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Abstract
Air pollution is the one of the most significant environmental risks to health worldwide. 
An accurate assessment of population exposure would require a continuous distribution of 
measuring ground-stations, which is not feasible. Therefore, significant efforts are spent in 
implementing air-quality models. However, a complex scenario emerges, with the spread 
of many different solutions, and a consequent struggle in comparison, evaluation and repli-
cation, hindering the definition of the state-of-art. Accordingly, aim of this scoping review 
was to analyze the latest scientific research on air-quality modelling, focusing on particu-
late matter, identifying the most widespread solutions and trying to compare them. The re-
view was mainly focused, but not limited to, machine learning applications. An initial set 
of 940 results published in 2022 were returned by search engines, 142 of which resulted 
significant and were analyzed. Three main modelling scopes were identified: correlation 
analysis, interpolation and forecast. Most of the studies were relevant to east and south-
east Asia. The majority of models were multivariate, including (besides ground stations) 
meteorological information, satellite data, land use and/or topography, and more. 232 dif-
ferent algorithms were tested across studies (either as single-blocks or within ensemble 
architectures), of which only 60 were tested more than once. A performance comparison 
showed stronger evidence towards the use of Random Forest modelling, in particular 
when included in ensemble architectures. However, it must be noticed that results varied 
significantly according to the experimental set-up, indicating that no overall best solution 
can be identified, and a case-specific assessment is necessary.
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1  Introduction

Air pollution is considered by United Nations as the one of the most significant environmen-
tal risks to health worldwide, and consequently addressed in the United Nations Sustainable 
Development Goals [1]. Air quality can vary significantly across territories, even at high 
geographic and temporal granularity [2]: an accurate assessment of the exposure of popula-
tion to pollutants would require an almost continuous distribution of measuring ground-
stations, an approach far from being feasible. Hence, scientific research has spent significant 
efforts in implementing air quality models, in order to increase the usability of limited mea-
surements in time and space by inferring more detailed information through data processing. 
Many different models were implemented over the years, applying diverse approaches [3], 
the most common being Kriging interpolation and land-use regression (LUR), along with 
more complex processing frameworks such as chemical transport models (CTM). However, 
recent reviews on the topic [3–6] highlighted some critical issues with these widespread 
approaches, namely the limited performance of the more basic statistical models (Kriging, 
LUR) and the high requirements in terms of data and computational capabilities of the more 
complex models (CTM). For such reasons, an exponential increase in implementation of 
models based on machine learning (ML) algorithms emerged in the last years and is now the 
most diffused in scientific research in this field, setting a new state-of-art in particular with 
relation to health impact assessment, where advanced data processing and geographical 
modelling are taking over more traditional approaches [7]. This kind of models offers a per-
formance comparable (or even superior) to CTM, while relying on less data and requiring 
less computational capabilities. However, ‘machine learning’ is a macro-category, which 
includes many algorithms with significant differences in terms of mathematical background, 
applicability, complexity and interpretability; the number of different solutions is virtually 
infinite, as these algorithms can also be modified and adapted to specific frameworks. Fur-
thermore, multiple ML algorithms can be used as separate ‘functional blocks’ in the different 
phases of a unique modelling process, to build ‘ensemble’ architectures. What emerges is a 
complex scenario, with the spread of many different solutions, and a consequent struggle in 
comparison, evaluation and replication, thus hindering the definition of the state-of-art. As 
a consequence, it may be difficult to identify the best solutions to be tested when designing 
a new project focused on air quality.

In this context, object of this scoping review was to analyze the latest scientific research 
on the topic of ML applied to air quality modelling, focusing in particular on particulate 
matter (PM), known to be a serious hazard for human health [8, 9]. The intent was to iden-
tify the most widespread solutions and to try to compare them, according to level of evi-
dence, thus identifying requirements and possibly supporting the design of future projects in 
the field. Therefore, with this review, the research goal is to verify if machine learning has 
become the state-of-art methodology in air quality modelling (either globally or in limited 
areas), if there are specific architectures and algorithms that outperform other solutions, and 
what is the performance that can be expected from such models.

