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Abstract: This paper investigates the coupling of successive convex optimization guidance with
robust structured H∞ control for the descent and precise landing of Reusable Launch Vehicles (RLVs).
More particularly, this Guidance and Control (G&C) system is foreseen to be integrated into a
nonlinear six-degree-of-freedom RLV controlled dynamics simulator which covers the aerodynamic
and powered descent phase until vertical landing of a first-stage rocket equipped with a thrust vector
control system and steerable planar fins. A cost function strategy analysis is performed to find out the
most efficient one to be implemented in closed-loop with the robust control system and the vehicle
flight mechanics involved. In addition, the controller synthesis via structured H∞ is thoroughly
described. The latter are built at different points of the descent trajectory using Proportional-Integral-
Derivative (PID)-like structures with feedback on the attitude angles, rates, and lateral body velocities.
The architecture is verified through linear analyses as well as nonlinear cases with the aforementioned
simulator, and the G&C approach is validated by comparing the performance and robustness with a
baseline system in nominal conditions as well as in the presence of perturbations. The overall results
show that the proposed G&C system represents a relevant candidate for realistic descent flight and
precise landing phase for reusable launchers.

Keywords: RLV; G&C; aerodynamic and powered descent; precise landing; descent and landing
dynamics; successive convex optimization; structured H∞ synthesis; TVC; aerodynamic steering

1. Introduction

Developing reusable launchers has become one of the key aspects of the space race
for any country seeking independent and sustainable access to space. In December 2015,
the US private company SpaceX showed the technical feasibility of launcher reusability
by landing its Falcon 9 first stage after having delivered a payload into orbit [1]. Two years
later, the same company demonstrated the cost effectiveness of such a technology by
reusing a recovered first stage for another mission [2]. SpaceX is today one of the major
space companies and is currently developing its Super Heavy rocket equipped with the
Starship spacecraft with the objective of carrying both crew and cargo on long-duration
interplanetary flights and to allow humanity to return to the Moon and travel to Mars and
beyond. In June 2024, Starship 29 (S29) and its Super Heavy Booster (B11) marked the first
integrated test flight, where both stages successfully re-entered and performed a powered
vertical landing over the ocean surface. Meanwhile, Rocket Lab’s Electron microlauncher
is well integrated in the market, and the company is currently developing its medium-lift
rocket Neutron [3]. Blue Origin is also focusing on advanced reusable launchers such
as New Shepard, a suborbital launch vehicle designed for space tourism, and New Glenn,
a heavy-lift reusable rocket that should be able to carry heavy payloads to Earth orbit
and beyond [4]. Outside of the United States and in what can be described as the new
space race, China [5] and India [6] are actively working on their own reusable launchers.
In Europe, various programmes are underway, such as Themis from the European Space
Agency (ESA), National Center for Space Studies (CNES), and ArianeGroup, which is a

Aerospace 2024, 11, 914. https://doi.org/10.3390/aerospace11110914 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11110914
https://doi.org/10.3390/aerospace11110914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-1322-5690
https://orcid.org/0000-0003-4361-1437
https://doi.org/10.3390/aerospace11110914
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11110914?type=check_update&version=1


Aerospace 2024, 11, 914 2 of 33

first-stage rocket demonstrator aimed at paving the way for the future European reusable
launcher, Ariane Next [7]. Additionally, the collaborative project CALLISTO, involving the
German Aerospace Center (DLR), Japan Aerospace Exploration Agency (JAXA), and CNES,
is focused on the development of a European/Japanese reusable rocket demonstrator [8].

Following similar guidelines, the European project Advancing Space Access Capabilities—
Reusability and Multiple Satellite Injection (ASCenSIon) has been initiated as an innovative
training network involving multiple public institutions and companies across Europe in
order to study the critical technologies for the development of a Reusable Launch Vehicle
(RLV) capable of injecting multiple payloads into multiple orbits. More particularly, one of
the research fields involved in this project aims to study the design of the Guidance and
Control (G&C) system for the vehicle descent and precise landing on Earth, essential for
reusability. In fact, this flight phase is very challenging as it depends on multiple parameters,
which are further complicated by the dense terrestrial atmosphere [9]. During descent,
the vehicle is subjected to fast, dynamics changes, partly induced by external loads such as
lift, drag, and wind but also by the actuation commands to fulfil the landing constraints
satisfaction and vehicle integrity preservation. Recovering a first-stage launcher was made
possible in the last decade by the development of advanced and robust computational
methods able to generate in real time the reference trajectory to be followed according to the
actual flight conditions, and then to command the optimal vehicle’s actuator deflections to
steer the vehicle to the landing site. Despite the success of the aforementioned commercial
space companies, some standing problems, such as the aerodynamic and powered descent
of the launcher, require further understanding.

One of the critical aspects of G&C design for the descent and precise landing of
reusable rockets is the development of a robust control strategy capable of counteracting
disturbances and uncertainties while satisfying the strict accuracy requirements associated
with pinpoint landing. This synthesis is further complicated by the need for a real-time
guidance algorithm to update onboard the optimal trajectory to be followed by the vehicle,
which therefore requires that the controller be capable of tracking multiple types of possible
references. In fact, thanks to the increase in computational power available onboard, recent
progress has shown that convex optimization is among the key technologies to enable
autonomous and onboard real-time trajectory planning, and therefore pinpoint landing.
More particularly, advanced methods such as successive convex optimization [10] and
pseudospectral convex optimization [11] enable the definition of a fuel-optimal trajectory
problem in which nonlinearities (e.g., aerodynamics) or non-convex constraints can be
integrated [8,12,13] and that can be solved in polynomial times with efficient solvers. When
implemented in a closed-loop fashion, this advanced guidance design enables the correction
of potential trajectory tracking discrepancies caused by uncertainties within the algorithm’s
embedded models or external disturbances.

As demonstrated by the current state-of-the-art in launcher control design [14,15],
classical linear control theory represents a rich heritage with many applications. This
choice was motivated by its relative ease of implementation and the possibility of using
gain-scheduling techniques to adapt to nonlinear systems. Nevertheless, these methods are
well-adapted to the control system design of Single-Input Single-Output (SISO) systems,
such as, for example, a reusable rocket using a Thrust Vector Control (TVC) system as the
unique actuator. The implementation of Multiple-Input Multiple-Output (MIMO) control
systems then becomes complex since every channel is addressed in a single-loop fashion.
However, this capability is required for the future generation of reusable rockets, which also
commonly use fin-based aerodynamic steering in addition to the TVC system to enhance
control authority. Furthermore, model uncertainties are not accurately considered in the
design process, developed only with nominal conditions and stability margin requirements.
All these issues result in an extensive (in terms of both time and cost) verification and vali-
dation campaign with many iterations and Monte-Carlo analyses to assess the performance
and robustness of the control system.
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To overcome these drawbacks, the H∞ family of methods, introduced a few years
ago [16], provides a powerful solution for robust control design. It relies on defining the
control requirements in the frequency domain in terms of weighting functions and mini-
mizing the maximum gain of the resulting weighted system from the exogenous inputs to
the outputs to be controlled. The control–plant interaction is modelled through a Linear
Fractional Transformation (LFT) that represents the feedback action. Furthermore, the struc-
tured H∞ method [17] allows one to directly impose a specific control structure—like a
Proportional-Integral-Derivative (PID), enabling the reuse of gain-scheduling techniques—
and to consider parametric uncertainties for enhanced robustness. This technology was
studied in the United States for the Ares-I programme, later for the Space Launch System
programme [18], and in Europe for Ariane 5 [19] and the future generation of European
launchers [20]. In recent years, several studies have emerged regarding this method for the
descent and landing phases of vehicles and have shown promising results. Although struc-
tured H∞ was first studied mainly for the ascent phase of the VEGA launcher recovering
the baseline control structure [21], some analyses were further performed in the descent
phase [22]. Furthermore, interesting cases for the aerodynamic descent of reusable rockets
have been exploited within the framework of CALLISTO where, first, decoupled attitude
and translational channels were considered for the design of robust controllers on each
control axis [23], before a unified control was considered for both position and attitude
with a robustness analysis to account for uncertainties [24]. Finally, a multi-plant control
design approach with fully-coupled translational and attitude dynamics was studied as
a solution to better consider the range of trajectories coming from the online guidance
algorithm during flight [25].

It is clear from the available literature that, while this technology has been largely ex-
plored for the ascent phase of conventional (i.e., non-reusable) launch vehicles, there is still
room for exploiting its capabilities during the descent and precise landing phase of reusable
rockets. Furthermore, among most of the aforementioned literature, only the aerodynamic
descent phase using steerable planar fins was considered, and the powered-descent phase
combining fins and TVC was treated only in Ref. [22]. This paper investigates the problem
of coupling advanced guidance and robust control systems for the descent and precise land-
ing of RLVs, involving fin-based aerodynamic steering and the TVC system simultaneously
in the control action. It exploits the room for improvement that comes from the reusable
launcher controlled dynamics simulator, developed in previous work under the ASCen-
SIon project [26]. This simulator precisely models the existing interactions between the
environment with its potential disturbances and uncertainties, the corresponding nonlinear
Six-Degree-of-Freedom (6-DoF) equations of motion, the actuators, and the G&C system.
In that paper, the latter was proposed as the baseline for preliminary assessments, which
involved a successive convex optimization algorithm maximizing the vehicle final mass
and a control system for which the MIMO formulation induced by the coupling of TVC
and steerable planar fins is simplified to a series of SISO systems to apply classical linear
control theory. In this paper, from the G&C system of Ref. [26], first the guidance algorithm
is improved by using a cost function strategy that involves both minimization of time of
flight and maximization of final mass. The latter still copes with mission requirements and
can also be efficiently coupled with the other building blocks. Second, a new architecture
is introduced for control synthesis through structured H∞. The latter is simultaneously
tuning gain-scheduled PID controllers for both planar fins and the TVC system through
feedback on attitude and velocity (with the main focus on attitude). The robustness of the
control system obtained is assessed through linear analysis and nonlinear simulations with
the aforementioned tool, under nominal and dispersed conditions. Therefore, the main
contribution of this work is twofold: the design of a robust control strategy through H∞
synthesis combining two actuators, TVC, and steerable planar fins, followed by the per-
formance assessment of the integrated G&C design through a 6-DoF nonlinear simulator.
To the best of the authors’ knowledge, this is the first time that such a control strategy is
coupled with an advanced guidance algorithm for the entire descent and landing problem
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of a reusable rocket and assessed in a realistic scenario. Furthermore, this paper takes the
perspective of integrated analysis rather than a compartmentalized design of guidance and
control strategies. In fact, such strategies are emerging in the literature: Ref. [27] combines
an optimal guidance strategy with a linear quadratic regulator control approach for the
rocket-powered descent phase, while Ref. [28] proposes an integrated and adaptive G&C
design via reinforcement meta-learning for air-to-air missiles.

