
Towards Feature Selection for Ranking and Classification
ExploitingQuantum Annealers

Maurizio Ferrari Dacrema
Politecnico di Milano

Italy
maurizio.ferrari@polimi.it

Fabio Moroni
Politecnico di Milano

Italy
fabio6.moroni@mail.polimi.it

Riccardo Nembrini
Politecnico di Milano, ContentWise

Italy
riccardo.nembrini@polimi.it

Nicola Ferro
Università degli Studi di Padova

Italy
ferro@dei.unipd.it

Guglielmo Faggioli
Università degli Studi di Padova

Italy
faggioli@dei.unipd.it

Paolo Cremonesi
Politecnico di Milano

Italy
paolo.cremonesi@polimi.it

ABSTRACT
Feature selection is a common step in many ranking, classification,
or prediction tasks and serves many purposes. By removing redun-
dant or noisy features, the accuracy of ranking or classification
can be improved and the computational cost of the subsequent
learning steps can be reduced. However, feature selection can be
itself a computationally expensive process. While for decades con-
fined to theoretical algorithmic papers, quantum computing is now
becoming a viable tool to tackle realistic problems, in particular
special-purpose solvers based on the Quantum Annealing para-
digm. This paper aims to explore the feasibility of using currently
available quantum computing architectures to solve some quadratic
feature selection algorithms for both ranking and classification.

The experimental analysis includes 15 state-of-the-art datasets.
The effectiveness obtained with quantum computing hardware is
comparable to that of classical solvers, indicating that quantum
computers are now reliable enough to tackle interesting problems.
In terms of scalability, current generation quantum computers are
able to provide a limited speedup over certain classical algorithms
and hybrid quantum-classical strategies show lower computational
cost for problems of more than a thousand features.

CCS CONCEPTS
• Information systems → Content analysis and feature selec-
tion; • Computer systems organization → Quantum comput-
ing.

KEYWORDS
Feature Selection, Quantum Computing, Quantum Annealing, Ma-
chine Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531755

ACM Reference Format:
Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro,
Guglielmo Faggioli, and Paolo Cremonesi. 2022. Towards Feature Selection
for Ranking and Classification Exploiting Quantum Annealers. In Proceed-
ings of the 45th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3477495.3531755

1 INTRODUCTION
Information Retrieval (IR) is concerned with delivering relevant
information to people, according to their information needs, con-
text, and profile, in the most effective and efficient way possible.
Central to this goal are ranking and classification, often exploited
in conjunction. Machine learning approaches have been widely
investigated for this purpose. These methods however suffer from
the known feature selection problem. As the data becomes more
rich and complex, identifying the relevant features may require
to evaluate an exponentially increasing number of cases which
rapidly becomes prohibitively resource intensive. The feature se-
lection problem is mitigated by deep learning and, more generally,
neural approaches that have gained popularity in recent years. De-
spite these methods being extremely versatile and generally able to
provide good overall effectiveness, it is known their performance
is not always stable and may vary a lot across topics, for example
the performance may improve for half of the topics while degrade
for the other half [30]. A further disadvantage is that these neural
approaches are very demanding in terms of computing resources
and require enormous amounts of data which leads to larger and
larger models that are not free from risks, as pointed out by Bender
et al. [6].

In this paper we take a step back and wonder ourselves if it is
possible to make the feature selection problem more “affordable”
in order to make more appealing the use of “traditional” machine
learning approaches for ranking and classification. To this end, we
investigate the feasibility of and how to apply current generation
quantum computing technologies to improve feature selection. To
the best of our knowledge very little work has been done to asses the
effectiveness and efficiency of such technologies to tackle feature
selection problems, especially for both ranking and classification.
For example, Nembrini et al. [33] proposed a heuristic to build a hy-
brid recommender system that selects important features according

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2814

https://orcid.org/0000-0001-7103-2788
https://orcid.org/0000-0002-1915-6107
https://orcid.org/0000-0001-9219-6239
https://orcid.org/0000-0002-5070-2049
https://orcid.org/0000-0002-1253-8081
https://doi.org/10.1145/3477495.3531755
https://doi.org/10.1145/3477495.3531755
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477495.3531755&domain=pdf&date_stamp=2022-07-07

to how well they allow us to approximate another recommendation
model based on the user behavior.

The contributions of this paper are the following:
• formulate the feature selection problem as a Quadratic Un-
constrained Binary Optimization (QUBO) problem which
can be solved using Quantum Annealing (QA);

• compare efficiency and effectiveness of classical and quan-
tum QUBO problems solvers;

• show that a quantum computer is able to more efficiently
solve the feature selection problem, for both ranking and
classification, with an effectiveness comparable to classical
solvers;

• show that the quantum-classical hybrid approaches exhibit
better scalability when the number of features increases
compared to the classical ones.

The results reported in this paper show that quantum computing
approaches have become a viable option for the feature selection
problem in IR and that they are worthy of further investigation.

The paper is organized as follows: Section 2 describes related
work on quantum computing and feature selection, Section 3 presents
feature selection as a Quadratic Unconstrained Binary Optimization
problem as well as classical and quantum strategies to solve such
problems, Section 4 describes the experimental pipeline, Section
5 presents the results, finally Section 6 draws the conclusions and
presents future research directions.

2 RELATEDWORKS
Quantum Computing. In recent years, quantum computing is

gaining popularity as a new computational paradigm able to of-
fer speedups for several computational tasks that are difficult on
classical hardware. Quantum computing is often used to refer to
a computational paradigm called gate model or universal quantum
computer, in which a quantum state is manipulated with a con-
trolled sequence of operations performed via quantum gates, in a
way that is not dissimilar from how classical computers operate.
Universal quantum computers are theoretically able to compute
any function and have rigorously proven speedups for certain tasks.
On the other hand, they are currently quite unreliable due to noise
and are available only with a limited number of qubits, the basic
unit of quantum information. Furthermore, this paradigm requires
specially designed algorithms that is challenging to develop.

Another paradigm of quantum computing is Quantum Anneal-
ing (QA) in which a special purpose device, called Quantum An-
nealer, is used to rapidly sample optimal solutions of a QUBO prob-
lem; note that the detailed description of QUBOmethods is deferred
to subsection 3.1. As opposed to universal quantum computers,
Quantum Annealers have a limited computational flexibility, being
able only to tackle optimization problems, and the question of prov-
ing the type of speedup they offer is still open. On the other hand,
they suffer much less from noise and are available with a rather
large number of qubits, allowing to tackle problems of interesting
size. Moreover, the simplicity of the required QUBO formulation
and fast solution time have made it a promising and widely accessi-
ble technology.

This has fueled significant research from both industry and
academia to explore the potential of this technology. Several QUBO

formulations for important problems have been developed such as
graph partitioning [5, 45], Support Vector Machines [48], Restricted
Boltzmann Machines [1, 3] and optimization for resource allocation
[11]. QA has also been applied to collaborative filtering [17] and
the personalization of the user interface in a recommender system
[14].

For these reasons, this paper investigates feature selection via
QA and QUBO formulation.

Feature Selection. Feature selection is one of the problems that fit
well with the mathematical formulation required to use a Quantum
Annealer. Its goal is to isolate a subset of all available features in
order to improve the effectiveness of a model, being it for ranking
or classification, and/or to reduce the computational cost. Feature
selection is a widely researched topic [12, 24, 40] and the main
approaches can be divided in three categories:

Filter methods: the features are selected based on information-
theoretical measures that do not optimize the model itself,
e.g., variance or entropy.

Embedded methods: the selection, or weighting, of the fea-
tures is a part of the model training, e.g., lasso or ridge regres-
sion, neural networks and factorization machines all learn a
weight for the input feature data.

Wrapper methods: the model is considered as a black box
and the features are selected as those that optimize the end
effectiveness of the model.

This work focuses on filter methods, since they are agnostic
about the model to optimize and are well suited to study and com-
pare several QA and QUBO methods across a variety of models.

Filter methods for features selection can be further categorized
into linear and quadratic approaches. The former consider indi-
vidual features singularly while the latter also account for feature
interaction. Among the most common linear approaches, we can
list the following:

ANOVA F-Test: the Analysis of Variance [7, 16, 41] method
attempts to minimize false negative errors.

Chi2 Test: features are ranked according to their Chi-square
statistic value. This test aims to identify the features that are
more likely independent from the target label.

Mutual Information: features are ranked according to their
Mutual Information with respect to the target variable. The
Mutual Information is a statistical measure also known as
Shannon’s Information [36, 43, 49].

