

DIPARTIMENTO DI MECCANICA POLITECNICO DI MILANO
via G. La Masa, 1 20156 Milano EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it
Rev. 0

Model Checking MITL formulae on Timed Automata: a Logic-
Based Approach

Menghi, C.; Bersani, M. M.; Rossi, M.; San Pietro, P.

This is a post-peer-review, pre-copyedit version of an article published in ACM
TRANSACTIONS ON COMPUTATIONAL LOGIC. The final authenticated version is available
online at: https://dx.doi.org/10.1145/3383687

This content is provided under CC BY-NC-ND 4.0 license

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
https://dx.doi.org/10.1145/3383687
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Model Checking MITL formulae on Timed Automata:

a Logic-Based Approach

CLAUDIO MENGHI, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of
Luxembourg, Luxembourg
MARCELLO M. BERSANI, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Italy
MATTEO ROSSI, Dipartimento di Meccanica, Politecnico di Milano, Italy
PIERLUIGI SAN PIETRO, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Italy

Timed Automata (TA) is de facto a standard modelling formalism to represent systems when the interest is the
analysis of their behaviour as time progresses. This modelling formalism is mostly used for checking whether
the behaviours of a system satisfy a set of properties of interest. Even if efficient model-checkers for Timed
Automata exist, these tools are not easily configurable. First, they are not designed to easily allow adding
new Timed Automata constructs, such as new synchronization mechanisms or communication procedures,
but they assume a fixed set of Timed Automata constructs. Second, they usually do not support the Metric
Interval Temporal Logic (MITL) and rely on a precise semantics for the logic in which the property of interest
is specified which cannot be easily modified and customized. Finally, they do not easily allow using different
solvers that may speed up verification in different contexts.

This paper presents a novel technique to perform model checking of Metric Interval Temporal Logic
(MITL) properties on TA. The technique relies on the translation of both the TA and the MITL formula into an
intermediate Constraint LTL over clocks (CLTLoc) formula which is verified through an available decision
procedure. The technique is flexible since the intermediate logic allows the encoding of new semantics as well
as new TA constructs, by just adding new CLTLoc formulae. Furthermore, our technique is not bound to a
specific solver as the intermediate CLTLoc formula can be verified using different procedures.

CCS Concepts: • Theory of computation → Verification by model checking; Logic and verification;
Logic;

Additional Key Words and Phrases: Model Checking, Timed Automaton, Signal-Based Semantics

ACM Reference Format:
Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2020. Model Checking MITL
formulae on Timed Automata: a Logic-Based Approach. 1, 1 (February 2020), 44 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn
Authors’ addresses: Claudio Menghi, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of
Luxembourg, H29 Avenue John F. Kennedy, Luxembourg, 1855, Luxembourg, claudio.menghi@uni.lu; Marcello M. Bersani,
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Golgi 42, Milan, 20133, Italy, marcello.
bersani@polimi.it; Matteo Rossi, Dipartimento di Meccanica, Politecnico di Milano, via Golgi 42, Milan, 20133, Italy,
matteo.rossi@polimi.it; Pierluigi San Pietro, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, via Golgi 42, Milan, 20133, Italy, pierluigi.sanpietro@polimi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/2-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: February 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

1 INTRODUCTION

Model checking is an automatic technique to verify whether a model of a system satisfies a property
of interest. Various formalisms have been proposed for representing the model and its properties,
often in terms of state machines and temporal logics, both having specific peculiarities depending
on the designer’s goals and tool availability.
Timed Automata [4] (TA) are one of the most popular formalisms to describe system behavior

when real time constraints are important. Various tools are available to verify TA: Kronos [33], the
de facto standard tool Uppaal [26], RED [32],Mitl0,∞BMC tool [25] and MCMT [16] (though the
latter can only perform reachability analysis of—parametric—networks of TA).
We believe that novel model checking tools for TA should address three main challenges: (C1)

providing different semantics of TA including the continuous time; (C2) supporting high level
expressive complex logics that easily allow the specification of the properties of interest, such
as the Metric Interval Temporal Logic (MITL); and (C3) being extensible, i.e., allowing users to
add new constructs easily, such as adding new synchronization mechanisms or communication
procedures for TA. The main issues related to those challenges are summarized hereafter.

C1. The paradigm of time that is overwhelmingly adopted in practice is based on timed words [4]—
i.e., infinite words where each symbol is associated with a real-valued time-stamp—and most tools
(except [25]) are founded on such semantics. The so-called signal-based semantics is a different
interpretation, where each instant of a dense temporal domain (e.g., R≥0) is associated with a state,
called a signal. Signals are more expressive than timed words (as proved in [20]), thus allowing
a more precise representation of the system state over time. In particular, if a signal changes its
value at an instant t , it is possible to specify the value of the signal both in t (the “signal edge”)
and in arbitrary small neighborhoods of t . This allows, for instance, to represent the location of
an automaton both just before and immediately after an instantaneous state transition. Despite
its greater expressiveness, signal-based semantics has been so far confined mainly to theoretical
investigations [5, 12, 20, 31] and seldom used in practice [25], due the difficulty in developing
a feasible decision procedure. More precisely, Kindermann et al. [25] implemented a decision
procedure for BMC of TA against MITL0,∞ which is based on the so-called “super-dense” time
(also adopted by Uppaal). Under a super-dense time assumption, a TA can fire more than one
transition in the same (absolute) time instant; thus, two or more transitions can be fired one after
the other and produce many simultaneous, but distinct, configuration changes such that time does
not progress. Super-dense time is a modeling abstraction to represent systems that are much faster
than the environment they operate in, so their reaction to external events has a negligible delay. In
the current work, the signal-based semantics is not “super-dense”, i.e., at any time instant each
TA is in exactly one state. This choice is mainly dictated by the use of [9] to translate MITL to
CLTLoc, which is defined over the a more “traditional” dense-time; still, CLTLoc may be extended
to super-dense time.

C2. Temporal Logics with a metric on time, such as MITL [5], have been proposed to specify real-
time properties, but they are not fully supported by TA verification tools, that typically provide just
some baseline functionalities to address reachability problems (safety assessment) or to perform
model-checking of temporal logics without metric (e.g., LTL, CTL) or of fragments of Timed
CTL [33]. For example, Uppaal [26] supports only a limited set of reachability properties. However,
its ability to express that a certain condition triggers a reaction within a certain amount of time
provides a clear improvement over being able only to specify that a reaction will eventually occur.
The gap of almost 20 years between the proof of the decidability of MITL [5] and its applicability in
practice can be justified mainly with the practical complexity of the underlying decision procedure,
hampering the development of efficient tools, until more recent developments of new decision

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :3

procedures, typically based on efficient SMT-solvers. In fact, both [8, 25] developed a decision
procedure for the satisfiability of MITL, a problem which very recently was also tackled by [15]. In
particular, [25] proposed a verification procedure for a fragment of MITL, namely MITL0,∞, on TA,
but under a semantics based on super-dense signals. It is however still unknown whether MITL0,∞
is equivalent to MITL under the latter semantics. There are several procedures to convert MITL
specifications into TA [5, 28], but, to the best of our knowledge, only one has been successfully
implemented [13–15]. These procedures could be the basis for a model checking tool that (i)
transforms the MITL formula to be checked into (a set of) TA; (ii) combines the obtained automata
with a network of TA modeling the system; and (iii) performs an emptiness check on the result.
However, there is no available automated tool supporting this complete workflow, even in the case
of a system modeled by a single TA, as the approach still poses significant conceptual and technical
problems—for example when the system is modeled through a network of interacting automata
(see Section 6 for further details). In this work, we follow a different approach, entirely based on
temporal logic, which allowed us to overcome these problems.

To the best of the authors’ knowledge, a verification procedure supporting MITL over (standard)
signals is still not available. A proof of the language equivalence of TA and CLTLoc over timed
words was given for the first time in [10]; however, the translation presented therein did not
consider signals and had only the purpose of proving the equivalence of the formalisms, rather
than being intended to be implemented in a tool. For instance, it makes use of many additional
clocks that would hinder the performance of any decision procedure. Those limitations fostered the
definition of a new, more practical translation, which is also radically different. The new encoding
has been devised to be as optimized and extensible as possible, rather than being intended to
prove language-theoretical results. Moreover, it also supports networks of TA, whose traces are
interpreted for the evaluation of MITL formulae over atomic propositions and arithmetical formulae
of the form n ∼ d , where n is an integer variable manipulated by the automata; to this end, the
new encoding allows the representation of the signals associated with the atomic propositions on
the locations and with the integer variables elaborated by the network. The new encoding also
includes three synchronization primitives and allows the representation of the signal edges at the
instant where transitions are taken.

C3. Even if a variety of tools supporting the analysis of TA and networks of TA is available, they
usually are not easy to tailor and extend. (1) They only provide a fixed set of modeling constructs that
support designers in modeling the system under development, but which are not easily modifiable
and customizable. Typical examples are discrete variables (often on finite domains) as well as
some communication and synchronization features among different TA. For example, Uppaal
provides designers with binary and broadcast synchronization primitives, whereas RED offers
sending/receiving communication features via finite FIFO channels. However, often new modeling
requirements may prompt designers to formulate specific communication/synchronization features,
also based on data structures such as queues, stacks, priority mechanisms. Common model checkers
do not explicitly support extending their features and constructs in the above directions, since this
could cause a significant variation of the underlying semantics. Ad hoc modifications of a tool
are often possible, but they may require a deep knowledge of the tool internals, whose software
implementation may be quite complex (depending also in the architecture and the programming
language) and scantly documented. (2) The existing model checkers are typically solver-dependent,
since they rely on a strong relation between the problem domain and the solution domain—i.e.,
respectively, the models to be verified and the input language that is used by a verification engine.
(3) The cited tools explicitly support only TA, but not other timed formalisms such as, for instance,
Time Petri Nets [21, 30], unless an ad hoc front-end is developed (as for instance done by the Romeo

, Vol. 1, No. 1, Article . Publication date: February 2020.

:4 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

CLTLoc

TA MITL ϕ

CLTLoc solver

Sect.4 [9]

[11]

Fig. 1. A generic framework for checking the satisfaction of MITL formulae on TA.

toolkit [27]). Hence, they not easily allow multi-formalism analysis [7], e.g., to design systems with
heterogeneous components which are more naturally modeled by different formalisms.

Contribution. This paper describes a novel technique to model check networks of TA over
properties expressed in MITL over signals, by relying on a purely logic-based approach. The
technique is exemplified in the diagram of Fig. 1. It is based on the solution presented in [9] to
translate both a MITL formula and a TA into an intermediate logical language, which is then
encoded into the language of the underlying solver. This intermediate level has thus a similar role
as the Java bytecode for Java program execution on different architectures. The advantages are that,
on the one hand, new TA constructs, logic formalisms or semantics can be dealt with by defining
new encodings into the intermediate language; on the other hand, the intermediate language can
independently be “ported” to different (possibly more efficient) solvers, by translating into the
respective solver languages.

A TA and a MITL formula are translated into CLTLoc, a metric temporal logic [11]. CLTLoc is a
decidable extension of Linear Temporal Logic (LTL) including real-valued variables that behave like
TA clocks. The satisfiability of CLTLoc can be checked by using different procedures; a bounded
approach based on SMT-solvers is available as part of the Zot formal verification tool [6]. This
intermediate language easily allows for different semantics of TA such as, for instance, the signal
edges that are generated by the TA when transitions are fired (see Sect. 3). Moreover, different
features of the TA modeling language can be introduced by simply adding or changing formulae
in the CLTLoc encoding. As an example, finite queues or other data structures can be easily
included as long as the new features can be expressed in terms of CLTLoc formulae. The CLTLoc
formula encoding the network of TA and the MITL property is modular, in the sense that the parts
that translate the MITL property are separated from the formulae translating the TA network.
Moreover, each aspect of the semantics of the (network of) TA is isolated in a specific formula,
with only few interconnecting points with the other parts. Therefore, each part of the resulting
translation is self-reliant, thus easily allowing changes or extensions. In this work we consider
three different baseline semantics for the shape of the edge with which signals change values,
which correspond to different types of signals that can be generated by a (network) of TA (Table 7).
Furthermore, we formalize three different baseline semantics that can be introduced depending
on the synchronization constructs (Tables 2), and four different baseline semantics that can be
defined for the liveness of the transitions (Tables 1). For each of these semantics an encoding
into intermediate CLTLoc formulae is presented. The semantics of the (network of) TA, and the
intermediate CLTLoc encoding, depends on the baseline semantics chosen for the constructs of the
TA.

The technique presented in this work is implemented in a Java tool, called TACK (https://
github.com/claudiomenghi/TACK), which is built on the QTLSolver (https://github.com/fm-polimi/

, Vol. 1, No. 1, Article . Publication date: February 2020.

https://github.com/claudiomenghi/TACK
https://github.com/claudiomenghi/TACK
https://github.com/fm-polimi/qtlsolver
https://github.com/fm-polimi/qtlsolver

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :5

qtlsolver), and extends the translation of [11] to deal with a network of TA and to add a new
front-end for the specification of the network and its properties. TACK takes as input a (network of)
TA, described with a syntax compatible with Uppaal, and the MITL property to be verified. Unlike
Uppaal, TA and MITL are interpreted according to the signal-based semantics. The CLTLoc formula
produced by TACK is then fed to Zot for automated verification.
To evaluate the benefits that ensue from the adoption of an intermediate language, this work

shows how to deal with different signal-based semantics, synchronization primitives and liveness
conditions. Furthermore, to show the flexibility achieved by decoupling the model-checking prob-
lem and the resolution technique, different solvers are employed for verifying the intermediate
CLTLoc encoding. The efficiency of technique is evaluated over some standard benchmarks, namely
the Fischer (see e.g. [3]), the CSMA/CD (see e.g. [1]) and the Token Ring (see e.g. [23]) protocols.
The Fischer protocol was verified also through the Mitl0,∞BMC tool for a partial comparison
(where possible and reasonably meaningful) of the two approaches. We also study the timed lamp
model verified in [15] for a qualitative comparison with the approach introduced in that work.

The paper is structured as follows. Section 2 presents the background and the notation used in
the rest of this work. Section 3 introduces the continuous time semantics of TA. Section 4 presents
the algorithm to convert a TA into a CLTLoc formula. Section 5 describes the model checking
algorithm to verify MITL formulae on automata with time. Section 6 evaluates TACK and discusses
the experimental results. Section 7 concludes.

2 BACKGROUND

This section presents TA (enriched with integer-valued variables and synchronization), MITL and
CLTLoc.

2.1 Timed automata

Let X be a finite set of clocks with values in R. Γ(X) is the set of clock constraints over X defined by
the syntax γ B x ∼ c | ¬γ | γ ∧ γ , where ∼∈ {<,=}, x ∈ X and c ∈ N. Let Act be a set of events,
Actτ is the set Act ∪ {τ }, where τ is used to indicate a null event. Finally, we indicate by ℘ the
power set operator.

Definition 2.1 (Timed Automaton). Let AP be a non-empty set of atomic propositions, X be a set
of clocks and Act be a set of events. A Timed Automaton is a tuple A = ⟨AP , X , Actτ , Q, q0, Inv,
L, T ⟩, where: Q is a finite set of control states (also called locations); q0 ∈ Q is the initial state;
Inv : Q → Γ(X) is an invariant assignment function; L : Q → ℘(AP) is a function labeling the
states in Q with elements of AP ; T ⊆fin Q ×Q × Γ(X) ×Actτ × ℘(X) is a finite set of transitions.

Note that, to define the finite set of transitions T , we use relation ⊆fin since the set of clock
constraints Γ(X)—i.e., the universe of constraints that can be defined for a set of clocks—is infinite.

A transition t = (q,q′,γ ,α , ζ) ∈ T is written as q
γ ,α,ζ
−−−−→ q′; the notations t−, t+, tд , te , ts indicate,

respectively, the source q, the destination q′, the clock constraint γ , the event α and the set of
clocks ζ to be reset when firing the transition. Fig. 2(a) shows a simple example of TA.
Let Int be a finite set of integer variables with values in Z and ∼∈ {<,=}; Assiдn(Int) is the set

of assignments of the form n := exp, where n ∈ Int and exp is an arithmetic expression over the
integer variables and elements of Z—i.e., exp is defined by the syntax exp := exp + exp | exp − exp
| exp × exp | exp ÷ exp | n | c , where n ∈ Int and c ∈ Z. Γ(Int) is the set of variable constraints γ
over Int defined as γ B n ∼ c | n ∼ n′ | ¬γ | γ ∧ γ , where n and n′ are integer variables and c ∈ Z.

, Vol. 1, No. 1, Article . Publication date: February 2020.

https://github.com/fm-polimi/qtlsolver
https://github.com/fm-polimi/qtlsolver

:6 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

q2
c

q0
a

q1
x ≤ 5

sync: e1
guard: x < 5

sync: e2sync: e3
guard: x = 10

assign: x

(a) An example of TA.

q2
c

q0
a

q1
x ≤ 5

sync: e1
guard: x < 5
assign: n := 2

sync: e2
assign:
n := 1

sync: e3
guard: x = 10
assign: x , n := 0

(b) An example of TA with Variables.

Fig. 2. The TA in (a) has three locations, q0, q1, q2, and one clock x . The transition from q2 to q0 is labeled
with guard x = 10. When the transition is taken, clock x is reset—i.e., it is set to 0. Location q1 is associated

with invariant x ≤ 5. Locations q0 and q2 are labeled with atomic propositions a and c , respectively. The
TA in (b) is the same as the one of (a), except for the presence of integer variable n, which is set to 0, 1 or 2
depending on the transition taken.

Definition 2.2 (TA with Variables). Let AP be a non-empty set of atomic propositions, X be a set
of clocks, Act be a set of events and Int be a finite set of integer variables. A Timed Automaton with

Variables is a tupleA = ⟨AP , X , Actτ , Int ,Q, q0, v
0
var , Inv, L,T ⟩, where: Q is a finite set of control

states (also called locations); q0 ∈ Q is the initial state; v0
var : Int → Z assigns each variable with

a value in Z; Inv : Q → Γ(X) is an invariant assignment function; L : Q → ℘(AP) is a function
labeling the states inQ with elements ofAP ; T ⊆fin Q×Q×Γ(X)×Γ(Int)×Actτ×℘(X)×℘(Assiдn(Int))
is a finite set of transitions.

A transition is written as q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ where ξ is a constraint of Γ(Int) and µ is a set of assign-

ments from ℘(Assiдn(Int)). The notations td and tu indicate, respectively, the variable constraint ξ
and the set of assignments µ associated with a transition t . An example of TA with Variables is
presented in Fig. 2(b).

Remark 1. A set of assignments µ ∈ ℘(Assiдn(Int)) might be inconsistent, i.e., it may assign

different values to the same variable. For example, µ = {x = 2,x = 3} is inconsistent since two values
are assigned to variable x . In this case, a transition associated with µ cannot be fired.

Remark 2. It is easy to see that TA with variables as defined in Definition 2.2 are undecidable,

unless suitable restrictions are introduced. Indeed, as mentioned in Section 3, in this paper we consider

only variables with finite domains. Note, however, that one of the goals of this paper is to present an

encoding that (i) is general; (ii) considers different semantics of the (network of) TA; and (iii) can be

implemented into a tool of practical usage. For this reason, we directly encode features such as variables

with (finite) integer domains into CLTLoc, instead of relying on equivalent formulations of TA that

only use a minimal number of constructs—e.g., by representing the value of variables with finite integer

domains through suitable locations. Indeed, the current encoding can potentially be adopted even when

infinite domains, combined with suitable constraints to ensure decidability, are considered (e.g., TA

extended with reversal bounded integer counters, as in [17]).

When networks of TA are considered, the event symbols labeling the transitions are used to
synchronize automata. Every event symbol α ∈ Act is associated with one communication channel,
which can be identified with the event symbol itself, i.e., channel α . To simplify the notation, even
in the case of a network of TA we use Actτ to indicate the set of actions of the network, which

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :7

is redefined to include also the synchronization symbols. Specifically, when networks of TA are
considered, the set of actions Actτ is now defined as Actτ = {τ } ∪ {Act × Sync}, where Sync is a set
of synchronization primitives and τ indicates that no synchronization primitive is associated with
the transition. In this work, Sync is restricted to {!, ?, #,@,&, ∗} where the symbols ! and ? indicate
that a TA emits and receives an event, respectively, # denotes a broadcast synchronization sender
and @ denotes a broadcast synchronization receiver, & denotes a one-to-many synchronization
sender and ∗ denotes a one-to-many communication receiver. Symbols α !, α?, α#, α@, α& and α∗
indicate the element (α , !), (α , ?), (α , #), (α ,@), (α ,&) and (α , ∗) such that (α , !), (α , ?), (α , #), (α ,@),
(α ,&) and (α , ∗) is contained in the set {Act × Sync}.