The paper is organised as follows. Section 2 introduces the modelling of the nonlinear
controlled dynamics involved in reusable launcher descent and precise landing. More
particularly, Section 3 describes the guidance method embedded in a closed-loop fashion in
the simulator. Then, Section 4 formulates the robust control design via structured H∞, with
weighting functions adequately chosen according to the available requirements. The syn-
thesized controllers are assessed through classical linear analysis, and robustness stability
and performance are assessed via structured singular value µ-analysis. Subsequently, in
Section 5, the synthesized controllers are embedded in the controlled dynamics simulator,
therefore coupled with the guidance system, and assessed through nonlinear analysis
under both nominal and dispersed conditions. Finally, conclusions regarding the work
performed are provided in Section 6.

2. Reusable Launcher Controlled Dynamics Simulator

This section describes the nonlinear 6-DoF descent dynamics of a Vertical Take-off
Vertical Landing (VTVL) vehicle first-stage booster modelled through rigid-body motion
with varying mass, subjected to external forces induced by the terrestrial atmosphere and
controlled through embedded closed-loop guidance and control strategies. This paper relies
on the controlled dynamics simulator developed by the authors and adapted from Ref. [29]
to study the efficiency of aerodynamic steering and conventional G&C techniques [26].
The latter is illustrated in Figure 1, showcasing the interactions between all building blocks,
from the G&C systems to the actuators, vehicle dynamics, and environment.

Figure 1. 6-DoF RLV controlled dynamics simulator description.

The latter includes standard G&C algorithms, where a thrust vector is commanded by
the guidance subsystem and then converted to the reference pitch angle, θre f (t), and yaw,
ψre f (t), rates θ̇re f (t) and ψ̇re f (t), lateral body velocities ẏB,re f (t) and żB,re f (t), and thrust
magnitude Tre f . The control subsystem then generates the necessary commands to correct
the deviations between the reference and actual attitude angles in terms of TVC gimbal
deflections, {βTVC,y, βTVC,z}, and fin deflections, {β f in,y, β f in,z}. The guidance subsystem
is based on a successive convex optimization algorithm. The reference trajectory generated
is updated with a user-specified frequency, fgui, at which the guidance subsystem is re-
executed. Concerning the control subsystem, it relies on the use of feedback control through
gain-scheduled PID controllers synthesized via structured H∞ synthesis, decoupling pitch
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and yaw axes based on the assumption of low roll rate. These two subsystems will be better
defined in Section 3 and Section 4, respectively.

The equations of motion are written in the landing site-centred inertial and the
vehicle’s body-fixed reference frames using the following initial state vector, xI(0) =[
m(0) rT

I (0) vT
I (0) qI

B(0)
T ωT

B(0)
]
, and, for the sake of simplicity, based on the as-

sumptions that the vehicle is a rigid body with no effect induced by the varying mass (e.g.,
propellant sloshing) and structural flexibilities. The mass depletion dynamics are modelled
by an affine function of the thrust magnitude as follows:

ṁ(t) = −||FTVC,I(t)||2
Ispg0

− AnozzlePamb(t)
Ispg0

(1)

where Isp is the vacuum specific impulse of the engine, assumed to be constant for simplicity,
and Anozzle is the nozzle exit area of the engine. FTVC,I(t) ∈ R3 is the thrust vector coming
from the TVC system, represented in the inertial reference frame. The second term is related
to the reduction of the specific impulse due to the atmospheric back-pressure [10].

The translational states, position, and velocity of the vehicle in the inertial reference
frame, rI(t) ∈ R3 and vI(t) ∈ R3, are governed by the following dynamics:

ṙI(t) = vI(t)

v̇I(t) =
1

m(t)

[
FTVC,I(t) + Faero,I(t) + F f ins,I(t)

]
+ gI(t)

(2)

where Faero,I(t) ∈ R3 described the aerodynamic force acting on the vehicle in the inertial
reference frame, F f ins,I(t) ∈ R3 represents the control force generated by the planar fins,
and gI(t) is the gravitational field defined in the inertial frame.

Then, the attitude states are governed by the following rotational dynamics, using the
following quaternion-based kinematics equation:

q̇I
B(t) =

1
2




q4(t) −q3(t) q2(t)
q3(t) q4(t) −q1(t)
−q2(t) q1(t) q4(t)
−q1(t) −q2(t) −q3(t)


ωB(t)

ω̇B(t) = J−1(t)
[
MTVC,B(t) + Maero,B(t) + M f ins,B(t)− ωB(t)× J(t)ωB

]
(3)

where J(t) = diag
([

JA(t) JN(t) JN(t)
])

is the inertia matrix of the vehicle and Maero,B(t) ∈
R3, MTVC,B(t) ∈ R3, and M f ins,B(t) ∈ R3 represent the aerodynamic and control torques
acting on the vehicle. In Equation (3), the coupling between angular velocity and inertia
along the three axes, and the effect of centroid movement on the inertia caused by mass
consumption, are ignored.

For the computation of the aerodynamic forces and moments generated by the vehicle,
it is necessary to define an additional reference frame, the so-called velocity reference frame.
The latter is fixed to the vehicle’s Center of Gravity (CG), with its x-axis directed along the
wind-relative vector, vair(t), so that the transformation from the body-fixed to the velocity
reference frame can be represented by two aerodynamic angles: the angle of attack, α(t),
and the sideslip angle, β(t) [30]. Then, the aerodynamic characteristics depend on the
vehicle’s external shape with its reference area and on the instantaneous dynamic pressure,
which is defined as follows:

Q(t) =
1
2

ρ(t)||vair(t)||2 (4)

where vair(t) accounts for the vehicle’s inertial velocity and wind gusts, and the atmo-
spheric density ρ(t) is generated using the Committee on Extension to the Standard At-
mosphere model [31] (like the ambient pressure, Pamb(t), and the speed of sound, a(t)).
The aerodynamic drag and lift coefficients, as well as the Center of Pressure (CP) position,



Aerospace 2024, 11, 914 6 of 33

are estimated from available look-up tables as a function of the effective angle of attack,
αe f f (t) =

√
α2(t) + β2(t), and the Mach number, M(t) [32].

3. Guidance Approach

This section describes the Descent and Landing (D&L) guidance strategy adopted in
the previously defined controlled dynamics simulator, which is responsible for the real-time
generation of a fuel-optimal reference trajectory with thrust, attitude, and velocity com-
mands to be sent to the robust control subsystem. As mentioned in Section 1, the literature
of guidance methods for the reusable launcher descent and landing phase is now focus-
ing on advanced computational techniques, among them successive convex optimization
or pseudospectral convex optimization, therefore giving up to the traditional guidance
schemes commonly implemented for the ascent phase and for which path constraints
could not be enforced. In this paper, the direct method, successive convex optimization, is
employed and analysed before being implemented in the controlled dynamics simulator
for closed-loop integration assessment.

Convex optimization guidance consists of transforming the fuel-optimal trajectory
problem into a convex one, more particularly into a Second-Order Cone Programming
(SOCP) problem, which can be solved with efficient solvers in polynomial time. The recent
increase in the computational power available onboard made the real-time implementation
of these algorithms possible. The challenging task relies on converting the non-convex state
and control constraints into convex forms [33]. Then, successive convex optimization can
be applied to approximate the remaining nonlinearities in the optimal landing problem,
such as the aerodynamic effects previously ignored. It consists of iteratively solving SOCP
convex optimization subproblems in which the non-convex dynamics and constraints are
repeatedly linearised using information coming from the previous iteration solution. This
algorithm was first developed in Ref. [34] and then adapted in different ways [12,13]. In this
study, the strategy defined in Ref. [10] is leveraged to be applicable in a closed-loop fashion.
The algorithm is thoroughly detailed in Ref. [26] from the same authors and summarized
hereafter. First, the guidance strategy is detailed in Section 3.1, and the corresponding
SOCP problem is described in Section 3.2.

3.1. Successive Convex Optimization Strategy

The successive convex optimization guidance algorithm was implemented in MAT-
LAB (R2021b) using the CVX library [35] to formulate the convex problem and the ECOS
routine [36] to solve them. In each simulation instance defined by the simulation rate, fsim =
103 Hz, the reference thrust profile, TB,re f (t), the reference attitude angles, {θre f (t), ψre f (t)},
rates, {θ̇re f (t), ψ̇re f (t)}, and the reference body velocities, {ẏB,re f (t), żB,re f (t)}, are calcu-
lated from the most recent guidance solution by linear interpolation. In fact, as mentioned
above, this solution is stored as an online lookup table, which is updated at each guidance
step, with the guidance update frequency fgui = 0.1 Hz, that is, every 10 s. Note that, to
avoid adding complexity, the steerable planar fins are not considered as control inputs in
the guidance problem. The guidance algorithm inside the “D&L Guidance” building block
of the simulator is schematized in Figure 2.

First, the state and control vectors, as well as the final time, t f , which is also an op-
timization variable in this problem, are initialized. A linear interpolation of the discrete
state variables under the initial and final conditions is used for the initial state vector, while
the initial control vector is taken as matching the gravitational force [26]. Once the initial
guess is defined, we enter the successive convex optimization loop, which consists of solv-
ing the SOCP problem several times until reaching the user-defined maximum iterations
number, imax, or the tolerance relative to the trust regions radius, ∆tol . Then, to enable the
formulation of the SOCP subproblems, the optimal control problem must be converted
into a finite-dimensional parameter optimization problem. Therefore, the trajectory and
optimization variables are discretized into K uniformly spaced points, ranging from the
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current instant of time, tc, to the final time, t f . At each guidance step, the time vector is
divided in that way:

t[k] =
k − 1
K − 1

t f , k ∈ [1, K] (5)

and because the estimated time of flight t f → 0 as t → ToF, where ToF is the actual
time of flight achieved by the simulation, the accuracy of the discretization becomes more
precise towards the end. More particularly, the sampling time is given by Ts = t f /(K − 1).
The linearization and discretization methods are explained in the next subsection, together
with the definition of the SOCP problem.

Figure 2. “D&L Guidance” block description, adapted from Ref. [13].

When the optimization algorithm converges to an optimal solution, this reference
trajectory is saved to be used for the next iteration, or, if the exit criterion of the successive
convex optimization routine is met, is transferred to the online look-up table from where
the actual reference parameters corresponding to the simulation instance can be generated.
In this study, this involves the reference thrust magnitude profile, Tre f (t), the reference
pitch and yaw angle profiles, respectively θre f (t) and ψre f (t), rates, respectively θ̇re f (t) and
ψ̇re f (t), and the reference body velocities, ẏB,re f (t) and żB,re f (t).

3.2. SOCP Problem

The SOCP optimization problem obtained in Ref. [26], which is solved iteratively in
the successive convex optimization algorithm, is summarized in Figure 3.