Pearson Correlation: features are ranked according to their
Pearson Correlation with the target variable.

Linear Boosting: each feature is used to train a Support Vec-
tor Classifier, which is then used to label the samples. Fea-
tures are ranked according to the Pearson Correlation be-
tween the prediction of the classifier and the target variable.

Variance Threshold: removes low-variance features, the fea-
ture score is computed as the variance of its values.

These approaches will be considered as plain baselines in the
subsequent experiments. In Section 3.1 we will describe quadratic
approaches in detail, since they are the focus of our QUBO opti-
mization.

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2815

Quantum Information Retrieval. Quantum IR is a branch of IR
initiated by van Rijsbergen [46] which exploits the formalism and
concepts of quantum mechanics, such as Hilbert spaces and Her-
mitian operators, to formulate and describe IR models and specific
problems, such has relevance feedback. Over the years Quantum IR
has evolved [32], exploring mainly two areas – (i) representation
and ranking; (ii) user interaction – leveraging “Hilbert space models
for representation learning and quantum probability rules to model
cognitive interference in document ranking” [44].

This work does not deal with Quantum IR but rather explores
how Quantum Computing, in particular Quantum Annealing, can
be applied to directly solve the feature selection problem in ranking
and classification for IR.

Efficient Learning to Rank (LtR). A further line of work strongly
connected to this work concerns the study of efficient approaches
for feature selection applied to the LtR task. Among the most promi-
nent efforts in this field, we list the one from Gigli et al. [20]. In [20],
the authors propose to use the Hierarchical agglomerative Clus-
tering Algorithm for feature Selection (HCAS) to select features to
be fed to a LtR algorithm in both a fast and effective way. Follow-
ing a similar line of thoughts, Lucchese and Nardini [29] highlight
the importance of feature selection to obtain computationally effi-
cient LtR solutions. In particular, in [29], the authors reiterate the
extent of the trade-off between efficiency and effectiveness that
characterize LtR and the role of features selection in improving the
former without excessively degrading the latter. Finally, Lai et al.
[27] propose an optimization strategy for feature selection while
Purpura et al. [37] exploit a neural networks based approach. Both
endeavours mentioned above do not focus on efficiency aspects but
highlight the improved effectiveness of LtR approaches if used in
combination with feature selection solutions.

3 METHODOLOGY
3.1 Feature Selection as a Quadratic Problem
Identifying the appropriate features is not trivial and depends on
the data, task and context of interest, e.g., obtain the best possible
model accuracy, discard correlated features to reduce redundancy,
minimize the number of selected features to improve scalability,
and so on.

Quadratic models for feature weighting and selection have been
studied for several years [25, 40]. While feature weighting is a sim-
pler task, since when the problem coefficients are semi-definite
positive the optimization problem is convex and can be solved
rapidly, feature selection is an NP-hard problem. In this work, we
focus only on feature selection, since it is the hardest task and can
possibly lead to bigger gains. This section describes three quadratic
models for feature selection represented with the QUBO formula-
tion of optimization problems, which allows us to easily describe
many important NP-complete and NP-hard problems [21, 28]. The
QUBO formulation is defined as follows:

min 𝑦 = 𝑥𝑇𝑄𝑥

where 𝑥 ∈ {0, 1}𝑚 is a vector of𝑚 binary variables and𝑄 is an𝑚×𝑚
matrix that defines the function to optimize. In all the following
methods, each feature will be associated to a binary variable to

indicate whether it should be selected or not, therefore 𝑚 = |𝐹 |
with 𝐹 the set of existing features.

3.1.1 MIQUBO. Mutual Information QUBO (MIQUBO) is a qua-
dratic feature selection model based on Mutual Information. Its
objective is to maximize the mutual information between selected
features and the target variable as well as the conditional mutual
information between a feature and the target, given other selected
features. MIQUBO is defined as:

𝑄𝑖 𝑗 =

{
−𝑀𝐼 (𝑓𝑖 , 𝑦 |𝑓𝑗) 𝑖 𝑓 𝑖 ≠ 𝑗

−𝑀𝐼 (𝑓𝑖 , 𝑦) 𝑖 𝑓 𝑖 = 𝑗

where 𝑀𝐼 (𝑓𝑖 , 𝑦) is the mutual information [36, 43, 49] between
feature 𝑓𝑖 and target 𝑦 and 𝑀𝐼 (𝑓𝑖 , 𝑦 |𝑓𝑗) is the conditional mutual
information between feature 𝑓𝑖 and target 𝑦 given feature 𝑓𝑗 . Since
mutual information is always non-negative, MIQUBO has a trivial
solution where all features are selected. Due to this MIQUBO re-
quires to specify what is the desired number of feature to select by
introducing a penalization term.

3.1.2 QUBO-Correlation. This strategy, originally proposed by
Ferreira and Figueiredo [18], is based on the Pearson Correlation.
QUBO-Correlation aims to maximize the correlation between the
selected features and the target variable, but also to minimize the
correlation among the selected features in order to reduce redun-
dancy. QUBO-Correlation is defined as:

𝑄𝑖 𝑗 =

{
−𝑟 (𝑓𝑖 , 𝑓𝑗) 𝑖 𝑓 𝑖 ≠ 𝑗

𝑟 (𝑓𝑖 , 𝑦) 𝑖 𝑓 𝑖 = 𝑗

where 𝑟 (·, ·) is the Pearson’s 𝑟 Correlation.

3.1.3 QUBO-Boosting. This technique estimates the information
content of a feature based on the predictions computed by a clas-
sifier using only that feature and is inspired by the work done by
Neven et al. [34]. QUBO-Boosting operates by first training |𝐹 | dif-
ferent Support Vector Classifier (SVC), one per each existing feature.
The trained classifier is then used to compute the predicted class for
each sample. The correlation between the predicted label and the
correct one is used to assess the information content of the feature.
QUBO-Boosting is defined as follows:

𝑄𝑖 𝑗 =

{
𝑟 (ℎ𝑖 , ℎ 𝑗) 𝑖 𝑓 𝑖 ≠ 𝑗
𝑆
|𝐹 |2 + _ − 2 ∗ 𝑟 (ℎ𝑖 , 𝑦) 𝑖 𝑓 𝑖 = 𝑗

where ℎ𝑖 is the predicted classification of the SVC trained only
on feature 𝑖 , 𝑆 is the number of samples in the dataset and _ is
a hyperparameter. Note that the classifier used to compute the
coefficients is independent from the one that will be trained using
the selected features and both can be changed freely depending on
the scenario of interest.

3.1.4 Selecting k features. In order to control the selection of a
desired number of features, it is possible to include in the objec-
tive function a penalty term. This penalty term will be minimized
when 𝑘 variables have value 1. The resulting optimization problem
becomes:

min 𝑦 = 𝑥𝑇𝑄𝑥 +
(
𝑁∑︁
𝑖=1

𝑥𝑖 − 𝑘

)2

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2816

Note that this penalty term is essential for methods like MIQUBO
that have a trivial solution where all features are selected, while
for the other methods it allows to improve the control on the final
outcome.

3.2 Solving QUBO with Traditional Approaches
The QUBO formulation is rather flexible and such problems can
be solved with several techniques. Among them, in this work we
consider the following:

Simulated Annealing (SA): it is ametaheuristic used to search
for solutions of discrete optimization problems [26]. Based
on a temperature parameter decreasing to zero, it searches lo-
cally for better solutions while accepting energy-increasing
moves with a certain probability that depends on the tem-
perature.

Tabu Search (TS): it is a metahueristic for discrete optimiza-
tion problems [35]. It performs local search and accepts en-
ergy increasingmoves only if no improvingmove is available.
Moreover, it forbids moves to already visited states.

Steepest Descent (SD): starting from an initial solution, at
each step this algorithm performs the variable flip that re-
duces the energy the most.

3.3 Solving QUBO with Quantum Annealing
Besides traditional approaches, QUBO problems are particularly
well suited to be solved via Quantum Annealing (QA). The term
QA [4] originally referred to a meta-heuristic that was proposed as
an improvement of Simulated Annealing (SA) [2] for the optimiza-
tion of objective functions where the quality of a solution is seen
as analogous to an energy. In particular, SA operates by simulating
thermal fluctuations and is prone to remain trapped into local op-
tima that are surrounded by a high energy barrier, i.e., the worse
are the solutions adjacent to the current one, the more difficult for
SA is to explore the solution space. QA was instead designed to
leverage quantum tunneling in such a way that even when sur-
rounded by a high energy barrier there is a certain probability to
tunnel through and escape the local optima. Quantum tunneling is
a well-understood quantum mechanical phenomena and, as such,
the original proposal for QA simulated the process on the available
classical systems.

