
VOICE: Value-of-Information for Compute
Continuum Ecosystems

Mattia Zaccarini‡, Benedetta Cantelli‡, Maria Fazio∗, William Fornaciari†,
Filippo Poltronieri‡, Cesare Stefanelli‡, Mauro Tortonesi‡

∗ University of Messina, Messina, Italy
Email: maria.fazio@unime.it

† Politecnico di Milano, Milan, Italy
Email: william.fornaciari@polimi.it

‡ University of Ferrara, Ferrara, Italy
Email: benedetta.cantelli@edu.unife.it, {filippo.poltronieri, cesare.stefanelli, mauro.tortonesi, mattia.zaccarini}@unife.it

Abstract—The “Compute Continuum” (CC), which encom-
passes and harmonizes the Edge, Fog, and Cloud computing
paradigms, emerges as an opportunity for an efficient deployment
and adoption of innovative services ranging from eHealth to
virtual reality. However, the effective management of services
all along the CC presents the challenge of service deployment in
relatively resource scarce or poorly connected locations. We argue
that CC environments call for novel resource management strate-
gies with a holistic perspective of the whole computing ecosystem,
that also consider the QoS reconfiguration and tuning of services
in the resource reallocation process. Tackling these challenges, we
introduce VOICE, a cutting-edge platform designed for service
management in CC ecosystems. Thanks to a Value of Information
(VoI)-based technique that emphasizes the significance of data
filtering, VOICE supports dynamic service components allocation
throughout the CC. To evaluate the choice of VoI as enabling-
technology for VOICE, we leverage computational intelligence
(CI) approaches and compare it with more traditional strategies
(e.g. maximization of satisfied requests or latency minimization).
Final results show how VoI can be a valuable proposal to
optimize the usage of resource scarcity that characterizes CC
environments.

Index Terms—Compute Continuum, Value of Information,
Computational Intelligence, Service Management

I. INTRODUCTION

Over the past decade, Fog and Edge Computing have
emerged as promising computing paradigm which can process
the Internet-of-Things (IoT) data close to the sources, thus
avoiding to transmit all data to distant cloud computing
facilities [1]. The presence of multiple and heterogeneous
computing layers which we can summarize in the edge, fog,
and cloud layers. This aggregate can can provide comput-
ing capabilities at different performance and latency. This
aggregate is generally refereed to as “Compute Continuum”
(CC), or sometimes “Computing Continuum”, [2] and presents
compelling opportunities for the effective realization of next
generation services, e.g., eHealth, gaming, Virtual and Aug-
mented reality, the development of new-generation services
that demands high computing capabilities.

The CC extends high-performance cloud services towards
energy-efficient and low-latency devices close to the data
sources. This brings significant opportunities in terms of ser-
vice delivery, making them even more pervasive and efficient,

but also new challenges at the service development, deploy-
ment, and management levels, that need to be specifically
investigated and addressed [3] [4]. This is especially true in
terms of how to effectively deploy and configure software
components so that they deliver high Quality of Service (QoS)
even in (relatively) resource scarce environments, as it is often
the case at the edge of the network.

In fact, the proliferation of IoT sensors and devices is
generating a deluge of data which is often processed in cloud
computing facilities located far away from where the IoT
data were generated. Despite new generation communication
technologies, i.e., 5G and beyond, promise higher bandwidth
and reliability, distributing processing along the CC represents
a promising approach in terms of lower service latency and
communication overhead [5]. This suggests the opportunity to
experiment with information-centric approaches [6] and lossy
and adaptive service models [7] that focus on the processing
and dissemination of important data.

In this regards, Value of Information (VoI) represents a com-
pelling approach to rank information and services according to
the actual value they provide to the end users are particularly
attractive [8], [9]. In fact, VoI-based approaches enable to
maximize in a straightforward fashion resource utilization
from the user perspective across the entire CC, also addressing
the issue of resource sharing among competing services.

Orchestration tools so far have focused on providing a
seamless deployment solution for containerized microservices.
Despite remarkable progress in recent years, also in CC
environments and applications, they have relatively neglected
the opportunity to integrate with service components at the
QoS tuning level [10]. Instead, we argue that CC environments
call for new resource management strategies with a holistic
perspective of the whole computing ecosystem, that consider
opportunities at both the resource reallocation - either horizon-
tally (across nodes on the same Cloud, Fog, or Edge layer) or
vertically (across multiple layers) - and at the service QoS
reconfiguration levels [11].