Aerospace 2024, 11, 914 8 of 33

Version October 29, 2024 submitted to Aerospace 8 of 33

timization problem. summarizing the nonlinear dynamics as ẋ(t) = f (x(t), u(t)) with 292

x(t) =
[
m(t) rT

I (t) vT
I (t) qI

B(t)
T ωT

B(t)
]T the state vector and u(t) = TB,re f (t) the 293

control vector, they can be rewritten as follows: 294

ẋ(t) =
dτ

dt
d

dτ
x(t) (6)

Therefore, having σ = (dτ/dt)−1, the normalised nonlinear dynamics are expressed by: 295

d
dτ

x(τ) = σ · f (x(τ), u(τ)) (7)

where σ = t f since τ ∈ [0, 1]. Furthermore, for the sake of simplicity, aerodynamics are 296

modelled as if the vehicle were subjected to a pure drag force. Assuming that the rocket is 297

min
σi ,ui [k]

J = σi − mi[K] + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ,

s.t.:

Boundary conditions

mi[1] = mc, ri
I [1] = rI,c, vi

I [1] = vI,c, ωi
B[1] = ωB,c,

qi,I
B [1] = qI

B,c, if not the first run

ri
I [K] = rI,d, vi

I [K] = vI,d, qi,I
B [K] = qI

B,d, ωi
B[K] = ωB,d

Dynamics equations, ∀k ∈ [1, K − 1]

xi[k + 1] = Ā[k]xi[k] + B̄[k]ui[k] + σΣ̄[k] + z̄i[k] + νi[k]

State constraints, ∀k ∈ [1, K]

mi[k] ≥ mdry, e1 · ri
I [k] ≥ tan(γgs)

∣∣∣
∣∣∣
[
e2 e3

]Tri
I [k]
∣∣∣
∣∣∣
2

cos (θmax) ≤ eT
I,1 Ri,B

I [k] eB,1, ||ωi
B[k]||2 ≤ ωmax

||qI,i−1
B [k]||2 +

qI,i−1
B [k]T

||qI,i−1
B [k]||2

(qI,i
B [k]− qI,i−1

B [k]) = 1

Control constraints, ∀k ∈ [1, K − 1]

cos (δmax)||Ti
B,re f [k]||2 ≤ e1 · Ti

B,re f [k]

hT(ui−1[k]) +
∂hT
∂u

∣∣∣∣
ui−1[k]

(ui[k]− ui−1[k]) ≤ 0

||Ti
B,re f [k]||2 ≤ Tmax

Trust regions, ∀k ∈ [1, K − 1]

||xi[k]− xi−1[k]||2 + ||ui[k]− ui−1[k]||2 ≤ ∆i
x,u[k]

||∆i
x,u||2 ≤ Si

∆x,u

||σi − σi−1||2 ≤ ∆i
σ

Virtual controls, ∀k ∈ [1, K − 1]

||ν̄i||2 ≤ Si
ν

Figure 3. SOCP problem.Figure 3. SOCP problem.

The 6-DoF descent dynamics of a powered-only, first-stage booster are linearized
and discretized about the solution of the previous iteration through a first-order Taylor
expansion approximation and using a zero-order-hold interpolation scheme. Note that
only the thrust force is considered as the control input, so that the contribution of the fins is
ignored through the guidance logic. Before this process, the time of flight is normalized from
t ∈ [tc, t f ] to τ ∈ [0, 1], where τ is the normalized time of flight, to obtain a fixed-final-time
optimization problem. Summarizing the nonlinear dynamics as ẋ(t) = f (x(t), u(t)), with
x(t) =

[
m(t) rT

I (t) vT
I (t) qI

B(t)
T ωT

B(t)
]T as the state vector and u(t) = TB,re f (t) as

the control vector, they can be rewritten as follows:

ẋ(t) =
dτ

dt
d

dτ
x(t) (6)
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Therefore, having σ = (dτ/dt)−1, the normalized nonlinear dynamics are expressed by:

d
dτ

x(τ) = σ · f (x(τ), u(τ)) (7)

where σ = t f since τ ∈ [0, 1]. Furthermore, for the sake of simplicity, aerodynamics are
modeled as if the vehicle were subjected to a pure drag force. Assuming that the rocket is
axisymmetric, the aerodynamic forces and moments in the vehicle’s body-fixed reference
frame are expressed by:

Faero,B(t) = −1
2

ρ(t)||vI(t)||2Sre f CD(α = π, M(t))RI
B(t)vI(t)

Maero,B(t) = [xCP − xCG(t)]× Faero,B(t)
(8)

where CD(α = π, M(t)) is the actual drag coefficient, which is estimated from the available
lookup tables. Note that, within the guidance, the velocity vector, vI(t), does not account
for wind.

Several state and control constraints are enforced in the optimization problem. Among
the state constraints, we consider the lower bound of the mass, the so-called glide-slope
constraint, the tilt angle constraint, the higher bound of the angular rate, and the preser-
vation of the unit norm of the quaternions. Note that, in the latter case, the linearization
was used for simplicity, but more advanced strategies can be implemented. For example,
Ref. [37] describes the augmented convex–concave decomposition for this particular case.
Finally, control constraints involve bounding the thrust direction and magnitude (higher
and lower bounds). All the constraints in Figure 3 are thoroughly described in Ref. [26].

Due to the linearization process involved in the successive convex optimization strat-
egy, trust regions and virtual controls are implemented to prevent unboundedness and
artificial infeasibility, respectively. More particularly, trust regions limit the deviation be-
tween the two consecutive iterations responsible for artificial unboundedness. They are
defined for the state and control vectors, as well as for the time of flight, and are penalized
in the cost function. Virtual controls are additional control inputs that allow for reaching
each point of the solution domain through dynamics relaxation and therefore avoid ar-
tificial infeasibility. Therefore, they are added in the linear discrete dynamics and then
penalized in the cost function. The reader is referred to Ref. [26] for a better understanding
of trust regions and virtual control implementation and their convexification through slack
variables definition.

Finally, the cost function is defined as follows:

J = σi − mi[K] + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ (9)

where wν, w∆x,u , and w∆σ
are penalization weights, respectively penalizing the virtual

controls, the trust region of the state and control vectors, and the trust region of the time of
flight. Furthermore, Si

ν and Si
∆x,u

are slack variables defined to avoid a quadratic term in

the cost function. Whereas in Ref. [26] only the final mass (−mi[K]) was considered to be
maximized, this study also includes the minimum-time strategy through the parameter σi.
In fact, due to the monotonic behavior of the propellant consumption with respect to time
in this study and since the final time is also an optimization variable, the latter can also
be selected as the value to be minimized. This choice leads to better performance when
integrated in the closed-loop G&C simulator, as demonstrated in Section 5.

4. Structured H∞ Control Synthesis

In this section, gain-scheduled structured H∞ controllers are designed for the aero-
dynamic and powered descent phase of an RLV along a reference trajectory computed
offline (corresponding to the first run of the guidance algorithm studied above) using
the state-space representation described below. In fact, this control technique has been
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demonstrated as a successful candidate in space applications to cope with the closed-loop
requirements needed to enable robustness and performance [21,24,25]. In Ref. [38] from
the same authors, gain-scheduled structured H∞ controllers were already designed with
the objective to recover a more basic control architecture. Even if the controllers obtained
validated the control approach, more stability and robustness against uncertainties were
needed. In this direction, a re-tuning of the controller gains is achieved in this study, also in-
volving attitude rate and trajectory tracking (only Euler angle tracking previously). Tighter
stability margins are considered, and a robustness analysis via structured singular value
µ-analysis, which directly considers uncertainties in the linear RLV model, is included.
More particularly, the requirements include closed-loop stability, attitude and trajectory
tracking, and actuation limitation (βTVC,i ≤ 10 deg, β f in,i ≤ 35 deg) taken from Ref. [29],
as well as stability margins (the gain margin must be superior to 6 dB and the phase margin
must be superior to 30 deg). Note that the maximum actuator deflection considered in this
paper is high (especially for the fins), and was selected for this analysis for simplicity, but
at later design stages more realistic values should be integrated.

4.1. State-Space Representation of the RLV Descent Dynamics

Before proceeding with the linearization of the equations of motion, several assump-
tions must be made. First, the launch vehicle is considered axisymmetric with a negligible
roll rate, therefore allowing for the decoupling of the motion in the pitch and yaw planes.
Wind disturbances are not considered at this stage. Additionally, for the sake of simplicity,
the effects of actuators, sensors, bending, and sloshing dynamics are ignored. Note that
wind and all these features could be added in future work following the scheme available
in the literature [24,39]. Concerning the neglect of bending modes, the reader is referred to
Ref. [40], where relevant analyses have been carried out to ensure that their frequency is
sufficiently larger than the closed-loop bandwidth of the controller. In this section, only the
pitch dynamics will be defined for conciseness, but the expressions obtained for the yaw
dynamics are available in Appendix A.3.

The pitch dynamics are described with the following state-space realization obtained
by the linearization of the perturbed equations of motion translated in the vehicle’s body
fixed reference frame. Details of the linearization process are provided in Appendix A.
Therefore, linearized perturbations are represented by the linear time invariant model
Gθ

RLV , which is defined as:

[
∆θ̇ ∆θ̈ ∆żB ∆z̈B

]T
= Aθ

[
∆θ ∆θ̇ ∆zB ∆żB

]T
+ Bθ

[
∆βTVC,y ∆β f in,y

]T (10)

where ∆θ, ∆θ̇, and ∆θ̈ represent pitch angle perturbations and first/second-order deriva-
tives and ∆zB, ∆żB, and ∆z̈B are the lateral drift and derivatives. The matrices Aθ and Aθ

are defined by:

Aθ =




0 1 0 0
0 0 0 µα′

vx,0

0 0 0 1
−a0,θ vx,0 0 − Nα′

m·vx,0




, Bθ =




0 0
−µTVC cos βTVC,y0 −µ f in,y,γ cos β f in,y0

0 0

− Tre f
m cos βTVC,y0

N f in,y,γ
m cos β f in,y0


 (11)

The terms in Equation (11) are defined in Appendix A.2.
Before synthesizing the control system, the assumption stating that the 6-DoF dynam-

ics can be decoupled between the pitch and yaw planes is verified by eigenvalue analysis.
More particularly, the poles of the 6-DoF decomposition, whose state-space representation
is available in Appendix A.1 through Equation (A14), are computed and compared with
the poles of Gθ

RLV , as well as its equivalent in the yaw plane (see Equations (A20)–(A22)).
Figure 4 displays the poles of the decoupled systems (superposition of the poles of both sys-
tems, translating pitch and yaw dynamics) and the 6-DoF system for which the couplings
have not been neglected.
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(a) Pitch and yaw linear models
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(b) Full 6-DoF linear model
Figure 4. Comparison of the eigenvalues of the decoupled systems with respect to those of the full
6-DoF state-space realization.