This work instead adopts a different approach to QA, that is to
leverage a special-purpose physical device that already exhibits the
needed quantum behavior, i.e., a Quantum Annealer or Quantum
Processing Unit (QPU). In a QPU the function to optimize is repre-
sented as the energy landscape of a physical system, referred to as
theHamiltonian [15], and the device acts as a sampler of low-energy
solutions.

3.3.1 Steps to Use a QPU. Using a special-purpose device to solve
QUBO problems brings advantages and disadvantages. The most
significant advantage is the very low time-to-solution, as hundreds
of solutions can be sampled in few milliseconds. As a downside, a
physical device has stringent constraints on the size of the problems
it can be used to solve. In particular, in a QPU each variable is
represented with a qubit. The qubits are connected according to a
certain topology and only a limited number of connections between
qubits exist. Connections corresponds to entries in the Q matrix of

the QUBO problem. In this paper the D-Wave Advantage QPU is
used, which has 5600 qubit and a topology called Pegasus, in which
every qubit is connected to 15 others [8]. This quantum computer
easily accessible on the cloud.1

Problem Formulation. A QPU operates by finding the minimums
of a certain energy landscape, called Hamiltonian. The Hamiltonian
is described as a function of the QUBO formulation. The QPU can
use the QUBO formulation directly and therefore there is no need
for more complex representations as is instead the case for universal
quantum computers.

Embedding a QUBO problem on the QPU. When using a QPU to
solve a QUBO problem, the first step is to ensure that the problem
can fit on the hardware given its limited connectivity and number
of qubits. This step is called minor embedding [13] and operates
by transforming the original QUBO problem in an equivalent one
that accounts for the QPU limited connectivity. This is done, for
example, by creating additional variables that will inherit some of
the connections of the original ones. Figure 1 shows an example of
a QUBO problem with a triangular structure, that is three variables
connected to each other. If such a structure cannot be mapped
in the device, the problem structure is transformed into a square
by creating an auxiliary variable, therefore using two qubits to
represent a single variable. Due to this process, it is not easy to
define a relation between the number of QUBO problem variables
and the number of qubits required by the QPU, as the topology
of the QUBO problem (i.e., the structure of the Q matrix) plays
a significant role. This embedding phase can be performed with
algorithms that run in polynomial time [13].

Sampling Solutions. Once the problem has been embedded, it is
possible to submit the problem to the QPU via APIs. The device op-
erates by sampling low-energy solutions by repeating the physical
QA process multiple times for the desired length of time. Depending
on the problem, it may be more ore less likely that a good solution is
sampled, therefore it is common to sample a significant number of
solutions, typical values are 102−104. Each solution is associated to
the corresponding energy, which can be used to select the desired
ones.

Advanced Controls. The QPU has several settings that can be
used to control the underlying physical process, such as the dura-
tion of the annealing process that returns a single sample (typical
durations are between 1 − 100`𝑠), the schedule of the annealing
process, time offsets for different qubits etc. Finding the optimal
setup of the physical process is a complex task that is yet not well-
understood and therefore constitutes an open research question
that goes beyond the scope of this work.

In this work, we explore two state-of-the-art approaches to QA:

Advantage Quantum Annealer (QPU): uses a real QPU to
search for solutions, with default hyperparameters (in par-
ticular, annealing time of 20`𝑠).

D-wave Leap Hybrid (Hybrid): uses a hybrid quantum-classical
approach to decompose the QUBO problem and partially

1https://www.dwavesys.com/solutions-and-products/cloud-platform/

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2817

https://www.dwavesys.com/solutions-and-products/cloud-platform/

A

B

C

(a) A QUBO problem with a triangular structure.

A2 C - -

A1 B - -

(b) A possible embedding into a Chimera graph.

Figure 1: Example of how a problem is embedded in a Quan-
tum Annealer topology. Figure 1a shows the structure of a
QUBO problem and Figure 1b shows a portion of the Chimera
topology, an earlier version of Pegasus. Each node represents
a qubit and each edge a connection. Each qubit is connected
to 4 others of the same cell and to others in different cells.
In this case, the triangular problem structure cannot fit di-
rectly into the Chimera cell topology therefore the problem
variable A becomes a logical variable represented by two dif-
ferent qubits A1 and A2.

solve smaller problems directly on the annealer; available as
a cloud service from D-Wave Leap2.

4 EXPERIMENTAL PIPELINE
The effectiveness of the QPU is assessed on two different tasks,
classification and ranking. This section presents the tasks, the used
datasets and algorithms as well as the details of the experimental
pipeline. The source code to reproduce these experiments is publicly
available online. 3

4.1 Classification Task
The classification task consists in classifying a sample from a dataset
(such as an image, a sound, a sentence) into two or more differ-
ent classes, based on the sample’s features. These features can be
heterogeneous (numerical, categorical) and may refer to a direct
measurement (e.g., the size of an object) or may be extracted from
other data (e.g., the number of times a certain word appears in a
text). Given the usually high number of features, feature selection
is important and largely used in classification, in order to identify
the most useful subset of features for the specific task.

Dataset. For the classification experiments, datasets are taken
from OpenML [47], with a number of features ranging from 34
to 5000. The datasets come from heterogeneous fields and tasks,
among which: clinical diagnosis (waveform-5000, SPECTF), organic
chemistry (Bioresponse), forest cover type (covertype), duplicate
locations resolution (nomao), digit recognition (USPS, SVHN_small,

2D-Wave Leap - https://cloud.dwavesys.com/leap/
3https://github.com/qcpolimi/SIGIR22_QuantumFeatureSelection.git

gisette), e-mail filtering (spambase). Some datasets have features
extracted from images (SPECTF, SVHN_small, USPS, gisette), sig-
nals (waveform-5000), e-mail text (spambase) and even sound (isolet).
The number of samples spans from a couple hundreds to tens of
thousand, with one large dataset of hundreds of thousands samples
(covertype). Almost every dataset has two classes, except from
waveform-5000 (3), USPS and SVHN_small (10) and isolet (26).

Classification algorithm. The algorithm used for the classification
task is Random Forest, which is a widely used ensemble method that
builds multiple decision trees. The class is determined by voting as
the one selected by the most random trees. Random Forest has been
chosen because it is able to provide good classification accuracy
with limited fine-tuning and generally works well across multiple
tasks and domains, which makes it well-suited for this study. The
optimized metric is classification accuracy.

Data split. The dataset is randomly split in two sets, training and
testing, respectively with 70% and 30% of the samples. The splits
are generated by randomly sampling data samples but ensuring
the approximate class distribution is maintained. This is especially
important for datasets that exhibit class imbalance. Due to the
limited size of some datasets, 5-fold Cross Validation is applied on
the training data instead of creating a further split for validation.

4.2 Ranking Task
To evaluate the different feature selection strategies in a traditional
IR setting, we consider the LtR task. The LtR task requires sorting a
set of documents according to their expected relevance for a given
query. For each query document pair, a set of features is computed.
Additionally, for the pairs query document used during the training
phase, we have the relevance judgments describing whether the
document is relevant to the query. An LtR approach often consists
in training a model, using relevance judgments as supervision, that
uses features of query document pairs to predict the document
relevance to the query. This, in turn, allows sorting the documents
according to the predicted relevance for a query.

Dataset. Following previous literature on LtR, we adopt LETOR
to assess the performance of different feature selectors. LETOR is a
collection of datasets explicitly meant for the LtR task. Currently,
there are two main versions, LETOR 3.0 [38] and LETOR 4.0 [39]
that incorporate respectively seven and two distinct datasets.

LETOR 3.0 includes seven different datasets, among which in
our experiments we consider OHSUMED. The corpus of this dataset
contains more than 300,000 scientific publications (title and abstract
of medical papers). OHSUMED includes 45 features. Relevance in the
OHSUMED collection is ternary and can be either 0, 1, or 2. Such
values are assigned respectively to non-relevant, partially relevant,
and highly relevant documents.