To enable resource allocation all along the CC while de-
livering the highest possible value to end users, we devel-
oped Value-of-Information for Compute Continuum Ecosys-

979-8-3503-9376-7/24/$31.00 ©2024 IEEE 142

tems (VOICE), an innovative platform that allows to run
and manage services with dynamic topologies on the CC,
with service components running on devices exhibiting highly
heterogeneous capabilities, in terms of storage, connectivity
and performance. VOICE aims to push forward the state
of the art for service elasticity management in the CC by
explicitly involving application components in resource allo-
cation expansion or contraction operations, to ensure the best
QoS levels according to conditions and application runtime
requirements. VOICE builds on top of previous research on
adaptive VoI-based service models and runtimes [9], CI-
based optimization solutions [12], and innovative Digital Twin
approaches [13], [14] to provide a full fledged orchestration
solution designed for the CC.

We demonstrate the effectiveness of the VOICE approach
by comparing its VoI-based service and resource management
capabilities with a more traditional orchestration approach
that does not consider and tries to process all the data.
Experimental results demonstrates that the VOICE approach
is much more efficient for the management of high priority
services in a high-load scenario.

II. RELATED WORK

In literature, some works present solutions for orchestrating
and managing resources at different computing levels, such as
in the Cloud [15], Fog [16], and at the Edge [17]. However,
these solutions cannot be directly applied to the CC since the
high diversity in computation assets at different levels and
resource management requirements.

The concurrent execution of an application on the entire
CC and its dependency on the underlying infrastructure is
a big challenge [18]. Even if in literature some works deal
with these issues, they are mainly focused on specific uses
case needs, such as Assisted Autonomous Vehicle systems
[19] or Industry 4.0 customized production [20], where it is
planned a priori the computing workflow to deploy and how
Cloud, Fog and Edge resources can be exploited according
to the computational complexity of the software components.
However, such static and application-oriented strategies limit
the feasibility of the proposed solutions, which can not be
applied in domains with different workloads and scalability
requirements. Most of all, in a holistic view of the computing
ecosystem, specific actions should be undertaken to deal with
concurrent executions of several applications characterized by
a significant number of users with heterogeneous interests.

Existing orchestration platforms (such as Kubernetes,
Docker Swarm, Amazon EC2 Container Service, and Open-
Shift Origin) are not able of handling conflicting QoS require-
ments while undertaking container-mapping decisions. Some
optimization strategies in literature support scheduler configu-
rations using different low-level QoS requirements (e.g., cost,
throughput, latency, availability, etc.) [21] [22].

The need to optimize complex service fabrics in highly
heterogeneous environments fostered the development of in-
novative concepts and tools, including Value-of-Information
(VoI). Originally born from the seminal research by Howard

in 1966 [23] as an extension to the Shannon’s Informa-
tion Theory for economics, and widely explored in decision
sciences, the VoI concept has been recently investigated in
different research areas related to the network and service
management [9]. In [8] VoI was applied to optimize bandwidth
consumption and information delivery in low-bandwidth and
disrupted wireless networks. The work in [24] proposes a VoI-
based mechanism for ranking IoT sensors data. A VoI-based
computation scheduling for Cloud Computing applications,
which considers both the costs and the benefits for processing
information is proposed in [25]. Finally, the application of VoI
was investigated in [26] to develop a prioritization tool for
filtering the most important information messages to transmit
in future vehicular networks. However, the integration of
VoI management policies within resource management and
orchestration is still a relatively unexplored research avenue.

III. THE CASE FOR VOI-BASED APPROACHES IN THE CC

The CC is composed of three main layers: a Cloud layer,
characterized by a Cloud data center that acts as a remote
infrastructure shareable by different tenants with similar needs
and provides abundant storage and computing resources. The
second layer is the Fog layer, which enables the execution of
microservice components with an interesting trade-off between
latency and resource availability. It also can support temporary
network disconnection of Edge nodes from the network,
without propagating the issue to the Cloud data centers and
reducing delays in recovering/restoring services at the Edge.
Finally, the Edge layer provides specialized and/or on-site
processing. It is the most limited in total resources but the most
efficient in reducing latency and enabling faster computation
and decision-making.

Therefore, task allocation/re-modulation processes, when
a specific microservice requires more processing capabilities
or responding to new QoS requirements, need to consider
whether to expand workloads horizontally, i.e., by allocating
more or different resources to the software component in the
same computing level (e.g., in the Edge), or vertically, i.e., by
migrating the software component to a resource-richer node
or to upper layers (e.g., from the Fog to the Cloud).

At the same time, there is the need to address the gap
between an ever increasing deluge of information and the
(relative) resource scarcity at the edge, where this information
are produced - and often consumed. In fact, the massive intro-
duction of IoT devices and the increasing need for computation
closer to the users, to avoid processing latencies caused by the
transfer to and processing of data in the Cloud, are arguably
the main reasons why CC nowadays has a significant and
growing interest.