Definition 2.3 (Network of TA). A network N of TA is a set N = {A1, . . . ,AK } of TA defined
over the same set of atomic propositions AP , actions Actτ , variables Int and clocks X .

Remark 3. Let N be a network of TA defined over the set of clocks X ; a clock x ∈ X is a local
clock of an automaton Ai ∈ N if x is used in the invariants, guards or resets of Ai and there is no

other automaton Aj ∈ N , with Ai , Aj , using x in its invariants, guards or resets. Let Int be a set
of variables of N , a variable n ∈ Int is a local variable of an automaton Ai ∈ N if n is used in the

guards or assignments of Ai and there is no other automaton Aj ∈ N , with Ai , Aj , using the

variable n in its guards or assignments.

2.2 Metric Interval Temporal Logic

An interval I is a convex subset of R≥0 of the form ⟨a,b⟩ or ⟨a,∞), where a ≤ b are non-negative
integers; symbol ⟨ is either (or [; symbol ⟩ is either) or].

The syntax of (well-formed) MITL formulae is defined by the grammar
ϕ B α | ϕ ∧ϕ | ¬ϕ | ϕUI ϕ

where α are atomic formulae. Since MITL is here used to specify properties of TA enriched with
variables, atomic formulae α are either propositions of AP or formulae of the form n ∼ d , where
n ∈ Int, d ∈ Z and ∼∈ {<,=}. In the following, set APv indicates the universe of the formulae of
the form n ∼ d .

The semantics of MITL is defined w.r.t. signals. Let ZInt be the set of total functions from Int to Z.
A signal is a total functionM : R≥0 → ℘(AP) × Z

Int . LetM be a signal; the semantics of an MITL
formula is defined as follows.

M, t |= p iff M(t) = (P ,vvar) and p ∈ P
M, t |= n ∼ d iff M(t) = (P ,vvar) and vvar(n) ∼ d

M, t |= ¬p iff M, t |= ¬ϕ

M, t |= ϕ ∧ψ iff M, t |= ϕ andM, t |= ψ
M, t |= ϕUI ψ iff ∃t ′ > t , t ′ − t ∈ I ,M, t ′ |= ψ and ∀t ′′ ∈ (t , t ′), M, t ′′ |= ϕ

An MITL formula ϕ is satisfiable if there exists a signalM , such thatM, 0 |= ϕ. In this case,M is
called a model of ϕ.

2.3 Constraint LTL over clocks

CLTLoc is a temporal logic where formulae are defined over a finite set of atomic propositions
and a set of dense variables over R≥0 representing clocks. CLTLoc has been recently extended
by supporting expressions over a set of arithmetical variables [29]. CLTLoc is the intermediate
language that is adopted to solve the model-checking problem of TA with MITL specifications.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:8 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

CLTLoc allows for two kinds of atomic formulae: over clocks and over arithmetical variables. An
atomic formula over a clock x is for instance x < 4, whereas an atomic formula over arithmetical
variables is for examplen+m < 4, withn,m ∈ Z. Similarly to TA, a clock x measures the time elapsed
since its last “reset”. CLTLoc also exploits the “next” X modality applied to integer variables [19]:
if n is an integer variable, the term X(n) represents the value of n in the next position.
Let X be a finite set of clocks and Int be a finite set of integer variables; formulae of CLTLoc

with counters are defined by the grammar:
ϕ B p | x ∼ c | exp1 ∼ exp2 | X(n) ∼ exp | ϕ ∧ ϕ | ¬ϕ | X ϕ | ϕU ϕ

where p ∈ AP , c ∈ N, x ∈ X , exp, exp1 and exp2 are arithmetic expressions over the sets Int and Z
(defined as described in Section 2.1), n ∈ Int and ∼ is a relation in {<,=}. X,U are the usual “next"
and “until" operators of LTL. Modalities such as “eventually” (F), “globally” (G), and “release” (R)
are defined as usual. Symbol ⊤ (true) abbreviates (p ∨ ¬p), for some p ∈ AP .

The strict linear order (N, <) is the standard representation of positions in time. The interpretation
of clocks is defined by means of a clock valuation σ : N × X → R≥0 assigning, for every position
i ∈ N, a real value σ (i,x) to each clock x ∈ X . As in TA, a clock x measures the time elapsed since
the last time when x = 0, i.e., the last “reset" of x . The semantics of time evolution is strict, namely
the value of a clock must strictly increase in two adjacent time positions, unless it is reset (i.e., for
all i ∈ N, x ∈ X , it holds that σ (i + 1,x) > σ (i,x), unless σ (i + 1,x) = 0 holds)1. To ensure that
time strictly progresses at the same rate for every clock, σ must satisfy the following condition: for
every position i ∈ N, there exists a “time delay" δi > 0 such that for every clock x ∈ X :

σ (i + 1,x) =

{
σ (i,x) + δi progress
0 reset x

If this is the case, then σ is called a clock assignment. The initial value σ (0,x) may be any non-
negative value. Moreover, a clock assignment is such that

∑
i ∈N δi = ∞, i.e., time is always pro-

gressing.
The interpretation of variables is defined by a mapping ι : N × Int → Z assigning, for every

position i ∈ N, a value in Z to each variable of set Int . Let ι be a valuation and i be a position; exp(ι, i)
indicates the evaluation of exp obtained by replacing each arithmetical variable n ∈ Int that occurs
in exp with value ι(i,n). An interpretation of CLTLoc is a triple (π ,σ , ι), where π : N→ ℘(AP) is a
mapping associating a set of propositions with each position i ∈ N, σ is a clock assignment and ι is
a valuation of variables. Let x be a clock, n be a variable and c be a constant in N, the semantic
of CLTLoc at a position i ∈ N over an interpretation (π ,σ , ι) is defined as follows (standard LTL
modalities are omitted):

(π ,σ , ι), i |= x ∼ c iff σ (i,x) ∼ c

(π ,σ , ι), i |= exp1 ∼ exp2 iff exp1(ι, i) ∼ exp2(ι, i)

(π ,σ , ι), i |= X(n) ∼ exp iff ι(i + 1,n) ∼ exp(ι, i)

(π ,σ , ι), i |= a iff a ∈ π (i)

A CLTLoc formula ϕ is satisfiable if there exist an interpretation (π ,σ , ι) such that (π ,σ , ι), 0 |= ϕ.
In this case, (π ,σ , ι) is called a model of ϕ, written (π ,σ , ι) |= ϕ. It is easy to see that CLTLoc is
undecidable, as it can encode a 2-counter machine; however, in this work a decidable subset of
CLTLoc is adopted, where the domain of arithmetical variables is finite.
1As discussed in the following this assumption does not allow us to capture the super-dense semantics of TAs.

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :9

3 CONTINUOUS TIME SEMANTICS FOR TIMED AUTOMATA

The behavior of TA over time is described by means of execution traces that define the evolution of
the APs, variables and clocks of the automata changing their values because transitions are taken
or because time elapses. When networks of synchronizing TA are considered, the formal definition
of the semantics of (network of) TA has to deal with the following issues:

a) how the automata progress over time by means of transitions associated with actions (liveness
conditions); and

b) how the automata synchronize when transitions labeled with !,?, #, @, & and ∗ are fired.
Only the general case semantics of a network of TA with variables is discussed hereafter. Obvi-

ously, the semantics of a network of TA without variables or of a single TA are just special cases.
Furthermore, in the rest of this paper, integer variables are restricted to finite domains.

3.1 Preliminaries

Let X be a set of clocks and γ ∈ Γ(X) be a clock constraint. A clock valuation is a function
v : X → R≥0; the notation v |= γ indicates that the clock valuation v satisfies γ—i.e., by replacing
v(x) for x in any subformula of the form x ∼ d the clock constraint γ evaluates to true. Let r
be an element of R, v + r denotes the clock valuation mapping clock x to value v(x) + r—i.e.,
(v + r)(x) = v(x)+ r for all x ∈ X . In the following, without loss of generality, the clock constraints
associated with transitions of TA are supposed to define convex sets of R. Every transition in a TA
whose guard is non-convex can be replaced by at most an exponential number of fresh transitions,
each one labeled with a convex guard. In fact, any non-convex sets ofR defined by a clock constraint
can be defined as the union of finitely many convex ones. For this reason, in the next sections, clock
constraints are restricted to conjunctions of atomic clock constraints of the form x ∼ d , where ∼ is
a relation in {<,=, >, ≤, ≥}.2
A transition from q to q′ labeled with a non-convex guard can be equivalently replaced with a

set of transitions, all starting in q and leading to q′, labeled with convex guards.
Before providing the formal definition of the transition relation for networks of TA, the notion

of weak satisfaction relation |=w over clock valuations and clock constraints is introduced. The
weak satisfaction relation may be used to evaluate the invariants in the locations when a transition
is fired, to allow different ways of performing an instantaneous transition. In particular, relation
|=w is never satisfied when a clock constraint has the form x = d , where x is a clock and d is a
positive integer. The importance of weak satisfaction will be clearer later. Relation |=w weakens
the evaluation of clock constraints of the form x < d and x > d . Those two constraints are weakly
satisfied forv(x) = d −ϵ orv(x) = d +ϵ (where ϵ > 0) as in the non-weak case, but they are weakly
satisfied also for v(x) = d (i.e., as if the constraints were of the forms x ≤ d and x ≥ d). Formally,
a clock valuation v weakly satisfies a clock constraint γ , written v |=w γ , when the following
conditions hold:

v |=w x ∼ d iff v(x) ∼ d or v(x) = d ∼∈ {<, >, ≤, ≥}
v ̸ |=w x = d for any x ∈ X ,d ∈ N

Naturally, |=w can be extended to conjunctions of formulae x ∼ d . For instance, the formula
x < 1 ∧ y > 1 is both satisfied and weakly satisfied by the clock evaluation such that v(x) = 0.8
and v(y) = 1.2, but it is only weakly satisfied if v(x) = 1 and v(y) = 1.

A variable valuation vvar is a function vvar : Int → Z that maps each variable in Int to an integer
number; also, if ξ ∈ Γ(Int) is a variable constraint, vvar |= ξ indicates that valuation vvar satisfies ξ .
2Relations ≤,≥, > can obviously be obtained by combining atomic clock constraints x ∼ d (with ∼∈ {<, =}) and the
negation operator (¬).

, Vol. 1, No. 1, Article . Publication date: February 2020.

:10 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Let t = q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ be a transition, v be a clock valuation and vvar be a variable valuation, t is

enabled in the valuation whenv satisfies γ andvvar satisfies ξ . In addition, a satisfaction relation for
assignments is here introduced. Letvvar andv ′var be two variable valuations; (v ′var,vvar) |= µ indicates
that all the assignments in µ are satisfied by means of v ′var and vvar. Formally, all assignments of
the form n = exp hold when n is replaced with v ′var(n) and every occurrence ofm ∈ Int in exp is
replaced with vvar(m). Moreover, let U (µ) be the set of variables that are updated by µ—that is,
that appear as the left-hand side in an assignment of µ—and letU (t) indicate the setU (µ) given a
transition t .

Remark 4. Relation |= does not hold for inconsistent transitions, i.e., assigning multiple distinct

values to a variable. For example, if µ = {n = 2,n = 3}, there is no assignment to n such that both

n = 2 and n = 3 hold.

Definition 3.1. LetN be a network of K TA. A configuration ofN is a tuple (l,vvar,v) where l is
a vector [q1, . . . ,qK]— s.t. q1, . . . ,qK are locations ofA1, . . . ,AK—vvar (resp.,v) is a variable (resp.,
clock) valuation for the set Int (resp., X) including all integer variables (resp., clocks) appearing in
the TA of the network.

When a network of TA is considered, it is possible that some automata in the network take
a transition while the remaining others do not fire a transition and keep their state unchanged.
Firing a transition labeled with the null event τ (i.e., a transition that does not synchronize) is
however different from not taking a transition at all. Symbol _ indicates that an automaton k does
not perform any transition in Tk .

The notation l[k] indicates the location of automaton Ak—i.e., if l[k] = j, then automaton Ak
is in location qkj , assuming that the locations of each automaton are numbered, with 0 indicating
the initial one.

Two kinds of configuration changes may occur when an automaton in the network performs a
transition from a state q to q′. They are indicated in Def. 3.2 with symbols ei (excluded-included)
and ie (included-excluded). Intuitively, these symbols constraints how the network behaves when
a transition is fired. The symbol ei forbids an automaton to be in state q (excluded) in the instant in
which the transition from q to q′ is fired, while it forces the automaton to be in state q′ (included).
Vice versa, the symbol ie forces an automaton to be in state q (included) in the instant in which the
transition from q to q′ is fired, while it forbids the automaton to be in state q′ (excluded). Consider,
for instance, a location q labeled with x < 1 and an outgoing transition. If the automaton is in q,
then the transition can be executed when v(x) < 1, in which case the corresponding configuration
change can be arbitrarily marked either with ei or with ie. The transition can be executed even
when v(x) = 1 holds, but in this case the kind of configuration change can only be ei.

Definition 3.2. Let N be a network of K TA. Let (l,vvar,v), (l′,v ′var,v
′) be two configurations,

let δ ∈ R>0 and Λ be a tuple of K symbols such that Λ[k] ∈ {Actτ × {ei, ie}} ∪ {_} for every
1 ≤ k ≤ K . Then, a configuration change is either a transition (l,vvar,v)

Λ
−→ (l′,v ′var,v

′) or a
transition (l,vvar,v)

δ
−→ (l′,v ′var,v

′) defined as follows.

(1) (l,vvar,v)
Λ
−→ (l′,v ′var,v

′) occurs if

(a) for each Λ[k] = (α ,b) there is a transition l[k]
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ l ′[k] in Ak such that:

(i) v |= γ and vvar |= ξ ,
(ii) v ′(x) = 0 holds for all x ∈ ζ ,
(iii) (v ′var,vvar) |= µ,
(iv) when b = ei then:

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :11

• v |=w Inv(l[k]) and
• v ′ |= Inv(l′[k])

(v) when b = ie:
• v |= Inv(l[k]) and
• v ′ |=w Inv(l′[k])

(b) for each Λ[k] = _ it holds that:
(i) l′[k] = l[k];
(ii) v |= Inv(l[k]) and v ′ |= Inv(l′[k]).

(c) for each clock x ∈ X (resp., integer variable n ∈ Int), if x (resp., n) does not appear in any
ζ (resp., it is not assigned by any A) of one of the transitions taken by A1, . . . ,AK , then
v ′(x) = v(x) (resp., v ′var(n) = vvar(n));

(2) (l,vvar,v)
δ
−→ (l′,v ′var,v

′) occurs if l′[k] = l[k], v ′var = vvar, v ′ = v + δ and for all 1 ≤ k ≤ K ,
v ′ |=w Inv(l[k]).

A configuration change (l,vvar,v)
Λ
−→ (l′,v ′var,v

′), for some Λ ∈ {{Actτ × {ei, ie}} ∪ {_}}K ,
satisfying (1) is called a discrete transition. If it satisfies (2) then it is called a time transition. For
convenience of notation, symbols (α , ei) and (α , ie), for some α ∈ Actτ , are hereinafter denoted
respectively with α)[and α](, meaning that the discrete transition performed by the k-th automaton,
such thatΛ[k] = (α , ei) (resp.,Λ[k] = (α , ie)), is open-closed (resp., closed-open). The use of symbols
α)[or α](allows the distinction of two different ways of performing a transition by means of an
action α . The two modes are determined by the conditions in (1)(a)iv and (1)(a)v and depend on the
invariants of the locations involved in the transition, the clock values and the resets applied in the
configuration change. Location invariants and resets make it possible to constrain every symbol
Λ[k], associated with Ak , and hence to define how the configuration change in Ak is realized.
Cases (1) and (2) are discussed in detail in the following.
Case (1). If the discrete transition is open-closed—i.e., the symbol is α)[—then (1)(a)iv holds.

The conditions of this case impose that v ′ satisfies the invariant of the destination location and
v weakly satisfies the invariant of the source location. Therefore, if the invariant of the source
state is x < 1, then the transition can be taken with v(x) ≤ 1. This is achieved through the weak
satisfaction relation that guarantees the (weak) satisfaction of the invariant x < 1 with v(x) = 1.
Conversely, if the discrete transition is closed-open—i.e., the symbol is α](—then (1)(a)v holds. The
conditions defined therein allow the invariant of the destination location to be weakly satisfied and
the transition to be fired with v(x) ≥ 1, if the invariant of the destination state is x > 1.
Based on the invariants and resets, the symbol Λ[k] is either non-deterministically chosen

between α)[and α](because both symbols are allowed, or it is determistically defined because
only one is permitted, according to conditions (1)(a)iv and (1)(a)v. Figure 3 shows two automata
and the possible transitions. The case of a transition on a symbol α)[is exemplified in Fig. 4(a).
When v(x) ≤ 1 holds, the invariant Inv(l[k]) of the first location is weakly satisfied by v—i.e.,
v |=w Inv(l[k]) holds. In such a case, since Inv(l′[k]) is empty—hence it is trivially true—symbol α)[
is allowed. In the automaton of Fig. 4(b), instead, only symbol α](is allowed, because the constraint
on the second location requires that x is not reset. Constraint v ′ |=w Inv(l′[k]) of condition (1)(a)v
is satisfiable with v ′(x) = 0. Conversely, v |= Inv(l[k]) of condition (1)(a)iv would be falsified
because of the reset and, hence, α)[is prevented. In addition, α](is also allowed in the automaton
of Fig. 4(a) when v(x) < 1 holds, because v |= Inv(l[k]) holds in that case.
Case (2). It defines the time transitions by means of the weak relation |=w . Consider an open-

closed transition that changes the location of an automaton currently in q, for some q, and the last
time transition immediately preceding it which makes the time progress of δ time units, for some

, Vol. 1, No. 1, Article . Publication date: February 2020.

:12 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

δ > 0. In order to perform the open-closed transition, v + δ weakly satisfies Inv(q), as required
by (1)(a)iv. The use of relation |= instead of |=w in (2) would prevent the occurrence of some
open-closed configuration changes, i.e., those that would be caused by an Inv(q) being weakly, but
not strongly, satisfied in the time transition. In case of closed-open transitions, v + δ (strongly)
satisfies Inv(q), as required by (1)(a)v. Hence, v + δ also weakly satisfies Inv(q), as in condition (2).
For instance, in Fig. 4(a), if the automaton is in the location labeled with x < 1 and v(x) = 0.8 then
the time progress δ = 0.2 is permitted by (2) in order to perform the outgoing transition in an
open-closed manner with v ′(x) = 1. Moreover, if the time progress δ is such that the invariant of
the current location q is such that v + δ |= Inv(q) holds, then both kinds of transitions are allowed.
The combination of conditions (1) and (2) describe how the configuration of a network of TA

changes.
Based on the previous arguments, the symbols α)[and α](will be considered in Sec. 5 to define

the signals associated with atomic propositions and variables when discrete transitions are taken.
The notion of trace is now introduced. Recall that, v0

var : Int → Z assigns each variable with a
value in Z (see Def 2.2) .

Definition 3.3. Let N be a network of K TA. A trace is an infinite sequence
η = (l0,vvar,0,v0), e0, (l1,vvar,1,v1), e1, (l2,vvar,2,v2), e2, . . .

such that:
(1) for all i ∈ N, ei = Λi or ei = δi ;
(2) for all i ∈ N it holds that (li ,vvar,i ,vi)

ei
−→ (li+1,vvar,i+1,vi+1);

(3) e0 = δ0, for some δ0 ∈ R>0;
(4) for all 1 ≤ k ≤ K , it holds that l0[k] = 0,v0 |= Inv(l0[k]), for all x ∈ X it holds thatv0(x) = 0,

and for all n ∈ Int it holds that vvar,0(n) = v
0
var(n).

(5) discrete transitions must be followed by time transitions; that is, if ei is a discrete transition
(ei = Λi), then ei+1 is a time transition (ei = Λi).

