ĩ +

∑
∀i∈D

P̄G −
∑
∀i∈L

P̄L ≥ 0. (40)

Using standard results on the inverse of block matrices, the
expression Ĩ T Ỹ −1 Ĩ can be simplified as Ī TL ( ỸGG )−1 ĪL,
where ỸGG is the Schur complement of Ỹ [33].

Remark IV.2. It is highlighted that the necessary condi-
tion (34) depends only on the network parameters and load
consumption. Therefore, it can be incorporated in the EMS
optimization problem as a constraint for the choice of the
power references P̄G.

In a real DCmG, the power output PG is constrained
by physical limits of the DGUs. Moreover, the components
of the DCmG are designed to operate around the nominal
voltage. Hence, both nodal voltages and DGU powers must
respect certain bounds, which are not incorporated in the
aforementioned SPF. Consequently, we now introduce the
following constrained optimization problem with additional
operational constraints.

Secondary Constrained Power Flow (SCPF):

JSCPF (P̄G, P̄L, ĪL) = min
VG, VL,PG

||PG − P̄G||2 (41a)

subject to
fG(VG, VL, PG) = 0 (41b)
fL(VG, VL) = 0 (41c)

V minG ≤ VG ≤ V maxG (41d)

V minL ≤ VL ≤ V maxL (41e)

PminG ≤ PG ≤ PmaxG (41f)

The feasibility of SPF, corresponding to solving (41a)-
(41c), is already ensured by Proposition IV.1. Considering the
voltages and power bounds (41d)-(41f), the overall feasibility
of SCPF is not a priori guaranteed. Nevertheless, if the DCmG
is properly designed, a feasible solution of SCPF should
always exist. In fact, the infeasibility of the SCPF just implies
the absence of sufficient power generation to satisfy the load
demand and losses in the allowed voltage range.

Next we study the properties of an optimal solution
x∗ = (V ∗G, V

∗
L , P

∗
G) of SCPF, assuming it exists. As mentioned

before, the secondary control layer acts as an interface between
the EMS (tertiary layer) and the local voltage regulators
(primary layer). The voltage V ∗G obtained from the SCPF is
transmitted as a reference to the primary voltage controllers
of the DGUs. We highlight that just the component V ∗G of
x∗ can be directly imposed, since the load nodes are not
equipped with voltage controllers and the generators are not
controlled to track power references. Therefore, it is important
to guarantee that, for a given voltage reference V ∗G at DGU
nodes, P ∗G is the power effectively produced and V ∗L appears
at the load nodes. This implies that for a fixed V ∗G, the unique
solution satisfying the power flow equation (25)-(26) must be
VL = V ∗L , PG = P ∗G. We show the uniqueness by means of
the following theorem.

Theorem IV.1. (Uniqueness of a voltage solution).
Consider the solution x∗ = (V ∗G, V

∗
L , P

∗
G) from the

SCPF optimization problem. For a fixed V ∗G, the pair
(V ∗L , P

∗
G) is the unique solution of (25)-(26) in the set

Y = {(VL, PG) : VL > V minL , PG ∈ Rn} if

P̄L,i < (V mini )2 YL,i, ∀i ∈ L̃. (42)

Proof. For a fixed V ∗G, the power-flow equations (25)-(26) can
be rewritten as

f̃G(VL, PG) = fG(VG, VL, PG)

∣∣∣∣
VG=V ∗G

= [V ∗G]YGGV
∗
G

+ [VL]YLGVL + [IG]RGIG − PG = 0,
(43)

f̃L(VL) = fL(VG, VL)

∣∣∣∣
VG=V ∗G

= YLG V
∗
G + YLL VL

+ YLVL + ĪL + [VL]−1 P̄L = 0.

(44)
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We will proceed by analyzing equation (44). Note that
f̃(V ∗L ) = 0 since V ∗L is a feasible solution obtained from the
SCPF. Moreover, if the function f̃L(VL) is injective, then V ∗L
is the unique solution of (44).