These challenges introduced by CC environments suggests
the opportunity to push forward the state of the art and
experiment with lossy and adaptive service models. In this
context, Value-of-Information (VoI) methodologies and tools
represent an innovative and interesting foundation for the
realization of immersive and adaptive services. VoI is a
subjective measure that allows quantifying the value that an

143

Fig. 1. Global Picture of the VOICE platform.

information provides to its users. VoI-based methods explicitly
consider the different characteristics of Information Objects
(IOs), tracking the value/utility of IOs during their processing
and dissemination phases, thus enabling to rank these IOs
according to their importance and relevance and to prioritize
the processing and dissemination of the most important IOs,
while discarding low value ones [7]. In turn, ranking services
and microservice components according to the total amount of
VoI they provide to end users represents a natural and effective
approach to realize self-adaptive services for Fog computing
applications. To this end, interested readers can refer to the
work in [9], in which the mathematical framework for VoI
calculation is presented.

By using the amount of VoI delivered to end users as
a resource assignment criterion, a system will be able to
naturally and seamlessly prioritize the assignment of resources
to microservices that are providing the highest value to their
end users - either because they are serving a considerable
amount of users or because they are providing highly valuable
information [9]. Factors such as the availability of resources
or the changing demands of applications could be taken into
account to estimate the relevance of requests and dynamically
allocate resources in the CC environment. Thus, the modula-
tion of VoI-based message processing policies allows decision-
making components to naturally adapt to the current resource
availability and the computing context. Therefore, in case of
resource abundance and delivery of high VoI to end users,
every message generated will ideally be processed by these
components. However, in case of resource scarcity and/or an
abundance of concurring services that try to compete for the
same resources, decision-making components will prioritize
the processing and delivery of messages with a higher VoI
and discard those with a lower VoI.

IV. VOICE

To realize this vision, there is the need for new plat-
forms designed for CC and capable of defining, running, and
managing VoI based IT services. VOICE aims to develop a
distributed and adaptive software infrastructure to optimally
support, monitor and orchestrate an ecosystem of concurrent
IoT services for the CC.

A. Service Model and Runtime

VOICE conceives the CC as an ensemble of heterogeneous
computing clusters for enabling the development, dynamic
deployment, and management of elastic IT services within and
across multiple and heterogeneous clusters, each one contain-
ing different types of nodes (i.e., L1: edge, L2: fog, L3: cloud),
as depicted in Fig. 1. Different types of nodes in the system
give different opportunities for data processing and software
execution. Specifically, VOICE services are realized through
the composition of clearly separated but interconnected com-
ponents (i.e.microservices) that can be independently deployed
and executed. Each service has a description document, iden-
tifying the requirements that each component has and the
connections between components. Our main purpose is to
tackle the challenge of combining various execution platforms,
from smart IoT devices, useful to collect data from the envi-
ronment and trigger events, to geographically distributed edge
nodes and from fixed or mobile fog nodes to the Cloud, into
an ubiquitous and seamless execution environment. However,
their interoperability represents a challenge due to the adoption
of different technologies at different levels and the different
perspectives in the management of resources.

Furthermore, VOICE is able to manage all the available
resources in the CC implementing a dynamic and multi-
layer orchestration solution with differentiated strategies for
optimizing service deployments and scalability at different
levels. This is the key approach for a seamless and pervasive
computing system able to optimize performance of running
applications and services.

VOICE adopts “Sieve, Process, and Forward” (SPF) as
a reference service component execution runtime supporting
VoI-based processing [7]. SPF provides a powerful set of
concepts and tools for the development of VoI-based service
fabrics. VOICE exploit SPF to build a multi-layer resource
management framework that extends state-of-the-art VoI mod-
eling to define specific VoI evaluation solutions tailored to the
type of information to be processed.

B. Hierarchical Resource Management and Orchestration

VOICE introduces a multi-layer orchestration solution to
overcome specific resource management needs at different
levels, with a dedicated resource management layer built on
top of the Global Orchestrator, Cluster Orchestrator, and Fog
Node Manager components.

The Global Orchestrator is in charge of configuring and co-
ordinating the deployment of applications and services across
computing clusters and nodes at different levels, elaborating
information from the MAs and enabling the CC with specific

144

mechanisms that allow software components to move verti-
cally along the resource level stack. Each Fog node connected
to the VOICE platform has a Fog Node Manager component,
which is in charge of abstracting the properties of the specific
physical/virtual node and dynamically allocating a given share
of available resources to one or more microservice components
according to the requests of the Global Orchestrator. The
Node Manager will implement potential enhancements to the
computing resource management at a local level working on
the reservation of computing resources, the placement of the
virtual elements contributing to a service, the performance
efficiency, and the mutual isolation of virtualized workloads
sharing the same hardware substrate.