The wordw(η) of a trace η is the sequence e0e1

With a slight abuse of notation, a trace (l0,vvar,0, v0), e0, (l1, vvar,1,v1), e1, (l2, vvar,2,v2), e2, . . .

can be written as (l0, vvar,0, v0)
e0
−→ (l1, vvar,1, v1)

e1
−→ (l2, vvar,2, v2)

e2
−→

Notice that case (2) of Definition 3.2 does not impose that, when a transition (li ,vvar,i ,vi)
δi
−→

(li+1,vvar,i+1,vi+1) is taken, the invariant hold at the beginning of the interval of length δ (i.e., for
valuation vi), but only at its end (i.e., for valuation vi+1). Indeed, transitions are meaningful only in
the context of traces, and the fact that the invariant holds for vi is guaranteed by condition (4) of
Definition 3.3 if i = 0, otherwise by the definition of transition (li−1,vvar,i−1,vi−1)

ei−1
−−−→ (li ,vvar,i ,vi)

in the trace (no matter the nature of ei−1).
Since by condition (5) there cannot be two consecutive discrete transitions, and since any finite

sequence of consecutive delays δh . . . δh+k , with k ≥ 0, is equivalent to a single delay
∑h+k

i=h δi ,
a trace can always be rewritten into a new one such that discrete and time transitions strictly
alternate. Moreover, by the previous property, every time transition δh can always be replaced
with a finite sequence ofm pairs of time and discrete transition δh,0Λh,0δh,1Λh,2 . . . δh,m , strictly
alternating, such that in Λh,i [k] = _, for all 0 ≤ i ≤ m − 1 and δh =

∑m
i=0 δh,i . This property is used

in Sec. 5 to allow the use of [9] in the resolution of the model-checking problem of TA with MITL.
To facilitate future discussions, a trace is represented with the following notation where the

numbering of configurations increases only after the discrete transitions:

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :13

Fig. 3. Two examples of transitions enforcing a different and unique configuration change.

x < 1

(a) TA allowing Λ)[only, for v(x) =
1; and either Λ)[or Λ](, for v(x) < 1.

x > 0
assign: x

(b) TA allowing Λ](only.

(l0,vvar,0,v0)
δ0
−→ (l′0,v

′
var,0,v

′
0)

Λ0
−−→ (l1,vvar,1,v1)

δ1
−→ . . .

3.2 Liveness and synchronization

Definition 3.3 only provides weak conditions on the occurrences of discrete transitions and does not
express any restriction on how TA synchronize. In fact, beside the first three conditions requiring
that traces are sequences of configuration changes starting from a specific initial configuration,
only Condition (5) expresses a restriction on how the configuration changes occur, which only
prevents discrete transitions from occurring consecutively, one after the other. However, one is
typically interested in “live” traces, in which some transition is eventually taken and where the
effect of the synchronizing primitives is precisely defined.

3.2.1 Liveness. Table 1 shows the formal definition of the following four possible liveness
conditions, for a generic trace of a network with K timed automata.
• Strong (Weak) transition liveness: at any time instant, each (resp., at least one) automaton of
the network eventually performs a transition.
• Strong (Weak) guard liveness: at any time instant, for each automaton (resp., there exists an
automaton such that) the values of clocks and variables will eventually enable one of its
transitions3.

Even if the previous conditions restrict the occurrence of transitions or the satisfiability of guards
along the trace, they do not prevent, in general, the progress of time from slowing down. This issue
is well-known in the literature of timed verification and, intuitively, it is caused by so-called time

convergent traces, where the sum of all the delays δi associated with time transitions is bounded by
some positive integer. Therefore, the previous liveness conditions allow Zeno traces, i.e., where
infinitely many actions can occur in finite time. Avoiding Zeno traces can be done in several ways.
For instance, one can require strong transition liveness and introduce a new TA in the network
which infinitely many times along the trace resets a clock when the clock value reaches 1.

3.2.2 Synchronization. Section 2 introduced qualifiers !, ?, #, @, &, and ∗ labeling actions on
the transitions with the goal of capturing different ways in which the automata of a network
can synchronize. Qualifiers ! and ? describe a so-called channel-based synchronization; qualifiers
and @ describe a broadcast synchronization; and qualifiers & and ∗ describe a one-to-many

synchronization.
Channel-based, broadcast and one-to-many synchronizations can be arbitrarily mixed in the

same configuration change. Table 2 shows the formal definition of the channel-based, broadcast
and one-to-many synchronization mechanisms for a generic trace of a network of TA.
3The constraint does not force the transition to be taken. Moreover, alternative definitions can be given by considering only
clock or variable guards.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:14 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 1. Formal definition of different liveness properties for traces.

Name Formulation of the Semantics
Strong transition
liveness

For every h ≥ 0 and 1 ≤ k ≤ K , there exists j > h such that

(l′j ,v
′
var, j ,v

′
j)

Λj
−−→ (lj+1,vvar, j+1,vj+1) belongs to the trace and Λj [k] , _.

Weak transition
liveness

For every h ≥ 0 there exist 1 ≤ k ≤ K and j > h such that (l′j ,v
′
var, j ,v

′
j)

Λj
−−→

(lj+1,vvar, j+1,vj+1) belongs to the trace and Λj [k] , _.

Strong guard
liveness

For every h ≥ 0 and 1 ≤ k ≤ K , there exist j > h and a configuration

(l′j ,v
′
var, j ,v

′
j) in the trace such that there is a transition q

γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ with

q = l′j [k], for which vvar, j |= ξ and vj |= γ hold.

Weak guard
liveness

For every h ≥ 0 there exist 1 ≤ k ≤ K , j > h, and a configuration

(l′j ,v
′
var, j ,v

′
j) in the trace such that there is a transition q

γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ with

q = l′j [k], for which vvar, j |= ξ and vj |= γ hold.

• Channel-based synchronization: for any discrete transition, every “sending” (qualifier !) action
in a TA Ak must be matched by exactly one corresponding “receiving” (qualifier ?) action in
another TA Ak ′ on the same channel (e.g., α ! and α?) labeling an enabled transition.
• Broadcast synchronization: for any discrete transition, every “sending” (qualifier #) action in a
TA Ak is matched by all and only “receiving” (qualifier @) actions in TA Ak ′ labeling an
enabled transition. In other words, either Ak ′ , Ak takes a transition labeled with α@, or it
does not exist any enabled transition for Ak ′ labeled with α@.
• One-to-many synchronization: for any discrete transition, every “sending” (qualifier &) action
in Ak is matched by a (non empty) set of “receiving” (qualifier ∗) actions in Ak ′ labeling an
enabled transition. The one-to-many synchronization is a variation of the broadcast in which
when an automaton Ak sends a message it is received by at least one receiver. However, not
all the automata that have a transition labeled with α∗ are forced to receive the message.

Notice that, for any channel α , the previous synchronizations allow only one TA to send a message
on α at any time instant; on the other hand, distinct TA can send messages concurrently on separate
channels.

4 FROM TIMED AUTOMATA TO CLTLOC

This section shows that, given a network N of TA, it is possible to construct a CLTLoc formula
ΦN = φN∧φl∧φs∧φef whose models represent the traces ofN . FormulaeφN ,φl ,φs andφef encode,
respectively: the behavior of the network, that is the effect of the transitions on the configuration
of the network including how clocks are reset, how variables and locations are modified and when
transitions can be taken (φN); a set of constraints on the liveness conditions (φl); the semantics
of the firing of the transitions that depend on the synchronization modifiers that decorate their
labeling events (φs); and constraints on the types of edges (open-closed or closed-open) with which
transitions are taken (φef). Before discussing CLTLoc formulae φN , φl φs and φef , formula ϕclock is
first introduced to encode a set of constraints on the CLTLoc clocks used in φN .

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :15

Table 2. Definition of different constraints on traces depending on synchronization primitives.

Type Formulation of the Semantics

Channels For every configuration change (l′h ,v
′
var,h , v

′
h)

Λh
−−→ (lh+1,vvar,h+1,vh+1) and 1 ≤

k ≤ K such that α ! = Λh[k] holds, there exists exactly one 1 ≤ k ′ ≤ K such that
k ′ , k and α? = Λh[k

′] hold, and vice-versa.

Broadcast For every configuration change (l′h ,v
′
var,h , v

′
h)

Λh
−−→ (lh+1,vvar,h+1,vh+1) and 1 ≤

k ≤ K such that α# = Λh[k] holds, for every 1 ≤ k ′ ≤ K , with k ′ , k , it holds

that α# , Λh[k
′] and either α@ = Λh[k

′] holds, or no transition q
γ ,ξ ,α@,ζ ,µ
−−−−−−−−−→ q′

in Ak ′ is such that v ′var,h |= ξ and v ′h |= γ hold.

One-to-
many

For every configuration change (l′h ,v
′
var,h , v

′
h)

Λh
−−→ (lh+1,vvar,h+1,vh+1) and 1 ≤

k ≤ K such that α& = Λh[k], there exists at least one 1 ≤ k ′ ≤ K such that k ′ , k
and α∗ = Λh[k

′] hold.

Table 3. Encoding of the clocks of the automata.

ϕ1 B
∧

x ∈X (x0 = 0 ∧ x1 > 0 ∧ xv = 0)

ϕ2(j) B
∧

x ∈X (x j = 0)→X((x(j+1) mod 2 = 0) R((xv = j) ∧ (x j > 0)))

4.1 Encoding constraints over clocks (ϕclock)

Unlike those in TA, clocks in CLTLoc formulae cannot be tested and reset at the same time. For
instance, while it is possible that a transition in a TA both has guard x > 5 and resets clock x , in
CLTLoc simultaneous test and reset would yield a contradiction, as testing x > 5 and resetting x in
the same position equals to formula x > 5 ∧ x = 0. Therefore, for each clock x ∈ X , two clocks x0
and x1 are introduced in ΦN to represent a single clock x of the automaton. An additional Boolean
variable xv keeps track, in any discrete time position, of which clock between x0 and x1 is “active”
(xv being equal to 0 or 1 respectively). Clocks x0 and x1 are never reset at the same time and their
resets alternate. If xv = 0 (resp., xv = 1) at position i of the model of ΦN , then x0 (resp., x1) is the
active clock at i and σ (i,x0) (resp., σ (i,x1)) is the value used to evaluate the clock constraints at i .
If the reset of x has to be represented at i , clock x1 (resp., x0) is set to 0 and the value xv in position
i + 1 is set to 1 (resp., 0)—i.e., the active clock is switched.

Table 3 shows the formulae ϕ1 and ϕ2 that are used to define ϕclock . Formula ϕ1 specifies that
initially, the active clock is x0. In position 0 variable xv is equal to 0 (indicating that x0 is the active
clock), x0 is also equal to 0 and x1 has an arbitrary value greater than zero. Formula ϕ2 specifies
that if x j is reset, it cannot be reset again before x(j+1) mod 2 is reset. For instance, if clock x0 is reset,
then it cannot be reset again (it remains grater than zero) and it is the active clock (xv = 0) as long
as x1 is different from 0.
Formula ϕclock is defined as ϕ1 ∧ G(ϕ2(0) ∧ ϕ2(1)). Since every clock x is represented by two

variables x0 and x1, all clock constraints of the form x ∼ d in Γ(X) that appear in the automaton
are translated by means of the following CLTLoc formula (notice that a CLTLoc clock constraint
of the form xi > d is an abbreviation for ¬(xi < d ∨ xi = d), and so on):

ϕx∼d := ((x0 ∼ d) ∧(xv = 0)) ∨((x1 ∼ d) ∧(xv = 1)).

, Vol. 1, No. 1, Article . Publication date: February 2020.

:16 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

0 1 2 3 4 5 6 7 8

x := 0 x > 5,x := 0 x < 1 x = 3,x := 0

x0 = 0 x0 > 5
x1 = 0 x1 < 1 x1 = 3

x0 = 0

xv = 0 xv = 0 xv = 1 xv = 1

σ (0,x0) = 0 σ (3,x0) > 5
σ (3,x1) = 0 σ (5,x1) < 1 σ (5,x1) = 3

σ (5,x0) = 0

Fig. 4. Representation of tests and resets of clock x by means of the two copies x0 and x1.

Example 4.1. Figure 4 depicts a sequence of tests and resets of clock x over 9 discrete positions.
The first row shows the sequence of operations [x := 0], [x > 5,x := 0], [x < 1] and [x = 3,x := 0],
where [x > 5,x := 0], for instance, means that x is tested against 5 and it is reset simultaneously.
In the second row, all the operations on x are represented by means of clocks x0 and x1. Based on
the value of xv at i , the active clock at that position is used to realize the corresponding operation.
A continuous line identifies the regions where either clock x0 or x1 is active. The third row shows
the constraints on σ that are enforced by the operations on x .

4.2 Encoding the network (φN).

Formula φN encodes both the relation
e
−→ between pairs of configurations and all (and only) the

conditions of Def. 3.3 defining a trace. However, φN does not express any restriction on automata
synchronization and it does not impose any specific liveness condition. The discrete positions of
the CLTLoc model render the configurations of the network evolving over the continuous time
by means of a discrete sequence of points. All those positions in the model represent the discrete
transitions performed by the automata ofN that modify the values of variables, clocks and locations
and also the time transitions that produce the elapsing of time. The model of the formula φN is
thus a (representation of a) possible trace realized by the network N .

A generic configuration (l,vvar,v) of N is represented in the CLTLoc formula by means of the
values of clocks and variables and a set of auxiliary variables representing locations and transitions
of the automata. An array l of K integer variables in the CLTLoc formula encodes the location
of each automaton in the network, with l[k] ∈ {0, . . . , |Qk | − 1} for every 1 ≤ k ≤ K . Given
an enumeration of the elements in Qk , l[k] = i indicates that Ak is in the location qi of Qk . An
array t of K integer variables encodes the transitions of each automaton in the network, with
t[k] ∈ {0, . . . , |Tk | − 1} ∪ {♮}, for every 1 ≤ k ≤ K . Given an enumeration of the elements in Tk ,
t[k] = i indicates the execution of transition ti of Tk , while t[k] = ♮ indicates that no transition of
Tk is performed (it represents the symbol _ in the discrete transitions of traces). An array edge](of
K Booleans represents the kind of transition taken by each automatonAk . If edge]([k] is true, then
the configuration change of Ak at the current position is closed-open; otherwise, it is open-closed.
Finally, for each variable n ∈ Int, a corresponding CLTLoc integer variable is introduced.

The configuration change determined by a discrete transition is explicitly encoded with a formula
that expresses the effect of the transition on the network configuration. Conversely, since in CLTLoc

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :17

c0 c ′0

c1 c ′1

c2 c ′2

c3
e1 e2 e3

|| | |

| |

|

i = 0 1 2 3 4 5 6 7 8 9

l =

n =

x =

edge =

q0 q0 q0 q0 q1 q1 q1 q2 q2 q0

0 0 0 0 2 2 2 1 1 0
0 0.7 · · 3.2

x := 0

· · 4.5 · 10
x := 0

· · · ·](· ·)[·](

t[0] = e1 t[0] = e2 t[0] = e3

x < 5 x = 10
x ≤ 5 x ≤ 5

Inv(q1)

Fig. 5. Interpretation of atom in φN .

time progress is inherent in the model, the encoding does not explicitly deal with time transitions
of traces because between any pair of adjacent positions i and i + 1 the time always advances. To
facilitate understanding and future discussions, a trace is written as:

(l0,vvar,0,v0)
δ0Λ0
−−−→ (l1,vvar,1,v1)

δ1Λ1
−−−→ (l2,vvar,2,v2) . . .

where time and discrete transitions are paired together and the notation (li ,vvar,i ,vi)
δiΛi
−−−→

(li+1,vvar,i+1,vi+1) is simply a rewriting of

(li ,vvar,i ,vi)
δi
−→ (l′i ,v

′
var,i ,v

′
i)

Λi
−−→ (li+1,vvar,i+1,vi+1).

for some configuration (l′i ,v
′
var,i ,v

′
i). Formula φN is built by assuming that the configuration

of the network does not change over the intervals of time delimited by a pair of positions of the
CLTLoc model, except for clocks progressing. Hence, any pair of positions i and i + 1 of the model
of φN represents (the pair of transitions) (li ,vvar,i ,vi)

δiΛi
−−−→ (li+1,vvar,i+1,vi+1).

The atomic propositions and variables, appearing in φN , are interpreted with the following
meaning:
• if l[k] = j holds at position i , then automaton Ak is in state qkj over the interval of time that
starts at i and ends in i + 1.
• if t[k] = j holds at position i , then automaton Ak performs transition j in i + 1.

Example 4.2. Figure 5 shows a trace of the automaton depicted in Fig. 2(b) that consists of various
time transitions and three discrete transitions associated with events e1, e2 and e3. To facilitate
readability, the discrete transitions such that Λ[0] = _ are indicated with a vertical bar and the
discrete transitions where at least one automaton executes (in the next position) a transition are
drawn by showing the primed configurations. Every discrete transition corresponds to a unique
position in the CLTLocmodel and every time transition determines the time progress between pairs
of adjacent positions. The first area below the trace shows the discrete positions i of the CLTLoc

, Vol. 1, No. 1, Article . Publication date: February 2020.

:18 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 4. Encoding of the automaton.

φ1 B
∧

k ∈[1,K]
(l[k] = 0) φ2 B

∧
n∈Int

n = v0
var(n) φ3 B

∧
k ∈[1,K]

Inv(l[k])

φ4 B
∧

k ∈[1,K]
q∈Qk

((l[k] = q ∧ t[k] = ♮) → X(Inv(q) ∧ r1(Inv(q)))

φ5 B
∧

k ∈[1,K],t ∈Tk
t[k] = t→

(
l[k] = t− ∧ ϕξ ∧ X(l[k] = t+ ∧ ϕγ ∧ ϕµ ∧ ϕζ ∧ ϕedge(t

−, t+,k)
)

ϕ
edge
(a,b, i) B ϕα]((a,b, i) ∨ ϕα)[(a,b, i)

ϕα]((a,b, i) B Inv(a) ∧ r2(Invw (b)) ∧ edge]([i]

ϕα)[(a,b, i) B Invw (a) ∧ r2(Inv(b)) ∧ ¬edge]([i]

φ6 B
∧

k ∈[1,K],q,q′∈Qk |q,q′

(
((l[k] = q) ∧ X(l[k] = q′)) →

∨
t ∈Tk ,t−=q,t+=q′

(t[k] = t)

)

φ7 B
∧
x ∈X

©«X(x0 = 0 ∨ x1 = 0) →
∨

k ∈[1,K]
t ∈Tk |x ∈ts

t[k] = t
ª®®®¬ φ8 B

∧
n∈Int

©«(¬(n = X(n))) →
∨

k ∈[1,K]
t ∈Tk |n∈U (t)

t[k] = t
ª®®®¬

model and the second one, for each position i , provides the values of the variables representing
location l, variable n, clock x (a dot stands for a monotonically increasing positive value), and
the value of variable edge (a dot represents an irrelevant assignment to edge). The first discrete
transition labeled with e1 occurs at position 4, where the guard x < 5 holds; at that moment,
clock x , whose value is equal to 3.2, is reset and the location changes from q0 to q1. The second
transition—associated with event e2—occurs at position 7 when x = 4.5 holds, before the value of x
violates the invariant x ≤ 5 of location q1, and produces the change of location from q1 to q2. The
last transition, associated with event e3, occurs at position 9 with x = 10, it resets x and changes
location to q0. In the CLTLoc model, discrete transitions are represented one position earlier than
the position where they actually occur, namely at position 3, 6, and 8, respectively.

Remark 5. As specified in Definition 3.3, Condition (3), the first configuration change is associated

with a time transition. Thus, it is not possible to fire a discrete transition at position i = 0.

The third segment of Fig. 5 shows the exact positions where transitions t[0] = e1, t[0] = e2
and t[0] = e3 occur (first line), the positions where the guards are evaluated in the CLTLoc
model (second line) and the sequence of positions where the invariant of q1 holds (third line). For
convenience of notation, the assignment for edge is shown by means of symbols](and)[. At
positions 4, 7 and 9 it is shown one among the possible assignments that are compatible with the
clock values in the model. For instance,)[is also possible at position 4.

A network of TA is transformed into a CLTLoc formula using the formulae in the Table 4. In
the following, the invariant of location q is indicated with Inv(q) and the weak version of Inv(q),
where all relations <, > are replaced with ≤, ≥ and the equalities are replaced with false, is denoted
with Invw (q). With slight abuse of notation, Inv(q) and Invw (q) are used in Fig. 4 to indicate the
CLTLoc formula corresponding to the invariant of q and its weak version.