To show the injectivity of f̃L(VL), we first evaluate its
Jacobian with respect to VL, given as

J (VL) =
∂f̃L(VL)

∂VL
= YLL + YL −

[
[VL]−2P̄L

]
. (45)

As stated in [34, Theorem 6], if the Jacobian (45) of the
function f̃L(VL) is symmetric and positive definite in a convex
region Ω, then f̃L(VL) is injective in Ω. Note that J (VL) is
symmetric by construction. Moreover, using Lemma IV.1, one
can split (45) into

J (VL) = ŶLL + [−YLG1n] + YL −
[
[VL]−2P̄L

]︸ ︷︷ ︸
M̃

, (46)

where ŶLL � 0 and −YLG is a nonnegative matrix. For J (VL)
to be positive definite, it is sufficient to show that M̃ � 0.
Since M̃ is a diagonal matrix,

−
∑
j∈D

Yij + YL,i − P̄L,iV −2i > 0, ∀i ∈ L̃. (47)

We remark that −
∑
j∈D Yij is positive only if load i is

connected directly to at least one DGU, and is otherwise zero.
Hence, if

P̄L,i < V 2
i YL,i, (48)

then (47) is automatically satisfied and consequently J (VL) �
0. Using (48), one can deduce that f̃L(VL) is injective in Ω
given as

Ω = {Vi : Vi >

√
P̄L,i
YL,i

, ∀i ∈ L̃ }.

Since V ∗Li ∈ [V minLi , V maxLi ] and (42) holds, V ∗L always
belongs to Ω. The uniqueness of V ∗L in Ω follows from the
injectivity of f̃L(VL); moreover, given (42), V ∗L is unique in Y .
Consequently, considering that f̃G(V ∗L , P

∗
G) = 0, it is evident

that PG = P ∗G is the unique solution of (43) if VG = V ∗G and
VL = V ∗L .

Remark IV.3. (Condition (42) and stability). The unique-
ness condition (42) essentially limits the power consump-
tion of P loads. As shown in [9], due to the negative
impedance introduced by the P loads, their power consumption
PL,i < (V ∗i )2YL,i, i ∈ L̃ in order to guarantee stability.
Since V ∗i is the solution of SCPF, V ∗i ≥ V mini , by satisfying
(42), one can simultaneously guarantee the uniqueness of load
voltages and the stability of the DCmG.

Remark IV.4. The use of a multi-layered hierarchical control
scheme is a well-established concept for the overall operation
of a mG [6]. In the context of islanded DCmGs, supervisory
control structures with different functionalities are explored
in [3], [15], [16], [21]. However, these contributions are
restricted to a specific topology, do not consider the interface
with the primary layer, or disregard the stability of the DCmG.
Besides the incorporation of generic topologies changing over

time and the seamless integration of multiple control layers,
this work considers both overall mG stability and optimal
resource allocation at the same time. Moreover, the secondary
control layer can easily be interfaced with any EMS that
generates power references.

V. NUMERICAL RESULTS

In this section, we aim to show the performance of the
proposed hierarchical control scheme via simulation studies
conducted in MATLAB. We consider the 16-bus DC feeder in
meshed stand-alone configuration described in [1], equipped
with three battery DGUs, two dispatchable DGUs, a PV
DGU, and ten ZIP loads (see Figure 3). The DGUs are
interfaced with synchronous Buck converters and controlled
by the primary voltage controllers studied in [9]. We highlight
that turning off dispatchable DGUs at nodes 1 and 2 simulta-
neously splits the mG into two separate DCmGs (see Figure
3), and can be circumvented by adding the simple constraint
δD,1(k+ i)+δD,2(k+ i) ≥ 1,∀i ∈ [0, . . . , N−1], to the EMS
optimization problem (21). The loads are standard ZIP, and
their power and current absorption follow three different daily
profiles denoted by subscripts a, b, and c (depicted in Figure
4). The DCmG is operated at a nominal voltage V o = 100
Volts with nodal voltages lying between V min = 0.9V o and
V max = 1.1V o. The DGU parameters utilized by the EMS
are given in Table II.

The MPC-based EMS schedules the optimal power set-
points of DGUs every 15 minutes, using a prediction horizon
of 5 hours, i.e. N = 20. The secondary layer runs with a
sampling time of 3 minutes with the goal of tracking the
received power references despite the aforementioned load
variations.

PV

6

Lc

15

Lc

16

D

1

La

7

Lc

14

B

3
B

4

Lb

12

Lc

13

D

2

La

8

Lb

11 La

9

Lb

10

B

5

Fig. 3: DCmG based on the modified 16-bus feeder [1].
The letters D, B, and PV denote dispatchable, battery, and
PV DGUs, respectively. The letter L indicates loads with
subscripts a, b, and c defining different consumption patterns.

DGU (P min, P max) (ηCH , ηDH) (Smin
B , Smax

B ) So
B

D1 (+10,+80) − − −
D2 (+10,+80) − − −
B3 (−40,+40) (0.9, 0.9) (0.1, 0.9) 0.5
B4 (−50,+50) (0.9, 0.9) (0.1, 0.9) 0.6
B5 (−60,+60) (0.9, 0.9) (0.1, 0.9) 0.4

TABLE II: DGU parameters used by the EMS.
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Fig. 4: Actual current and power absorption of DCmG loads.
Each of the 10 DCmG loads corresponds to one of the three
profiles shown above.