LETOR 4.0 contains the MQ2007 and MQ2008 datasets. They are
built upon TREC Million Queries track from the years 2007 and
2008 and have 1700 and 800 queries each. MQ2007 and MQ2008 are
based on the .gov2 collection that consists of more than 25 mil-
lion documents. Akin to OHSUMED, relevance judgements for both
MQ2007 and MQ2008 are ternary. For each pair query document to
be reranked, LETOR 4.0 contains 46 features.

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2818

https://cloud.dwavesys.com/leap/
https://github.com/qcpolimi/SIGIR22_QuantumFeatureSelection.git

Ranking algorithm. LambdaMART [9] is a state-of-the-art LtR
approach that combines the LambdaRank [10] optimization algo-
rithm and Multiple Additive Regression Trees (MART) [19]. We
adopt the implementation of LambdaMART available in RankLib4,
with default hyperparameters. We used nDCG with a cutoff at ten
as optimization measure, as commonly done in the literature.

Data split. Given the cost of selecting the features using quantum-
based strategies, we limit our analysis to a single collection split. In
particular, for each dataset, we use 60% of the queries as a training
set – both select the features and train the classifiers. The remain-
ing 40% of the queries in each dataset are split evenly in validation
and test sets: the former allows selecting the optimal number of
features, and the latter serves to evaluate the performance of the
classifiers.

4.3 Selecting the optimal set of features
Feature selection is performed by applying to the training data
QUBO and the baseline linear feature selection methods described
in Section 2. Note that all methods require to specify the number of
features to be selected, 𝑘 , which constitutes a hyperparameter. How
the 𝑘 features are selected differs between linear filter methods
and QUBO-based methods. For linear filter methods the 𝑘 features
selected are the ones with the highest computed scores. For QUBO
methods a component is added to the loss function as described
in Section 3.1.4. The search range for 𝑘 depends on the number
of features |𝐹 | of the dataset. If there are less than 50 features, 𝑘
is selected from a range between 1 and |𝐹 | with a unitary step.
Otherwise, a maximum of 50 values for 𝑘 are explored, equally
distributed between 1 and |𝐹 | excluded.

For each of the explored 𝑘 values, the resulting selected features
are used to train either the classifier or the ranker, depending on
the task, and the resulting model is evaluated on the validation data.
Note that the number 𝑁 of selected features may be different from
𝑘 , the target number of features to be selected, because the target
value 𝑘 is expressed as a soft constraint. The 𝑁 value associated to
the features with the best model quality on the validation data is
selected and a final model is trained on the union of training and
validation data. The quality of this model evaluated on the test data
is then reported.

For all QUBO solvers 100 solutions are generated or sampled, ex-
cept for the Leap Hybrid method that only returns the best solution
found according to its energy.

5 RESULTS
This section presents the results aiming to assess the capability
of the QPU to solve QUBO problems competitively, by comparing
the solutions obtained by all QUBO solvers both in terms of effec-
tiveness and efficiency. Overall, more than 10k experiments were
conducted, of which 900 on the QPU directly and 1650 using the
Hybrid solver.

5.1 Effectiveness
The results obtained by the QUBO solvers are compared and dis-
played in Table 1 (Classification Task) and Table 2 (Ranking Task).

4https://sourceforge.net/p/lemur/wiki/RankLib/

To determine statistically significant differences between fea-
tures selection strategies applied to the classification task, we em-
ploy the McNemar’s test with significance level 𝛼 = 0.05 and Bon-
ferroni correction following the procedure described by Japkowicz
and Shah [23]. As a general trend, quantum solvers perform as well
as traditional ones, as expected. The only exception to this pattern
is represented by the covertype dataset, where, in several cases,
there are statistically significant differences between different ap-
proaches. It should be noted that, even for covertype, there is no
dominance of traditional solvers over quantum ones, nor vice versa:
the best performing solver is linked to the chosen heuristics.

Concerning the ranking task, we assess the presence of statis-
tically significant differences between selection strategies using a
two-way ANOVA, with topic and feature selector factors, followed
by Tukey’s posthoc pairwise comparison procedure with signifi-
cance level 𝛼 = 0.05. Such a comparison strategy follows the one
proposed originally by [42], where the system factor is replaced
with the feature selector one. On all collections, the statistical pro-
cedure does not deem any selector to be statistically better than
others. This indicates overall comparable performance when using
either traditional or quantum approaches to the solution of the
QUBO problem: using quantum strategies, we can expect results
that are at least as good as those that we would have achieved
otherwise.

The first observation that can be made is that there is no single
QUBO solver that is superior to the others, rather, the solver that is
able to achieve the best result is different depending on the dataset.
Across all experiments TS is able to reach the best result 11 times,
SA and QPU 8 times, Hybrid 7 times and SD 6 times. This is likely
due to the peculiarities of each dataset, task and, to some extent,
the stochastic nature of some solvers. Some differences instead
emerge by comparing across tasks, in particular no feature selection
approach is able to improve the effectiveness on dataset MQ2008
and the Hybrid solver is slightly less effective when applied to the
Ranking task. The behavior of the various QUBO solvers remains
instead consistent across the feature selection methods, although
different QUBO heuristics result in different overall effectiveness.
For example, MIQUBO appears to produce better results compared
to the others.

Looking at the QPU solver, its effectiveness is very close, if not
almost identical, to that of the other solvers, sometimes resulting
in the best selection of features. In very few cases the solution
obtained with the QPU is worse compared to the other solvers, but
within 5% of the best one. This result indicates that the QPU is
indeed a reliable solver that can be used to tackle real problems
across different datasets, heuristics and tasks. Note however that
the largest problem that could be solved directly on the QPU had
124 features. Although the QPU has more than 5000 qubits, the
QUBO matrix resulting from the feature-selection problem is fully-
connected and therefore its structure is difficult to fit on the limited
connectivity structure of the QPU, therefore the problem size that
can fit the hardware is greatly reduced. For larger problems it is
still possible to use the Hybrid QPU-Classical approach, which was
used for datasets of up to 5000 features but is able to tackle even
larger problems.

In terms of the number of selected features, again no clear pattern
emerges with no solver able to consistently provide better solutions

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2819

Table 1: Classification accuracy for all QUBO feature selection methods. The first column refers to all dataset features, the
other columns refer to the various solvers used to solve the QUBO feature selection problem. Superscripts 𝐴, 𝐷 and 𝑇 indicate
statistical difference between the Quantum Solvers and Simulated Annealing, Steepest Descent and Tabu Search respectively,
determined using the procedure described in Section 5. The best results for each QUBO method and dataset are highlighted in
bold. Results are missing for the QPU when the problem required more qubits than the available ones, in such instances the
only Quantum Solver that could be used is Hybrid.

Method Dataset
All Features Quantum Solver Traditional Solver

QPU Hybrid SA SD TS
F Accuracy N Accuracy N Accuracy N Accuracy N Accuracy N Accuracy

QUBO
Correlation

waveform-5000 40 0.8540 31 0.8393 36 0.8333 36 0.8320 34 0.8333 40 0.8593
SPECTF 44 0.8667 14 0.8476 16 0.8286 18 0.8286 16 0.8381 15 0.8476
covertype 54 0.9605 46 0.9526𝐴𝐷𝑇 43 0.9352𝑇 41 0.9347 43 0.9342 49 0.9646
spambase 57 0.9631 47 0.9573 47 0.9594 51 0.9602 50 0.9587 56 0.9660
nomao 118 0.9654 93 0.9659 104 0.9649 110 0.9654 111 0.9650 118 0.9654
tecator 124 0.9167 67 0.9306 26 0.9306 26 0.9028 35 0.9167 79 0.9167
USPS 256 0.9642 - 198 0.9599 201 0.9613 204 0.9624 253 0.9599
isolet 617 0.9432 - 565 0.9402 565 0.9406 556 0.9402 617 0.9406
Bioresponse 1776 0.7913 - 76 0.7940 76 0.7948 403 0.8002 387 0.7984
SVHN_small 3072 0.5801 - 401 0.5170𝑇 401 0.5203 352 0.5166 1468 0.5619
gisette 5000 0.9676 - 4536 0.9471𝑇 4536 0.9486 4536 0.9462 2560 0.9681