Before explaining the formulae of Table 4 in details, a short description is first provided. Formulae
φ1,φ2 andφ3 specify the initial conditions thatmust hold in the TA. Formulaφ4 specifies the behavior

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :19

of a TA when a time transition is fired. Formula φ5 and formulae φ6-φ8 define, respectively, the
necessary and the sufficient conditions that must hold when a discrete transition is performed with
a symbol different from ♮, i.e., when the corresponding symbol in the trace is not _4. More precisely,
formulae φ6-φ8 force the execution of (at least) a transition in the network if a reset or a change of
the value of variables or locations occurs and they prevent a variation in the values of the model
that is not caused by the occurrence of a transition. Each of the formulae is discussed in detail in
the following.
• Formula φ1 specifies that at position 0 every automaton is in its initial state;
• Formula φ2 specifies that at position 0 every variable n is assigned its initial value vvar,0(n);
• Formula φ3 specifies that at position 0 the invariant of the initial state of each TA holds;
• Formula φ4 encodes the case (1)b of Def. 3.2 requiring that, for every 1 ≤ k ≤ K , if automaton
Ak does not perform a transition when other TA do, then the clocks still satisfy the invariant
of the current location l[k]. Formula Inv(q) ∧ r1(Inv(q)) guarantees that the values of the
active clocks satisfy Inv(q), even in the case when they are reset. Unlike Inv(q), r1(Inv(q))
does not make use of formulae ϕx∼d to evaluate constraints x ∼ d when the clock assignments
are equal to 0. In fact, the evaluation of a constraint x ∼ d through ϕx∼d only depends on the
active value of x , which is always different from 0 by definition (see Sec. 4.1). To this goal,
the mapping r1, defined below, replaces every constraint of the form x ∼ d with the value of
0 ∼ d if x is reset. Given an atomic formula β(x) of the form x ∼ d , where ∼∈ {<, ≤,=, ≥, >},
let β[x←c] be true or false depending on the value of the formula obtained by replacing x in
β(x) with the constant c . Then, for a clock constraint γ , let r1(γ) be defined as the formula
obtained from γ by replacing, for all clocks x , each occurrence of an atomic formula β(x)
with the formula:

(x0 = 0 ∨ x1 = 0) → β[x←0].

When x is reset, x0 or x1 are equal to 0, and β[x←0] establishes the value of β(x). Since a
CLTLoc model represents the occurrence of a transition one time position before the effect,
φ4 imposes that the invariant Inv(q) associated with the current location l[k] = q is satisfied
in the next position if no transition is taken in the current one, i.e, when t[k] = ♮. The value
of edge]([k] is irrelevant because no transition of Ak is occurring. Hence, no constraint is
specified for it.
• Formula φ5 encodes the case (1)a of Def. 3.2. Similarly to formula φ4, the value of active clocks
and their resets have to be considered carefully in the evaluation of the invariants of l[k]
and l′[k]. In the definition of discrete transitions of Def. 3.2, the invariant of l[k] is always
evaluated with respect to v whereas the one of l′[k] is evaluated with respect to v ′. Function
r2 is used to encode the conditions in (1)(a)v and (1)(a)iv, that require the satisfaction of
Inv(l′[k]), or possibly its weak version, with v ′. Let γ , β and β[x←c] be formulae defined as
above and let r2(γ) be the formula where all the occurrences x ∼ d are replaced with the
formula

((x0 > 0 ∧ x1 > 0) → ϕx∼d) ∧ ((x0 = 0 ∨ x1 = 0) → (x ∼ d)[x←0]).

For instance, by means of r2, the value of a constraint x ∼ d occurring in Inv(l′[k]) is either
(x ∼ d)[x←0], if x is reset by the transition (i.e., v ′(x) = 0); or ϕx∼d if it is not. In the latter
case, its value is determined by the active clock for x that is equal to v ′(x).

4In φ5 . . . φ8, symbols of Actτ do not appear, as events are only used to define how the TA synchronize and they will be
discussed in the next section.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:20 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Let t be q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ ∈ Tk , let ϕγ be the CLTLoc formula expressing the guard γ , let ϕξ

be the formula expressing the constraints on the integer variables, let ϕζ be the formula∧
x ∈ζ
(x0 = 0 ∨ x1 = 0) encoding in CLTLoc the effect of resets applied by t on clocks in ζ and

let ϕµ be the formula translating the assignments of the form n := exp that appear in t into a
(semantically) equivalent CLTLoc formula.
Recall that t[k] = t represents the execution of transition t in the next position of time and
that t+, t− are the locations q and q′ connected by t . If t[k] = t holds at position i (hence,
transition t is actually performed by Ak at i + 1) then:

(1) Automaton Ak is currently in q and changes location to q′ in the next position of time.
Hence, l[k] at i and i + 1 is, respectively, q = t− and q′ = t+.

(2) The condition on the integer variables holds. Formula ϕξ is satisfied at position i because
the effect of t on the integer variables is enforced at i + 1.

(3) The condition on the clocks holds. Formula ϕγ is satisfied by the clock assignments in i + 1.
(4) All the clock resets and variable assignments are performed. Hence, formulae ϕζ and ϕµ

hold at position i + 1, i.e., resets and updates are performed when t is actually taken.
(5) The configuration change is either open-closed or closed-open. Formula ϕedge encodes

the cases (1)(a)v and (1)(a)iv. If the configuration change is closed-open then, according
to (1)(a)v, v |= Inv(l[k]) and v ′ |=w Inv(l′[k]) must hold. The first condition is ensured
by Inv(t−), while the second by r2(Invw (t

+)), where t− = l[k] and t+ = l′[k]. Since the
transition is closed-open, then edge]([i] is set to true. If the configuration change is open-
closed then, according to (1)(a)iv, v |=w Inv(l[k]) and v ′ |= Inv(l′[k]) must hold. The first
condition is ensured by Invw (t

−), while the second by r2(Inv(t
+)), where t− = l[k] and

t+ = l′[k]. Since the transition is not closed-open, then edge]([i] is false.
• Formula φ6 specifies that if automatonAk modifies its location from q to q′ over two adjacent
positions, then a transition t ∈ Tk such that q = t− and q′ = t+ is taken at i + 1—i.e., t[k] = t
holds at position i .
• Formula φ7 specifies that if a reset of x (i.e., either x0 = 0 or x1 = 0) occurs at i + 1 then a
transition resetting clock x is performed at i + 1—i.e., t[k] = t holds at position i , for some
1 ≤ k ≤ K and t ∈ Tk such that x ∈ ts (where ts is the set of clocks that transition t resets).
• Formula φ8 specifies that if the value of variable n in i + 1 is not equivalent to the one in
i then a transition modifying n is performed at i + 1—i.e., t[k] = t holds at position i , for
some 1 ≤ k ≤ K and t ∈ Tk such that n ∈ U (t) (whereU (t) is the set of integer variables that
transition t updates by means of the assignments in µ).

Formula φN encoding the network is then defined in Formula (1).

φN = ϕclock ∧ φ1 ∧ φ2 ∧ φ3 ∧ G(
∧

4≤i≤8
φi) (1)

Remark 6. The proposed encoding allows the simultaneous execution, by different automata, of

transitions with edges of type α)[and α](.

The correctness of the CLTLoc encoding is demonstrated by showing a correspondence between
the traces of a network N (Def 3.3) and the models (π ,σ , ι) of the CLTLoc formula φN . Without
loss of generality, assume that the set of clocks X of N is not empty (if X = ∅, one could always
add a clock that is never reset, nor tested, and the behavior of the network would not change).

At the core of the proof there is a mapping, ρ, between traces of TA and CLTLoc models. First of
all, every trace η of TA can be given the form

(l0,vvar,0,v0)
δ0Λ0
−−−→ (l1,vvar,1,v1)

δ1Λ1
−−−→ (l2,vvar,2,v2) . . .

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :21

since any pair of consecutive time transitions can be seen as a pair of time transitions separated by
a discrete transition in which the action is _ (i.e., nothing happens in between). Then, given a trace
η, a CLTLoc model (π ,σ , ι) that belongs to ρ(η) can be built as follows.

For every position h ∈ N, the function ι assigns each CLTLoc variable l[k] to location lh[k]
(that is, ι(h, l[k]) = lh[k]). The value of variables n ∈ Int is defined as ι(h,n) = vvar,h(n). Function
π assigns values to the atomic propositions of lh , for every index h ∈ N: p ∈ π (h) if, and only
if, p ∈ L(lh[k]), for some k . The clock valuation σ specifies the assignments to both active and

inactive clocks. Recall that (lh ,vvar,h ,vh)
δhΛh
−−−−→ (lh+1,vvar,h+1,vh+1) is a shortcut for

(lh ,vvar,h ,vh)
δh
−−→ (l′h ,v

′
var,h ,v

′
h)

Λh
−−→ (lh+1,vvar,h+1,vh+1)

where the time transition (lh ,vvar,h ,vh)
δh
−−→ (l′h ,v

′
var,h ,v

′
h) only updates clocks, while locations

and integer variables are unchanged. For convenience of writing, let xa and xi be, respectively, the
active and the inactive clocks associated with x in a given position. Initially, the active clock is x0 (i.e.,
xa is x0), and its value is 0; that is, σ (0,x0) = 0 and ι(0, xv) = 0 (the value of x1—i.e., xi—is arbitrary,
hence it can be any positive value). For all h ∈ N, x ∈ X , define σ (h + 1,xa) = σ (h,xa) + δh ;
and also σ (h + 1,xi) = σ (h,xi) + δh unless x is reset in position h + 1 of the trace, in which
case σ (h + 1,xi) = 0; clock xi becomes the active clock from h + 1 (excluded), and the value of
ι(h + 2, xv) = (ι(h + 1, xv) + 1) mod 2.

The value of predicate t[k] at position h is defined based on configurations (l′h ,v
′
var,h ,v

′
h),

(lh+1,vvar,h+1,vh+1) and on symbol Λh[k]. In particular, define ι(h, t[k]) = ♮ when Λh[k] = _.

Instead, define ι(h, t[k]) = t when there is t = q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ such that l′h[k] = q, lh+1[k] = q′,

Λh[k] = α , and v ′h , vh+1, v ′var,h vvar,h+1 are compatible with γ , ξ , ζ , µ according to the semantics of
Def. 3.2. Finally, the value of edge]([k] is set according to Λh[k]: if Λh[k] = (α ,b) for some action α ,
then edge]([k] ∈ π (h + 1) if, and only if, b = ie; otherwise, if Λh[k] = _, the value of edge]([k] in
h + 1 is arbitrary (it is also arbitrary in the origin).

Notice that, given a trace η, its mapping ρ(η) contains more than one CLTLocmodel (for example,
the value of xi in the origin is arbitrary). The inverse mapping ρ−1, instead, defines, for each CLTLoc
model (π ,σ , ι), a unique trace η = ρ−1((π ,σ , ι)); indeed, the presence of at least a clock x in N
entails that at each position h + 1 at least one of the two corresponding CLTLoc clocks x0,x1 is not
reset, which in turn uniquely identifies the delay δh .

The rest of this section sketches the proof for the following result.

Theorem 4.3. Let N be a network of TA and φN be its corresponding CLTLoc formula.

For every trace η of N , every CLTLoc model (π ,σ , ι) such that (π ,σ , ι) ∈ ρ(η) is a model of φN .
Conversely, for all CLTLoc models (π ,σ , ι) of φN , ρ

−1((π ,σ , ι)) is a trace of N .

Proof. From traces to models.

Let η = (l0,vvar,0,v0)
δ0Λ0
−−−→ (l1,vvar,1,v1)

δ1Λ1
−−−→ (l2,vvar,2,v2) . . . be a trace of N , and (π ,σ , ι) ∈

ρ(η). Formulae φ1, φ2 and φ3 of φN are satisfied since they trivially hold at position 0.
The following arguments show that, at every positionh ∈ N, CLTLoc formulaeφ4,φ5 are satisfied

by (π ,σ , ι) (i.e., (π ,σ , ι),h |= φ4 and (π ,σ , ι),h |= φ5 both hold). Different cases are considered,
depending on the nature of Λh[k] (where 1 ≤ k ≤ K).
(1) Case Λh[k] = _. In this case, the conditions (1)b of Definition 3.2 hold in the trace:
• lh[k] = lh+1[k];
• v ′h |= Inv(lh[k]) and vh+1 |= Inv(lh+1[k]).
The antecedent of φ4 holds at position h and formula Inv(l[k])∧r1(Inv(l[k])) holds at h+ 1—
hence satisfying the entailment—because the second condition of (1)b holds in the trace.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:22 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Indeed, all clock constraints β in Inv(l[k]) of the form x ∼ d correspond to formula ϕβ in φ4,
evaluated with the values of the active clocks at position h + 1. Hence, v ′h(x) satisfies β if, and
only if, ϕβ holds at position h+1, since by construction σ (h+1,xa) = v ′h(x). Moreover, in case
of reset of x at h + 1 in the trace (in which case, by construction, σ (h + 1,xi) = vh+1(x) = 0
holds), every clock constraint β of the form x ∼ d corresponds to CLTLoc formula r1(β),
which in turn reduces to the constant β[x←0], and which equals to the evaluation of β in
vh+1(x).
If Λh[k] = _, then by construction ι(h, t[k]) = ♮ and φ5 is vacuously satisfied.

(2) Case Λh[k] = α
](. Let t be the transition such that ι(h, t[k]) = t . By Def. 3.2 condition (1)a ,

the constraints hold in the trace (notice that vvar,h = v
′
var,h):

• v ′h |= γ and v ′var,h |= ξ ,
• vh+1(x) = 0 for all x ∈ ζ ,
• (vvar,h+1,v

′
var,h) |= µ,

• v ′h |= Inv(lh[k]) and
• vh+1 |=w Inv(lh+1[k]).
Thus, formula φ4 vacuously holds in h.
Formula φ5 holds since the antecedent of φ5 holds for the case t[k] = t and the consequent is
satisfied as follows. By construction, it holds that ι(h, l[k]) = lh[k] and ι(h+1, l[k]) = lh+1[k].
Formula ϕγ holds at position h + 1 with σ (h + 1,xa) = v ′h(x), for every clock x ; also, ϕξ holds
at position h with ι(h,n) = vvar,h(n) = v

′
var,h(n) for every variable n. Formulae ϕζ and ϕµ

hold at h + 1, since σ (h + 1,xi) = vh+1(x) = 0 for all clock x ∈ ζ , and ι(h + 1,n) = vvar,h+1(n)
for all variable n ∈ Int. The first condition on the invariants of l[k] is evaluated as follows.
Each clock constraint β in Inv(t−) corresponds to CLTLoc formula ϕβ , evaluated with the
values of the active clocks at position h + 1 of σ . Hence, since σ (h + 1,xa) = v ′h(x), ϕβ holds
at position h + 1 if, and only if, v ′h(x) satisfies β . The formula r2(Invw (t

+)) must hold at h + 1
to guarantee the enforcement of the last condition in the model. By definition of r2, each
clock constraint β in Invw (t

+) of the form x ∼ d corresponds to formula ϕβ , evaluated with
the values in σ of the active clocks at position h + 1, if the clock is not reset; otherwise, β
reduces to β[x←0], whose value is that of β when valuationvh+1 is considered. By construction,
edge]([k] ∈ π (h + 1) holds, so ϕedge(t−, t+,k) also holds in h + 1.

(3) Case Λh[k] = α)[. The proof is similar to the previous one. The only differences are the
conditions on the invariants, that are Invw (t−) and r2(Inv(t

+)). However, the same arguments
of the previous case hold.

Formulae φ6 and φ8 are trivially satisfied when the location l[k] does not change in η—hence it
does not change in (π ,σ , ι)—and for all variables n that have the same value in h and h+ 1; similarly,
φ7 is satisfied when a clock x is not reset in h + 1 (hence, both xa and xi are not 0). Otherwise, if
between positions h and h + 1 in the trace the location changes, or a variable is updated, or a clock
is reset, then there must be a transition taken in the TA, hence by construction in (π ,σ , ι) both the
antecedents and the consequences of formulae φ6 − φ8 trivially hold.
From models to traces. Let (π ,σ , ι) be a model of φN . The proof shows that η = ρ−1((π ,σ , ι)) =

(l0,vvar,0,v0)
δ0Λ0
−−−→ (l1,vvar,1,v1)

δ1Λ1
−−−→ (l2,vvar,2,v2) . . . is a trace of N according to Def. 3.3 (and

the related Def. 3.2).
Since formulae φ1,φ2,φ3 hold in at position 0 of (π ,σ , ι), the values of l0,vvar,0,v0 defined by

mapping ρ−1 constitute an initial configuration of N according to Def. 3.3.
The following arguments show that, at each position h ∈ N of η, for all k (with 1 ≤ k ≤ K) the

conditions of Def. 3.2 hold. Separate cases are considered, depending on the value of ι(h, t[k]).

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :23

(1) ι(h, t[k]) = ♮. Then, l[k] is the same inh andh+1 andφ4 ensures that Inv(l[k])∧r1(Inv(l[k]))
holds at h + 1, which in turn entails that v ′h |= Inv(l[k]) and vh+1 |= Inv(l[k]) both hold.
Hence, condition (1)b holds.

(2) ι(h, t[k]) = t , ♮ and edge]([k] ∈ π (h + 1), where t = q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ is a transition of Ak .

Since φ5 holds in h, then the following conditions hold:
• ι(h, l[k]) = q and ι(h + 1, l[k]) = q′,
• ϕξ holds in h and
• ϕγ , ϕµ , ϕζ and ϕedge(q,q

′,k) hold in h + 1.
All conditions in (1)a, and in particular those in (1)(a)v corresponding to the case α](, for
some action α , hold as follows:

(a) v ′h |= γ and v ′var,h |= ξ (condition (1)(a)i) are guaranteed by ϕγ holding in h + 1 and ϕξ
holding in h, respectively (notice that in h + 1 variables are updated by µ and clocks are
possibly reset, but γ is evaluated through the active clocks).

(b) vh+1(x) = 0 (condition (1)(a)ii) holds, for all x ∈ ζ , since ϕζ holds in h + 1.
(c) (vvar,h+1,vvar,h) |= µ (condition (1)(a)iii) holds, since ϕµ holds in h + 1.
(d) v ′h |= Inv(l′h[k]) holds because, by ϕedge(q,q

′,k), Inv(q) holds in h + 1, and ρ−1 defines that
l′h[k] is q; then, the first condition of (1)(a)v holds.

(e) vh+1 |=w Inv(lh+1[k]) holds because, again by ϕedge(q,q
′,k), r2(Invw (q

′)) holds in h + 1,
and ρ−1 defines that lh+1[k] is q′; then, the second condition of (1)(a)v holds.

(3) ι(h, t[k]) = t , ♮ and edge]([k] < π (h + 1). The proof, which now focuses on condition
(1)(a)iv, is similar to the previous case—with the only differences being the conditions on the
invariants, which are now Invw (q) and r2(Inv(q

′))—and it is omitted for simplicity.
Condition (1)c follows from φ7 and φ8 holding at h, which impose the occurrence of a transition
that resets a clock x or modifies the value of a variable n if x is reset or n is updated at position
h + 1. Finally, condition (2) holds because, as mentioned above, formula φ4 imposes that Inv(l[k])
holds at h + 1, hence v ′h |= Inv(l[k]) also holds, which in turn implies that v ′h |=w Inv(l[k]) holds
(notice that a model for φN cannot reach a location that includes constraints of the form x = d
in its invariant, since time is strictly monotonic, and the residence time in the location cannot be
null). In addition, formula φ5 defines that Inv(l[k]) or Invw (l[k]) holds at h + 1, and both entail
that v ′h |=w Inv(l[k]) holds. □

4.3 Encoding liveness, synchronization and edge constraints (φl, φs and φef)

As seen in Section 3.2, different liveness conditions and synchronization mechanisms for networks
of TA can be considered. This section describes how the liveness conditions and synchronization
mechanisms presented in Section 3.2 can be encoded in CLTLoc. Several liveness conditions could
be required for a network of TA, so Formula φl captures a conjunction of the following conditions,
each one encoded by a CLTLoc formula in Table 5 (if no liveness condition is required, φl reduces
to true).
• Strong transition liveness: at any time instant, at least one transition in every automaton is
eventually fired.
• Weak transition liveness: at any time instant, at least one transition in at least one automaton
is eventually fired.
• Strong guard liveness: at any time instant, every automaton eventually reaches a state that
has an outgoing transition whose guard holds.
• Weak guard liveness: at any time instant, at least one automaton eventually reaches a state
that has an outgoing transition whose guard holds.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:24 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 5. Formulae encoding the different liveness conditions.

Liveness Property

Strong transition

∧
k ∈[1,K]

G

(
F

(∨
t ∈Tk

t[k] = t

))
Weak transition G

(
F

(∨
k ∈[1,K],t ∈Tk

t[k] = t

))
Strong guard G

(∧
k ∈[1,K]

(∧
q∈Qk

l[k] = q → F
(∨

t ∈Tk ,t−=q ϕtγ ∧ ϕtγvar

)))
Weak guard G

(∨
k ∈[1,K]

(∧
q∈Qk

l[k] = q → F
(∨

t ∈Tk ,t−=q ϕtγ ∧ ϕtγvar

)))

Synchronization is encoded by relying on the following abbreviations, where α ∈ Actτ , k,h ∈
[1,K] and S is a set of indices in [1,K]. Recall that, given a transition t , te ∈ Actτ represents the
symbols that labels t .