To optimize service deployments and resource allocation
along the CC, VOICE develops a dedicated dynamic decision-
making framework. Global Topology Manager (GTM) is the
software entity in charge of driving the allocation of the service
components to the nodes at different levels such that their
demand for computational resources is met. Such decisions
are then passed to the Global Orchestrator, which is in charge
of carrying out the actual deployment operations. To perform
its duties, GTM has perfect knowledge of the computational
capacity of each device as well as the demand of each service
component and their mutual interactions, beside the service
priority and expected quality-of-service (QoS). The aims are
manifold: first, the demand of each service component should
be fully satisfied, meaning that the number of service compo-
nents allocated to the Cloud should be minimized while keep-
ing latency sensitive service components at the edge. Second,
service components with a high level of interaction should be
allocated on the same node to minimize the overall latency.
Third, VOICE would try to allocate service components to
maximize the VoI delivered to their users. At the Edge level,
the Cluster Orchestrator is a distributed software entity that
automates the deployment of service topologies in a cluster
of Edge nodes, allowing resource reallocations for horizontal
scalability.

The VOICE GTM goes beyond the current state-of-the-
art by introducing scheduling strategies that consider both
heterogeneous resource availability in different nodes and
the total VoI optimization criterion for resource assignment.
Different example of them are provided in Section VI, where
experiments show how VOICE is able to adapt the distribution
of allocated resources depending on its final objective. Toward
that goal, GTM adopts sophisticated CI solutions, such as Ge-
netic Algorithms (GAs) and Quantum-inspired Particle Swarm
Optimization (QPSO), that can quickly explore the very large
and complex space of feasible IT service configuration to
identify the optimal one - also leveraging a Digital Twin as
detailed in the next subsection. Along with other CI-based
solutions, both GA and QPSO have demonstrated remarkable
flexibility and performance in managing resources in CC
scenarios [12], especially due to their ease of implementation
and ability to avoid stagnation in local minima thanks to their
stochastic nature.

C. Digital Twin-based Proactive Service Reconfiguration

VOICE features a distributed monitoring subsystem that not
only allows to collect standard performance metrics such as
response times, etc., but also implements the monitoring of
VoI generation at both the single service component and at
the entire service level. This information allows the VOICE
resource management subsystem to make well-informed and
cognitive service instantiation and adaptation decisions.

The distributed monitoring subsystem of the VOICE plat-
form leverages a capillary infrastructure of dedicated Mon-
itoring Agent (MA) components. Furthermore, differentiated
versions of MAs along the CC provide monitoring capabilities
for the global computing infrastructure and QoS of running
applications. To do so, MAs will monitor both node resource
availability and the current state of the service components
running in their control domain.

As described in the previous subsection, CI solutions al-
low the VOICE orchestration components to execute the
monitoring policies in a very reactive way, overcoming the
problem typical of traditional monitoring strategies that can
only provide the current information on node resources and
services performance, limiting the vision of the logic behind
the dynamic variation of system behavior.

However, we designed VOICE to realize proactive service
reconfigurations by taking advantage of a Digital Twin ap-
proach, that allows to create a virtual replica of a real system,
i.e., the CC infrastructure and services, for what-if scenario
analysis and system optimization purposes [27] [28]. The
VOICE GTM can leverage the Digital Twin of the system
to evaluate the performance of a service in an alternative
deployment and configuration, thus avoiding harm to the
configuration of the real-world system. The Digital Twin will
also provide an effective platform for experimentation with a
wide range of VoI policies, with the objective of identifying
the most promising ones.

The VOICE Digital Twin can be configured to use two
different subsystems for reenacting a complex IT service in the
CC. The default option is Phileas, a discrete event simulator
that reenacts the execution of middleware solutions in CC
environments [29]. Phileas features a relatively sophisticated
service model that accurately evaluates the VoI produced by
each single service component across the entire service fabric.
As a result, it represents a very good fit for VOICE. Alterna-
tively, we are currently developing KubeTwin, a state-of-the-
art Digital Twin solution for the reenactment of Kubernetes
applications [13]. KubeTwin has already proved capable of
reenacting the behavior of Kubernetes clusters and applications
in a remarkably accurate fashion [14]. Since Kubernetes is be-
ing increasingly adopted as the de facto standard orchestration
platform across the CC, as KubeTwin matures we expect it to
become the Digital Twin platform of choice for VOICE.

V. USE CASE

As a reference scenario for the adoption of the VOICE
platform, we propose a smart city scenario characterized by
several service components that must be allocated on the CC in

145

a way that maximizes the total VoI delivered to end-users. We
suppose that the smart city provides a multitude of cameras,
which collect video-feeds from the surroundings to feed a
plethora of smart city services such as traffic-monitoring,
object-tracking, and object-detection applications.