QUBO
Boosting

waveform-5000 40 0.8540 23 0.8287 24 0.8620 23 0.8567 25 0.8520 28 0.8567
SPECTF 44 0.8667 6 0.8286 30 0.8857 29 0.8571 26 0.8286 13 0.8571
covertype 54 0.9605 33 0.9621𝐴𝐷𝑇 31 0.9667𝐴𝐷𝑇 30 0.9697 33 0.9643 25 0.9650
spambase 57 0.9631 37 0.9558 35 0.9529 37 0.9573 36 0.9566 53 0.9587
nomao 118 0.9654 64 0.9655 79 0.9645 79 0.9641 76 0.9650 112 0.9667
tecator 124 0.9167 69 0.9167 23 0.9167 14 0.9167 40 0.8889 16 0.9444
USPS 256 0.9642 - 161 0.9573 161 0.9613 165 0.9591 234 0.9624
isolet 617 0.9432 - 467 0.9380 495 0.9415 495 0.9406 604 0.9380
Bioresponse 1776 0.7913 - 1229 0.7922 997 0.7940 1345 0.7948 1123 0.7993
SVHN_small 3072 0.5801 - 2245 0.5670 1855 0.5623 2099 0.5831 1469 0.5619
gisette 5000 0.9676 - 1750 0.9729 2079 0.9752 1002 0.9733 2558 0.9690

MIQUBO

waveform-5000 40 0.8540 20 0.8547 20 0.8553 27 0.8580 38 0.8540 40 0.8493
SPECTF 44 0.8667 44 0.8857 44 0.8857 44 0.8857 44 0.8476 44 0.8476
covertype 54 0.9605 50 0.9646𝐴𝑇 49 0.9616𝐷𝑇 36 0.9624 27 0.9642 54 0.9605
spambase 57 0.9631 52 0.9638 53 0.9616 52 0.9645 54 0.9638 57 0.9660
nomao 118 0.9654 96 0.9667 109 0.9656 118 0.9656 113 0.9661 118 0.9656
tecator 124 0.9167 67 0.9167 8 0.9167 42 0.9167 19 0.9167 124 0.9167
USPS 256 0.9642 - 219 0.9620 256 0.9624 185 0.9649 256 0.9634
isolet 617 0.9432 - 501 0.9436 617 0.9389 600 0.9410 617 0.9427
Bioresponse 1776 0.7913 - 1709 0.7966 1419 0.7922 1492 0.7869 1776 0.7922
SVHN_small 3072 0.5801 - 1871 0.5787 1337 0.5787 2136 0.5911 1609 0.5697
gisette 5000 0.9676 - 1076 0.9743 1382 0.9771 2705 0.9710 2598 0.9686

Table 2: NDCG at 10 on the Ranking task for all QUBO feature selection methods. The first column refers to all dataset features,
the other columns refer to the various solvers used to solve the QUBO feature selection problem. The best results for each
QUBO method and dataset are highlighted in bold.

Method Dataset
All Features Quantum Solver Traditional Solver

QPU Hybrid SA SD TS
F NDCG N NDCG N NDCG N NDCG N NDCG N NDCG

QUBO
Correlation

OHSUMED 45 0.3882 35 0.3706 44 0.3659 44 0.3903 44 0.3872 26 0.3332
MQ2007 46 0.4721 43 0.4731 39 0.4720 39 0.4738 28 0.4733 24 0.4757
MQ2008 46 0.4891 4 0.4831 21 0.4677 21 0.4657 19 0.4854 25 0.4609

QUBO
Boosting

OHSUMED 45 0.3882 9 0.3457 32 0.3632 19 0.3382 40 0.4002 23 0.3884
MQ2007 46 0.4721 43 0.4760 37 0.4638 42 0.4632 36 0.4640 35 0.4662
MQ2008 46 0.4891 8 0.4599 8 0.4736 20 0.4852 39 0.4759 34 0.4853

MIQUBO
OHSUMED 45 0.3882 11 0.3685 17 0.3750 17 0.3942 6 0.3755 4 0.3882
MQ2007 46 0.4721 25 0.4798 34 0.4722 34 0.4685 34 0.4722 2 0.4721
MQ2008 46 0.4891 1 0.4743 18 0.4791 18 0.4791 18 0.4791 18 0.4891

with a lower number of selected features. Comparing the number
of selected features with the desired number, i.e., 𝑘 , reveals that in
half of all cases the number of actually selected features is within
10% of 𝑘 , while the remaining half is split equally in cases where the

number of selected features is lower and higher. Since the desired
number of features is a penalty, as described in subsection 3.1.4,
increasing its strength in the final QUBO problem will allow to
better control the resulting number of selected features.

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2820

Table 3: Effectiveness of the baseline linear feature selection
methods on the Classification and Ranking tasks, measured
respectively with classification accuracy and NDCG at 10.
Results that are better than or equal to the ones using all the
features or QUBO methods are highlighted in bold.

Dataset ANOVA Chi2
Test MI Pearson

Corr.
Linear
Boost.

Variance
Thr.

waveform-5000 0.8593 0.6893 0.8573 0.8473 0.8533 0.8567
SPECTF 0.8857 0.8571 0.8190 0.8762 0.8762 0.8571
covertype 0.9644 0.9642 0.9612 0.9610 0.9678 0.9655
spambase 0.9616 0.9638 0.9631 0.9529 0.9681 0.9616
nomao 0.9654 0.9639 0.9656 0.9646 0.9652 0.9648
tecator 0.9306 0.8472 0.9028 0.9028 0.9306 0.9167
USPS 0.9616 0.9616 0.9624 0.9627 0.9631 0.9652
isolet 0.9372 0.9406 0.9406 0.9432 0.9389 0.9444
Bioresponse 0.7966 0.7948 0.7824 0.7851 0.7922 0.7975
SVHN_small 0.5747 0.5770 0.5606 0.5596 0.5636 0.5616
gisette 0.9748 0.9181 0.9748 0.9700 0.9748 0.9710

OHSUMED 0.3639 0.3475 0.3582 0.3639 0.3900 0.3470
MQ2007 0.4714 0.4614 0.4722 0.4696 0.4703 0.4693
MQ2008 0.4853 0.4788 0.4806 0.4853 0.4831 0.4748

Lastly, Table 3 compares the effectiveness of simple linear feature
selection baselines. Such baselines are generally unable to provide
better solutions when compared with the QUBO models and the
baseline using all features. For the classification task SVC Boosting
and Variance Threshold are able to provide better solutions in two
cases each, but for different datasets, while for the ranking task
none of the baselines exhibits better solution effectiveness.

5.2 Efficiency
This section discusses the computational cost of each step required
to use the QPU, following the same structure as Section 3.3.1. The
experiments for all Quantum and Classical solvers have been con-
ducted on the same machine to ensure the computational time is
comparable and measure the time-to-solution as observed by the
local client. For the Traditional Solvers, the time-to-solution of the
QUBO problem corresponds to the actual time spent by the solver
in finding a solution. For the Quantum Solvers, instead, the time-to-
solution has three components: Embedding + Latency + Sampling,
as detailed in Table 5. Due to the characteristics of the embedding
process, as will be described in this section, for the QPU Solver we
consider the time-to-solution as only Latency + Sampling, keeping
the Embedding time separate.

Problem Formulation. In order to allow a fair comparison of the
time-to-solution of the QUBO solvers one first has to account for
the time required to compute the heuristics used by the QUBO
problem itself. This is a computationally expensive step that de-
pends both on the number of features and the number of samples
in the dataset, roughly requiring to compute |𝐹 |2/2 coefficients.
This process requires a few seconds until the number of features ex-
ceeds 600. For example, computing the QUBO coefficients requires
a maximum of ten seconds for USPS, while it requires between 4
minutes and one hour for gisette, depending on the heuristic. The
time required to compute the QUBO coefficients must be taken into
account to ensure the time required to solve the problem by the
various solvers is put in the right perspective. It should be noted

however that the QUBO coefficients must be computed only once
and then it can be reused, e.g., deriving the QUBO for each 𝑘 value,
to search for different hyperparameters for the QUBO problem or
to for the solver etc. Overall, even though in some cases the time re-
quired to generate the QUBO coefficients is quite long, it is always
lower than the time required to solve it.

Embedding on the QPU. Table 5 shows the detail of the compu-
tational time for the QPU. First, the time required for the minor
embedding process varies greatly and while it is in the range of sec-
onds for smaller problems, it can be up to two minutes for problems
of a size close to the maximum that can fit on the QPU. Although
fully-connected problems are the most difficult and slowest to em-
bed, the embedding only depends on the problem structure, not
on the specific coefficients. This means that the embedding for a
fully-connected QUBO problem of a certain number of variables
can be computed once and then it can be reused for any other
fully-connected QUBO problem.