ϕsync-on(k,α) B
∨

t ∈Tk |te=α

(t[k] = t) (2)

ϕsync-on-but(S,α) B
∨

д∈{i |i ∈[1,K]}\S

ϕsync-on(д,α) (3)

ϕsame-edge(k,h) B X(edge
]([k] ↔ edge]([h]) (4)

Formula ϕsync-on(k,α) specifies that a transition t of Ak labeled with the action α is fired. Formula
ϕsync-on-but(S,α) specifies that a transition t labeled with the action α , and belonging to a TA whose
index does not belong to set S , is fired. Finally, ϕsame-edge(k,h) specifies that the transitions taken by
Ak andAh have the same edge structure, i.e., either they are both open-closed or both closed-open.
The abbreviations in Formulae (2), (3) and (4) are used in Table 6 to encode the channel-based,

the broadcast and the one-to-many synchronizations. The intermediate CLTLoc formula ϕsync_type
(where sync_type is channel, broadcast or one-to-many) is ϕsync_type B G(υ1 ∧ υ2), where υ1 and υ2
depend on the selected type of synchronization. Then, if multiple synchronizations are considered,
ϕs is the conjunction of the corresponding ϕsync_type, one for each type of synchronization. Note
that the syntax of MITL adopted in this work does not allow event symbols to appear in the
formulae, being the language limited to constrain the values of the variables in Int and the atomic
propositions in AP over the time. For this reason, symbols of Actτ do not have a corresponding
CLTLoc representation, yet they are used to instantiate the formulae encoding the synchronization
among the TA.
• Channel-based synchronization. Formula υ1 specifies that any sending event α ! in a transition
t of an automaton k must be matched by exactly one corresponding receiving event α? of a
transition t ′ of another automaton h. This is specified by stating that there exists one of the
automata with index h that syncs on α? and all the others (with index different than k and h)
do not sync on α?. Furthermore, the shape of the edges of the transitions of the automata
that sync on action α must correspond.

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :25

Table 6. Formulae encoding different types of synchronizations.

Name Property

Channel υ1 B
∧

k ∈[1,K]
t ∈Tk |te=α !

©«t[k] = t→
∨

h∈[1,K],h,k

©«
ϕsync-on(h,α?) ∧ ¬ϕsync-on-but({k,h},α?)

∧

ϕsame-edge(k,h)

ª®®¬
ª®®¬

υ2 B
∧

k ∈[1,K]
t ∈Tk |te=α?

(
t[k] = t→

∨
h∈[1,K],h,k

(
ϕsync-on(h,α !) ∧ ¬ϕsync-on-but({k,h},α !)

))

Broadcast υ1 B

∧
k ∈[1,K]

t ∈Tk |te=α#

(
t[k] = t →

(
¬ϕsync-on-but({k},α#)

))
∧

∧
k ∈[1,K]

t ∈Tk |te=α#

©«
t[k] = t →

©«
∧

h∈[1,K]
h,k

©«
ϕsync-on(h,α@) ∧ ϕsame-edge(k,h)

∨(∧
t ′∈Tk′ |t ′e=α@

(X(¬ϕt ′γ) ∨¬ϕt ′γvar ∨ l[h] , t ′−)
)ª®®®®¬

ª®®®®¬
ª®®®®¬

υ2 B
∧

k ∈[1,K]
t ∈Tk |te=α@

(
t[k] = t→ϕsync-on-but({k},α#)

)
One-to-
many

υ1 B
∧

k ∈[1,K]
t ∈Tk |te=α&

(
t[k] = t →

(
¬ϕsync-on-but({k},α&) ∧ ϕsync-on-but({k},α∗)

))
υ2 B

∧
k ∈[1,K],

t ∈Tk |te=α∗

(
t[k] = t→ϕsync-on-but({k},α&)

)

Formula υ2 specifies that any receiving event α? must be matched by exactly one correspond-
ing sending event α ! in one of the other automata.
• Broadcast synchronization. Formula υ1 first specifies that if an automaton k broadcasts on
a channel α , no other automaton broadcasts on that channel. Then, it specifies that if an
automaton k broadcasts on a channel α , all the other automata h either sync and receive on
that channel, and also match the shape of the transition, or they do not sync. If the automaton
does not sync, either it is in a state that has no outgoing transition labeled with α@, or the
guards of the outgoing transitions labeled with α@ are not satisfied (i.e., no transitions are
enabled).
Formula υ2 specifies that any receiving event α@ must be matched by exactly one corre-
sponding sending event α# in one of the other automata.
• One-to-many. Formula υ1 specifies that if an event α& is sent, no other automaton sends the
same event, and at least one automaton receives the event α∗. Formula υ2 specifies that if an
event α∗ is received by an automaton, some automaton has sent event α&.

As mentioned in Remark 6, the semantics—and corresponding encoding—of networks of TA
allows for transitions with different types of edged to be taken at the same time. As depicted in
Fig. 5, it also allows the same automaton to take transitions with different edges over time. However,
one might desire to restrict this behavior (for example for synchronization reasons), and only allow
transitions to be taken with a certain type of edge. These restrictions (if any), are captured by

, Vol. 1, No. 1, Article . Publication date: February 2020.

:26 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 7. Formulae encoding different types of edges.

Name Property

closed-open G
∧

k [1,K]
edge]([k]

open-closed G
∧

k[1,K]
¬edge]([k]

unrestricted ⊤

formula φef . Table 7 shows some examples of restrictions and corresponding CLTLoc constraints.
In particular, the “closed-open” (resp., open-closed) restriction states that, when a transition is
taken, it must with some symbol α]((resp., α)[). The “unrestricted” case obviously means that no
constraint is introduced, hence it corresponds to true. Other possibilities could be envisaged, but
these are the most relevant for our purposes.

The following theorem extends Theorem 4.3 to liveness conditions and synchronization mecha-
nisms.

Theorem 4.4. Let N be a network of TA, l be a (set of) liveness conditions, s be the (set of)

synchronization mechanisms used in network N , and ef the set of restrictions on edges. Let ΦN be the

CLTLoc formula φN ∧ φl ∧ φs ∧ φef .
For every trace η of N that satisfies the selected liveness conditions l , synchronization mechanisms

s , and edge restrictions edдe , any CLTLoc model (π ,σ , ι) such that (π ,σ , ι) ∈ ρ(η) is a model of ΦN .
Conversely, for each CLTLoc model (π ,σ , ι) of ΦN , ρ

−1((π ,σ , ι)) is a trace of N that satisfies the

selected liveness conditions l , synchronization mechanisms s , and edge restrictions e f .

The proof is omitted for reasons of brevity, as it is rather standard. Indeed, it is a straightforward
extension of the proof of Theorem 4.3, and follows from the fact that each CLTLoc formula listed
in Table 5 (resp., Table 6) encodes the corresponding semantics described in Table 1 (resp., Table 2);
in addition, the formulae of Table 7 capture the corresponding restrictions on edges.

5 CHECKING THE SATISFACTION OF MITL FORMULAE OVER TA

Traces encode executions of TA by means of denumerable sequences of time and discrete transitions.
However, the evolution of a network of TA is continuous, hence it is more naturally represented by
means of signals (see Section 2.2). Timed words, instead of signals, are commonly adopted to repre-
sent the semantics of TA: although they are expressive enough in many cases, they cannot describe
the values at the edge of signals—i.e., in correspondence of configuration changes. For instance, in a
temporal logic such as MITL one can indeed state properties whose value is affected by signal edges;
e.g., the set of signals of symbol p that change value only over intervals that are left-closed/right-
open can be specified with the MITL formula G[0,+∞)

(
(p ⇒ pU(0,+∞) ⊤) ∧ (¬p ⇒ ¬pU(0,+∞) ⊤)

)
.

Therefore, model checking a TA against such an expressive language requires modeling edges as
well.

Traces are tightly bound to signals: intuitively, given a trace η, the projection over the real line
of the values of its integer variables and atomic propositions determines a signalMη . To be able
to consistently associate signals with traces of a TA, however, we need to impose the following
restriction on traces.

Definition 5.1. LetN be a network of TA. A trace η ofN is edge-consistent if, for any configuration

change (l′h ,v
′
var,h ,v

′
h)

Λh
−−→ (lh+1,vvar,h+1,vh+1) there are two transitions l′h[k]

γ ,ξ ,α,ζ ,µ
−−−−−−−−→ l′h+1[k]

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :27

and l′h[k̄]
γ̄ , ξ̄ , ᾱ, ζ̄ , µ̄
−−−−−−−−→ l′h+1[k̄], of two distinct TA k, k̄ , which both set the value of variable n (in a

compatible manner), then the edge of the transitions is the same; that is, either they are α](and ᾱ](,
or they are α)[and ᾱ)[.

In the rest of this section, only traces that are edge-consistent are considered.
Let η be an edge-consistent trace (l0,vvar,0,v0)

δ0
−→ (l′0,v

′
var,0,v

′
0)

Λ0
−−→ (l1,vvar,1,v1)

δ1
−→ . . .; we

indicate by ϒ(e) the “time” of a symbol e (where e can be either δ or Λ), defined as follows:
• ϒ(δ0) = 0;
• ϒ(Λh) = ϒ(δh) + δh for all h ≥ 0;
• ϒ(δh) = ϒ(Λh−1) for all h > 0.

Recall that, given a trace η, its associated wordw(η) is the sequence δ0Λ0δ1Λ1 . . . ; also, given a
set of assignments µ,U (µ) is the set of variables updated by µ. Let (l,vvar,v) be a configuration; we
denote as c(l,vvar,v) the pair (∪1≤k≤KL(lh[k]),vvar,h) ∈ ℘(AP) × Z

Int of the atomic propositions
and variable assignments that hold in the configuration (l, vvar, v).

Definition 5.2. Let η be an edge-consistent trace of a networkN of TA. The signal Mη associated
with η is the functionMη : R≥0 → ℘(AP) × Z

Int such that:
(1) Mη(0) = c(l0,vvar,0,v0);
(2) for all δh in w(η), for all r ∈ R≥0 such that ϒ(δh) < r < ϒ(δh) + δh then Mη(r) =

c(lh ,vvar,h ,vh);
(3) for all Λh inw(η),Mη(ϒ(Λh)) = (A,vvar) ∈ ℘(AP) × Z

Int where, for all p ∈ AP and n ∈ Int :
(a) p ∈ A if, for some α ∈ Actτ and for some 1 ≤ k ≤ K :
• p ∈ L(lh[k]) and Λh[k] ∈ {_,α](} holds, or
• p ∈ L(lh+1[k]) and Λh[k] = α

)[holds
(b) vvar(n) = vvar,h(n) if one of the following conditions holds:

• there is no transition l′h[k]
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ lh+1[k] compatible with the configuration change

and such that n ∈ U (µ);

• there is 1 ≤ k ≤ K and a transition l′h[k]
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ lh+1[k]—compatible with the

configuration change—such that Λh[k] = α
](and n ∈ U (µ).

(c) vvar(n) = vvar,h+1(n) if there is 1 ≤ k ≤ K and a transition l′h[k]
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ lh+1[k]—

compatible with the configuration change—such that Λh[k] = α
)[and n ∈ U (µ) hold.

Condition (2) defines the correspondence between the time transitions in a trace η and the values
of the signal within the left-open/right-open intervals ofMη . In particular, any trace η defines an
infinite set of intervals Ih of the form (ϒ(δh), ϒ(δh) + δh), for all h ≥ 0. The value of signalMη in
every interval Ih is determined by the propositions and variable assignments c(lh ,vvar,h ,vh) that
hold in Ih .
Condition (3) handles the case of a discrete transition in h and defines the value ofMη at time

ϒ(eh) when a configuration change occurs (i.e., when eh = Λh holds). Conditions (3)a, (3)b and (3)c
define, respectively, the atomic propositions and the value of the integer variables based on the

transition l′h[k]
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ lh+1[k] performed at time ϒ(Λh) by automatonAk , for every 1 ≤ k ≤ K .

Condition (3)a specifies thatMη(ϒ(Λh)) includes the atomic propositions in L(lh[k]) if the discrete
transition performed by Ak is closed-open (i.e., Λh[k] = α

](holds), or if no transition is taken;
otherwise, if the discrete transition is open-closed (i.e., Λh[k] = α

)[holds), Mη(ϒ(Λh)) includes
the atomic propositions in L(lh+1[k]). Conditions (3)b and (3)c define the value vvar(n) of variable
n at time ϒ(Λh). The value of vvar(n) is the same as vvar,h(n) if there is an automaton Ak that

, Vol. 1, No. 1, Article . Publication date: February 2020.

:28 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 8. Definition of different types of signals based on the symbols occurring in the corresponding traces.

Signal Discrete transitions

right-closed α](

left-closed α)[

unrestricted α](or α)[

performs a closed-open discrete transition that modifies n, or if none of the automata updates n
(condition (3)b). Conversely (condition (3)c), the value of n becomes vvar,h+1(n) at time ϒ(Λh) if
there is an automaton Ak that performs a open-closed discrete transition that modifies n.
Consider a trace η and its associated signal Mη . Mη is left-closed when, for all r ∈ R≥0, if

Mη(r) = (A,vvar) for some A, vvar, then there is ε ∈ R>0 such that, for all r < r ′ < r + ε it also holds
Mη(r

′) = (A,vvar). Dually,Mη is right-closed when, for all r ∈ R>0, ifMη(r) = (A,vvar) for some A,
vvar, then there is ε ∈ R>0 such that, for all r − ε < r ′ < r it also holds Mη(r

′) = (A,vvar). Mη is
unrestricted if there are no constraints on the value of the signal in the neighborhood of each time
instant.

The shape of a signalMη is determined by the transitions taken by the automata of the network.

Consider, for instance, a variable n with value 2, and a transition t = q
γ ,ξ ,α,ζ ,µ
−−−−−−−−→ q′ that, when it

is taken, assigns value 1 to n. There are different possibilities concerning the value of variable n
in the instant when t is taken: if it must be 2 (i.e., it is not yet assigned by the transition), then
the corresponding signal cannot be left-closed; if it must be 1 (i.e., it is already assigned by the
transition), then the signal cannot be right-closed. There is an obvious relation (captured by Table 8)
between a signalMη being right-closed, left-closed, or unrestricted, and the edges of the transitions
taken in η. Indeed, when all edges are open-closed (i.e., α)[), the signal is left-closed; when they are
all closed-open (i.e., α]() the signal is right-closed; when they can be both, the signal is unrestricted.
Leaving signals unrestricted—which means that, when transitions are fired, the choice of whether
variables are already assigned their new values or still retain their old ones is non-deterministic—is
a common approach in literature that has been used in some seminal works on TA [5].
Then, by imposing constraints on the types of edges that the transitions of a network N of

TA can have, one can restrict the set of corresponding signals to contain only left-closed or only
right-closed ones.

Definition 5.3. Let N be a network of TA, l be a set of liveness conditions selected from Table 1,
s be the synchronization primitives (among those of Table 2) used in N , and ef a restriction on the
types of edges for the transitions taken by N (such as those of Table 8).
T(N , l , s, ef) is the set of edge-consistent traces that satisfy the liveness conditions l , the seman-

tics of synchronizations s , and the restriction on edges ef .
In addition, S(N , l , s, ef) is the corresponding set of signals.

Example 5.4. Figure 6 shows the same trace of Fig. 5 and the values of l and n that contribute to
the definition of the signal deriving from the trace. At the bottom, three different types of signals—as
specified on the right-hand side of the figure—are drawn according to the selected restrictions on
the edges. The last signal is based on the assignment of variable edge in Fig. 5, whereas the first
two are derived by restricting the kind of discrete transitions of the traces. Similarly to Fig. 5, the
value of edge is explicitly written by means of](or)[. In correspondence to the events e1, e2 and e3
its value defines the edge of the current interval, while it is left unspecified in the other positions
to avoid cluttering the figure.

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :29

c0 c ′0

c1 c ′1

c2 c ′2

c3
e1 e2 e3

|| | |

| |

|

l =

n =

q0 q0 q0q0 q1 q1 q1 q2 q2 q0

0 0 0 0 2 2 2 1 1 0

edge =

[]
c0

(]
c1

(]
c2

Ri
gh

t
C
lo
se
d

· · · ·](· ·](·](

edge =

[)
c0

[)
c1

[)
c2

Le
ft

C
lo
se
d

· · · ·)[· ·)[·)[

edge =

[]
c0

()
c1

[]
c2

Un
re
st
ric

te
d

· · · ·](· ·)[·](

Fig. 6. Illustration of the right-closed, left-open and unrestricted semantics on the trace presented in Fig. 5

generated by the TA of Fig. 2(b).

5.1 Verification problem of networks of TA with respect to MITL formulae

The properties of networks of TA are encoded by formulae that predicate over the values of the
variables of set Int and over the atomic propositions which are labeling locations. This section
defines when a network N of TA satisfies a MITL propertyψ and states the verification problem
of networks of TA against a MITL formula. Both definitions are based on the idea of selecting a
(possibly proper) subset of traces of N , with respect to some selection criterion T .

Given a network N of TA, a selection criterion T for the traces of N identifies a subset of traces
ofN . An example of selection criterionT could be “the set of traces that correspond to right-closed
signals”. A trivial selection criterion simply identifies the set of all traces of N . With a slight abuse
of notation, in the following, T indicates both the selection criterion and the set of traces that it
identifies.

Definition 5.5 (Satisfiability of MITL formulae over networks of TA). Let N be a network of TA, T
a selection criterion, andψ a MITL formula.N satisfiesψ restricted toT (writtenN |=T ψ) if every
signalMη ∈ T is such thatMη , 0 |= ψ holds.

Definition 5.6 (Verification problem). Let N be a network of TA, T be a selection criterion, andψ
be a MITL formula. The verification problem for the network of TA N restricted to T against a
MITL formulaψ consists in determining whether N |=T ψ holds.

In the rest of this paper, the adopted selection criteria restrict the traces of interest to those that
satisfy some liveness conditions l , the semantics of the synchronization primitives s appearing inN ,
and some restriction ef on the edges of the transitions taken. Such a selection criterion is denoted

, Vol. 1, No. 1, Article . Publication date: February 2020.

:30 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

c0 c ′0

c1 c ′1

c2 c ′2

c3
e1 e2 e3

|| | |

| |

|

l =

n =

q0 q0 q0q0 q1 q1 q1 q2 q2 q0

0 0 0 0 2 2 2 1 1 0

�a �a �a �a �a
←−a ←−a ←−a←−a ←−a

�c �c
←−c ←−c

�n=2 �n=2
←−−−−
n = 2 ←−−−−

n = 2 ←−−−−
n = 2

a a a a a ¬a ¬a ¬a ¬a ¬a

¬c ¬c ¬c¬c ¬c ¬c ¬c ¬c c c

¬n = 2 n = 2 ¬n = 2

F (0,1)(c)

Fig. 7. Relationship between a trace and the MITL signal derived by Formula φsig .

asT = ⟨l , s, ef ⟩. In this case, the set of selected traces is T(N , l , s, ef), and the corresponding signals
are S(N , l , s, ef).
In the following, the verification problem of Def. 5.6 is reduced to the problem of checking the

satisfiability of CLTLoc formula Φsig ∧ Φ¬ψ , where Φsig and Φ¬ψ are computed as specified in
Sections 5.3 and 5.2, respectively. Section 5.4 shows the correctness of the proposed procedure.

5.2 CLTLoc encoding of MITL signals

Bersani et al. [9] showed how to build a CLTLoc formula Φψ from a MITL formula ψ such that
the set Mψ of signals that are models of ψ (i.e., Mψ = {M |M, 0 |= ψ }) is represented by the set
of models of Φψ—hence, the satisfiability of ψ is reduced to the satisfiability of Φψ . Mapping a
continuous-time signalM to a denumerable sequence of elements is done by partitioning R≥0 into
infinitely many bounded intervals, each one representing a portion of M in which the values of
propositions and integer variables do not change (except possibly in the endpoints). In particular,
let I be an interval of the form (a,b), with a < b, and I0, I1, . . . be a denumerable set of adjacent
intervals (i.e., ai+1 = bi holds for all i > 0) covering R≥0—i.e., such that

⋃
i≥0(Ii ∪{ai }) = R≥0 holds,

with a0 = 0. Every position i in a CLTLoc model of Φψ represents the “configuration ofψ ”—i.e., the
value of all its subformulae—in interval Ii and at instant ai , according to the semantics of MITL.

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :31

Remark 7. As already remarked in Sec. 3, every sequence of consecutive time transitions in a trace

can be replaced by an equivalent sequence of alternating time and discrete transitions, such that the

total amount of elapsed time is the same as the original time transition and in all introduced discrete

transitions every automaton does not perform any configuration change. Every position of the models

of Φsig ∧ Φ¬ψ represents a time instant where either the configuration of N , or the configuration of

¬ψ , changes, or both possibly change at the same time. Therefore, in case ¬ψ changes configuration

at position h—i.e., one of its subformulae changes value—but N does not, then h in the trace of N

corresponds to a discrete transition Λh such that Λi [k] = _, for all 1 ≤ k ≤ K . Figure 7, which will be

discussed more in depth in Example 5.8, exemplifies this situation by showing a formula that changes

value while the automaton does not take any transition.