From this figure, we can observe that the eigenvalue distribution with respect to time
is highly similar. More particularly, in Table 1 are reported the values of the poles for
t = 50.2 s. As expected, the structure of the 6-DoF system is similar to the ones of the
reduced model, and also the discrepancy between the yaw and pitch models is small due
to the axial symmetry of the rocket.

Table 1. Eigenvalues for t = 50.2 s.

6-DoF System Pitch System Yaw System

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0069 + 1.1548i 0.0108 + 1.1315i
0.0000 + 0.0000i 0.0069 − 1.1548i 0.0108 − 1.1315i
0.0000 + 0.0000i −0.0561 + 0.0000i −0.0594 + 0.0000i
0.0086 + 1.1477i
0.0086 − 1.1477i

1.9244 × 10−10 + 0.0000i
−0.0598 + 0.0000i
−0.0561 + 0.0000i
0.0069 + 1.1548i
0.0069 − 1.1548i
0.0000 + 0.0000i

4.2. Structured H∞ Control Problem Formulation

The system constituted by the RLV linear dynamics model developed previously is
subjected to significant changes during the descent flight, mainly due to the variations
associated with thrust and aerodynamics. In fact, Figure 5 shows as an example the
Bode plot of the system Gθ

RLV , where the linear dynamics are discretized according to the
altitude with n = 15 points. Therefore, it justifies the use of gain-scheduling to increase the
performance and robustness of the control system.
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(b) From fins to pitch angle
Figure 5. System transfer function with respect to altitude.

The altitude has been chosen as the scheduling parameter since it is monotonically
evolving with respect to time and has been well validated in the literature [24,25]. The
15 points were equally distributed with respect to the altitude vector, which allows us to
capture the variations well in terms of thrust magnitude and dynamic pressure.
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In the framework of structured H∞, the augmented plant must be defined. It is usually
made up of the linear dynamics model of the system, the controller to be designed, other
linear systems describing the effects of the actuators (TVC and fins) or disturbances such
as wind, and a set of weights that include design specifications. Note that, in this study,
for simplicity, the effects of sensors, actuators, and wind disturbances are not considered.
A PID structure was used for the controllers designed in Ref. [38], taking the pitch angle
error, θe, as input and giving the actuator deflections, {βTVC,y, β f in,y}, as outputs. In this
work, attitude rate and trajectory tracking are also included for enhanced stability, so
controllers take pitch angle, rate, and lateral body velocity errors {eθ , eθ̇ , eżB} as inputs
and actuator deflections as outputs. Note that here the synthesis is depicted for the pitch
dynamics, but the same methodology is followed for the yaw dynamics. Figure 6 shows
the augmented plant named M′(s).

Figure 6. Pitch control augmented plant, M′(s).

The exogenous inputs are the reference pitch angle, θre f , and lateral body velocity,

żB,re f , scaled by the input weighting function Wc = blkdiag
[
Wθ

c W żB
c

]
, which translates

them into the signals θc and żB,c, respectively. The scaled pitch rate command, θ̇c, is
obtained using a first-order derivative filter with time constant σd = 0.2 s. The compar-
ison of the scaled references {θc, θ̇c, żB,c} and the outputs {θ, θ̇, żB} generates the errors
{eθ , eθ̇ , eżB} entering the controller Kθ(s) =

[
KTVC(s) K f in(s)

]T . Then, the deflection
angles {βTVC,y, β f in,y} enter the RLV linear dynamics model. The mixed T/S/KS sen-
sitivity approach is employed for design tuning, where the output weighting functions
Wt = blkdiag

[
Wθ

t W θ̇
t W żB

t

]
, Wθ

e , and Wu = blkdiag
[
WTVC

u W f in
u

]
shape the tracking

performance, the disturbance rejection capability, and the control efforts, respectively. More
particularly, the controller is defined by:

Kθ =
[
KTVC K f in

]T , where

KTVC =

(
Kθ

p,TVC +
Kθ

i,TVC

s

)
eθ + Kθ̇

p,TVCeθ̇ + KżB
p,TVCeżB ,

K f in =

(
Kθ

p, f in +
Kθ

i, f in

s

)
eθ + Kθ̇

p, f ineθ̇ + KżB
p, f ineżB .

(12)
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Therefore, the objective of the H∞ optimal control problem is to find the gains Kθ
p,TVC,

Kθ
i,TVC, Kθ̇

p,TVC, KżB
p,TVC and Kθ

p, f in, Kθ
i, f in, Kθ̇

p, f in, KżB
p, f in, which constitute a stabilising con-

troller, Kθ , such that the H∞-norm of the augmented system is minimized. The optimal
problem is defined by:

min
Kθ

p,TVC ,Kθ
i,TVC ,Kθ̇

p,TVC ,KżB
p,TVC ,Kθ

p, f in ,Kθ
i, f in ,Kθ̇

p, f in ,KżB
p, f in

||M′
w→z(s)||∞ (13)

where w =
[
θre f żB,re f

]T , z =
[
zθ,e zt zu

]T , with zt =
[
zθ,t zθ̇,t zżB ,t

]T
and zu =

[
zTVC,u z f in,u

]T . The non-smooth, non-convex optimization problem of Equation (13) is
solved with systune since it enables one to directly include stability margin requirements
through the command TuningGoal.Margins. Note that the chosen structural template
and the actuation limitations result in H∞-norm values that slightly exceed 1, depending
on the altitude range. This behaviour is typical in rocket applications [24,41]. However,
the overall tuning strategy effectively prevents the actuation system from reaching satura-
tion, while also satisfying the mission requirements related to tracking and disturbance
rejection, as described in the next subsections.

The command TuningGoal.WeightedGain is used to define the weighting func-
tions. The input weighting function Wc, used for reference scaling, is determined based on
the allowed maximum value for the input reference, here, the pitch angle and the lateral
body velocity. For this study, we set:

Wc(s) = blkdiag
[
Wθ

c W żB
c

]

where Wθ
c (s) =

π

180
rad and W żB

c (s) = [1, 2] m/s
(14)

The output weighting functions Wt, Wθ
e , and Wu must complete the T/S/KS mixed

sensitivity synthesis problem. In fact, their inverse bound, respectively, the complementary
sensitivity function, T, the sensitivity function, S, and the control sensitivity function, KS.
Usually, (Wθ

e )
−1 is chosen as a high-pass filter, whereas (Wt)−1 and (Wu)−1 are chosen

as low-pass filters [21]. Therefore, the pitch angle error weighting function is defined
as follows:

(Wθ
e )

−1(s) =
π

180
hθ

e s + ωθ
e

s + ωθ
e

lθ
e

(15)

According to Refs. [25,41], the low-frequency attitude sensitivity is limited when
controlling translational degrees of freedom; therefore, the parameter lθ

e = 0.75, supposed
to reduce the steady-state tracking error, is chosen to be larger. Then, the high-frequency
hθ

e = 1.5 to keep small the maximum peak of the sensitivity function, which is critical
to ensure good stability margins. ωθ

e is the desired bandwidth, varying according to the
altitude range studied from 0.005 to 0.75 rad/s. Then, (Wt)−1 is selected as:

(Wt)
−1 = blkdiag

[
(Wθ

t )
−1 (W θ̇

t )
−1 (W żB

t )−1
]

where





(Wθ
t )

−1(s) =
π

180
hθ

t s + ωθ
t

s + ωθ
t

lθ
t

,

(W θ̇
t )

−1(s) = 1 rad,

(W żB
t )−1(s) = [10, 15] m/s.

(16)

with lθ
t = hθ

e to keep the fundamental relationship between complementary sensitivity and
sensitivity functions and reduce the parameters to be tuned, while hθ

t = 0.001. The tracking
bandwidth is set to ωθ

t = 20 rad/s. Finally, the control input weighting function is here
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used to impose signal limitations in order to prevent actuator saturation. They are set using
constant weighting functions as follows:

(Wu)
−1(s) = blkdiag

[(
WTVC

u
)−1

(s)
(
W f in

u
)−1

(s)
]
,

(
WTVC

u
)−1

(s) =
π

180
10 rad,

(
W f in

u
)−1

(s) =
π

180
35 rad

(17)

Note that the values of the control weighting functions have been adequately selected
with the maximum actuator deflections to ensure that the actuators are not saturated during
descent flight.

4.3. Linear Analysis of the Controllers

This analysis is necessary to validate the controllers obtained according to the re-
quirements set previously. The latter are meant to be applicable to the nominal case for
the classical linear analysis, while we will deal with a perturbed formulation through a
robustness stability and performance analysis via µ-analysis in Section 4.4.

To study the robustness and performance of a system (plant + controller), it is usual to
analyse the closed-loop transfer functions. Therefore, the frequency domain is analysed
by looking at the sensitivity, complementary sensitivity, and control sensitivity functions.
The corresponding bode plots are shown in Figure 7 with respect to the θre f channel, since
the focus is on attitude tracking.
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Figure 7. Frequency-domain linear analyses of the closed-loop system. The bound (Wθ
e )

−1 is not
shown since it is varying according to the altitude range studied, but all sensitivity functions are well
below it.

The performance is quite good overall; the sensitivity function (Figure 7a) does not
show peaks at low frequency, which is a good indicator for stability margins. Note that
the sensitivity functions for all controllers are well below the corresponding weighting
functions, (Wθ

e )
−1, which validates the disturbance rejection requirement. The complemen-

tary sensitivity functions (Figure 7b) are well below the weighting function, (Wθ
t )

−1, for
all controllers, but there are some peaks that could represent a lack of stability. This will
be checked in the next sections through robustness analysis and nonlinear simulations.
Concerning the control sensitivity functions, shown in Figure 7c for the TVC system and in
Figure 7d for the steerable planar fins, the requirements are also well met since the func-
tions are below the weighting functions

(
WTVC

u
)−1 and

(
W f in

u
)−1, so saturation should be

avoided. It is already possible to see that the last three altitude slots from orange to yellow
show reduced performance.

Then, the time domain is also analysed by plotting the step response in Figure 8, again
from the θre f channel.
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Figure 8. Step response for the synthesized control system from the θre f channel.