Sampling Solutions. Table 4, instead, compares the computational
time required by all solvers for theMIQUBO and QUBO-Correlation
problems. QUBO-Boosting is omitted for space reasons as it behaves
very similarly to QUBO-Correlation. The full results are available
in the online material. For both QUBO-Correlation and QUBO-
Boosting the QPU has a solution time always lower than both SA
and TS, with only SD being faster. In particular, for problems close
to the maximum size that can fit on the QPU, SA has a solution
time of three times that of the QPU while TS six times. For larger
problems, the time gap between SD and TS reduces drastically and
Hybrid becomes the fastest solver. It is interesting to notice how for
the largest problem of 5000 features SA requires ten times longer
than Hybrid. MIQUBO instead shows a different behaviour, with SA
comparably much faster and able to show better performance than
the QPU for smaller problems. As the problem size grows however
the solvers show a similar behaviour as that of QUBO-Correlation,
with Hybrid becoming the fastest solver, SA and TS close at twice
its solution time and SA being the slowest.

As a general observation it can be seen how the computational
time grows as the number of features increases, as can be expected
due to the increased problem complexity and values of 𝑘 explored.
The main reason for the increase is however different for classical
solvers and the QPU. For classical solvers, the increased solution
time is due essentially the greater problem complexity. The QPU
instead has a fixed annealing time such that the solution is always
returned in constant time for any problem that can fit on its hard-
ware. In these experiments the increased computational time is
essentially due to the data transfer, since the coefficients are trans-
mitted to the QPU over the global network and bigger problems
will require to transfer more data. Similarly, the Hybrid solver too
has a time limit which is a function of the problem size. Note that
the constant solution time by the QPU does not offer guarantees
regarding its solution quality. For more complex problems it may be
needed to sample an increasing number of solutions or to increase
the duration of the annealing process. In general, there is no agreed
rule on how to choose those settings that impact the underlying
physical process. Some bounds have been proven rigorously but
only for ideal devices and are, in practice, not applicable to the
available QPUs [31].

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2821

Table 4: Total time (in seconds) required to solve the 𝑘 QUBO models with different QUBO solvers, for both the Classification
and the Ranking tasks. Due to space limitations, only two of the three methods are reported. However, QUBO-Boosting behaves
similarly to QUBO-Correlation, and the complete results can be found in the online material. Results are missing for the QPU
when the problem required more qubits than the available ones, in such instances the only Quantum Solver that could be used
is Hybrid.

Dataset F
QUBO-Correlation MIQUBO

Quantum Solver Traditional Solver Quantum Solver Traditional Solver
QPU Hybrid SA SD TS QPU Hybrid SA SD TS

waveform-5000 40 39.0 394.4 57.9 7.8 474.6 39.2 385.9 7.5 1.0 78.6
SPECTF 44 48.4 426.3 72.3 9.3 522.4 45.1 421.7 9.5 1.2 86.7
covertype 54 130.1 491.5 17.0 1.9 99.1 127.3 809.9 17.0 1.9 99.0
spambase 57 65.9 487.4 107.1 15.7 598.9 51.5 486.4 17.6 2.0 99.1
nomao 118 100.1 507.5 323.6 54.3 620.9 98.1 512.5 46.6 7.9 101.9
tecator 124 95.6 504.3 374.2 57.7 623.5 90.2 515.1 62.3 8.8 102.3
USPS 256 - 541.1 1174.0 220.4 785.2 - 542.6 138.0 34.6 124.3
isolet 617 - 640.2 6280.7 1260.4 1735.7 - 642.4 838.1 201.6 263.8
Bioresponse 1776 - 1435.1 53978.2 10814.2 10531.4 - 1423.4 11031.8 1727.8 1632.8
SVHN_small 3072 - 3575.4 124041.7 33802.1 32440.0 - 3591.1 23332.5 5455.9 5146.8
gisette 5000 - 8666.3 80062.4 18811.6 18238.1 - 8606.4 78635.7 14210.1 14610.5

OHSUMED 45 154.1 436.8 13.5 1.7 89.4 497.9 435.1 13.9 1.5 89.2
MQ2007 46 472.5 444.5 15.6 1.9 91.5 74.0 445.0 12.8 1.5 91.2
MQ2008 46 122.7 436.7 15.0 1.6 91.7 96.4 443.1 13.0 1.5 91.3

Table 5: Drill down of the time (in seconds) required to
solve the QUBO models generated with MIQUBO. The other
heuristics behave similarly. The Embedding column refers
to the time required to embed the problem on the QPU. The
columns under QPU show the time-to-solution as observed
by the local client (Total), which corresponds to the QPU
time reported in Table 4, splitted between the actual physi-
cal annealing process (Sampling) and the latency due to the
data transfer as well as further waiting time after the task is
queued (Latency). Note that the Latency time is more than
one order of magnitude higher than the Sampling time.

Dataset F Embedding QPU
Total Sampling Latency

waveform-5000 40 7.0 39.2 0.9 38.3
SPECTF 44 5.3 45.1 1.1 44.0
covertype 54 7.9 127.3 1.2 126.1
spambase 57 14.2 51.5 1.0 50.5
nomao 118 209.9 98.1 1.6 96.5
tecator 124 164.6 90.2 1.5 88.7

OHSUMED 45 7.2 497.9 1.0 496.9
MQ2007 46 17.0 74.0 1.0 72.9
MQ2008 46 10.3 96.4 1.2 95.3

Another important aspect apparent from Table 5 is the large
difference between the actual duration of the physical annealing
process and the time spent by the client waiting for the response.
This constitutes another limitation of the current way a QPU can
be used as it creates a very large overhead due to the high-latency
transfer of the problem data and solution through the global internet
network and includes possible waiting time until the QPU becomes
available.

Overall, most of the time currently required to solve a fully-
connected QUBO problemwith a QPU can be eliminated by offering
pre-built embeddings and low-latency access.

6 DISCUSSION AND FUTUREWORKS
This work shows the application of currently available Quantum
Annealer technology to the feature selection task in classification
and ranking problems. The results show that:

(1) Quantum Annealing can be used to solve the feature selec-
tion task and the quality of the solutions obtained for both
classification and ranking problems, either in terms of accu-
racy or NDCG, is comparable with the quality obtained with
traditional solvers;

(2) for problems able to fit within the number of available qubits,
Quantum Annealing requires less time than any other tra-
ditional solver, while for very large problems the Hybrid
quantum-classical solver is faster than traditional solvers.

From a broader perspective, this study provides evidence that
Quantum Annealer technology has evolved to the point that it can
be used to tackle real problems. This, in combination with the sim-
ple computing model and the easy access to Quantum Annealers
in the cloud opens new research directions in the application of
this technology to tackle computationally intensive tasks in many
IR domains. There is a significant need to identify which are the
tasks that fit well in a QUBO formulation or can be efficiently ap-
proximated into one by leveraging or developing new heuristics.
Many open questions also lie in understanding how to efficiently
perform the minor embedding phase, especially for problems that
do not have the regular structure of the fully-connected feature
selection one. As the technology and tools improve, it is easy to
imagine a library of precomputed embeddings being available for
problems of particular structures in a similar way as how pretrained
machine learning models are. This would completely remove the
computational cost of generating the embedding for those cases.
Another important direction of improvement is to reduce the effects
of network latency, which will be minimized when quantum tech-
nology is integrated into the low-latency networks of data centers.
Finally, the impact of advanced Quantum Annealer controls and
advanced annealing schedule (e.g., reverse annealing [22]), that

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2822

really bring the researcher or practitioner close to the physics of
the underlying system, can have a strong impact on the solution
quality or on the likelihood of finding a good solution but are not
yet well understood.

Overall, this work has shown that Quadratic Unconstrained
Binary Optimization (QUBO) and Quantum Annealing (QA) are
viable options for improving feature selections for both classifica-
tion and ranking and the above discussion on future perspectives
gives an idea of how much room for improvement is already possi-
ble to imagine. Therefore, it would be definitely worth if we, as a
community, undertake a systematic exploration of these promising
research directions, not forgetting that while feature selection is a
specific task, for other relevant tasks as well it may be possible to
develop a formulation suitable for applying quantum computing
approaches. Ranking and classification are central not only to IR but
also to several neighbourhood areas, such as natural language pro-
cessing and recommender systems. Therefore, we could promote
some joint effort across these communities, in order to maximize
the impact and benefit from cross-fertilization. In this respect, IR
has an extremely long tradition in community-wide cooperation on
shared research activities, very successfully embodied by large scale
evaluation campaigns, as TREC, CLEF, NTCIR and FIRE. It would
be extremely valuable if such initiatives take a lead and promote
the organization of shared activities for exploring the application
of quantum computing to IR, NLP, and RecSys in a comparable and
shared way.