We defined a total of six different services: pollution, traffic,
audio, video, healthcare, and safety. The pollution service
estimates the air quality in several locations of the smart
city and notifies citizens via mobile devices if they have
a high exposure to polluted air. The traffic service collects
information about the traffic flows in the urban environment to
let citizens know what routes to take, e.g., to avoid congestion
and heavily polluted areas. On the other hand, the audio
service provides analysis based on acoustic data, e.g. noise
pollution caused by traffic, construction sites, industries, and
so on. The video service instead analyzes camera feeds from
nearby CCTVs and other video content, e.g. social media, to
run machine learning processing. Healthcare is a compelling
topic often associated with smart city environments, mobile
telecommunications, and IoT. Therefore we describe a generic
healthcare service for this use case. Finally, the safety service
is to provide a variety of services including social safety,
anti-terrorism, and crime prevention efforts. As for the video
service, the latter two are defined to be time-sensitive and
more critical than traffic, pollution, and audio services. In fact,
there are many cases where an immediate response or action
is required, such as locating a potential threat or finding a
missing person.

Several instances of these services would be deployed on the
top of 13 computing servers distributed in the cloud, fog, and
edge levels. Specifically, for these experiments, we assume that
10 servers would be available at the edge level, and 2 at the
fog level, and we model a single cloud entity with unlimited
resources. This can be a representative example of a CC sce-
nario where the majority of service components would exploit
the computing capabilities in the close proximity of users
and sensors. We also imagined that there would be several
citizens interacting with these services. Therefore, we specify
10 different user groups that generate services’ requests. Both
devices and users are located in 13 different locations, all
characterized by latitude and longitude coordinates according
to the Global Positioning System (GPS) and with starting VoI
values. In addition, we describe for each service type two
different decay functions, a linear decay used for pollution,
traffic, and audio services and an exponential one which
is used for time-sensitive services. Data sources associated
with time-sensitive services would generate requests with a
higher starting VoI value, as we assume these services as
more significant and urgent from users perspective. For the
following experiments we model the VoI values in a [0, 1]
interval, where 0 corresponds to the lowest VoI possible and
1 to the highest. Let us also note that the VoI associated
with time-sensitive services would have a stronger time decay
when compared to standalone / batch services. It is therefore
important to process time-sensitive requests as quickly as
possible to minimize the decay information objects are subject

to from their origination to their processing and delivery.
With regard to the communication modeling, to approximate

the communication latency between the different levels of the
CC, we rely on the measurements available at the CloudPing
website (https://www.cloudping.co/), from which
we select three pairs of locations whose communication la-
tency could be a reasonable approximation of a computing
scenario composed of connected edge, fog, and Cloud re-
sources. For each pair of locations, we compute the parameters
for modeling a random variable with a truncated Gaussian
distribution. The same type of variable is adopted to model
the starting VoI value for each type of service in the scenario.
During the simulation, each time a new request of a specific
type is generated, the starting VoI is computed according
to its specific mean and standard deviation configuration, as
presented in Table I. Specifically, we decided to define two
main service classes: low VoI services, which include Audio,
Pollution, and Traffic, and high VoI services, which include
Healthcare, Safety, and Video. Each of these classes has its
own characteristics, such as time decay type (Linear for low
VoI services and Exponential for high VoI service), number
of respective data sources, and amount of requests per second
depending on the load scenario. All these metrics are visible
in Table I. Furthermore, the longer each request waits in the
relative queue, the more its VoI decays and the less likely the
available resources will be allocated for its processing. Ideally,
if a request remains stuck in the waiting queue for too long,
its VoI decreases remarkably, and the users may no longer
be strongly interested in receiving the computation results.
Finally, considering the computing modeling, we assume that
each service instance processes the incoming requests sequen-
tially in a queue fashion. More specifically, we model the
execution time of each service component with the adoption of
a random variable with exponential distribution characterized
by a specified parameter.

VI. EXPERIMENTAL EVALUATION

We reenacted the use case described in the previous Section
in the VOICE Digital Twin component, leveraging the Phileas
simulator [29], to compare three different optimization criteria
for the service orchestration in the CC: VoI maximization,
latency minimization, and requests completion ratio maxi-
mization, i.e., the number of requests processed within the
simulation time window. We tested these methodologies in two
different scenarios: the first one is a moderate load scenario,
characterized by nearly 10,000 requests. Instead, the second
is a heavy load scenario for a total of more than 20,000
total requests, with a remarkable increase of low VoI requests
compared to the first outline. In a second experimental phase,
we took a further step in the exploitation of the VoI. By
manipulating a VoI defined for each service, CI approaches
demonstrated their capability to find the configuration that
better exploits the resource scarcity to compute high-value
requests, aiming to overcome the limitations observed in the
heavy load scenario during the first evaluation.