In the ensuing discussion, we describe the behaviour of var-
ious mG components controlled by the proposed hierarchical
controller over a span of 24 hours.
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Fig. 5: Power generated by dispatchable DGUs).

Dispatchable DGUs: As shown in Figure 5, DGUs D1 and
D2 track the power references provided by the EMS. During
the day, when PV generation starts picking up (see Figure 8),
the EMS turns off DGU D1 to ensure economic optimality and
maintain mG power balance. DGU D2, although producing
minimum permissible power during the period of peak PV

generation, remains operational throughout the day in order to
maintain connectivity of the DCmG.
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Fig. 6: States of charge of DGUs B3, B4, and B5.

Battery DGUs: In Figure 7, it can be noticed that battery
DGUs follow power references provided by the EMS. Abrupt
charging and discharging, and frequent switching between
these two modes work to the detriment of battery’s longevity,
and are prevented by the EMS. As for the SOCs, reported
in Figure 6, they evolve respecting the operational constraints.
Moreover, the EMS tries to store surplus energy during periods
of peak PV generation (see Figure 8). This energy is released
in the last part of the day during which the PV generation
declines.
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Fig. 7: Power output by battery DGUs.

PV DGU: As reported in Figure 8, so as to be consistent
with a real operation scenario, the simulations have been
conducted with a mismatch between nominal PV generation
and forecasts. At each sampling instant, the EMS utilizes the
nominal PV generation and the forecast not only to generate
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Fig. 8: Nominal generation, PV generation forecast, EMS
power reference, generated power for DGU PV6.

power references but also to decide whether to operate the
PV DGU in MPPT or power curtailment mode. As seen from
Figure 8, the power injected by the PV generators into the
DCmG tracks the EMS power references. Notice that the
PV DGU operates in MPPT mode during the first and the
last hours of the simulation, whereas it curtails power during
the central part of the day. Clearly, a power curtailment is
inevitable considering that the SOCs are going to hit their
upper bound, DGU D1 is nonoperational, while DGU D2 is
injecting minimum power and it cannot be switched off.

Loads: The load power forecasts used by the EMS and
the net power absorption for nodes 8, 11, and 16 are shown in
Figure 9. One can observe that the forecasts are fairly different
from the actual power absorption. This stems from the fact that
EMS forecasts are deduced using inaccurate current and power
profiles (see Figure 4 for actual current and power absorption)
at nominal voltage. Even if exact profiles were available to the
EMS a priori, the forecasts would not coincide with net power
absorbed by the loads. This is because the net power absorbed
by a load depends on PCC voltage, which is generated by the
secondary layer only after EMS power references are received.

Finally, we highlight that, during the simulation, the con-
dition (42) always holds for all load nodes, ensuring the
uniqueness of solution for load voltages and the perfect
tracking of DGUs power injections. The secondary control
layer manipulates the voltage references of the DGUs every
3 minutes, and maintains the voltages in the allowed range,
as shown in Figure 10. As a consequence of new power
references received from the EMS, a clear change in voltages
can be observed every 15 minutes. In Figure 11, we show the
performance of primary voltage controllers when dispatchable
DGU D1 is turned off by the EMS. Indeed, thanks to the
implemented Plug-n-Play controllers, the transients quickly die
out and voltages are forced back to desired reference values.
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Fig. 9: Load power forecasts and net power absorption for
different load nodes.
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Fig. 10: Nodal voltages in the DCmG network.

VI. CONCLUSIONS

In this work, we proposed a top-to-bottom hierarchical
control structure for an islanded DCmG. Our supervisory
controller resting atop a primary voltage layer comprises
secondary and tertiary layers. By utilizing an MPC-based
EMS at tertiary layer, optimal power references are gener-
ated. The secondary layer translates these power signals into
voltage references for the primary layer. More specifically,
the voltage references are generated by solving an optimiza-
tion problem at the secondary layer, which can incorporate
practical operational constraints. Furthermore, we studied the
well-possessedness of the secondary optimization problem by
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Fig. 11: Nodal voltages when dispatchable DGU D1 is turned
off.

discussing its feasibility and deduced a novel condition for the
uniqueness of generator voltages and DGU power injections.
Lastly, we demonstrated multiple layers of our hierarchical
controller working in tandem to achieve desired objectives
on a 16-node mG. Future work will target the development
of an EMS that enables the mG to work in grid-connected
mode, and a secondary control layer that does away with
the dependence on mG topology. Further developments can
also focus on solving the proposed optimization problem in a
distributed and efficient manner.
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