5.3 CLTLoc encoding of network signals

LetN be a network of TA, l be a set of liveness conditions selected from Table 1, s be the semantics
of the synchronization primitives appearing inN (selected from Table 2), and ef be a restriction on
the edges of the transitions taken by N ; this section defines the CLTLoc formula Φsig representing
the set of signals inS(N , l , s, ef). By Def. 5.2, every trace η is associated with a signalMη that can be
decomposed into the initial valueMη(0), an infinite set of intervals (ϒ(δ0), ϒ(δ1)), (ϒ(δ1), ϒ(δ2)), . . .,
defined by the time transitions δh , and a set of time instants ϒ(Λh) corresponding to discrete
transitions with symbol Λh , where h ≥ 0.
According to [9], suitable CLTLoc atoms can be used to represent the signal defined by the

atomic propositions labeling the locations of automata and the arithmetical formulae occurring
in a MITL formula. In the following, AF indicates the universe of propositions of the form n ∼ d ,
where n is an integer variable and d is a constant. For every β ∈ AP ∪ AF , the value of β in the
intervals (ϒ(δh), ϒ(δh+1)) is represented by proposition

←−
β , called rest of β ; similarly, the value of β

in time instants ϒ(Λh) is represented by a proposition �β , called first of β .
Formula Φsig is built by combining formula ΦN defined in Theorem 4.4, representing the traces η

of N , and a formula that constrains the propositions �β and
←−
β , so that the signalMη is correctly

defined and all the conditions in Def. 5.2 are satisfied. Even though a signalMη specifies a valuation
vvar in every time instant, and it defines the exact assignment for every variable n ∈ Int , formula
Φsig only represents the signal of the formulae n ∼ d that appear in the MITL formulaψ , because
the truth of ψ is determined only by the value of its subformulae. The value of �n∼d and

←−−−−
n ∼ d ,

however, is defined in every time position i of the model of Φsig by the value ι(i,n).
Formula Φsig is defined in (5). It is composed by two parts, formula ΦN and formula φsig , which

maps traces to signals as defined in (6).

Φsig :=

ΦN︷ ︸︸ ︷
φN ∧ φl ∧ φs ∧ φef ∧ φsig (5)

Recall that, as defined in Formula (1), φN encodes the network of TA in CLTLoc; in addition, φl , φs
and φef impose the liveness conditions, synchronization mechanisms and restrictions on edges by
means of the formulae in Tables 5, 6 and 7. Finally, formula φsig is defined as follows, through the
formulae of Table 9.

φsig :=
∧

i ∈[1,6]

χi (6)

Formulae χ1–χ6 create a mapping between the values of the atomic propositions and of the variables
and the corresponding signals. More precisely, formulae χ3 and χ4 (resp., χ1 and χ2) bind the values

, Vol. 1, No. 1, Article . Publication date: February 2020.

:32 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 9. Formulae encoding the relation between the network of TA and the signal at the initial time instant

and within the intervals.

χ1 B
∧

k ∈[1,K],
p∈AP

(
�p ↔

∨
p∈L(q0,k)

l[k] = q0,k

)
χ2 B

∧
(n∼d)∈AF

(

�n∼d ↔ n ∼ d
)

χ3 B G
∧

p∈AP

(
←−p ↔

∨
k ∈[1,K],q∈Qk ,p∈L(q)

l[k] = q

)
χ4 B G

∧
(n∼d)∈AF

(
←−−−−
n ∼ d ↔ n ∼ d)

χ5 B G
∧

p∈AP

©«
X(�p) ↔

©«

∨
k ∈[1,K],q∈Qk ,p∈L(q)

l[k] = q ∧
(
t[k] = ♮ ∨ (t[k] , ♮ ∧ edge]([k])

)
∨∨

k ∈[1,K],q∈Qk ,p∈L(q)

X(l[k] = q) ∧ t[k] , ♮ ∧ ¬edge]([k]

ª®®®®®®¬
ª®®®®®®¬

χ6 B G
∧

(n∼d)∈AF

©«
X(�n∼d) ↔

©«

n ∼ d ∧

©«

¬
∨

k ∈[1,K],t ∈Tk ,n∈U (t)

t[k] = t

∨∨
k ∈[1,K],t ∈Tk ,n∈U (t)

t[k] = t ∧ edge]([k]

ª®®®®®®¬
∨

X(n ∼ d) ∧
∨

k ∈[1,K],t ∈Tk ,n∈U (t)

t[k] = t ∧ ¬edge]([k]

ª®®®®®®®®®®®®®¬

ª®®®®®®®®®®®®®¬
of the atomic propositions and of the variables to the corresponding signal within each time interval
(ϒ(δh), ϒ(δh+1)) (resp., in the origin). Formulae χ5 and χ6, instead, bind the values of the atomic
propositions and of the variables to the corresponding signals at the boundaries of the intervals—i.e.,
at time instants ϒ(Λh).

Lemma 5.7. Let N be a network of TA, l be a set of liveness conditions selected from Table 1, s
be the semantics of the synchronization primitives appearing in N (selected from Table 2), ef be a

restriction on the edges of the transitions taken by N (from Table 8), and Φsig be the corresponding

CLTLoc formula (5).
For every edge-consistent trace η of N that also belongs to T(N , l , s, ef), and whose associated

signal isMη , there exists a model (π ,σ , ι) of Φsig such that:

(1) for every time instant r ∈ R≥0 such that ϒ(δh) < r < ϒ(δh+1), for some h ∈ N, if Mη(r) =
(P ,vvar), the following conditions hold:

p ∈ P iff (π ,σ , ι),h |=←−p (7)

vvar (n) ∼ d iff (π ,σ , ι),h |=
←−−−−
n ∼ d (8)

(2) for every time instant r ∈ R≥0 such that r = ϒ(Λh), for some h ∈ N, if Mη(r) = (P ,vvar), the

following conditions hold:

p ∈ P iff (π ,σ , ι),h + 1 |= �p (9)

vvar(n) ∼ d iff (π ,σ , ι),h + 1 |= �n∼d (10)

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :33

Conversely, for every model (π ,σ , ι) of Φsig , there exists an edge-consistent trace η of N that belongs

to set T(N , l , s, ef), with associated signalMη , for which conditions (1) and (2) hold.

Sketch of Proof. Let η be an edge-consistent trace of N that also belongs to set T(N , l , s, ef).
By Theorem 4.4, every (π ,σ , ι) such that (π ,σ , ι) ∈ ρ(η) is a model of ΦN . Formula ΦN does not
constrain propositions �β and

←−
β , with β ∈ AP ∪AF . Hence, it has to be proven that, if (π ,σ , ι), and

Mη are also such that conditions (7)-(10) hold, then (π ,σ , ι) is a model of Φsig . Since (π ,σ , ι) is a
model for ΦN (Thm. 4.3), it is enough to show that (π ,σ , ι) is a model also for φsig . By definition, η
meets the conditions of Def. 5.2.
It is straightforward to show that subformulae χ1 and χ2 of φsig hold because of condition (1)

of Def. 5.2, since they state that in the origin of the signal predicates �β and
←−
β , for β ∈ AP ∪AF ,

correspond to the initial configuration of N . Similarly, subformulae χ3 and χ4 hold because of
condition (2), since they capture the fact that, in each interval (ϒ(δh), ϒ(δh+1)), the predicates
that hold are those of position h of (π ,σ , ι), which derives, by mapping ρ, from configuration
(lh ,vvar,h ,vh).

Consider now formula χ5. The first disjunct of the right-hand side states that the label p holds at
the beginning of an interval Ih+1—i.e., at time instant ϒ(Λh), for h ≥ 0—if it held in the previous
interval Ih f or an automaton Ak , and either Ak does not take any transition (i.e., Λh[k] = _) or, if
takes one transition, it does so with an](edge (i.e., Λh[k] = α

](}); this corresponds to the first bullet
of condition (3)a of Def. 5.2. The second disjunct, instead, states that p holds at the beginning of an
interval Ih+1 if there is an automaton Ak that takes a transition, and it does so with an)[edge (i.e.,
Λh[k] = α

)[}), which corresponds to the second bullet of condition (3)a of Def. 5.2. Similarly, the
first disjunct of the right-hand side of formula χ6 captures condition (3)b of Def. 5.2 (each disjunct
in the subformula corresponds to one of the bullets of condition (3)b), while the second disjunct
captures condition (3)c.
The second part of the statement is proven by showing that, given a model (π ,σ , ι) of Φsig , the

corresponding trace η = ρ−1((π ,σ , ι)) is such that conditions (7)-(10) hold for signalMη . This can
be done using similar arguments as those presented in the first part of the proof, and is omitted for
brevity. □

5.4 Model-checking of networks of TA with respect to MITL formulae

Lemma 5.7 establishes a correspondence between signals derived from traces of network N and
models of formula Φsig . The models of formula Φsig include predicates of the type �β and

←−
β , which

act as a “bridge” with the encoding of MITL formulae that predicate over β . The next example
shows how this allows us to match MITL constraints with signals derived from networks of TA.

Example 5.8. Figure 7 shows the relation between the trace of Example 4.2 depicted in Fig. 5 and
the MITL signals referring to the atomic propositions a, c and the subformulae n = 2 and F (0,1)(c).
It shows the assignments to l and n, and the atoms representing the signals of a, c and n = 2
in correspondence to the positions where their value is true. For instance, at position 4, �a and
←−−−−
n = 2 hold, whereas �c ,

←−c ,←−a and �n=2 are false. The bottom part of the figure shows the signals
that are built according to the value of CLTLoc atoms �β and

←−
β . The signal of each proposition

is drawn on two levels: the top one represents the value true and the bottom one represents the
value false. In every position, the value of the proposition is specified by a filled circle that defines
the value in the exact time instant corresponding to the position and every line between adjacent
positions represents the value of the proposition in the corresponding interval. An empty circle at

, Vol. 1, No. 1, Article . Publication date: February 2020.

:34 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

the beginning or at the end of an interval indicates that the value of the formula in the interval
does not extend also to the infimum or to the supremum of the interval, respectively. At position
6 formula F (0,1)(c) changes value, because one time unit later (which corresponds to position
7 in this example) formula c becomes true; the automaton, instead, at position 6 has the same
configuration—if clock assignments are not considered—as at position 5.

The next proposition shows how, given a network N of TA, a selection criterion T , and a MITL
propertyψ , the problem of checking whether N |=T ψ holds can be reduced to that of determining
the satisfiability of CLTLoc formula Φsig ∧ Φ¬ψ .

Proposition 1. Let N be a network of TA,ψ be a MITL formula, and T = ⟨l , s, ef ⟩—where l is a
set of liveness conditions selected from Table 1, s is the semantics of the synchronizations primitives

appearing in N (selected from Table 2), and ef is a restriction on the edges of the transitions taken

by N (from Table 8). Also, let Φsig and Φψ be the CLTLoc formulae defined in Section 5.3 and in

Section 5.2, respectively. Then, N |=T ψ holds if, and only if, Φsig ∧ Φ¬ψ does not have any models.

Sketch of Proof. By Lemma 5.7 and by the results of [9], Φsig ∧ Φ¬ψ admits a model if, and
only if, there is (π ,σ , ι) that corresponds to a signalMη that satisfies MITL formula ¬ψ , and such
that trace η belongs to T(N , l , s, ef). That is, Φsig ∧ Φ¬ψ does not have any models if, and only if,
S(N , l , s, ef) ∩M¬ψ = ∅ holds. This, in turn, is equivalent to saying that S(N , l , s, ef) ⊆ Mψ holds,
which corresponds to Def. 5.5. □

Since there are automated tools for checking the satisfiability of CLTLoc formulae [6, 9], Propo-
sition 1 establishes an effective technique to solve the verification problem of networks of TA with
respect to MITL formulae: given a networkN of TA, a selection criterionT = ⟨l , s, ef ⟩, and a MITL
formula ψ , it is enough to build CLTLoc formulae Φsig and Φ¬ψ , then check the satisfiability of
formula Φsig ∧ Φ¬ψ .

6 EVALUATION

The procedure proposed in Section 5.4 has been implemented in TACK (Timed Automata ChecKer)5.
TACK is a Java 8 application that takes as input a model expressed using the Uppaal input format
and a property expressed in MITL. The model and the property are converted in a CLTLoc formula
as specified in Sect. 5. The satisfiability of the CLTLoc formula is verified using the Zot formal
verification tool [6].

To evaluate TACK, a full direct comparison with existing tools, i.e., Uppaal,Mitl0,∞BMC [25],
and MightyL [15], was not performed as such comparison would not be meaningful, for several
reasons.
(i) Neither Uppaal, nor Mitl0,∞BMC fully support MITL. Uppaal supports a restricted subset

of the TCTL logic, which allows the specification only of properties in the form: ∀G(e) (“for all
executions e globally holds"); ∀F (e) (“for all executions e eventually holds"); ∃G(e) (“there exists
an executions in which e globally holds"); ∃F (e) (“there exists an executions in which e eventually
holds") and, finally, the so called “leads-to” formula which is encoded as ∀G(e ⇒ ∀F (e ′)) (“in
every execution it is always true that the occurrence of e always makes e ′ hold”), where e and e ′ are
state formulae (i.e., expressions over state variables or automata locations).Mitl0,∞BMC, instead,
considers the fragment MITL0,∞, but it does not provide any information on how the encoding
can be extended to cover MITL. In fact, Mitl0,∞BMC adopts a super-dense semantics for time,
requiring a suitable change of MITL semantics. Indeed, some useful properties [22][28] that hold
for the standard MITL semantics, e.g., proving that the fragment MITL0,∞ has the same expressive
5The tool is available at http://github.com/claudiomenghi/TACK.

, Vol. 1, No. 1, Article . Publication date: February 2020.

http://github.com/claudiomenghi/TACK

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :35

power as MITL, are not valid anymore over super-dense time. Therefore, extending the logical
language used in Mitl0,∞BMC to MITL appears to be far from straightforward.

(ii) As mentioned above, both Uppaal and Mitl0,∞BMC [25] adopt the super dense semantics of
time. This allows a TA to fire consecutive transitions without requiring time to progress. Uppaal
introduces the syntactic notion of “committed locations” to prevent time from progressing—i.e.,
when an automaton is in a committed location, only action transitions can be fired and time cannot
advance. The underlying notion of time adopted in this work is based on the CLTLoc semantics,
which relies on the strict progress of time between adjacent positions and does not enable such
modeling facility.
(iii)Mitl0,∞BMC is mainly a proof-of-concept tool that has not been further supported since

2013 and does not support a direct implementation of synchronization events (α ! and α?). The lack
of suitable documentation (such as a user manual) does not allow a clear understanding of the
potential offered by the tool.
(iv) MightyL [14, 15] allows users, at least in principle, to perform model checking of MITL

formulae on TA using both the pointwise and the continuous (signal-based) semantics. However,
the MightyL approach assumes that the model of the system to be checked is specified as a bipartite
Signal Automaton (SA)—or, at the very least, as a TA that has the properties guaranteed by the
transformation of SA into TA defined by Proposition 10 of [15]—, which then needs to be converted
(together with the SA computed from the MITL formula) into a TA that can be checked using the
LTSmin [24] model checker. However, the transformation from SA to TA defined by Proposition 10
of [15] is not supported by a publicly available tool. Moreover, TACK supports the verification of
interacting networks of TA, whereas MightyL assumes that the model is captured through a single
automaton, and the inclusion of synchronization primitives in models to be input to MightyL would
further complicate the matter. Finally, only one example of model checking of MITL properties on
TA through MightyL is presented in the literature [15], and for the reasons above we cannot adapt
our own benchmarks to MightyL.
To summarize, since the capabilities of Uppaal and Mitl0,∞BMC are significantly different

from those provided by TACK (especially in terms of the logic used to express the property), and
performing model checking experiments with MightyL poses crucial obstacles, an exhaustive, direct
comparison of TACK with these tools is not significant. Nevertheless, in addition to carrying out
an extensive experimental evaluation of TACK, we also performed a limited set of experiments
withMitl0,∞BMC on one of our benchmarks, and we provided a brief, qualitative comparison of
TACK and MightyL.

Concerning the experimental evaluation of TACK, we focused on the following features: (i) the
efficiency of TACK in verifying MITL properties of TA; (ii) how TACK enables the introduction
of the synchronization constructs and semantic constraints presented in Section 3. The ease of
performing verification has been estimated through a bounded model checking technique that
relies on two different solvers available in the Zot formal verification tool [6]. Both solvers check
the satisfiability of CLTLoc formulae, but they are based on different techniques. They rely on SMT
(Satisfiability Modulo Theories) solvers (Microsoft Z3 [18] in our case), as the satisfiability problem
of CLTLoc has been tackled so far by reducing it to an SMT instance. The first solver, ae2Zot [11],
reduces the satisfiability problem of CLTLoc formulae to that of a fragment of the first-order logic
over real difference arithmetic; the second, ae2SBVZot [6], instead uses a Bit-Vector encoding.
The ability of TACK to consider different features of TA is evaluated by selecting benchmarks that
exploit different constructs such as, for example, different synchronization primitives.

Three different benchmarks are used in this first set of experiments focusing solely on TACK: the
Fischer mutual exclusion protocol [3], the CSMA/CD protocol [1] and the Token Ring protocol [23].
All selected benchmarks have also been classically implemented in the Uppaal model checker [2].

, Vol. 1, No. 1, Article . Publication date: February 2020.

:36 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

TACK ran using the ae2Zot and ae2SBVZot solvers, version 4.7.1 of Z3, on a machine equipped
with an Intel(R) Core(TM) i7-4770 CPU (3.40GHz) with 8 cores, 16GB of RAM and Debian Linux
(version 8.8). To test the scalability of the approach, various configuration of the protocols were
tested, each one determined by a different number n of involved agents. In particular, variable n
indicates: for the Fischer benchmark, the number of participants; for the CSMA/CD protocol, the
number of competing stations; for the Token Ring protocol, the number of processes. In the tests, n
spans from 2 to 10. Since the CLTLoc solvers we used relied on a bounded model-checking approach,
we considered a bound k spanning from 10 to 30, with increments of 5. For each combination of
values of n and k we considered a timeout of 2 hours.

Fischer benchmark. This benchmark describes a mutual exclusion algorithm in which n partici-
pants try to enter a critical section. Before trying to enter the critical section, a participant first
checks if another one is in the critical section. If this is not the case, it writes its (unique) identifier
in a shared variable. After waiting a certain amount of time, it checks again the shared variable.
If its identifier is still in the shared variable, it proceeds to the critical section. Otherwise, it goes
back to start since another process had simultaneously checked whether the critical section was
empty and set the shared variable. The synchronization among the participants is obtained through
shared clocks and no synchronization on the transitions is present.

The following six properties (a subset of them was also considered in [25]) were verified.

live-one := G[0,∞)
(
p1.req→F [0,∞) p1.wait

)
live-two := G[0,∞)

(
p1.req→F [0,3] p1.wait

)
live-three := G[0,∞)

(
p1.req→F (0,3) p1.cs

)
live-four := G[0,∞)

(
p1.req→F (0,3) p1.wait

)
live-five := G[0,∞)

(
p1.req→F [0,3] p1.cs

)
live-six := G[0,∞)

(
¬

(∨
i=1:n−1

(
pi .cs ∧

(∨
j=i+1:n

)
pj .cs

)))
Properties live-one and live-six are not metric, as F [0,∞) and G[0,∞) are equivalent to the LTL

“eventually” and “globally” modalities. Properties live-two (resp., live-three) and live-four (resp.,
live-five) differ with respect to the interval specified in the F operator.
The results are presented in Table 10. The rows show the time (in seconds) required by the

model-checking procedure with different bounds k . Symbol “−" indicates a timeout. The columns
contain the results obtained by considering an increasing number n of participants. For properties
live-one, live-two, live-four and live-six TACK always returned the correct result. For properties
live-three and live-five, when k was equal to 10, the value of n is too large, compared to the bound
k , to allow TACK to find a counterexample (i.e., to allow the underlying satisfiability procedure
for CLTLoc to detect a contradiction). However, increasing the bound allows TACK to detect the
counterexample.
When ae2Zot is used, the time required by TACK to verify models increases as the values of

n and k increase, whereas the results obtained with ae2SBVZot are less homogeneous. Indeed,
even if ae2SBVZot is in general more efficient than ae2Zot, some tests carried out by ae2SBVZot
resulted in a timeout. For example, this is the case of property live-three with k = 15 and n = 6
which, conversely, has been successfully solved by ae2Zot. To understand the reason of this result
and, in particular, whether it was caused by the adopted Zot plugin, two different versions of Z3
were compared with each other. A general variation of the performance of TACK—even when

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :37

Table 10. Time (s) required to check the properties of the Fischer benchmark. The symbol ✓ indicates that

the property is satisfied, i.e., the CLTLoc formula is unsatisfiable. The symbol ✗ indicates that the property is

not satisfied, i.e., the CLTLoc formula is satisfiable.