The dotted lines represent the steady-state values of the corresponding input–output
pairs, which are desired to be 1 if associated with a command tracking or 0 in the case of
disturbance. From this graph, we can observe good tracking capabilities without significant
overshoot and with a relatively fast response in the θre f to θ channel. It is possible to see
that the response is slower at the beginning of the flight and faster towards the end. This is
related to the selected value of ωθ

e for the weighting function that bounds the sensitivity
function, (Wθ

e )
−1. At the beginning of the flight, both the thrust magnitude and the dynamic

pressure are high; therefore, high control capabilities are available. The stability margins are
high, and an increased ωθ

e was seen to reduce them. Consequently, because in this analysis
we want to focus on increased stability and robustness to uncertainties, a settling time of
40–60 s was considered acceptable. However, towards the end of the flight, the dynamic
pressure is decreased, leading to lower control capabilities, but the vehicle mass is also
reduced, which increases the risk of instabilities. In this case, to obtain satisfactory results
with respect to the requirements set, it was necessary to reduce the stability margins and
improve the settling time of the step response (making it shorter). This is particularly the
case for the last three sets of controller gains, which were already noticed as being less stable
previously. Disturbances are well rejected with respect to the attitude rate, θ̇. However,
the input lateral body velocity, żB,re f , was more difficult to control. This behaviour is
observed because it was purposely decided not to tightly constrain the translational motion,
since the focus was set on the attitude tracking. In the next sections, we will see the
consequences of this choice on the vehicle’s stability.

Figure 9 explicitly shows the stability margins obtained, with the gain margins on
top and the phase margins below. Note that the Nichols charts have also been generated,
but it was decided to directly display the stability margins for better readability. When a
star is shown instead of a dot, it means that the gain margin is infinite. For the steerable
planar fins, the gain margins are always above the requirement of 6 dB, with a minimum
gain margin of 17 dB. However, for some altitude ranges, the phase margin is below the
requirement of 30 deg, with a minimum phase margin of 23 deg. Nevertheless, the stability
margin requirements are more difficult to satisfy for the TVC system, where a minimum
gain margin of 3 dB is reached at 1.5 km altitude and with several phase margins below the
requirement. We obtained a minimum phase margin of 6 deg at 2.1 km altitude. In fact,
the requirement for the maximum deflection angle of the planar fins, β f in,max = 35 deg,
is not strict; therefore, no particular difficulty was observed to obtain the stability mar-
gins required. However, it was harder for the TVC system, first because the maximum
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allowed gimbal angle, βTVC,max = 10 deg, is lower but also because of the definition of the
actuation system itself, which is less stable due to its similarity to an inverted pendulum.
Consequently, small stability margins are noticed at the beginning of the flight, which is
more likely related to the high thrust magnitude at this stage. Moreover, this behaviour
can also be seen at the end of the flight since the thrust magnitude becomes high again
and the vehicle mass is significantly reduced. It is particularly important to mention how
critical this phase is since the fins’ effectiveness is significantly reduced due to low dy-
namic pressure. In the controller gain tuning, it was not possible to improve these margins
without significantly increasing the settling time of the step response of the closed-loop
system. Therefore, we decided to conserve these gains and assess them through robustness
analysis and nonlinear simulations in the following sections. Note that, in future works,
the aerodynamic and powered descent phases should be separated with control systems
that are properly designed for each phase in order to increase robustness.
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Figure 9. Stability margins.

4.4. Robust Stability and Performance Analysis

The classical stability margins that come from the control design were quantified in the
previous section. However, nothing was said about the robust stability and performance
of such a design in the presence of uncertainties. In fact, the LFTs can be exploited to
inject several uncertainties into the design. Specifically, the uncertainties and perturbations
considered and gathered in the uncertainty block ∆ are summarized in Table 2.

Table 2. Perturbations included through LFT for µ-analysis, taken from [22].

Perturbation Variable Value (%)

Normal RLV force gradient CN,LV\α 20
Normal fin force gradient CN, f in\γ 20

Dynamic pressure Q 20
CG position xCG 2
CP position xCP 10

Total RLV mass m 2
Normal RLV MoI JN 2

Normal thrust force Tre f cos (βTVC,y0) 10
Longitudinal velocity V cos (α0) 10

Trim acceleration a0 10

These perturbations are included by the command ureal in MATLAB; they can be
interpreted as multiplicative perturbations with a uniformly distributed multiplicative
factor. Perturbations in forces and torques are considered through variations in mass,
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dynamic pressure, and moments of inertia, as well as the corresponding coefficients. Fur-
thermore, uncertainties have also been induced through the positions CG and CP, again
affecting the torques generated. Finally, errors in estimated speed and acceleration are also
considered. Note that the controller gains could also be tuned, accounting for these possible
uncertainties, as was performed in Ref. [21]. However, in this study, the uncertainties are
included through block ∆ only to assess the robustness stability and performance of the
previously synthesized gains [24,39].

With these uncertainties inserted in the nominal plant, the robustness of the designed
system can now be assessed using the tools provided by the analysis of the structural
singular value (µ-analysis) by inserting these uncertainties into the nominal plant. More
particularly, this is done by reshaping the system in the classical M − ∆ format, with ∆
embedding all the uncertainties defined in Table 2 in a diagonal matrix and M(s) repre-
senting the deterministic part of the augmented closed-loop system defined in Figure 6.
Figure 10 describes the robust standard H∞ interconnection augmented with the uncer-
tainty blocks. Note that, in this configuration, the tunable controller Kθ(s) is removed from
the generalised plant P(s), with u =

[
βTVC,y β f in,y

]T representing the controller output

and y =
[
eθ eθ̇ eżB

]T the controller input.

Figure 10. Augmented robust standard H∞ interconnection for robust stability and performance analyses.

The structural singular value, µ, is usually defined as follows [42]:

µ(M11) =
1

min∆{σ̄ : ||∆||∞ ≤ 1, det (I− M11∆) = 0} (18)

where M11 represents the transfer function from the uncertainty channel w∆ to z∆. Then,
Robust Stability (RS) is ensured by the following criterion:

µ(M11(jω)) < 1, ∀ω ∈ R (19)

Furthermore, the structured singular value can also be used for Robust Performance
(RP) analysis. In that context, the robust interconnection of Figure 10, including the weight-
ing functions and denoted as M′(s), is closed using a fictitious full-complex perturbation
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matrix, ∆p, which does not represent any actual perturbation of the system. The RP criterion
is then defined as follows [43]:

µ(M′(jω)) < 1, ∀ω ∈ R (20)

For both, instead of µ directly, we estimate their upper and lower bounds for the
system under analysis. Therefore, when these bounds are close to each other, they uniquely
identify the real µ value of the system. These analyses are achieved using the MATLAB
tools robstab, for robust stability, and robgain, for robust performance.

First, Figure 11 shows the results of the robust stability analysis. On the top in
Figure 11a, the upper bounds (in solid lines) and the lower bounds (in dashed lines) are
represented for all linear design points. On the bottom in Figure 11b, the sensitivities
associated with each parameter of Table 2 are highlighted for the linear design point at
h = 2110 m, which corresponds to the worst-case point in terms of controllability. The µ
bounds for this specific case are repeated at the top to better facilitate the analysis.
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Figure 11. Robust stability analysis with the sensitivities associated with each parameter at a
prescribed altitude. Upper bounds are represented in solid lines and lower bounds in dashed lines.

From Figure 11a, we can see that the bounds are well below 1, therefore ensuring a
good robust stability against uncertainties. It can be observed that, at high altitudes, the con-
troller gains generated larger bounds at a relatively high frequency (around 13 rad/s),
whereas it is the opposite at lower altitudes. In the linear analysis of the previous section, it
was noticed that the last three altitude slots from orange to yellow were more difficult to
manage. The observed reduced performance is confirmed by looking at the µ-bound peaks
obtained in Figure 11a at a frequency of 2.4 rad/s. However, these bounds remain largely
below 1, so the robustness stability of the controllers is satisfied for the uncertainties consid-
ered. From the sensitivities in Figure 11b, it can be noticed that the normal force gradient
of the fin, CN, f in\γ, and the dynamic pressure, Q, are the main causes of degradation at
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h = 2110 m due to the large control authority that fins have compared to the TVC system.
Moreover, the µ-bound peak corresponds to a peak of the µ sensitivities of the normal force
gradient of the fin, CN, f in\γ, and the mass, m. In fact, at low altitude, the vehicle is light
since most of the propellant has been consumed, and consequently any movement of the
fins, even slight, significantly affects its behaviour .

Figure 12 on the bottom left shows the results of the robust performance analysis. Note
that the lower bounds are omitted for ease of readability. From this figure, it is possible to
notice that the robust performance criterion is not met since, for some frequencies, the µ
upper bound is bigger than 1. However, this result is still interesting to understand the
key factors that lead to poorer performance. In these cases, we observe a peak above 1 at
30 rad/s for the linear design point at h = 25 km as well as three peaks around 2–4 rad/s,
corresponding to the linear design points at low altitude (from 2110 to 0 m). For the latter,
they are more likely due to a lack of controllability, since the dynamic pressure and thrust
power available are low (due to the small propellant mass remaining). Concerning the peak
at 25 km altitude, it is more likely due to a lack of controllability of the TVC system at the
starting point of the simulation.

To conclude this section, the robustness analysis and the performance of the gains from
the synthesized rigid body controllers through µ-analysis were satisfactory, as only lack of
performance was observed, which is common for launcher control system design [21,24].
The latter is particularly noticed at low altitude and correlated with low stability margins.
For the study carried out in this paper, the control system obtained is sufficient, but for
future developments this lack of robustness should be corrected since the integration of
delays and actuator models on the nonlinear simulator would significantly increase the
risk of instability.
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Figure 12. Robust performance analysis.

5. Closed-Loop 6-DoF Nonlinear Simulations

Once the gains of the controllers are synthesized and assessed through linear analysis,
the next step is to verify that the control strategy is effective in controlling the real plant in
the 6-DoF nonlinear, closed-loop environment, not only for nominal conditions but also in
the presence of uncertainties and disturbances. In that context, the controlled dynamics
simulator described in Section 2 is used in closed-loop with the guidance algorithm of
Section 3 and the control system synthesized in Section 4. Note that, in the simulator,
the guidance algorithm directly provides the thrust magnitude and only the directions
result from the control system. This approximation is penalized by a low-pass filter, which
simulates the intrinsic physics of the engine, and the delay induced is compensated for
by a PI controller [26]. For simplicity, no engine rate limitation is assumed. Moreover,
a lower bound of 0 kN is considered to enable a "switch-off" mode of the main engine.
Note that the latter is an unrealistic assumption in practice. The initial and final conditions
defined in Table 3 are assumed. Note that the scenario studied in this paper consists of
one single phase combining TVC and aerodynamic steering. It illustrates the descent and
precise landing of a reusable rocket and considers that the boostback manoeuvrer, re-entry
burn, and a part of the aerodynamic descent are already achieved, which explains why the
starting altitude is 25 km. For simplicity, the main engine is kept on for the entire flight
duration, even if the lower bound of the thrust magnitude in the guidance algorithm could
allow for zero thrust. The performance results are therefore compared with those obtained
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in Ref. [26] with a simpler G&C system. The purpose of this analysis is to show the benefits
of robust H∞ control theory compared to a classical control system. Furthermore, it is
shown that this technique can be coupled with several cost function strategies within the
advanced guidance algorithm, allowing the best performing solution to be selected.