146

TABLE I
SERVICE METRICS USED IN EXPERIMENTAL EVALUATION

Service Type Time Decay Data Sources

Avg. Message
Generation

Moderate Load
(Msg/Sec)

Avg. Message
Generation
Heavy Load

(Msg/Sec)

Starting VoI

Mean Standard Deviation
Audio Linear 1 29 100 0.4 0.1

Healthcare Exponential 2 9 9 0.8 0.05
Pollution Linear 1 40 125 0.4 0.1

Safety Exponential 2 8 8 0.8 0.05
Traffic Linear 1 40 100 0.4 0.1
Video Exponential 3 10 10 0.8 0.05

Fig. 2. Results of the three different optimization methodologies using GA
and QPSO as optimization algorithms.

A. VoI Approach Validation

To compare the various criteria we implemented a Genetic
Algorithm (GA) and a Quantum-inspired Particle Swarm Op-
timization (QPSO) based optimizers and we defined three
fitness functions corresponding to the optimization criteria.
For all experiments, both GA and QPSO optimizers ran for
a total of 250 generations. Each generation corresponds to
128 and 40 evaluations, i.e. a simulation run, of the fit-
ness function respectively. Each simulation has a one-minute
duration (including 10 seconds of warm-up), corresponding
to the generation of roughly 10,000 service requests in the
moderate load scenario and more than 20,000 in the heavy
load one. This is possible by manipulating the exponential
random variables that model the time between the generation
of subsequent service requests. The orchestrator determines
where to allocate instances for the defined service components
among the CC devices. Let us note that the service orchestrator
can activate multiple instances of the same service component
on different devices to distribute the application load and
improve the performance when necessary. Let us also specify

that a computing device can run multiple instances of different
service components, according to its computing capabilities.
For these initial experimentation runs, we excluded the VoI
thresholds to make a comparison between strategies as fair as
possible for both scenarios.

For each optimization criterion, we select the best service
component configuration for both load scenarios, in terms of
the fitness function. We report the results in Fig. 2, which
shows the total VoI, the requests completion ratio, and the
ratio between this ratio and the averaged latency (measured
as the summation of the requests’ transfer time) for all three
configurations of both GA and QPSO approaches. As ex-
pected, in both scenarios the VoI approach reports the highest
VoI value. At the same time, it achieves a very competitive
request completion rate. Regarding its PR/Latency outcome,
it remains consistent with the results obtained by the “Max
Ratio” approach. This is expected, as both methodologies aim
to process as many requests as possible without considering
other optimization aspects. This can easily lead to a higher
average latency as a consequence, reducing the PR/latency
value. Moreover, to evaluate the validity of our VoI approach, it
is important to examine its component allocation efficiency at
every CC layer compared to other strategies. Table II illustrates
how the different methodologies place the multiple service
components instances. The provided results prove once again
the effectiveness of our VoI-based approach. Indeed, it is
capable of obtaining very similar performance compared to
the “Max Ratio” strategy for every load, but with resource
savings up to 10% in the GA case and 30% for the QPSO.
In the last configuration, it is evident that it achieves the
lowest value of total requests processed and generated VoI.
As mentioned before, this is an understandable behavior since
the system cannot rely on the allocation of numerous service
components (especially on the Fog and the Cloud layer) to
minimize the latency. In fact, the more services components
are allocated more the cumulative latency increases, causing
a deterioration of the mean latency and, consequentially, of
the final PR/Latency rate. This is even more evident in both
Tables, which show that the Ratio/Latency configuration is
the one that allocates the fewest service components in every
occurrence.

In general, passing from a moderate to a heavy load scenario

147

TABLE II
SERVICE COMPONENTS ALLOCATED

Moderate Load
Configuration Metaheuristic Edge Fog Cloud Total

Max VoI GA 37 6 4 47
Max Ratio GA 41 8 5 54

Ratio/Latency GA 34 3 0 37
Max VoI QPSO 40 2 6 48

Max Ratio QPSO 55 10 6 71
Ratio/Latency QPSO 43 0 0 43

Heavy Load
Configuration Metaheuristic Edge Fog Cloud Total

Max VoI GA 37 3 5 45
Max Ratio GA 38 11 2 51

Ratio/Latency GA 37 3 1 41
Max VoI QPSO 53 6 6 65

Max Ratio QPSO 59 12 6 77
Ratio/Latency QPSO 39 0 0 39

results in a significant performance decline. Indeed, the huge
amount of low VoI requests generated deteriorates the efficient
usage of the available resources. To address this, our proposed
approach enables the exploitation of VoI thresholds mechanism
which act as a filter to cut requests with low VoI values and
prioritizes the ones carrying higher values to the end-users.
As a result, our proposed approach will guide the orchestrator
towards service components configurations capable of deliv-
erying higher amount of VoI.