The manuscript is structured in the following sections: (II) Review methodology: 
describes the procedure of collection and analysis of relevant scientific literature. (III) 
Objective of selected studies: classification of the identified studies according to the dif-
ferent aim, distinguishing explorative correlation analysis, interpolation and forecast. (IV) 
Geographic distribution: analysis of the origins’ distribution of the studies. (V) Input data 
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sources: assessment of the input data on which models were based. (VI) Used algorithms 
and estimated performance: analysis and comparative evaluation of the different solutions 
implemented. (VII) Critical discussion of the results and consequent conclusions.

2  Review methodology

The explored database was Google Scholar; for the query, the applied keywords were ‘pol-
lution’, ‘PM’ and ‘particulate matter’, ‘interpolation’, ‘prediction’ and ‘forecast’, ‘machine 
learning’ and ‘ML’. Showing a strong attention towards this topic, the number of potentially 
relevant results (as returned by the search engine) was very high, with over 7000 results 
returned (in English language). In order to catch the trend of the state-of-art evolution, 
the search was therefore limited to the last year (2022) only, thus reducing the number of 
potential results to 940. Based on the title and abstract, articles were selected as relevant if 
the study included the development (or at least the use) of a specific model to estimate PM 
concentration. The number was thus further reduced to 169. Finally, after full-text reading, 
142 relevant studies (with the same criterion) were identified, including 4 literature reviews 
[3–6] and 138 observational studies [10–147]. These 138 studies were analyzed, collecting 
structured information relevant to (1) the study objective (primary and eventually second-
ary), (2) the target pollutant(s), (3) the data sources, (4) the method of attributes selection, 
(5) the target territory, (6) the spatial and time resolution, (7) the models tested, (8) the per-
formance evaluation method and results, and (9) the final model selected. Such information 
was manually recorded and structured in a relational database, with a pre-defined codified 
language that allowed comparison and processing. After the information was structured 
within this framework, it was possible to automatize the subsequent analyses, implementing 
them through Python programming language (v 3.7). With this approach, it was possible 
to quickly obtain statistics and graphics, as well as the list of references corresponding to 
each identified group of studies. A first analysis round was relevant to the studies objec-
tive, resulting in a classification that allowed to identify research sub-groups. Once this 
classification was performed, all following analyses were repeated separately on the whole 
database and on the single groups. For qualitative information (such as 1–5, 7 and 9), basic 
statistics were extracted, discussing absolute and relative frequencies of the different labels, 
generally aggregating single-spot elements (i.e. found in one study only across the database) 
in the ‘other’ category. For quantitative information (6 and especially 8), a more advanced 
analysis was applied, assessing the cumulated results as average and confidence interval, 
and identifying the robustness of the results in terms of number of studies in relation to 
category-based sub-groups. Anyway, it is worth noticing that the different aspects of the 
analysis were addressed one-by-one, eventually adjusting the methodology according to the 
specific needs.

3  Objective of selected studies

The 138 identified observational studies were classified according to their primary goal. In 
particular, 3 categories were identified:
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A.	 Correlation analysis: these studies aimed at analyzing the impact on PM concentration 
of the different considered data sources, eventually evaluating their weight within the 
implemented ML models. This category included 14 (10.14%) studies [10–23].

B.	 Spatial and/or temporal interpolation models: these studies aimed at inferring missing 
data in space (missing records and/or computation of continuous mapping from discrete 
points) and/or in time, thus including 65 (47.1%) studies [26–90].

C.	 Forecast models: these studies aimed at developing and validating predictive models 
to forecast the future concentration of PM. This category included 56 (40.58%) studies 
[92–147].

On top of this classification, some additional studies should be considered, whose main 
scope was not PM modelling, yet in which a model for PM concentration (eventually exter-
nally developed) was used. Specifically, it is a total of 3 studies, two of them [24, 25] had 
explorative correlation analysis as secondary purpose (category A), while the third [91] had 
a spatial-temporal interpolation as secondary scope (category B). Therefore, the final num-
ber of studies for the three categories resulted as:

A.	 Correlation analysis: 14 + 2 = 16 (11.59%) [10–25].
B.	 Interpolation: 65 + 1 = 66 (47.83%) studies [26–91].
C.	 Forecast: 56 (40.58%) studies [92–147].