Table 3. Initial and final conditions.

State Value State Value

rI [0] [25 0 − 15]T km rI [K] [0 0 0]T m
vI [0] [−850 0 950]T m/s vI [K] [−5 0 0]T m/s
ωB[0] [0 0 0]T rad/s ωB[K] [0 0 0]T rad/s
m[0] 14,000 kg qI

B[K] [0 0 0 1]T

Section 5.1 shows the results of the nominal simulations. Then, the impact of distur-
bances and uncertainties through Monte-Carlo analysis is studied in Section 5.2.

5.1. Nominal Conditions

For this study, no wind was considered and, for simplicity, neither propellant sloshing
effects nor flexible bending modes were included. Note that these effects are easily imple-
mentable within the present simulator, which could therefore constitute a relevant tool for
such analyses [40]. Figure 13 shows the results of the nonlinear simulation and compares
it with the G&C system used in Ref. [26], involving a classical linear control theory and
maximum-final-mass cost function strategy in the guidance logic, here denoted as Jm f .
Recall that the G&C system developed in this paper, here denoted as H∞/Jt f −m f , combines
robust structured H∞ control with a guidance algorithm that optimizes the time of flight
and the vehicle final mass. Table 4 summarizes the performance results of both systems
in terms of final mass, m f , final downrange position, D f , final velocity, v f , and time of
flight, ToF.
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(a) Vehicle’s trajectory in the Up-North plane
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Figure 13. Nominal trajectory simulation within the nonlinear controlled dynamics simulator. In black
dashed lines are represented the results obtained using the G&C system of Ref. [26].
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Table 4. Performance results for the different G&C systems.

H∞/Jt f −m f Ref. [26]/Jm f

Final mass (m f > 2750 kg) 4583 kg 2767 kg
Final downrange (D f = 0) 26 m 84 m
Final velocity (v f = 5 m/s) 5.64 m/s 6.53 m/s

Time of flight ToF 108 s 129 s

Figure 13a,c show that the obtained trajectories from the nonlinear simulations of both
systems are significantly different. While the one of Ref. [26] overshot the landing site and
then came back to it, the new trajectory represented in blue solid lines reduces the velocity
of the vehicle until precise touchdown. This is due to better management of the available
control authorities, since the new G&C system can combine TVC and planar fin steering,
while in Ref. [26] both actuators were used alternatively according to the thrust magnitude
and only associated when the primary system was saturated. This can be observed in
Figure 13b; while for Ref. [26] only TVC is used until 80 s of flight (since the commanded
thrust magnitude is kept high), the structured H∞ control system coupled with the Jt f −m f

cost function combines the actuator action, which therefore generates a faster descent flight
while still satisfying the strict accuracy requirements. Figure 13d shows the evolution of
the thrust magnitude during the descent flight. It is possible to notice that both profiles
are similar until 50 s of flight, where the thrust magnitude generated by the H∞/Jt f −m f

system starts to decrease. This behaviour leads to the shift in vehicle velocity observable
in Figure 13c, where we see that the velocity is no longer linearly decreasing with respect
to the altitude. As a consequence, the vehicle reache the landing site more rapidly and
with the desired velocity thanks to the increase of the commanded thrust magnitude in
the last ten seconds of flight. By looking at Table 4, we can directly conclude that these
changes are beneficial; the thrust magnitude profile generated by the guidance algorithm
enables a non-negligible increase of the vehicle final mass (1816 kg are saved compared
to Ref. [26]), therefore ensuring the safety of the launcher recovery while allowing room
for a heavier payload. Furthermore, the final downrange position and final velocity are
also improved for the H∞/Jt f −m f system compared to the one of Ref. [26]. To conclude,
the enhancements of the G&C system for launcher descent and precise landing proposed
in this paper through robust structured H∞ control and advanced guidance strategy show
a significant increase in performance: the multivariable control system enables a good
management of the available control authorities and can be efficiently coupled with an
advanced guidance algorithm, optimizing the fuel consumption while ensuring a precise
landing. However, the results also highlight the room for improvements. In fact, in the
present control strategy, no feedback on horizontal position components are considered
to keep consistency with Ref. [26]. This therefore explains the final downrange errors.
For better performance, feedback on the downrange could therefore be included in the
control synthesis strategy, as in Ref. [24], and the tracking of the lateral body velocity should
be reinforced. Similarly, it could be relevant to include the altitude and the altitude rate in
the state-space representation to enable a better management of the TVC system.

To better understand the choice of the cost function, several strategies are assessed for
the nominal conditions within the nonlinear controlled dynamics simulator in closed-loop
with the structured H∞ control system. It includes Jt f −m f = Equation (9), as well as the
following cost functions:

Jt f = σi + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ (21)

minimizing the final time of flight, and

Jm f = −mi[K] + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ (22)
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minimizing the final mass. Note that, for each cost function, the controller gains have been
re-tuned following the same strategy described in the Section 4. The performance results
are available in Table 5, where those of the H∞/Jt f −m f system are repeated.

Table 5. Comparison of the performance results of several cost function strategies through nonlinear,
closed-loop simulations.

m f D f v f ToF

H∞/Jt f −m f 4583 kg 26 m 5.64 m/s 108 s
H∞/Jt f 3409 kg 21 m 5.25 m/s 119 s
H∞/Jm f 2768 kg 114 m 4.46 m/s 126 s

As mentioned in Section 3.2, the selected cost function, Jt f −m f , combining the min-
imization of the time of flight with the maximization of the final mass, enables the best
optimization of the fuel consumption. We can notice a saving of 1174 kg compared to the
second-best cost function strategy, Jt f . To better understand these results, Figure 14 shows
the thrust magnitude profiles obtained using different cost function strategies within the
nonlinear simulator, as well as how the open-loop guidance reference profiles generated
every 10 s are managed by the simulator.
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(a) Closed-loop thrust magnitude profiles comparison.
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(b) Corresponding open-loop guidance profiles of H∞/Jt f −m f .

Figure 14. Thrust magnitude profiles generated during the nonlinear, closed-loop simulations. On
the left, the closed-loop thrust profiles of different cost function strategies are represented. On the
right, the closed-loop H∞/Jt f −m f thrust profile is represented in solid lines with its corresponding
open-loop references, which are generated every 10 s by the guidance algorithm.

It can be seen in Figure 14a that H∞/Jt f −m f generates the profile with the lowest thrust
magnitude in the middle of the descent flight, between 50 and 90 s. In fact, the reduction
of the thrust magnitude commanded allows for reaching the landing site more rapidly,
therefore saving propellant, and before touchdown a more important burn is generated
to decrease the vehicle velocity until the desired value. Note that aerodynamic steering is
used efficiently during this phase, where the TVC system has reduced control authority.
H∞/Jt f also generates a thrust magnitude profile that allows saving propellant; however,
the reduction of thrust in the middle of the flight and the last burn are slightly lower
compared to H∞/Jt f −m f , leading to a longer flight and therefore a reduced vehicle final
mass. It seems that optimizing the time of flight alone generates a fast trajectory profile,
which is more likely to be more aggressive with respect to the control commands needed
(remember that only the thrust vector is considered as input) and consequently not totally
achievable by the actual actuation system. As a result, the desired conditions are not
reached and a new guidance computation must be executed, which paradoxically increases
the simulation time. Combining this strategy with the maximum-final-mass allows one
to reduce the thrust usage and to increase the velocity, which, when integrated in the
closed-loop, enables one to reach the landing site faster with the benefit of using less
propellant. Finally, maximizing the final mass alone through Jm f generates a long flight
that paradoxically significantly increases the fuel consumption. Once again, this result
highlights the importance of assessing the guidance algorithm through nonlinear, closed-
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loop simulations. This statement can be better understood with Figure 14b, where the
open-loop reference thrust profiles generated by the guidance for the H∞/Jt f −m f nonlinear
simulation are depicted. Here, since the guidance algorithm is re-executed every 10 s, it
cannot globally minimize the fuel consumption without memory of the propellant used
in the previous iterations. For closed-loop simulations, when the time of flight is an
optimization variable and is not specified by the user, it is therefore relevant to include it in
the cost function for increased performance results.

5.2. Monte-Carlo Analysis

Finally, the structured H∞ control system is tested through nonlinear simulations in the
presence of disturbances and uncertainties to assess its robustness. The latter is once again
compared to the control system developed in Ref. [26]. Therefore, the same dispersions are
included in the simulator and 100 runs are performed. They are repeated in Table 6, where
the symbols U and N refer to uniformly and normally distributed variables, respectively.

Table 6. Perturbations considered for the Monte-Carlo analysis.

Perturbation Variable Value

Initial lateral velocity vz[0] σ = 20 m/s (N )
Initial mass m[0] 2 % (U )

Moments of inertia JA(t), JN(t) 2 % (U )
Reference thrust Tre f (t) 10 % (U )

Atmospheric density ρ(t) 20 % (U )
Ambient pressure Pamb(t) 10 % (U )
Drag coefficient CD(t) 20 % (U )
Lift coefficient CL(t) 20 % (U )

To better analyse the increase in robustness made possible by the use of the structured
H∞ control method compared to the baseline control of Ref. [26], we sorted the Monte-Carlo
runs into three categories:

• Not converged: Convergence issue coming from the guidance algorithm or final altitude
too high (hToF > 500 m), which therefore prevent the exploitation of the solution. Cases
having a final mass lower than the dry mass of the vehicle (mdry = 2750 kg) have also
been added to this category because they are more likely to cause failure.

• Safe: Cases in which the final conditions are satisfactory for obtaining a soft pinpoint
landing. In particular, the downrange error is less than 300 m and the final velocity is
less than 10 m/s (note that the targeted final velocity is 5 m/s).

• Unsafe: All other cases. The latter are still feasible but do not present satisfying
conditions for a precise soft landing.

Therefore, the Monte-Carlo solution sets sorted for both control strategies, the aug-
mented structured H∞, and the baseline, are compared. Figure 15 displays the results of
this comparison, showing on the top from left to right the final mass, downrange error,
and final velocity of the simulations obtained using robust H∞, and on the bottom the same
parameters for the simulation obtained using the baseline controller of Ref. [26]. Table 7
allocates the simulation runs in their corresponding categories for both G&C systems.

Table 7. Results of the 100-run Monte-Carlo analysis and comparison with the G&C system of
Ref. [26].