7 ACKNOWLEDGMENTS
We acknowledge the CINECA award under the ISCRA initiative,
for the availability of quantum computing resources and support.
The work was partially supported by University of Padova Strate-
gic Research Infrastructure Grant 2017: “CAPRI: Calcolo ad Alte
Prestazioni per la Ricerca e l’Innovazione”.

REFERENCES
[1] Steven H. Adachi and Maxwell P. Henderson. 2015. Application of Quantum

Annealing to Training of Deep Neural Networks. CoRR abs/1510.06356 (2015).
arXiv:1510.06356 http://arxiv.org/abs/1510.06356

[2] Tameem Albash and Daniel A Lidar. 2018. Adiabatic quantum computation.
Reviews of Modern Physics 90, 1 (2018), 015002.

[3] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and
Roger Melko. 2018. Quantum boltzmann machine. Physical Review X 8, 2 (2018),
021050.

[4] B Apolloni, N Cesa-Bianchi, and D De Falco. 1988. A numerical implementation
of "quantum annealing". Technical Report BIBOS-324. Bielefeld TU. Bielefeld-
Bochum-Stochastik, Bielefeld. https://cds.cern.ch/record/192546

[5] Christian Bauckhage, Nico Piatkowski, Rafet Sifa, Dirk Hecker, and StefanWrobel.
2019. A QUBO Formulation of the k-Medoids Problem. In Proceedings of "Lernen,
Wissen, Daten, Analysen" (CEUR Workshop Proceedings, Vol. 2454). 54–63. http:
//ceur-ws.org/Vol-2454/paper_39.pdf

[6] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?. In FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and
Transparency, Virtual Event / Toronto, Canada, March 3-10, 2021, Madeleine Clare
Elish, William Isaac, and Richard S. Zemel (Eds.). ACM, 610–623. https://doi.org/
10.1145/3442188.3445922

[7] Trevor J. Bihl, Kenneth W. Bauer Jr., and Michael A. Temple. 2016. Feature
Selection for RF Fingerprinting With Multiple Discriminant Analysis and Using
ZigBee Device Emissions. IEEE Trans. Inf. Forensics Secur. 11, 8 (2016), 1862–1874.
https://doi.org/10.1109/TIFS.2016.2561902

[8] Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. 2020. Next-generation
topology of d-wave quantum processors. arXiv preprint arXiv:2003.00133 (2020).

[9] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[10] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning
to Rank with Nonsmooth Cost Functions. In Advances in Neural Information

Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada, De-
cember 4-7, 2006, Bernhard Schölkopf, John C. Platt, and Thomas Hofmann
(Eds.). MIT Press, 193–200. https://proceedings.neurips.cc/paper/2006/hash/
af44c4c56f385c43f2529f9b1b018f6a-Abstract.html

[11] Costantino Carugno, Maurizio Ferrari Dacrema, and Paolo Cremonesi. 2022.
Evaluating the job shop scheduling problem on a D-wave quantum annealer.
Nature Scientific Reports 12, 1 (21 Apr 2022), 6539. https://doi.org/10.1038/s41598-
022-10169-0

[12] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Comput. Electr. Eng. 40, 1 (2014), 16–28. https://doi.org/10.1016/j.
compeleceng.2013.11.024

[13] Vicky Choi. 2008. Minor-embedding in adiabatic quantum computation: I. The
parameter setting problem. Quantum Inf. Process. 7, 5 (2008), 193–209. https:
//doi.org/10.1007/s11128-008-0082-9

[14] Maurizio Ferrari Dacrema, Nicolò Felicioni, and Paolo Cremonesi. 2021. Opti-
mizing the Selection of Recommendation Carousels with Quantum Computing.
In RecSys ’21: Fifteenth ACM Conference on Recommender Systems, Amsterdam,
The Netherlands, 27 September 2021 - 1 October 2021, Humberto Jesús Corona
Pampín, Martha A. Larson, Martijn C. Willemsen, Joseph A. Konstan, Julian J.
McAuley, Jean Garcia-Gathright, Bouke Huurnink, and Even Oldridge (Eds.).
ACM, 691–696. https://doi.org/10.1145/3460231.3478853

[15] Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim
Smelyanskiy, John Martinis, and Hartmut Neven. 2016. What is the Computa-
tional Value of Finite-Range Tunneling? Phys. Rev. X 6 (Aug 2016), 031015. Issue
3. https://doi.org/10.1103/PhysRevX.6.031015

[16] R Dhanya, Irene Rose Paul, Sai Sindhu Akula, Madhumathi Sivakumar, and
Jyothisha J Nair. 2020. F-test feature selection in Stacking ensemble model
for breast cancer prediction. Procedia Computer Science 171 (2020), 1561–1570.
https://doi.org/10.1016/j.procs.2020.04.167 Third International Conference on
Computing and Network Communications (CoCoNet’19).

[17] Maurizio Ferrari Dacrema, Tang-Tang Zhou, Riccardo Nembrini, and Paolo Cre-
monesi. 2021. Quantum Annealing Linear Regression For Collaborative Filter-
ing Recommendations. 2nd European Quantum Technologies Virtual Conference
(EQTC), 29 November, 2021 (2021).

[18] Artur J. Ferreira and Mário A. T. Figueiredo. 2012. Efficient feature selection
filters for high-dimensional data. Pattern Recognit. Lett. 33, 13 (2012), 1794–1804.
https://doi.org/10.1016/j.patrec.2012.05.019

[19] Jerome H. Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29, 5 (2001), 1189–1232. http://www.jstor.org/
stable/2699986

[20] Andrea Gigli, Claudio Lucchese, Franco Maria Nardini, and Raffaele Perego. 2016.
Fast Feature Selection for Learning to Rank. In Proceedings of the 2016 ACM
on International Conference on the Theory of Information Retrieval, ICTIR 2016,
Newark, DE, USA, September 12- 6, 2016, Ben Carterette, Hui Fang, Mounia Lalmas,
and Jian-Yun Nie (Eds.). ACM, 167–170. https://doi.org/10.1145/2970398.2970433

[21] Fred W. Glover, Gary A. Kochenberger, and Yu Du. 2019. Quantum Bridge
Analytics I: a tutorial on formulating and using QUBO models. 4OR 17, 4 (2019),
335–371. https://doi.org/10.1007/s10288-019-00424-y

[22] John K. Golden and Daniel O’Malley. 2020. Reverse Annealing for Nonnega-
tive/Binary Matrix Factorization. CoRR abs/2007.05565 (2020). arXiv:2007.05565
https://arxiv.org/abs/2007.05565

[23] Nathalie Japkowicz andMohak Shah (Eds.). 2011. Evaluating Learning Algorithms:
A Classification Perspective. Cambridge University Press.

[24] Alan Jovic, Karla Brkic, and Nikola Bogunovic. 2015. A review of feature selection
methods with applications. In 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO 2015, Opatija,
Croatia, May 25-29, 2015, Petar Biljanovic, Zeljko Butkovic, Karolj Skala, Branko
Mikac, Marina Cicin-Sain, Vlado Sruk, Slobodan Ribaric, Stjepan Gros, Boris
Vrdoljak, Mladen Mauher, and Andrej Sokolic (Eds.). IEEE, 1200–1205. https:
//doi.org/10.1109/MIPRO.2015.7160458

[25] Alexandr Katrutsa and Vadim V. Strijov. 2017. Comprehensive study of feature
selection methods to solve multicollinearity problem according to evaluation
criteria. Expert Syst. Appl. 76 (2017), 1–11. https://doi.org/10.1016/j.eswa.2017.01.
048

[26] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. 1983. Optimization by
Simmulated Annealing. Sci. 220, 4598 (1983), 671–680.