However, it is worth noticing that this classification should not be interpreted as rigid, as 
many studies could be assigned to more than one category when secondary aims were taken 
into account. A graphical representation of sub-categories is reported in Fig. 1.

Fig. 1  Classification of studies published in 2022 relevant to modelling of particulate matter concentra-
tion, divided according to the primary (first column) and secondary (derived blocks) study aims

 

1 3



State-of-art in modelling particulate matter (PM) concentration: a…

4  Geographic distribution

Considering the territory under analysis, the vast majority of the studies (112, 81.16%) was 
relevant to Asia, in particular east and south-east. Among them, the largest contribution 
was provided by China [11–13, 19–21, 25–30, 34, 35, 37, 38, 40–60, 62, 63, 71–80, 93, 
98, 100–105, 115–117, 123–135], which represented, with 73 studies (52.9%), more than 
half of the total. A second block included India [15, 24, 35, 61, 83–85, 94, 106, 120, 121, 
136, 137] (13, 9.42%), South Korea [22, 26, 60, 62, 63, 87, 111, 118, 140–143] (12, 8.7%) 
and USA [10, 17, 18, 23, 33, 66–68, 89, 97, 114] (11, 7.97%), while the other countries 
addressed in more than one publication were Japan [60, 63, 95, 122] and Thailand [16, 64, 
112, 144] (4, 2.9%), Taiwan [69, 96, 119] and UK [35, 113, 147] (3, 2.17%), Spain [88, 
145], Germany [82, 91], Iran [107, 138], Malaysia [108, 109], Canada [39, 70] (2, 1.45%). 
The total counting (subdivided by study category according to the classification defined in 
Sect. 3) is reported in Table 1.

When normalizing the number of studies on the population (N studies / 10 million) of the 
different target countries, the most studied country resulted by far South Korea (2.34), while 
(considering only countries with more than one single publication) the second was Taiwan 

Table 1  Number of studies per country relevant to machine-learning based modelling of particulate matter 
concentration; for references of countries with more than one occurrence, please refer to the main text

All A) Correlation B) Interpolation C) Forecast
N % N % N % N %

China 73 52.90% 7 43.75% 42 63.64% 24 42.86%
India 13 9.42% 2 12.5% 5 7.58% 6 10.71%
South Korea 12 8.70% 1 6.25% 5 7.58% 6 10.71%
USA 11 7.97% 4 25% 5 7.58% 2 3.57%
Thailand 4 2.90% 1 6.25% 1 1.52% 2 3.57%
Japan 4 2.90% 2 3.03% 2 3.57%
Taiwan 3 2.17% 1 1.58% 2 3.57%
UK 3 2.17% 1 1.52% 2 3.57%
Malaysia 2 1.45% 2 3.57%
Canada 2 1.45% 2 3.03%
Spain 2 1.45% 1 1.58% 1 1.79%
Germany 2 1.45% 1 6.25% 1 1.52%
Iran 2 1.45% 2 3.57%
Bulgaria [99] 1 0.72% 1 1.79%
Emirates [146] 1 0.72% 1 1.79%
Belgium [33] 1 0.72% 1 1.52%
Netherlands [31] 1 0.72% 1 1.52%
Australia [92] 1 0.72% 1 1.79%
Iraq [32] 1 0.72% 1 1.52%
Uganda [65] 1 0.72% 1 1.52%
Colombia [14] 1 0.72% 1 1.79%
Italy [139] 1 0.72% 1 1.79%
France [31] 1 0.72% 1 1.52%
Turkey [145] 1 0.72% 1 1.79%
Nigeria [110] 1 0.72% 1 1.79%
Pakistan [86] 1 0.72% 1 1.52%
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(1.26). Countries with the largest absolute numbers had lower values: 0.51 for China, 0.09 
for India, 0.33 for USA. A graphical representation of the normalized number of studies is 
provided in Fig. 2, while complete results (also subdivided by study category according to 
the classification defined in Sect. 3) are reported in Table 2.