Not Converged Safe Unsafe

H∞/Jt f −m f 1 66 33
Ref. [26]/Jm f 41 34 25



Aerospace 2024, 11, 914 24 of 33

0 20 40 60 80 100

3000

4000

5000

6000

0 20 40 60 80 100

0

500

1000

1500

2000

0 20 40 60 80 100

0

20

40

60

80

(a)

0 20 40 60 80 100

3000

4000

5000

6000

0 20 40 60 80 100

0

500

1000

1500

2000

0 20 40 60 80 100

0

20

40

60

80

(b)

Nominal trajectory Desired bound Safety bound
Safe Unsafe Not converged

Figure 15. Comparison of the Monte-Carlo analyses. (a) 100-run Monte-Carlo analysis of the
H∞/Jt f −m f system. (b) 100-run Monte-Carlo analysis of the Ref. [26]/Jm f system.

From this analysis, we can definitely observe that the structured H∞ control method
performs better in counteracting uncertainties and disturbances. In fact, of the 100 runs
carried out only 1 failed due to a convergence issue of the guidance algorithm or due to
a too-low final mass. In comparison, using the baseline controller, it occurred in 41 cases,
most of the time due to the mass. Then, after removing failures, most of the remaining
cases with the H∞ control entered the previously defined category safe, therefore allowing
a soft and precise landing of the launcher; 66% of the cases are safe while 33% are unsafe.
In contrast, with the baseline control system, many cases were unsafe (25%), and only
34% of the runs performed entered the category safe. Therefore, this confirms the high
robustness capability of the structured H∞ control method compared to the classical one
to counteract uncertainties and disturbances existing in the launcher environment. It is
noticeable that, for this control strategy, the downrange error criterion is the one that leads
most cases to the category unsafe. Therefore, a good addition to the strategy employed
could be to directly track the downrange within the controller as in Ref. [24]. Similarly,
the final velocity errors observable in many cases that are unsafe are directly correlated to
the disturbance rejection capability of the control system with respect to the lateral body
velocity analysed in Figure 8 of Section 4.3. This therefore confirms the need to reinforce
translational tracking, which should also increase the stability margins and therefore the
robustness of the control system. For the baseline control system, it is the mass that is the
most critical, followed by the velocity error, therefore showing that this control design is
less flexible to changes in the parameters.

6. Conclusions

In Ref. [26], a 6-DoF nonlinear controlled dynamics simulator for the aerodynamic
powered descent and precise landing of reusable launchers was developed to assess G&C
systems. As the baseline system for preliminary performance assessment, it involves a
successive convex optimization algorithm, maximizing the vehicle final mass and a control
system for which the MIMO formulation induced by the coupling of TVC and steerable
planar fins was simplified to a series of SISO systems to apply classical linear control
theory. The present paper is a follow up of that work, where the improvements are twofold:
First, more robust gain-scheduled PID controllers are synthesized via the structured H∞
method. The latter enables the proper combination of both actuators. Then, the assessment
of the performance of the integrated G&C design enables the selection of a better cost
function strategy.
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In fact, the successive convex optimization algorithm implemented into the guid-
ance system offers a modular architecture, enabling several cost function strategies to be
evaluated. Among these, optimizing both the time of flight and the vehicle final mass
increases the performance of the system. Furthermore, the structured H∞ method enables
one to directly consider the MIMO formulation, which means that the actuation corrections
through TVC and planar fin deflections are optimized simultaneously throughout the de-
scent flight. The robust framework associated with the structured H∞ method allows one to
directly consider control requirements when tuning the scheduled controllers. In addition,
the control architecture for synthesis can be augmented with parametric uncertainty via
LFT modelling. This asset enables a direct assessment of the robustness to uncertainties of
the controllers obtained via µ-analysis without the need to use an extensive Monte-Carlo
analysis campaign.

It is shown that such a G&C system, when assessed through closed-loop nonlinear
simulations with the 6-DoF controlled dynamics simulator, provides significantly improved
launcher performance and robustness to uncertainties and disturbances with respect to
the baseline system developed in Ref. [26]. More particularly, a propellant mass saving of
1816 kg is performed while still ensuring a precise and soft landing of the reusable launcher.

The overall results show that the proposed G&C system represents a relevant candidate
realistic descent flight and precise landing phase for reusable launch vehicles.
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Appendix A. Derivation of State-Space Models

In this appendix, details for the derivation of the state-space models used in Section 4.1
are provided, together with the assumptions considered. While, in the literature, the use of
TVC-only for launcher ascent and descent flight control has been well addressed [44,45],
Ref. [46] derived a general linear representation of RLV dynamics in ascent and descent
flights with a combined use of TVC and fins. This linear representation of the flight
dynamics was adapted to the problem considered in this paper, and the outcomes are
developed hereafter. Another state-space representation for the launcher aerodynamic
descent phase (unpowered) can be found in Ref. [24].

The 6-DoF equations of motion, available in Equations (2) and (3), are formulated in
the vehicle’s body-fixed reference frame, whose the kinematics are expressed through the
Euler angles formulation. In fact, the latter replacing the first equation of Equation (3) are
given by Equation (A1) [30]. Note that, for this set of equations as well as the following
definitions in this section, the dependence on time, ·(t). is omitted for better readability.

ϕ̇ = ωx + (ωy sin ϕ + wz cos ϕ) tan θ

θ̇ = ωy cos ϕ − ωz sin ϕ

ψ̇ = (ωy sin ϕ + ωz cos ϕ) cos θ−1

(A1)

In Equation (A1), ωB =
[
ωx ωy ωz

]T and λ =
[
ϕ θ ψ

]T is the set of Euler
angles. Therefore, the complete system of equations in the vehicle’s body-fixed reference
frame is given by:

λ̇ =




1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ

0 sin ϕ cos θ−1 cos ϕ cos θ−1


ωB

ω̇B = J−1
[
MTVC,B + Maero,B + M f ins,B − ωB × JωB

]

ṙB = vB

v̇B =
1
m

[
FTVC,B + Faero,B + F f ins,B

]
+ RI

BgI − ωB × vB

(A2)

where rB =
[
xB yB zB

]T , vB =
[
vx vy vz

]T , RI
B represents the rotation matrix

from the inertial reference frame to the vehicle’s body-fixed reference frame, and gI =[
g 0 0

]T is the gravitational field expressed in the inertial frame. The former is obtained
by applying a 3-2-1 rotation sequence and given as follows:

RI
B =




cos θ cos ψ cos θ sin ψ − sin θ

− cos ϕ sin ψ + sin ϕ sin θ cos ψ cos ϕ cos ψ + sin ϕ sin θ sin ψ sin ϕ cos θ

sin ϕ sin ψ + cos ϕ sin θ cos ψ − sin ϕ cos ψ + cos ϕ sin θ sin ψ cos ϕ cos θ


 (A3)

This formulation allows for a simpler management of the state and the control variables
once the system is decomposed. In fact, considering Equation (A2), the state vector is
x =

[
λT ωT

B rT
B vT

B

]
∈ R12, while u =

[
βTVC,y βTVC,z β f in,y β f in,z

]
∈ R4 is the

control vector. Note that, for simplicity and for enabling the decoupling of the pitch and
yaw planes [26], the thrust magnitude is directly taken from the guidance algorithm and is
therefore not considered as a control variable.

The set Equation (A2) is linearized around the reference trajectory; therefore, the sys-
tem can be rewritten in terms of perturbed variables with the symbol ∆. More particularly,
we obtain the following state-space realization:

∆ẋ = A · ∆x + B · ∆u (A4)



Aerospace 2024, 11, 914 27 of 33

where A ∈ R12×12 and B ∈ R12×4 are the Jacobian of the nonlinear equations with respect
to the state and input variables. The details of the linearization assumptions and the
decoupling considered is described hereafter.

Appendix A.1. Linearization of the 6-DoF Equations of Motion

To linearize the equations of motion, each term is replaced by its corresponding steady-
state term plus a perturbation, e.g., ξ = ξ0 + ∆ξ [46,47]. The steady-state terms are then re-
moved by computing the steady-state solutions (i.e., by cancelling the vehicle acceleration).

Before displaying the perturbed equations obtained, it is necessary to define the as-
sumptions considered. Let us recall that the TVC-generated force and moment, FTVC,B ∈ R3

and MTVC,B ∈ R3, are given by [26]:

FTVC,B = Tre f




cos βTVC,y cos βTVC,z
cos βTVC,y sin βTVC,z

− sin βTVC,y




MTVC,B = [xPVP − xCG]× FTVC,B

(A5)

The aerodynamic force and moment, Faero,B ∈ R3 and Maero,B ∈ R3, are:

Faero,B = −QSre f




CD cos α cos β + CL sin α
CD sin β

CD sin α cos β + CL cos α


 = −QSre f




CA,LV(α, β)
CY,LV(β)

CN,LV(α, β)




Maero,B = [xCP − xCG]× Faero,B

(A6)

It is assumed that CA,LV(α, β) and CN,LV(α, β) can be approximated as follows:

CA,LV(α, β) ≈ CA,LV(α) = CD cos α + CL sin α

CN,LV(α, β) ≈ CN,LV(α) = CD sin α + CL cos α
(A7)

This rough approximation comes from the geometry of the launcher descent trajectory,
which is usually mainly in the pitch plane. For this study, it enables an easier management of
the aerodynamic coefficients. In fact, the latter are approximated thanks to an aerodynamic
database computed from the effective angle of attack, αe f f [26]. For a more accurate
consideration of the aerodynamics, the reader is referred to Ref. [24], where the coefficients
are computed with computational fluid dynamics techniques and validated with wind-
tunnel tests. Therefore, from Equations (A6) and (A7), we can approximate that [22]:

CA,LV(α0 + ∆α) ≈ CA,LV(α0) + CA,LV\α∆α

CY,LV(β0 + ∆β) ≈ CY,LV(β0) + CY,LV\β∆β

CN,LV(α0 + ∆α) ≈ CN,LV(α0) + CN,LV\α∆α

(A8)

where CA,LV\α, CY,LV\β, and CN,LV\α are the aerodynamic force gradients obtained through
the aerodynamic coefficients look-up tables.