B. VoI Threshold Exploitation

In this second experimental phase, we introduced a new
parameter that both optimization approaches must handle for
each type of service component: a VoI-based threshold to filter
requests still considered as valuable from those for which
it is not worth allocating resources. By manipulating these
thresholds, we leveraged both GA and QPSO to demonstrate
their ability to identify the configuration that best exploits the
scarcity of available resources. This prioritizes the processing
of high-value requests for the end user. To employ the filtering
capabilities and overcome the shortcomings exposed in the
previous evaluation, we applied the service thresholds on the
scenario defined as heavy load. Specifically, we decided to
run both orchestrators for a total of 500 generations each with
the same number of evaluations of the previous evaluation.
This enables them to better explore and find a more effective
solution in this very dynamic proposed scenario. During the
process, the orchestrators could choose between 4 possible
threshold values: 0.0, 0.125, 0.250, and 0.5. Once set, these
values remained constant until the next simulation. Fig. 3 and
4 illustrate the evolution of the total VoI obtained in relation
to the varying thresholds throughout the optimization process
conducted respectively by GA and QPSO. Specifically, the
GA-based optimizer reaches a very similar VoI value than
the previous one in the heavy load scenario (visible in the
bottom-left plot in Fig. 2). However, in this case, it achieves
this while processing over 3,000 fewer requests than before.
This indicates that the thresholds effectively filtered out most
low VoI requests, allowing system resources to be reserved for
the processing of requests with high VoI value. In contrast,

TABLE III
SERVICE COMPONENTS ALLOCATED WITH THRESHOLD FILTERING

Configuration Metaheuristic Edge Fog Cloud Total
VoI Thresholds GA 40 5 5 50
VoI Thresholds QPSO 44 6 6 56

Fig. 3. Total VoI evolution in relation to the service thresholds manipulation
by GA.

QPSO performed significantly better. Indeed, thanks to its
thresholds manipulation, it identified a solution that achieves
a better VoI with several thousand fewer processed requests
along with a notable resource-saving (56 total components
allocated as visible in Table III compared to 65 in Table II). In
both cases, due to the remarkable increase of low VoI service
requests in the heavy load scenario, their relative thresholds
are predominant. Specifically, the QPSO optimizer achieves
the best VoI values when it sets all low VoI service thresholds
above the others (0.25 regarding the Traffic service and 0.125
for both Audio and Pollution). On the other hand, while GA
can improve its efficiency, it is not as effective as QPSO. In
fact, GA tends to lift up the threshold for the video service
component instead of the Pollution one. Due to the fact that
Pollution is not considered as critical as Video, this leads to a
service component configuration that delivered a lower amount
of VoI than the one generated with QPSO.

VII. CONCLUSIONS

The preliminary experimental evaluation that we presented
validates the concepts and design of the VOICE platform,
showing that VoI-based service development and management
has the potential to enable the creation of services that can
seamlessly adapt to different contexts through the CC - with
high dynamics, using the available resources efficiently, and
providing very high QoS to the end users.

Future works will investigate how the core concepts and
mechanisms at the heart of VOICE can be applied in federated
CC domains. In this context, we will consider both centralized

148

Fig. 4. Total VoI evolution in relation to the service thresholds manipulation
by QPSO.

and distributed decision making solutions and comparatively
evaluate their performance.

In addition, we are planning to investigate Reinforcement
Learning (RL) as a potentially very promising alternative to
computational intelligence solutions, i.e., GA and PSO, for
proactive resource management within VOICE. In particular,
offline RL solutions trained on a Digital Twin by leveraging
the accurate modeling capabilities of KubeTwin, seem to hold
the promise of addressing the main issue of RL - sample
inefficiency - and thus represent very interesting research
avenue.

ACKNOWLEDGMENTS

This work has been partially supported by the Spoke 1 “Fu-
tureHPC & BigData” of the Italian Research Center on High-
Performance Computing, Big Data and Quantum Computing
(ICSC) funded by MUR Missione 4 - Next Generation EU
(NGEU).

REFERENCES

[1] V. Sindhu et al. Fog based Edge Learning using IoT: Concepts,
Challenges and Applications. In 2022 4th International Conference on
Smart Systems and Inventive Technology (ICSSIT), pp. 18–21, 2022.

[2] S. Moreschini et al. Cloud Continuum: The Definition. IEEE Access,
10:131876 – 131886, 2022.

[3] M. Zanella et al. BarMan: A run-time management framework in the
resource continuum. Sustainable Computing: Informatics and Systems,
35:100663, 2022.

[4] M. Zanella. Post-cloud Computing: Addressing Resource Management
in the Resource Continuum, pp. 105–115. Springer International Pub-
lishing, Cham, 2023.