5  Input data sources

Concerning the data sources used in the modelling, a first distinction should be made 
between univariate and multivariate models. Univariate models were based on a single data 
source, represented by the time-series of PM concentration as recorded by ground stations. 
Such studies were 15 [31, 35, 36, 83, 85, 87–89, 95, 113, 116, 130, 132, 135, 147] in total 
(10.87%), 8 of which were interpolation models (12.12% of category B) and 7 were predic-
tive models (12.15% of category C). No study of this kind belonged to category A, for which 
the scope is indeed to evaluate the impact of other data sources on the target (concentration 
of PM).

The majority of studies were multivariate: 123 in total (89.13%), 16 for correlation analy-
sis (100%), 58 for interpolation models (87.88%) and 49 for prediction models (87.85%). In 
such models, the most used data source (besides ground stations) was meteorological infor-
mation, with 92 [13–16, 19–21, 24–27, 30, 34, 38, 40, 42–63, 65–68, 70, 71, 73, 74, 76–82, 
84, 90, 91, 93, 94, 96–105, 107, 109–112, 114, 115, 117, 119, 122, 124–127, 129, 133, 134, 
136–140, 142, 144, 145] studies (74.8% of all multivariate models), followed by satellite 

Fig. 2  Heat-map with number of studies per country, relevant to machine-learning based modelling of 
particulate matter concentration, normalized on the country’s population
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data, where 45 [15, 17, 26, 29, 30, 32, 40, 42, 43, 45–48, 50–53, 55, 57, 60–63, 65, 67, 70, 
73–82, 93, 107, 112, 115, 120, 133, 134, 141, 144] studies (36.59%) used Aerosol Optical 
Depth, and 37 [10–13, 15, 17–20, 22, 26, 34, 37, 40, 41, 43, 45, 47, 48, 51, 52, 54, 56, 58, 
60, 62–65, 68, 70–73, 79–82, 86, 93, 97, 110, 112, 115, 117, 129, 131, 139, 144] (30.08%) 
used other satellite imagery. Other largely included variables were land use and/or topogra-
phy, present in 51 [11–13, 16, 18, 22, 23, 25, 26, 30, 33, 34, 38, 39, 42, 43, 45–51, 53–56, 58, 
59, 61, 63, 64, 66, 68, 71, 73–77, 80, 81, 92, 93, 101, 112, 115, 122, 133, 139, 144] studies 
(41.46%). Other less frequently included data sources were measurement of other pollut-
ants, other models previously implemented, demography, ad-hoc micro-sensors networks, 
road traffic information, wildfires localization. Furthermore, 12 [10, 11, 13, 18–20, 22, 34, 
51, 80, 110, 129] studies (9.76%) used other specific categories of variables not previously 
used in any other study, and therefore not classified. A complete description of data sources 
included in multivariate models, also subdivided by study category, are reported in Table 3.

All A) Correlation B) Interpolation C) Forecast
N/Mpop N/Mpop N/Mpop N/Mpop

South 
Korea

2.34 0.19 0.97 1.17

Bulgaria 1.43 / / 1.43
Taiwan 1.26 / 0.42 0.84
Emirates 1.03 / / 1.03
Belgium 0.87 / 0.87 /
Malaysia 0.62 / / 0.62
Thailand 0.57 0.14 0.14 0.28
Nether-
lands

0.57 / 0.57 /

China 0.51 0.05 0.29 0.17
Canada 0.51 / 0.51 /
UK 0.44 / 0.15 0.29
Spain 0.43 / 0.21 0.21
Australia 0.4 / / 0.40
USA 0.33 0.12 0.15 0.06
Japan 0.32 / 0.16 0.16
Iraq 0.25 / 0.25 /
Germany 0.24 0.12 0.12 /
Iran 0.24 / / 0.24
Uganda 0.22 / 0.22 /
Colombia 0.19 / / 0.19
Italy 0.17 / / 0.17
France 0.15 / 0.15 /
Turkey 0.12 / / 0.12
India 0.09 0.01 0.04 0.04
Nigeria 0.05 / / 0.05
Pakistan 0.04 / 0.04 /