TACK ae2zot
n

k 2 3 4 5 6 7 8 9 10

liv
e-
on

e 10 0.9 ✓ 1.2∗ ✓ 0.9 ✓ 1.1 ✓ 1.4 ✓ 1.4∗ ✓ 1.9 ✓ 2.2 ✓ 2.0∗ ✓
15 0.9 ✓ 0.9∗ ✓ 1.1∗ ✓ 1.7 ✓ 4.9 ✓ 2.7 ✓ 3.0∗ ✓ 3.7∗ ✓ 4.2∗ ✓
20 1.0 ✓ 1.2 ✓ 1.6 ✓ 2.5 ✓ 3.0∗ ✓ 5.1 ✓ 4.4∗ ✓ 78.7∗ ✓ 12.8 ✓
25 1.1 ✓ 1.9 ✓ 2.8 ✓ 3.0∗ ✓ 5.5 ✓ 10.2 ✓ 9.6∗ ✓ 12.6∗ ✓ 15.1∗ ✓
30 1.3 ✓ 15.6∗ ✓ 3.1 ✓ 4.0∗ ✓ 6.5∗ ✓ 11.1∗ ✓ 20.5 ✓ 17.8 ✓ 22.4∗ ✓

liv
e-
tw

o 10 1.8 ✓ 1.8∗ ✓ 2.6 ✓ 2.9 ✓ 2.6∗ ✓ 4.7 ✓ 5.5 ✓ 5.1 ✓ 4.3∗ ✓
15 7.9 ✓ 18.3 ✓ 28.1 ✓ 40.1 ✓ 70.1 ✓ 131.3 ✓ 211.9 ✓ 166.5∗ ✓ 218.1∗ ✓
20 42.1 ✓ 96.5 ✓ 139.9 ✓ 514.8 ✓ 897.1 ✓ 1395.4 ✓ 5837.2 ✓ − −
25 208.8 ✓ 859.9 ✓ 813.1 ✓ 2026.9 ✓ 6770.0 ✓ − − − −
30 392.7 ✓ 793.5 ✓ 2678.2 ✓ 4193.4 ✓ − − − − −

liv
e-
th
re
e 10 1.1 ✗ 1.6 ✗ 1.4 ✗ 1.7∗✗ 3.7∗ ✗ 13.7∗ ✓ 13.4∗ ✓ 18.1∗ ✓ 23.0∗ ✓

15 1.2 ✗ 1.6 ✗ 2.4∗ ✗ 4.3 ✗ 15.0∗ ✗ 42.3∗ ✗ 33.5∗ ✗ 143.7 ✗ 100.4∗ ✗
20 1.5 ✗ 2.1∗ ✗ 3.3∗ ✗ 4.1∗ ✗ 10.6∗ ✗ 41.4 ✗ 94.2 ✗ 64.0∗ ✗ 386.2∗ ✗
25 2.3✗ 3.4 ✗ 5.0 ✗ 11.0∗ ✗ 20.4∗ ✗ 15.4∗ ✗ 84.5∗ ✗ 354.0 ✗ 648.9∗ ✗
30 2.4 ✗ 4.9✗ 5.7∗ ✗ 12.2 ∗ ✗ 30.1 ✗ 37.6∗ ✗ 124.5∗ ✗ 532.3 ✗ 155.8 ✗

liv
e-
fo
ur 10 1.4 ✓ 1.4∗ ✓ 2.2 ✓ 2.5 ✓ 2.9 ✓ 3.5 ✓ 2.7∗ ✓ 3.4∗ ✓ 5.9 ✓

15 4.7 ✓ 7.3 ✓ 14.3 ✓ 22.7 ✓ 46.0 ✓ 93.3 ✓ 146.8 ✓ 145.0∗ ✓ 177.8∗ ✓
20 10.4 ✓ 24.4 ✓ 54.5 ✓ 98.5 ✓ 199.9 ✓ 797.2 ✓ 2526.5 ✓ − −
25 48.5 ✓ 112.9 ✓ 191.0 ✓ 779.3 ✓ 1783.1 ✓ 5437.316 ✓ − − −
30 153.0 ✓ 255.2 ✓ 675.6 ✓ − − − − − −

liv
e-
fiv

e 10 1.1 ✗ 1.8 ✗ 2.0 ✗ 4.1 ✗ 3.9∗ ✓ 15.1∗ ✓ 17.3∗ ✓ 23.2∗ ✓ 23.7∗ ✓
15 1.5 ✗ 1.9 ✗ 3.8 ✗ 9.1 ✗ 16.3∗ ✗ 20.6∗ ✗ 42.2 ✗ 24.7∗ ✗ 182.7∗ ✗
20 2.8 ✗ 3.2 ✗ 6.6 ✗ 11.8∗ ✗ 19.7∗ ✗ 37.8 ✗ 65.0∗ ✗ 176.4∗ ✗ 117.5∗ ✗
25 3.5 ✗ 4.1∗ ✗ 5.0∗ ✗ 18.1∗ ✗ 28.2 ✗ 54.6 ✗ 123.1∗ ✗ 420.2∗ ✗ 794.4∗ ✗
30 3.3∗ ✗ 7.6 ✗ 11.2∗ ✗ 22.6 ✗ 31.9∗ ✗ 39.3∗ ✗ 257.4 ✗ 261.6∗ ✗ 1940.4∗ ✗

liv
e-
si
x 10 0.9 ✓ 1.8 ✓ 1.7∗ ✓ 2.8∗ ✓ 5.0∗ ✓ 6.3∗ ✓ 11.1∗ ✓ 13.0 ✓ 21.9∗ ✓

15 1.2 ✓ 2.2∗ ✓ 5.4∗ ✓ 9.3∗ ✓ 22.0∗ ✓ 57.2∗ ✓ 144.0∗ ✓ 209.8∗ ✓ 318.7∗ ✓
20 1.3∗ ✓ 4.7∗ ✓ 16.7∗ ✓ 51.6∗ ✓ 146.5∗ ✓ 350.6∗ ✓ 857.6∗ ✓ 1635.9∗ ✓ 3734.3∗ ✓
25 2.5 ✓ 10.6∗ ✓ 30.8∗ ✓ 260.3∗ ✓ 922.0∗ ✓ 2388.1∗ ✓ 3894.1∗ 6019.3∗ −
30 4.7 ✓ 32.3 ✓ 139.4∗ ✓ 667.5∗ ✓ 1906.6∗ ✓ 5955.3∗ − − −

TACK ae2sbvzot
n

k 2 3 4 5 6 7 8 9 10

liv
e-
on

e 10 0.7 ✓ 0.7 ✓ 0.8 ✓ 0.9 ✓ 0.9 ✓ 1.0 ✓ 2.4 ✓ 1.1 ✓ 1.3 ✓
15 0.7 ✓ 0.8 ✓ 1.0 ✓ 1.2 ✓ 1.0 ✓ 1.2 ✓ 1.0∗ ✓ 1.9 ✓ 1.9 ✓
20 0.7 ✓ 0.8 ✓ 1.0 ✓ 1.4 ✓ 1.5 ✓ 2.1 ✓ 2.0 ✓ 2.1 ✓ 2.2∗ ✓
25 0.8 ✓ 1.2 ✓ 1.1∗ ✓ 2.0∗ ✓ 1.9 ✓ 2.7 ✓ 4.5 ✓ 2.7∗ ✓ 5.5∗ ✓
30 0.9 ✓ 1.2 ✓ 1.7∗ ✓ 1.7 ✓ 2.1 ✓ 2.2∗ ✓ 2.2 ✓ 3.6∗ ✓ 4.8 ✓

liv
e-
tw

o 10 1.2 ✓ 1.3 ✓ 1.7 ✓ 1.5 ✓ 1.6 ✓ 1.5 ✓ 1.7 ✓ 1.9 ✓ 2.3 ✓
15 3.3 ✓ 3.7 ✓ 4.6 ✓ 6.4 ✓ 8.9∗ ✓ 18.7 ✓ 28.6 ✓ 44.8 ✓ 87.2 ✓
20 5.5 ✓ 13.8 ✓ 19.0 ✓ 45.0∗ ✓ 54.3 ✓ 60.2∗ ✓ 127.5 ✓ 60.2 ✓ 1133.4∗ ✓
25 16.2∗ ✓ 17.9∗ ✓ 51.6 ✓ 93.5 ✓ 33.1 ✓ 136.9∗ ✓ 592.0∗ ✓ 3232.4∗ ✓ 2359.7∗ ✓
30 33.5∗ ✓ 24.1 ✓ 136.9 ✓ 50.7 ✓ 82.8∗ ✓ 463.8∗ ✓ 1750.6∗✓ 1927.7∗✓ −

liv
e-
th
re
e 10 0.8 ✗ 1.0 ✗ 1.1 ✗ 1.8∗ ✗ 2.9∗ ✗ 7.7 ✓ 11.8∗ ✓ 14.9 ✓ 16.9 ✓

15 1.4 ✗ 1.1 ✗ 1.2∗ ✗ 2.0 ✗ 13.5∗✗ 17.8∗ ✗ 15.1∗ ✗ 17.4 ✗ 23.5 ✗
20 1.1 ✗ 1.3∗ ✗ 1.9 ✗ 3.5 ✗ 6.1 ✗ 4.5 ✗ 6.7 ✗ 51.6 ✗ 87.1 ✗
25 1.1 ✗ 1.8 ✗ 3.9 ✗ 2.8 ✗ 11.8 ✗ 23.8 ✗ 520.6 ✗ 388.7 ✗ 241.6∗ ✗
30 1.3 ✗ 2.2 ✗ 2.9∗ ✗ 16.8 ✗ 10.3 ✗ 30.8∗ ✗ 126.6 ✗ 71.4∗ ✗ 142.2∗ ✗

liv
e-
fo
ur 10 0.9 ✓ 1.0 ✓ 1.2 ✓ 1.3 ✓ 1.4 ✓ 1.6 ✓ 1.5 ✓ 2.1 ✓ 1.8 ✓

15 2.2 ✓ 2.2∗ ✓ 3.2 ✓ 4.2∗ ✓ 8.9 ✓ 12.1∗ ✓ 28.6∗ ✓ 45.2 ✓ 82.3 ✓
20 4.0 ✓ 6.6 ✓ 9.0 ✓ 8.0∗ ✓ 35.8 ✓ 69.6 ✓ 19.9 ✓ 345.6∗ ✓ 1071.0∗ ✓
25 11.0 ✓ 16.6 ✓ 22.1 ✓ 17.2∗ ✓ 31.2∗ ✓ 474.6 ✓ 2241.1∗ ✓ 329.4 ✓ 335.3∗✓
30 16.1 ✓ 28.7∗ ✓ 17.9∗ ✓ 30.7∗ ✓ 137.1 ✓ 252.2∗ ✓ 80.3∗✓ 1611.8 ✓ 598.9∗✓

liv
e-
fiv

e 10 0.9 ✗ 1.3 ✗ 1.9∗ ✗ 1.3∗✓ 3.2∗✓ 17.9 ✓ 16.5 ✓ 17.9 ✓ 13.4∗ ✓
15 1.0 ✗ 1.3 ✗ 2.7 ✗ 2.3 ✗ 7.6∗✗ 19.4 ✗ 19.2∗ ✗ 26.6 ✗ 26.6∗✗
20 1.6∗ ✗ 1.7 ✗ 3.6∗ ✗ 4.7∗ ✗ 4.8 ✗ 16.8∗✗ 36.2 ✗ 179.5∗✗ 36.9 ✗
25 1.7 ✗ 4.0 ✗ 5.0∗ ✗ 6.1 ✗ 6.4∗ ✗ 7.2 ✗ 263.6∗ ✗ 378.8∗✗ 308.5 ✗
30 1.5 ✗ 3.9 ✗ 4.7 ✗ 6.0∗ ✗ 24.1 ✗ 27.1∗ ✗ 53.8 ✗ 57.3 ✗ −

liv
e-
si
x 10 0.9 ✓ 1.0 ✓ 1.0∗ ✓ 2.6 ✓ 3.9∗ ✓ 2.4∗ ✓ 6.4∗ ✓ 12.1 ✓ 11.3∗ ✓

15 0.8 ✓ 1.6 ✓ 3.5 ✓ 5.2 ✓ 21.1 ✓ 39.9 ✓ 65.5 ✓ 112.3 ✓ 205.7 ✓
20 1.2 ✓ 3.5 ✓ 6.9 ✓ 17.3✓ 40.5∗ ✓ 170.6 ✓ 278.3∗ ✓ 650.8∗ ✓ 2555.4 ✓
25 1.5 ✓ 4.8∗ ✓ 19.5∗ ✓ 75.2 ✓ 110.3∗ ✓ 672.1 ✓ 1485.4∗ ✓ 3596.3∗✓ 5861.6∗✓
30 1.9 ✓ 11.7 ✓ 35.1 ✓ 116.3∗ ✓ 506.6∗ ✓ 2522.8∗ ✓ 3945.9∗✓ − −

, Vol. 1, No. 1, Article . Publication date: February 2020.

:38 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

using the same plugin—is evident, and it stems from the tactics that are used by Z3 to solve the
satisfiability problem. In fact, the experiments using version 4.4.1 of Z3 show that TACK is able
to complete the verification for the cases that resulted in timeouts using version 4.7.1, though it
timed out in others. This evidence proves that the choice of the Zot plugin does not determine the
presence or absence of the timeouts. In Table 10, the cases in which version 4.4.1 of Z3 significantly
outperformed version 4.7.1 (by at least around 25%) are marked with the ∗ symbol.

CSMA/CD Protocol. The CSMA/CD protocol (Carrier Sense, Multiple-Access with Collision
Detection) aims at assigning a bus to one of n competing stations. When a station has data to send,
it first listens to the bus. If no other station is transmitting (the bus is idle), the station begins
the transmission. If another station is transmitting (the bus is busy), it waits a random amount of
time and then repeats the previous steps. The synchronization among the participants is obtained
through a broadcast transition-based synchronization.
The following MITL property was tested. It is inspired by the one considered in the Uppaal

benchmark [26].
live-csma := G[0,∞)(P1.start_send → (¬collision_af ter_transm)) (11)
P1.start_send := (¬P1.send) ∧ (P1.sendU(0,inf) ⊤)) (12)
collision_af ter_transm := G(0,52](P1.send ∧ (P1.sendU[0,inf)(P1.send ∧ P2.send))) (13)

The property live-csma predicates on the occurrence of a collision—i.e., P1 and P2 simultaneously
sending a message. It specifies that a collision does not occur after P1 is transmitting for 52 time
units or more. Let us consider formula P1.start_send (12). Formula ¬P1.send specifies that P1 is not
sending at the current time t . Formula P1.sendU[(0,∞) ⊤ specifies that there exists a t ′ such that,
for every t ′′ s.t. t < t ′′ < t ′ holds, P1.send holds. Thus, formula P1.start_send is true when P1 starts
sending a message. Let us now consider formula collision_af ter_transm (13), which specifies that
P1 transmits for 52 time units or more, and then a collision is detected. Operator G(0,52] forces
formula (P1.send) ∧ (P1.sendU[0,∞)(P1.send ∧ P2.send))) to hold continuously from the current
time instant, until 52 time units from now, included. Since the formula must also hold at time
instant 52 from now, it forces a collision to be detected at a time instant that is after 52 time units
from now. Furthermore, since the formula must hold in interval (0, 52], P1 must keep sending a
message within this interval. The results of the experiments are presented in Table 11.

Token Ring. The token ring benchmark considers n symmetric stations that are organized in
a ring, plus one process that models the ring. The ring moves the token on a given direction
among the n processes. The processes may hand back the token in a synchronous (high-speed) or
an asynchronous (low priority) fashion. The synchronization among the participants is obtained
through a channel transition-based synchronization.

The following MITL property was tested. It is inspired by—though it is not the same as—the one
considered in the Uppaal benchmark [26].

live-token := G(0,∞) (¬ ((ST1.zsync ∨ ST1.zasync ∨ ST1.ysync ∨ ST1.yasync) ∧

(ST2.zsync ∨ ST2.zasync ∨ ST2.ysync ∨ ST2.yasync)))

Property live-token specifies that two stations ST1 and ST2 can not simultaneously sync—i.e., while
one of them is in a synchronize state the other must be idle. The results are presented in Table 12.
The results presented in Tables 10, 11 and 12 show that in all the cases the verification time

is reasonable for practical adoptions of the proposed verification technique. Furthermore, the
proposed technique easily allows considering different semantics—e.g., different synchronization
mechanisms—without directly changing the verification algorithm.

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :39

Table 11. Time (s) required to check the property of the CSMA/CD Protocol. The symbol ✓ indicates that the

property is satisfied, i.e., the CLTLoc formula is unsatisfiable. The symbol ✗ indicates that the property is not

satisfied, i.e., the CLTLoc formula is satisfiable.

TACK ae2zot

n

k 2 3 4 5 6 7 8 9 10

liv
e-
cs
m
a

10 2.6 ✓ 5.4 ✓ 5.8 ✓ 7.1 ✓ 9.9 ✓ 7.6 ✓ 11.3 ✓ 12.3 ✓ 16.0 ✓

15 10.5 ✓ 19.5 ✓ 23.1 ✓ 45.8 ✓ 64.0 ✓ 135.4 ✓ 123.9 ✓ 221.5 ✓ 453.3 ✓

20 20.8 ✓ 46.5 ✓ 97.3 ✓ 140.8 ✓ 409.9 ✓ 663.5 ✓ 1146.6 ✓ 1102.9 ✓ 1299.4 ✓

25 81.2 ✓ 125.4 ✓ 220.3 ✓ 387.9 ✓ 1278.6 ✓ 1959.1 ✓ 4742.7 ✓ 2820.2 ✓ 7184.4 ✓

30 98.8 ✓ 389.4 ✓ 868.0 ✓ 1500.9 ✓ 2195.1 ✓ - - - -

TACK ae2sbvzot

n

k 2 3 4 5 6 7 8 9 10

liv
e-
cs
m
a

10 1.6 ✓ 1.7 ✓ 2.1 ✓ 2.2 ✓ 2.9 ✓ 2.8 ✓ 3.3 ✓ 3.8 ✓ 3.9 ✓

15 4.4 ✓ 6.9 ✓ 8.8 ✓ 7.6 ✓ 8.4 ✓ 24.3 ✓ 32.9 ✓ 24.2 ✓ 21.1 ✓

20 9.0 ✓ 15.5 ✓ 12.0 ✓ 26.2 ✓ 32.3 ✓ 35.2 ✓ 49.4 ✓ 75.6 ✓ 65.0 ✓

25 19.2 ✓ 21.7 ✓ 45.3 ✓ 68.9 ✓ 107.4 ✓ 143.6 ✓ 178.5 ✓ 267.2 ✓ 245.7 ✓

30 70.3 ✓ 68.7 ✓ 151.6 ✓ 130.0 ✓ 438.9 ✓ 328.9 ✓ 4441.8 ✓ 854.2 ✓ 6649.4 ✓

Table 12. Time (s) required to check the property of the Token Ring. The symbol ✓ indicates that the property

is satisfied, i.e., the CLTLoc formula is unsatisfiable. The symbol ✗ indicates that the property is not satisfied,

i.e., the CLTLoc formula is satisfiable.