Concerning the steerable planar fins, the model described in Ref. [26] and taken from
Ref. [29] implies that the total force and moment generated by the fins, F f ins,B ∈ R3 and
M f ins,B ∈ R3, are given by:

F f ins,B = 2QS f in




CN, f in,z(γ f in,z) sin β f in,z − CN, f in,y(γ f in,y) sin β f in,y
CN, f in,z(γ f in,z) cos β f in,z
CN, f in,y(γ f in,y) cos β f in,y




M f ins,B = 2QS f in




0
−(x f in − xCG)CN, f in,y(γ f in,y) cos β f in,y
(x f in − xCG)CN, f in,z(γ f in,z) cos β f in,z




(A9)
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Recalling that γ f in,y = β f in,y − α and γ f in,z = −β f in,z − β, the normal fin forces can be
linearized as follows:

CN, f in,y(γ f in,y0 + ∆γ f in,y) ≈ CN, f in,y(γ f in,y0) + CN, f in,y\γ∆γ f in,y

≈ CN, f in,y(γ f in,y0) + CN, f in,y\γ∆β f in,y − CN, f in,y\γ∆α

CN, f in,z(γ f in,z0 + ∆γ f in,z) ≈ CN, f in,z(γ f in,z0) + CN, f in,z\γ∆γ f in,z

≈ CN, f in,z(γ f in,z0)− CN, f in,z\γ∆β f in,z − CN, f in,z\γ∆β

(A10)

where CN, f in,y\γ and CN, f in,z\γ are the fin normal force gradients defined by:

CN, f in,y\γ = 2π

(
AR f in

AR f in + 2

)
cos (γ f in,y0)

CN, f in,z\γ = 2π

(
AR f in

AR f in + 2

)
cos (γ f in,z0)

(A11)

with AR f in being the aspect ratio of the fins.
Furthermore, the linearization of the equations of motion relies on a set of well-known

small angle approximations, such as:

cos ∆ξ = 1

sin ∆ξ = ∆ξ

tan ∆ξ = ∆ξ

cos (ξ0 + ∆ξ) = cos ξ0 − sin ξ0∆ξ

sin (ξ0 + ∆ξ) = sin ξ0 + cos ξ0∆ξ

tan (ξ0 + ∆ξ) = tan ξ0 + (1 + tan ξ0
2)∆ξ

(A12)

Finally, from this assumption and the definitions of the aerodynamic angles, it is
possible to approximate the angle of attack, ∆α, and the sideslip angle, ∆β, perturbations
as functions of the lateral drift variations, respectively ∆żB and ∆ẏB. More particularly, we
have [44]:

∆α ≈ ∆vz

vx,0

∆β ≈ ∆vy

||vB||2

(A13)

Note that, in this paper, for simplicity, potential wind gusts are not considered and the
local velocity variations (depending on the vehicle’s rotation) due to the computation of
the aerodynamic angles at the vehicle’s CP or fin’s positions instead of the vehicle’s CG
are neglected. For considering their corresponding perturbations, the reader is referred to
Ref. [46].

Therefore, applying all these transformations to Equation (A2) componentwise yields:
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∆ϕ̇ = (ωy,0 cos ϕ0 tan θ0 − ωz,0 sin ϕ0 tan θ0)∆ϕ +
[
ωy,0 sin ϕ0(1 + tan θ0

2) + ωz,0 cos ϕ0(1 + tan θ0
2)
]
∆θ

+ ∆ωx + sin ϕ0 tan θ0∆ωy + cos ϕ0 tan θ0∆ωz

∆θ̇ = −(ωy,0 sin ϕ0 + ωz,0 cos ϕ0)∆ϕ + cos ϕ0∆ωy − sin ϕ0∆ωz

∆ψ̇ = (ωy,0 cos ϕ0 cos θ0
−1 − ωz,0 sin ϕ0 cos θ0

−1)∆ϕ + (ωy,0 sin ϕ0 + ωz,0 cos ϕ0) tan θ0 cos θ0
−1∆θ

+ sin ϕ0 cos θ0
−1∆ωy + cos ϕ0 cos θ0

−1∆ωz

∆ω̇x = 0

∆ω̇y =
1
JN

[
− (JA − JN)ωz,0∆ωx − (JA − JN)ωx,0∆ωz

+
(xCP − xCG)QSre f CN,LV\α + 2(x f in − xCG)QS f inCN, f in,y\γ cos β f in,y0

vx,0
∆vz

− (xCG − xPVP)Tre f cos βTVC,y0∆βTVC,y − 2(x f in − xCG)QS f inCN, f in,y\γ cos β f in,y0∆β f in,y

]

∆ω̇z =
1
JN

[
(JA − JN)ωy,0∆ωx + (JA − JN)ωx,0∆ωy

−
(xCP − xCG)QSre f CY,LV\β + 2(x f in − xCG)QS f inCN, f in,z\γ cos β f in,z0

||vB||2
∆vy

+ (xCG − xPVP)Tre f sin βTVC,y0 sin βTVC,z0∆βTVC,y − (xCG − xPVP)Tre f cos βTVC,y0 cos βTVC,z0∆βTVC,z

− 2(x f in − xCG)QS f inCN, f in,z\γ cos β f in,z0∆β f in,z

]

∆ẋB = ∆vx

∆ẏB = ∆vy

∆żB = ∆vz

∆v̇x = g sin θ0 cos ψ0∆θ + g cos θ0 sin ψ0∆ψ − vz,0∆ωy + vy,0∆ωz (A14)

+

[
ωz,0 −

2QS f inCN, f in,z\γ sin β f in,z0

m||vB||2

]
∆vy −

[
ωy,0 +

QSre f CA,LV\α − 2QS f inCN, f in,y\γ sin β f in,y0

m · vx,0

]
∆vz

− 1
m

[
Tre f sin βTVC,y0 cos βTVC,z0∆βTVC,y + Tre f cos βTVC,y0 sin βTVC,z0∆βTVC,z

+ 2QS f inCN, f in,y\γ sin β f in,y0∆β f in,y + 2QS f inCN, f in,z\γ sin β f in,z0∆β f in,z

]

∆v̇y = −g(sin ϕ0 sin ψ0 + cos ϕ0 cos ψ0 sin θ0)∆ϕ − g cos ψ0 cos θ0 sin ϕ0∆θ + g(cos ϕ0 cos ψ0 + sin ϕ0 sin ψ0 sin θ0)∆ψ

+ vz,0∆ωx − vx,0∆ωz − ωz,0∆vx −
1
m

[QSre f CY,LV\β + 2QS f inCN, f in,z\γ cos β f in,z0

||vB||2
∆vy

+ Tre f sin βTVC,y0 sin βTVC,z0∆βTVC,y − Tre f cos βTVC,y0 cos βTVC,z0∆βTVC,z

+ 2QS f inCN, f in,z\γ cos β f in,z0∆β f in,z

]

∆v̇z = −g(cos ϕ0 sin ψ0 − sin ϕ0 cos ψ0 sin θ0)∆ϕ − g cos ψ0 cos θ0 cos ϕ0∆θ − g(sin ϕ0 cos ψ0 − cos ϕ0 sin ψ0 sin θ0)∆ψ

− vy,0∆ωx + vx,0∆ωy + ωy,0∆vx −
1
m

[QSre f CN,LV\α + 2QS f inCN, f in,y\γ cos β f in,y0

vx,0
∆vz

+ Tre f cos βTVC,y0∆βTVC,y − 2QS f inCN, f in,y\γ cos β f in,y0∆β f in,y

]

From the set of Equation (A14), we can therefore derive the state-space realization of
the system defined in Equation (A4). In fact, the latter describes the dynamics of the MIMO
system, before decoupling the pitch and yaw planes.
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Appendix A.2. Pitch Plane

As mentioned in the paper, due to the axial symmetry of the launch vehicle about the
roll axis, the pitch and yaw axes can be assumed to be uncoupled. Therefore, the the design
and analysis can be achieved in single planes. This assumption is only valid if the roll rate
of the launcher is kept small (∆ϕ̇ ≈ 0), which is a standard assumption for launcher control
design. Note that the vehicle is usually equipped with a roll and attitude control system,
performing 3-axes control during the aerodynamic phase and roll rate control during the
propelled phases [21]. Furthermore, the effects of the assumption of negligible roll rate
assumption are usually examined ad hoc [48].

Therefore, considering that the roll angle ϕ is very close to 0 deg during the whole
duration of the descent flight (and also that the reference roll angle is always 0, i.e., ϕ0 = 0),
the attitude kinematics Equation (A1) becomes the following:

ϕ̇ = ωx

θ̇ = ωy

ψ̇ = ωz

(A15)

Note that we also assume that the pitch angle θ remains small. We further assume
that the components of the vector ωB × JωB are negligible since they are always smaller
than 1 Nm. Finally, the last assumption concerns the terms ωy,0∆vx and ωz,0∆vx, which
are considered negligible for allowing the decoupling between longitudinal and lateral
dynamics. More particularly, the following conditions hold:

ωy,0∆vx ≪ ∆vz

ωz,0∆vx ≪ ∆vy
(A16)

With all these assumptions, with respect to the pitch dynamics, the state-space realiza-
tion of Equation (A4) can be rewritten as follows:

[
∆θ̇ ∆θ̈ ∆żB ∆z̈B

]T
= Aθ

[
∆θ ∆θ̇ ∆zB ∆żB

]T
+ Bθ

[
∆βTVC,y ∆β f in,y

]T (A17)

where the matrices Aθ and Bθ are defined by:

Aθ =




0 1 0 0
0 0 0 µα′

vx,0

0 0 0 1
−a0,θ vx,0 0 − Nα′

m·vx,0


, Bθ =




0 0
−µTVC cos βTVC,y0 −µ f in,y,γ cos β f in,y0

0 0

− Tre f
m cos βTVC,y0

N f in,y,γ
m cos β f in,y0


 (A18)

with the following definitions:

NLV,α = QSre f CN,LV\α

N f in,y,γ = 2QS f inCN, f in,y\γ

Nα′ = NLV,α + N f in,y,γ cos (β f in,y0)

µLV,α =
NLV,α

JN
(xCP − xCG)

µ f in,y,γ =
N f in,y,γ

JN
(x f in − xCG)

µTVC =
Tre f

JN
(xCG − xPVP)

µα′ = µLV,α + µ f in,y,γ cos (β f in,y0)

a0,θ = g cos (θ0) cos (ψ0)

(A19)
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Appendix A.3. Yaw Plane

Similarly, the state-space realization of Equation (A4) with respect to the yaw dynamics
is defined as follows:
[
∆ψ̇ ∆ψ̈ ∆ẏB ∆ÿB

]T
= Aψ

[
∆ψ ∆ψ̇ ∆yB ∆ẏB

]T
+ Bψ

[
∆βTVC,z ∆β f in,z

]T (A20)

where the matrices Aψ and Bψ are defined by:

Aψ =




0 1 0 0
0 0 0 − µβ′

||vB ||2
0 0 0 1

a0,ψ −vx,0 0 − Nβ′
m||vB ||2




, Bψ =




0 0
−µTVC cos βTVC,y0 cos βTVC,z0 −µ f in,z,γ cos β f in,z0

0 0
Tre f
m cos βTVC,y0 cos βTVC,z0 −N f in,z,γ

m cos β f in,z0


 (A21)

with:
NLV,β = QSre f CY,LV\β

N f in,z,γ = 2QS f inCN, f in,z\γ

Nβ′ = NLV,β + N f in,z,γ cos (β f in,z0)

µLV,β =
NLV,β

JN
(xCP − xCG)

µ f in,z,γ =
N f in,z,γ

JN
(x f in − xCG)

µβ′ = µLV,β + µ f in,z,γ cos (β f in,z0)

a0,ψ = g cos (ψ0)

(A22)
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