Table 2  Number of studies per 
country, relevant to machine-
learning based modelling of 
particulate matter concentration, 
normalized on the country’s 
population
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6  Used algorithms and estimated performance

With regards to the type of the chosen final algorithm, a first distinction can be made 
between single-block models and ‘ensemble’ architectures. Single-block models are algo-
rithms trained for the specific intended task, while ‘ensemble’ architectures are systems 
composed by multiple functional blocks, in series and/or in parallel, each of whom is basi-
cally a single-block model performing a specific sub-task within the overall framework. 
Such a more complex approach was tested in 43 [22, 24, 25, 29–31, 36, 42, 44, 46, 47, 64, 
67, 84, 89, 97–102, 104–108, 110, 117, 118, 121, 123, 126, 127, 129–131, 133, 135, 138, 
141, 142, 145, 147] studies (31.16%), 3 of which [22, 24, 25] were correlation analysis 
(18.75% of category A), 12 [29–31, 36, 42, 44, 46, 47, 64, 67, 84, 89] were interpolation 
models (18.18% of category B), and 28 [97–102, 104–108, 110, 117, 118, 121, 123, 126, 

Table 3  Data sources used in studies relevant to machine-learning based modelling of particulate matter 
concentration, subdivided according to study aim
A) CORRELATION B) INTERPOLATION C) FORECAST

N % N % N %
UNI-VARIATE 
(only ground sta-
tions data)

0 0% UNI-VARIATE (only 
ground stations data) 
[31, 35, 36, 83, 85, 
87–89]

8 12.12% UNI-
VARIATE 
(only ground 
stations data) 
[95, 113, 116, 
130, 132, 
135, 147]

7 12.15%

MULTI-VARIATE 16 100% MULTI-VARIATE 58 87.88% MULTI-
VARIATE

49 87.85%

Meteorological 
information

10 62.50% Meteorological 
information

45 68.18% Me-
teorological 
information

37 66.07%

Land-use / 
Topography

8 50.00% Aerosol Optical 
Depth

34 51.52% Other 
pollutants

18 66.07%

Other 7 43.75% Land-use / 
Topography

34 51.52% Aerosol Opti-
cal Depth

9 32.14%

Other satellite 4 25.00% Other satellite 25 37.88% Land-use / 
Topography

9 16.07%

Other pollutants 3 18.75% Other model 12 18.18% Other satellite 8 16.07%
Micro-sensors 3 18.75% Demography / 

socio-economic
11 16.67% Other model 6 14.29%

Traffic 3 18.75% Other pollutants 6 9.09% Micro-sensors 6 10.71%
Demography / 
socio-economic

3 18.75% Micro-sensors 3 4.55% Other pol-
lutatns from 
micro-sensors

5 10.71%

Aerosol Optical 
Depth

2 12.50% Traffic 3 4.55% Demography 
/ socio-eco-
nomic

4 8.93%

Wildfires 2 12.50% Other 3 4.55% Traffic 2 7.14%
Other pollutatns from 
micro-sensors

1 6.25% Wildfires 2 3.03% Other 2 3.57%

Other pollutatns from 
micro-sensors

1 1.52% Wildfires 1 3.57%

The first two lines (UNI-VARIATE and MULTI-VARIATE) represent a macro-classification, separated 
from the subanalysis reported in the following lines, hence the highliting in bold

1 3



State-of-art in modelling particulate matter (PM) concentration: a…

127, 129–131, 133, 135, 138, 141, 142, 145, 147] prediction models, accounting for 50% of 
category C. As a result, this last category represents the application field where the use of 
ensemble architectures was mostly diffused.

In sake of comparison, in the following analysis all algorithms were considered sin-
gularly, even when they were inserted into a more complex structure. The reason is that 
ensemble architectures are basically unique and implemented ad-hoc on each specific proj-
ect, meaning that the same architecture was never used more than once across all considered 
studies, thus impeding any kind of comparison.

The performed analysis regarded both all the algorithms that were tested and evaluated, 
as well as those that were selected for the final implementation resulting the most perfor-
mant. A first relevant result is the use (in test phase) of 232 different algorithms across all the 
studies, of which only 60 (25.86%) were tested in more than one. Similarly, considering the 
final model chosen as the most performant, only 20 solutions, out of a total list of 108 (thus 
corresponding to the 18.52%), were selected in more than one study.