TACK ae2zot

n

k 2 3 4 5 6 7 8 9 10

liv
e-
to
ke
n

10 0.9 ✓ 1.1 ✓ 1.3 ✓ 2.1 ✓ 1.9 ✓ 2.1 ✓ 2.1 ✓ 2.3 ✓ 2.2 ✓

15 1.5 ✓ 1.5 ✓ 1.8 ✓ 2.2 ✓ 3.9 ✓ 4.8 ✓ 3.7 ✓ 3.2 ✓ 9.0 ✓

20 2.2 ✓ 2.2 ✓ 4.8 ✓ 3.1 ✓ 5.0 ✓ 10.6 ✓ 7.1 ✓ 18.9 ✓ 10.4 ✓

25 2.7 ✓ 5.0 ✓ 3.7 ✓ 5.8 ✓ 5.7 ✓ 24.3 ✓ 25.6 ✓ 19.6 ✓ 58.2 ✓

30 6.0 ✓ 9.9 ✓ 6.9 ✓ 17.6 ✓ 27.3 ✓ 36.3 ✓ 43.8 ✓ 21.3 ✓ 36.0 ✓

TACK ae2sbvzot

n

k 2 3 4 5 6 7 8 9 10

liv
e-
to
ke
n

10 0.9 ✓ 0.9 ✓ 0.9 ✓ 1.0 ✓ 1.1 ✓ 1.2 ✓ 1.3 ✓ 1.5 ✓ 1.6 ✓

15 1.2 ✓ 1.1 ✓ 1.1 ✓ 1.1 ✓ 1.2 ✓ 1.4 ✓ 1.5 ✓ 1.7 ✓ 1.7 ✓

20 2.1 ✓ 1.9 ✓ 1.8 ✓ 1.6 ✓ 1.8 ✓ 1.8 ✓ 1.8 ✓ 2.1 ✓ 2.2 ✓

25 2.5 ✓ 3.7 ✓ 3.5 ✓ 3.1 ✓ 2.3 ✓ 2.4 ✓ 2.5 ✓ 2.9 ✓ 2.9 ✓

30 3.6 ✓ 5.6 ✓ 4.8 ✓ 5.3 ✓ 4.1 ✓ 3.5 ✓ 3.0 ✓ 3.2 ✓ 3.9 ✓

As mentioned above, an exhaustive, direct comparison of TACK withMitl0,∞BMC and MightyL
over the considered benchmarks is not possible. For example, both the models of CSMA/CD and
Token Ring protocols rely on synchronization primitives that are not supported byMitl0,∞BMC and
MightyL. However, a model of Fischer protocol, which does not need synchronization primitives
to be used, is available in the Mitl0,∞BMC distribution, so it is at least possible to perform a

, Vol. 1, No. 1, Article . Publication date: February 2020.

:40 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Table 13. Time (s) required to check the properties of the Fischer benchmark using theMitl0,∞BMC tool. The

symbol ✓ indicates that the property is satisfied, i.e., the formula input to the underlying solver is unsatisfiable.

The symbol ✗ indicates that the property is not satisfied, i.e., the formula input to the underlying solver is

satisfiable.

n

k 2 3 4 5 6 7 8 9 10

liv
e-
on

e

10 0.4 ✓ 0.4 ✓ 0.5 ✓ 0.7 ✓ 0.8 ✓ 0.9 ✓ 1.1 ✓ 1.3 ✓ 1.6 ✓

15 0.9 ✓ 1.0 ✓ 1.2 ✓ 1.5 ✓ 1.8 ✓ 2.4 ✓ 2.7 ✓ 3.0 ✓ 3.5 ✓

20 2.0 ✓ 2.3 ✓ 2.4 ✓ 3.0 ✓ 3.4 ✓ 4.3 ✓ 5.2 ✓ 5.7 ✓ 6.4 ✓

25 4.4 ✓ 4.1 ✓ 4.4 ✓ 4.9 ✓ 5.7 ✓ 7.3 ✓ 8.5 ✓ 9.7 ✓ 10.7 ✓

30 8.2 ✓ 7.2 ✓ 6.8 ✓ 10.7 ✓ 13.3 ✓ 11.2 ✓ 12.7 ✓ 20.8 ✓ 16.3 ✓

liv
e-
tw

o

10 0.6 ✓ 0.9 ✓ 1.0 ✓ 1.1 ✓ 1.6 ✓ 1.7 ✓ 2.0 ✓ 2.1 ✓ 3.6 ✓

15 3.1 ✓ 6.9 ✓ 16.4 ✓ 13.4 ✓ 25.3 ✓ 11.3 ✓ 19.5 ✓ 20.8 ✓ 91.0 ✓

20 27.9 ✓ 43.6 ✓ 65.6 ✓ 123.4 ✓ 181.8 ✓ 138.6 ✓ 210.5 ✓ 233.5 ✓ 458.2 ✓

25 168.2 ✓ 120.8 ✓ 163.1 ✓ 271.1 ✓ 346.1 ✓ 294.6 ✓ 626.5 ✓ 358.6 ✓ 935.5 ✓

30 462.1 ✓ 270.8 ✓ 307.3 ✓ 444.5 ✓ 609.7 ✓ 587.7 ✓ 1229.1 ✓ 714.7 ✓ 1491.1 ✓

liv
e-
th
re
e

10 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.4✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

15 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.4✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

20 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.4✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

25 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.4✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

30 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.4✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

liv
e-
fo
ur

10 0.5 ✓ 0.9 ✓ 1.0 ✓ 1.5 ✓ 1.6 ✓ 1.6 ✓ 2.4 ✓ 2.6 ✓ 2.4 ✓

15 3.3 ✓ 7.2 ✓ 8.6 ✓ 12.9 ✓ 43.4 ✓ 13.9 ✓ 73.3 ✓ 46.0 ✓ 77.7 ✓

20 23.8 ✓ 63.5 ✓ 54.2 ✓ 82.1 ✓ 146.7 ✓ 140.5 ✓ 116.4 ✓ 189.0 ✓ 215.7 ✓

25 107.3 ✓ 159.3 ✓ 142.8 ✓ 246.1 ✓ 293.3 ✓ 245.5 ✓ 380.7 ✓ 300.7✓ 663.2 ✓

30 367.8 ✓ 372.6 ✓ 444.5 ✓ 707.7 ✓ 572.6 ✓ 658.3 ✓ 1156.7 ✓ 1457.8 ✓ 1351.1 ✓

liv
e-
fiv

e

10 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.5 ✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

15 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.5 ✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

20 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.5 ✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

25 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.5 ✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

30 0.2 ✗ 0.3 ✗ 0.4 ✗ 0.5 ✗ 0.5 ✗ 0.6 ✗ 0.7 ✗ 0.8 ✗ 0.9 ✗

liv
e-
si
x

10 0.2 ✓ 0.4 ✓ 0.6 ✓ 0.8 ✓ 0.9 ✓ 1.3 ✓ 1.5 ✓ 1.7 ✓ 2.0 ✓

15 0.7 ✓ 2.5 ✓ 6.1 ✓ 9.7 ✓ 13.9 ✓ 21.5 ✓ 26.2 ✓ 35.1 ✓ 52.1 ✓

20 2.5 ✓ 19.7 ✓ 57.5 ✓ 93.4 ✓ 151.7 ✓ 239.8 ✓ 350.7 ✓ 548.9 ✓ 738.9 ✓

25 7.9 ✓ 123.5 ✓ 364.2 ✓ 597.9 ✓ 1177.0 ✓ 1985.5 ✓ 4001.2 ✓ 6956.2 ✓ −

30 20.2 ✓ 538.0 ✓ 1764.0 ✓ 3651.1 ✓ − − − − −

Table 14. Time (s) required by TACK (for different bounds k) to model check the timed lamp [11], and the

results obtained by Brihaye et al. [15] when MightyL is combined with LTSMIN to verify this example.

MightyL + LTSMIN TACK
[15] k

with minimality w/o minimality 10 15 20 25 30

φ1 1.73 1.77 1.3 ✗ 1.5 ✗ 2.4 ✗ 2.6 ✗ 2.8 ✗

φ2 2.36 13.18 1.4 ✓ 1.6 ✓ 1.7 ✓ 2.3 ✓ 3.1 ✓

set of verification experiments with it. In addition, properties live-one to live-six are MITL0,∞
formulae, so they can be verified byMitl0,∞BMC without modification. Nevertheless, the semantic
discrepancies between TACK and Mitl0,∞BMC highlighted above still remain, so even if in the
case of the Fischer protocol a comparison between the two tools has some merit, it is still not fully

, Vol. 1, No. 1, Article . Publication date: February 2020.

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :41

meaningful. Despite these issues, we verified properties live-one to live-six for the Fischer protocol,
using Mitl0,∞BMC with the same experimental setup (parameters and hardware configuration) as
those used for TACK to obtain the results of Table 10. Table 13 shows the execution times obtained.
It can be noticed that, when the properties hold for the model (✓, which means that the formula
analyzed by the tool is unsatisfiable), in most cases TACK is faster. When the properties do not
hold, though (✗, which means that the formula analyzed is satisfiable), the incremental fashion
thatMitl0,∞BMC uses to explore the state space proves to be very beneficial. Indeed, an analysis
of the trace returned by the tool in these cases shows that after reaching bound k = 6 the tool
determines that the formula is satisfiable, so it stops the exploration (in fact, the execution times
are independent of the bound, which is always greater than 6). Notice also that, for properties
live-three and live-five, a bound of 10 may not be enough for TACK to find the counterexample,
whereas it is forMitl0,∞BMC; this further highlights that the two tools, being based on slightly
different semantics, are not entirely comparable, even given the similarity in their approaches.
Finally, even though, for the reasons outlined above, we could not run MightyL with the same

configuration as the one used for TACK, we used the results presented in [15] on a small example,
namely the timed lamp [11], over two different properties φ1 and φ2. Table 14 reports the results
presented in [15] and those obtained using TACK (with ae2zot and Z3 4.7.1) for different bound
values k . The results are not meant to be compared directly, but provide a qualitative comparison
among the tools, and further show the viability of our approach.

7 CONCLUSION

This paper presented a flexible approach for checking networks of TA against properties expressed
in MITL. The technique relies on an intermediate artifact—i.e., a CLTLoc formula—in which
both the model and the property are encoded. The intermediate artifact is then evaluated using
suitable satisfiability checkers. The proposed technique addresses three main challenges: (i) it allows
considering a signal-based semantics; (ii) it allows verifying properties expressed using the MITL;
(iii) it allows easily adding new TA constructs and changing their semantics (e.g., synchronization
mechanisms, liveness conditions and edge constraints).
The technique has been implemented in an open source tool called TACK (Timed Automata

ChecKer), which is publicly available at http://github.com/claudiomenghi/TACK. Evaluation is
performed by assessing: (i) the efficiency of TACK in verifying MITL properties of TA; (ii) the
possibility of considering different synchronization constructs and semantic constraints. The
intermediate artifact is evaluated through a bounded model checking technique that relies on
two different solvers available in the Zot formal verification tool [6]. Evaluation mainly relies on
three different benchmarks that have been used to evaluate similar artifacts (e.g., [2]), namely the
Fischer mutual exclusion protocol [3], the CSMA/CD protocol [1] and the Token Ring protocol [23].
The results show that the verification time is reasonable for practical adoptions of the proposed
verification technique and prove that the proposed technique easily allows considering different
semantics—e.g., different synchronization mechanisms—by simply adding and removing formulae
in the intermediate CLTLoc encoding.

ACKNOWLEDGEMENTS

This work has received funding from the European Research Council under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 694277).
We are grateful for the feedback provided by the anonymous reviewers.

REFERENCES

[1] [n. d.]. IEEE Web Page. http://www.ieee802.org/3

, Vol. 1, No. 1, Article . Publication date: February 2020.

http://github.com/claudiomenghi/TACK
http://www.ieee802.org/3

:42 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

[2] [n. d.]. Uppaal Web Page. http://www.uppaal.org/
[3] Martín Abadi and Leslie Lamport. 1994. An old-fashioned recipe for real time. Transactions on Programming Languages

and Systems (1994), 1543–1571.
[4] Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical computer science 126, 2 (1994), 183–235.
[5] Rajeev Alur, Tomás Feder, and Thomas A Henzinger. 1996. The benefits of relaxing punctuality. Journal of the ACM

(JACM) 43, 1 (1996), 116–146.
[6] Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo Rossi. 2016. How Bit-vector Logic Can Help

Improve the Verification of LTL Specifications over Infinite Domains. In Annual ACM Symposium on Applied Computing

(SAC). ACM.
[7] Marcello M. Bersani, Carlo A. Furia, Matteo Pradella, and Matteo Rossi. 2009. Integrated Modeling and Verification of

Real-Time Systems through Multiple Paradigms. In Software Engineering and Formal Methods, SEFM. IEEE, 13–22.
[8] Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2013. Deciding the Satisfiability of MITL Specifications. In

Proc. of the Int. Symp. on Games, Automata, Logics and Formal Verification (GandALF). 64–78.
[9] Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2015. An SMT-based approach to Satisfiability Checking

of MITL. Inform. and Comp. 245 (2015), 72–97.
[10] Marcello M Bersani, Matteo Rossi, and Pierluigi San Pietro. 2016. A logical characterization of timed regular languages.

Theoretical Computer Science (2016).
[11] Marcello M Bersani, Matteo Rossi, and Pierluigi San Pietro. 2016. A tool for deciding the satisfiability of continuous-time

metric temporal logic. Acta Informatica 53, 2 (2016), 171–206.
[12] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. 2010. On the expressiveness of TPTL and MTL. Information

and Computation 208, 2 (2010), 97–116.
[13] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, Arthur Milchior, and Benjamin Monmege. 2018. Efficient algorithms

and tools for MITL model-checking and synthesis. In International Conference on Engineering of Complex Computer

Systems (ICECCS). IEEE, 180–184.
[14] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017. MightyL: A Compositional Translation

from MITL to Timed Automata. In International Conference on Computer Aided Verification. Springer, 421–440.
[15] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017. Timed-Automata-Based Verification of

MITL over Signals. In Symposium on Temporal Representation and Reasoning (TIME) (Leibniz International Proceedings in

Informatics (LIPIcs)), Sven Schewe, Thomas Schneider, and Jef Wijsen (Eds.), Vol. 90. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[16] Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. 2010. MCMT in the Land of Parametrized Timed Automata. In
International Verification Workshop (VERIFY). EasyChair, 47–64.

[17] Zhe Dang. 2003. Pushdown timed automata: a binary reachability characterization and safety verification. Theoretical
Computer Science 302, 1 (2003), 93 – 121. https://doi.org/10.1016/S0304-3975(02)00743-0

[18] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
[19] Stéphane Demri and Deepak D’Souza. 2007. An automata-theoretic approach to constraint LTL. Information and

Computation 205, 3 (2007), 380–415.
[20] Deepak D’Souza and Pavithra Prabhakar. 2007. On the expressiveness of MTL in the pointwise and continuous

semantics. International Journal on Software Tools for Technology Transfer (STTT) 9, 1 (2007), 1–4.
[21] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. 2012. Modeling Time in Computing. Springer.
[22] Yoram Hirshfeld and Alexander Moshe Rabinovich. 2004. Logics for Real Time: Decidability and Complexity. Funda-

menta Informaticae 62, 1 (2004), 1–28.
[23] Raj Jain. 1994. FDDI handbook: high-speed networking using fiber and other media. Addison-Wesley Longman Publishing

Co., Inc.
[24] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk. 2015. LTSmin: high-

performance language-independent model checking. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer.
[25] Roland Kindermann, Tommi Junttila, and Ilkka Niemelä. 2013. Bounded model checking of an MITL fragment for

timed automata. In International Conference on Application of Concurrency to System Design (ACSD). IEEE, 216–225.
[26] Kim G Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a nutshell. International Journal on Software Tools for

Technology Transfer 1, 1 (1997), 134–152.
[27] Didier Lime, Olivier H Roux, Charlotte Seidner, and Louis-Marie Traonouez. 2009. Romeo: A parametric model-checker

for Petri nets with stopwatches. In International Conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer.
[28] Oded Maler, Dejan Nickovic, and Amir Pnueli. 2006. From MITL to Timed Automata. In Proc. of FORMATS. LNCS,

Vol. 4202. 274–289.

, Vol. 1, No. 1, Article . Publication date: February 2020.

http://www.uppaal.org/
https://doi.org/10.1016/S0304-3975(02)00743-0

Model Checking MITL formulae on Timed Automata: a Logic-Based Approach :43

[29] Francesco Marconi, Marcello M Bersani, Madalina Erascu, and Matteo Rossi. 2016. Towards the Formal Verification
of Data-Intensive Applications Through Metric Temporal Logic. In International Conference on Formal Engineering

Methods. Springer.
[30] P. M. Merlin. [n. d.]. A study of the recoverability of computing systems. PhD thesis. University of California - Irvine,

CA.
[31] Joël Ouaknine and James Worrell. 2008. Some Recent Results in Metric Temporal Logic. In FORMATS (LNCS), Vol. 5215.

Springer, 1–13.
[32] FarnWang. 2001. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Diagram. In International

Conference on Formal Techniques for Networked and Distributed Systems (FORTE). Kluwer, B.V.
[33] Sergio Yovine. 1997. Kronos: A Verification Tool for Real-Time Systems. (Kronos User’s Manual Release 2.2). Interna-

tional Journal on Software Tools for Technology Transfer 1 (1997), 123–133.

A SIMPLIFIED ENCODING

The encoding used in the experiments is simpler than the general one presented in Fig. 4 of Sec. 4
because it is tailored only to signals whose intervals are all left-open and right-closed. In such a
case, the encoding can be simplified as the distinction between the kind of transitions is no longer
needed.

A.1 Encoding of traces for left-open right-closed signals.

The following Fig. 8 shows the simplified encoding of the network traces which, however, still
retains the structure of the general one. In particular, the atom edge](becomes irrelevant, and then
it can be removed, and the formulae φ4 and φ5 are modified.

φ1 B
∧

k ∈[1,K]
(l[k] = 0) φ2 B

∧
n∈Int

n = v0
var(n) φ3 B

∧
k ∈[1,K]

Inv(l[k])

φ4 B
∧

k ∈[1,K]
q∈Qk

((l[k] = q ∧ t[k] = ♮) → X(r1(Inv(q)))

φ5 B
∧

k ∈[1,K],t ∈Tk
t[k] = t→

(
l[k] = t− ∧ ϕξ ∧ X(l[k] = t+ ∧ ϕγ ∧ ϕµ ∧ ϕζ ∧ ϕα]((t

−, t+,k)
)

ϕα]((a,b, i) B Inv(a) ∧ r2(Invw (b))

φ6 B
∧

k ∈[1,K],q,q′∈Qk |q,q′

(
((l[k] = q) ∧ X(l[k] = q′)) →

∨
t ∈Tk ,t−=q,t+=q′

(t[k] = t)

)

φ7 B
∧
x ∈X

©«X(x0 = 0 ∨ x1 = 0) →
∨

k ∈[1,K]
t ∈Tk |x ∈tζ

t[k] = t
ª®®®¬ φ8 B

∧
n∈Int

©«(¬(n = X(n))) →
∨

k ∈[1,K]
t ∈Tk |n∈U (t)

t[k] = t
ª®®®¬

Fig. 8. Encoding of the automaton.

A.2 Encoding of left-open right-closed signals.

The following Fig. 9 shows the simplified encoding of the signals. The formulae φ1 and φ2 are
the same as those in the general encoding in Fig. 9. The definition of the signal in every interval
determined by the trace is simpler because it does not depend anymore on the kind of transition
performed by the automata. For instance, if automaton k is in l[k] at position h then the over the
interval Ih and in its right end-point the atomic propositions in the signal include those associated
with l[k]. A similar argument holds for the value of integer values.

, Vol. 1, No. 1, Article . Publication date: February 2020.

:44 Claudio Menghi, Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

µ1 B G
∧

a∈AP

←−a ↔
∨

k ∈(0,K],q∈Qk ,a∈L(q)
(l[k] = q) µ2 B G

∧
(n∼d)∈AF

(
←−−−−
n ∼ d ↔ n ∼ d)

µ3 B
∧

k ∈(0,K],
a∈AP

�a ↔
∨

a∈L(q0,k)
l[k] = q0,k µ4 B

∧
(n∼d)∈AF

(

�n∼d ↔ n ∼ d
)

µ5 B
∧

k ∈(0,K],
a∈AP

←−a → X(�a) µ6 B
∧

k ∈(0,K],
(n∼d ∈AF)

←−−−−
n ∼ d → X(�n∼d)

Fig. 9. Encoding of left-open right-closed signals.

, Vol. 1, No. 1, Article . Publication date: February 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Timed automata
	2.2 Metric Interval Temporal Logic
	2.3 Constraint LTL over clocks

	3 Continuous time semantics for Timed Automata
	3.1 Preliminaries
	3.2 Liveness and synchronization

	4 From timed automata to CLTLoc
	4.1 Encoding constraints over clocks (bold0mu mumu clockclockclockclockclockclock)
	4.2 Encoding the network (bold0mu mumu NNNNNN).
	4.3 Encoding liveness, synchronization and edge constraints (bold0mu mumu llllll, bold0mu mumu ssssss and bold0mu mumu efefefefefef)

	5 Checking the satisfaction of MITL formulae over TA
	5.1 Verification problem of networks of TA with respect to MITL formulae
	5.2 CLTLoc encoding of MITL signals
	5.3 CLTLoc encoding of network signals
	5.4 Model-checking of networks of TA with respect to MITL formulae

	6 Evaluation
	7 Conclusion
	References
	A Simplified Encoding
	A.1 Encoding of traces for left-open right-closed signals.
	A.2 Encoding of left-open right-closed signals.