[5] M. Giordani et al. Toward 6G Networks: Use Cases and Technologies.
IEEE Communications Magazine, 58(3):55–61, 2020.

[6] J. J. L. Escobar et al. Decentralized Serverless IoT Dataflow Archi-
tecture for the Cloud-to-Edge Continuum. In 2023 26th Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp.
42–49, 2023.

[7] M. Tortonesi et al. Taming the IoT data deluge: An innovative
information-centric service model for fog computing applications. Fu-
ture Generation Computer Systems, 93:888–902, 2019.

[8] N. Suri et al. Exploring value-of-information-based approaches to
support effective communications in tactical networks. IEEE Commu-
nications Magazine, 53(10):39–45, October 2015.

[9] F. Poltronieri et al. A Value-of-Information-based management frame-
work for fog services. International Journal of Network Management,
32(1):e2156, 2022.

[10] K. Fu et al. Adaptive Resource Efficient Microservice Deployment in
Cloud-Edge Continuum. IEEE Transactions on Parallel and Distributed
Systems, 33(8):1825–1840, 2022.

[11] M. Villari et al. Osmotic Computing: A New Paradigm for Edge/Cloud
Integration. IEEE Cloud Computing, 3(6):76–83, 2016.

[12] F. Poltronieri et al. Reinforcement Learning vs. Computational Intel-
ligence: Comparing Service Management Approaches for the Cloud
Continuum. Future Internet, 15(11), 2023.

[13] D. Borsatti et al. Modeling Digital Twins of Kubernetes-Based Appli-
cations. In IEEE Symposium on Computers and Communications, ISCC
2023, Gammarth, Tunisia, July 9-12, 2023, pp. 219–224. IEEE, 2023.

[14] L. Manca et al. Characterization of Microservice Response Time in
Kubernetes: A Mixture Density Network Approach. In 2023 19th
International Conference on Network and Service Management (CNSM),
2023.

[15] O. Tomarchio et al. Cloud resource orchestration in the multi-cloud
landscape: a systematic review of existing frameworks. Journal of Cloud
Computing, 9:49, 09 2020.

[16] A. Bocci et al. Secure FaaS orchestration in the fog: how far are we?
Computing, 103, 05 2021.

[17] P. D. Diamantoulakis et al. Optimal Design and Orchestration of
Mobile Edge Computing With Energy Awareness. IEEE Transactions
on Sustainable Computing, 7(2):456–470, 2022.

[18] C. R. de Mendoza et al. Near Optimal VNF Placement in Edge-Enabled
6G Networks. In 2022 25th Conference on Innovation in Clouds,
Internet and Networks (ICIN), pp. 136–140, 2022.

[19] J. Arulraj et al. eCloud: A Vision for the Evolution of the Edge-Cloud
Continuum. Computer, 54(5):24–33, 2021.

[20] C. Jiang and J. Wan. A Thing-Edge-Cloud Collaborative Computing
Decision-Making Method for Personalized Customization Production.
IEEE Access, 9:10962–10973, 2021.

[21] J. Santos et al. Resource Provisioning in Fog Computing: From Theory
to Practice. Sensors, 19(10), 2019.

[22] L. J. M. León et al. EFCC: a flexible Emulation Framework to evaluate
network, computing and application deployments in the Cloud Contin-
uum. In 2023 IEEE Symposium on Computers and Communications
(ISCC), pp. 1–6, 2023.

[23] R. A. Howard. Information Value Theory. IEEE Transactions on Systems
Science and Cybernetics, 2(1):22–26, 1966.

[24] S. Bharti et al. Value of Information Based Sensor Ranking for
Efficient Sensor Service Allocation in Service Oriented Wireless Sensor
Networks. IEEE Transactions on Emerging Topics in Computing,
9(2):823–838, 2021.

[25] L. Bölöni and D. Turgut. Value of information based scheduling of cloud
computing resources. Future Generation Computer Systems, 71:212–
220, 2017.

[26] M. Giordani et al. Investigating Value of Information in Future Vehicular
Communications. In 2019 IEEE 2nd Connected and Automated Vehicles
Symposium (CAVS), pp. 1–5, 2019.

[27] S. Laso et al. Deploying Digital Twins Over the Cloud-to-Thing Con-
tinuum. In 2023 IEEE Symposium on Computers and Communications
(ISCC), pp. 1–6, 2023.

[28] R. Minerva et al. Digital Twin in the IoT Context: A Survey on Technical
Features, Scenarios, and Architectural Models. Proceedings of the IEEE,
108(10):1785–1824, 2020.

[29] F. Poltronieri et al. Phileas: A Simulation-based Approach for the Eval-
uation of Value-based Fog Services. In 2018 IEEE 23rd International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pp. 1–6, Sep. 2018.

149