[27] Hanjiang Lai, Yan Pan, Yong Tang, and Rong Yu. 2013. FSMRank: Feature Selection
Algorithm for Learning to Rank. IEEE Trans. Neural Networks Learn. Syst. 24, 6
(2013), 940–952. https://doi.org/10.1109/TNNLS.2013.2247628

[28] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5. https://doi.org/10.3389/fphy.2014.00005

[29] Claudio Lucchese and Franco Maria Nardini. 2017. Efficiency/Effectiveness Trade-
offs in Learning to Rank. In Proceedings of the ACM SIGIR International Conference
on Theory of Information Retrieval, ICTIR 2017, Amsterdam, The Netherlands,
October 1-4, 2017, Jaap Kamps, Evangelos Kanoulas, Maarten de Rijke, Hui Fang,
and Emine Yilmaz (Eds.). ACM, 329–330. https://doi.org/10.1145/3121050.3121109

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2823

https://arxiv.org/abs/1510.06356
http://arxiv.org/abs/1510.06356
https://cds.cern.ch/record/192546
http://ceur-ws.org/Vol-2454/paper_39.pdf
http://ceur-ws.org/Vol-2454/paper_39.pdf
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1109/TIFS.2016.2561902
https://proceedings.neurips.cc/paper/2006/hash/af44c4c56f385c43f2529f9b1b018f6a-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/af44c4c56f385c43f2529f9b1b018f6a-Abstract.html
https://doi.org/10.1038/s41598-022-10169-0
https://doi.org/10.1038/s41598-022-10169-0
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1145/3460231.3478853
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1016/j.procs.2020.04.167
https://doi.org/10.1016/j.patrec.2012.05.019
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://doi.org/10.1145/2970398.2970433
https://doi.org/10.1007/s10288-019-00424-y
https://arxiv.org/abs/2007.05565
https://arxiv.org/abs/2007.05565
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1016/j.eswa.2017.01.048
https://doi.org/10.1016/j.eswa.2017.01.048
https://doi.org/10.1109/TNNLS.2013.2247628
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1145/3121050.3121109

[30] StefanoMarchesin, Alberto Purpura, and Gianmaria Silvello. 2020. Focal elements
of neural information retrieval models. An outlook through a reproducibility
study. Inf. Process. Manag. 57, 6 (2020), 102109. https://doi.org/10.1016/j.ipm.
2019.102109

[31] Catherine C. McGeoch. 2020. Theory versus practice in annealing-based quantum
computing. Theor. Comput. Sci. 816 (2020), 169–183. https://doi.org/10.1016/j.tcs.
2020.01.024

[32] Massimo Melucci. 2015. Introduction to Information Retrieval and Quantum
Mechanics. The Information Retrieval Series, Vol. 35. Springer. https://doi.org/
10.1007/978-3-662-48313-8

[33] Riccardo Nembrini, Maurizio Ferrari Dacrema, and Paolo Cremonesi. 2021. Fea-
ture Selection for Recommender Systems with Quantum Computing. Entropy 23,
8 (2021), 970. https://doi.org/10.3390/e23080970

[34] Hartmut Neven, Vasil S. Denchev, Geordie Rose, and William G. Macready. 2012.
QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization.
In Proceedings of the 4th Asian Conference on Machine Learning, ACML 2012,
Singapore, Singapore, November 4-6, 2012 (JMLR Proceedings, Vol. 25), Steven C. H.
Hoi and Wray L. Buntine (Eds.). JMLR.org, 333–348. http://proceedings.mlr.
press/v25/neven12.html

[35] Gintaras Palubeckis. 2004. Multistart Tabu Search Strategies for the Uncon-
strained Binary Quadratic Optimization Problem. Ann. Oper. Res. 131, 1-4 (2004),
259–282. https://doi.org/10.1023/B:ANOR.0000039522.58036.68

[36] Hanchuan Peng, Fuhui Long, and Chris H. Q. Ding. 2005. Feature Selection
Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and
Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 8 (2005), 1226–1238.
https://doi.org/10.1109/TPAMI.2005.159

[37] Alberto Purpura, Karolina Buchner, Gianmaria Silvello, and Gian Antonio Susto.
2021. Neural Feature Selection for Learning to Rank. In Advances in Information
Retrieval - 43rd European Conference on IR Research, ECIR 2021, Virtual Event,
March 28 - April 1, 2021, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 12657), Djoerd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele
Perego, Martin Potthast, and Fabrizio Sebastiani (Eds.). Springer, 342–349. https:
//doi.org/10.1007/978-3-030-72240-1_34

[38] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Inf. Retr. 13, 4 (2010),
346–374. https://doi.org/10.1007/s10791-009-9123-y

[39] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[40] Irene Rodríguez-Luján, Ramón Huerta, Charles Elkan, and Carlos Santa Cruz.
2010. Quadratic Programming Feature Selection. J. Mach. Learn. Res. 11 (2010),
1491–1516. http://portal.acm.org/citation.cfm?id=1859900

[41] Noelia Sánchez-Maroño, María Caamaño-Fernández, Enrique F. Castillo, and
Amparo Alonso-Betanzos. 2006. Functional Networks and Analysis of Variance
for Feature Selection. In Intelligent Data Engineering and Automated Learning -
IDEAL 2006, 7th International Conference, Burgos, Spain, September 20-23, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 4224), Emilio Corchado, Hujun
Yin, Vicente J. Botti, and Colin Fyfe (Eds.). Springer, 1031–1038. https://doi.org/
10.1007/11875581_123

[42] Jean Tague-Sutcliffe and James Blustein. 1994. A Statistical Analysis of the TREC-3
Data. In Proceedings of The Third Text REtrieval Conference, TREC 1994, Gaithers-
burg, Maryland, USA, November 2-4, 1994 (NIST Special Publication, Vol. 500-225),
Donna K. Harman (Ed.). National Institute of Standards and Technology (NIST),
385.

[43] Kari Torkkola. 2003. Feature Extraction by Non-Parametric Mutual Information
Maximization. J. Mach. Learn. Res. 3 (2003), 1415–1438. http://jmlr.org/papers/
v3/torkkola03a.html

[44] Sagar Uprety, Dimitris Gkoumas, and Dawei Song. 2020. A Survey of Quantum
Theory Inspired Approaches to Information Retrieval. ACM Comput. Surv. 53, 5
(2020), 98:1–98:39. https://doi.org/10.1145/3402179

[45] Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski.
2017. Graph Partitioning using Quantum Annealing on the D-Wave System. In
Proceedings of the Second International Workshop on Post Moores Era Supercom-
puting (PMES ’17) abs/1705.03082 (2017). arXiv:1705.03082 http://arxiv.org/abs/
1705.03082

[46] Cornelis Joost van Rijsbergen. 2004. The geometry of information retrieval. Cam-
bridge University Press.

[47] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. 2013. OpenML:
networked science in machine learning. SIGKDD Explor. 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198

[48] Dennis Willsch, Madita Willsch, Hans De Raedt, and Kristel Michielsen. 2020.
Support vector machines on the D-Wave quantum annealer. Comput. Phys.
Commun. 248 (2020), 107006. https://doi.org/10.1016/j.cpc.2019.107006

[49] Zilin Zeng, Hongjun Zhang, Rui Zhang, and Chengxiang Yin. 2015. A novel
feature selection method considering feature interaction. Pattern Recognit. 48, 8
(2015), 2656–2666. https://doi.org/10.1016/j.patcog.2015.02.025

Perspective Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2824

https://doi.org/10.1016/j.ipm.2019.102109
https://doi.org/10.1016/j.ipm.2019.102109
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1007/978-3-662-48313-8
https://doi.org/10.1007/978-3-662-48313-8
https://doi.org/10.3390/e23080970
http://proceedings.mlr.press/v25/neven12.html
http://proceedings.mlr.press/v25/neven12.html
https://doi.org/10.1023/B:ANOR.0000039522.58036.68
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1007/978-3-030-72240-1_34
https://doi.org/10.1007/978-3-030-72240-1_34
https://doi.org/10.1007/s10791-009-9123-y
http://portal.acm.org/citation.cfm?id=1859900
https://doi.org/10.1007/11875581_123
https://doi.org/10.1007/11875581_123
http://jmlr.org/papers/v3/torkkola03a.html
http://jmlr.org/papers/v3/torkkola03a.html
https://doi.org/10.1145/3402179
https://arxiv.org/abs/1705.03082
http://arxiv.org/abs/1705.03082
http://arxiv.org/abs/1705.03082
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1016/j.cpc.2019.107006
https://doi.org/10.1016/j.patcog.2015.02.025

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Feature Selection as a Quadratic Problem
	3.2 Solving QUBO with Traditional Approaches
	3.3 Solving QUBO with Quantum Annealing

	4 Experimental Pipeline
	4.1 Classification Task
	4.2 Ranking Task
	4.3 Selecting the optimal set of features

	5 Results
	5.1 Effectiveness
	5.2 Efficiency

	6 Discussion and Future Works
	7 Acknowledgments
	References