Considering only the repeated solutions, the most frequently tested algorithm was the 
Random Forest (RF: 43 [10, 12, 13, 19, 20, 37, 39, 42, 45, 46, 48, 52, 54, 55, 58–61, 63, 64, 
68, 70, 71, 73, 75, 89, 90, 95, 99, 101, 103, 107, 109, 110, 113, 114, 117, 120, 122, 134, 136, 
140, 141], 31.16%), followed by the Long-Short Term Memory (LSTM: 34 [36, 38, 46, 84, 
94, 96, 98, 100, 102–105, 111, 113, 114, 116, 119, 125–127, 129, 130, 137, 138, 142, 143, 
145], 24.64%) and by Convolutional Neural Networks (CNN: 19 [84, 86, 94, 96, 100, 108, 
113, 114, 116, 126, 127, 130, 142, 145], 13.77%). With regards to the choice of the most 
performant algorithm, the most frequently selected two were again RF (27 [9, 12, 13, 15, 19, 
20, 37, 39, 42, 45, 48, 52, 60, 63, 64, 68, 70, 73, 89, 95, 99, 101, 109, 110, 117, 122, 141], 
19.57%) and LSTM (12 [24, 36, 84, 96, 98, 103, 105, 108, 126, 129, 136, 145], 8.7%), while 
the third was the eXtreme Gradient Boosting (XGBoost: 7 [26, 42, 51, 59, 61, 107, 110], 
5.07%, tested in 12 [26, 42, 51, 55, 61, 90, 103, 107, 110, 113, 140], 8.7%).

Considering the choice of the most performant computational algorithm, according to 
the different application field and studies objectives as categorized in Sect. 3, for correla-
tion analysis (category A) the most used algorithm was RF, with 6 [10, 12, 13, 15, 19, 20] 
studies out of 16 (37.5%), followed by Geographically Weighted Regression (GWR: 2 [11, 
18], 12.5%); in all the other cases, ad-hoc solutions were implemented and not repeated 
anywhere else, while in 4 further cases [21–23, 25] (25%) the analysis was based on clas-
sic statistical methods, meaning that there was not an actual model development. Also in 
interpolation models (category B), RF was the most widely adopted solution (13 [37, 39, 
42, 45, 48, 52, 60, 63, 64, 68, 70, 73, 89], 19.7%), followed by XGBoost (5 [26, 42, 51, 59, 
61], 7.58%) and the Deep Forest (DF: 4 [50, 53, 54, 58], 6.06%). Within predictive models 
(category C), the most used was instead LSTM (9 [96, 98, 103, 105, 108, 126, 129, 136, 
145], 16.07%), followed by RF (8 [95, 99, 101, 109, 110, 117, 122, 141], 14.29%) while 
three different algorithms were equally applied with the third highest frequency (3, 5.36%), 
namely CNN [100, 126, 138], AutoRegressive Moving Average (ARMA) [110, 130, 132] 
and Chemical Transportation Models (CTM [101, 131, 147], always included in ensemble 
architectures in the analyzed studies). The frequency of application of the most diffused 
algorithms, subdivided according to study category, are reported in Fig. 3.

With regards to performance, the most common parameter (118 studies, 85.51%) consid-
ered for comparison was root mean squared error (RMSE), expressed as µg/m3 and reported 
as median [1st quartile – 3rd quartile] or as 95% confidence interval (Table 4).
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The following analysis considered the performance evaluation of the single algorithms 
applied, although the need of a common metric imposed to only include studies reporting 
RMSE (118 studies, 85.51%, as per Table 4); given the nature of the metric (error measure-
ment), lower values correspond to higher performance. Moreover, for statistical robustness, 
only algorithms that were used more than once (i.e. at least in two different studies) were 
included, whether they are applied as a single-block framework or as one of the multiple 
blocks in an ensemble architecture. In the first case (single-blocks), the best performance 
was that of LSTM (5.75 ± 5.18 µg/m3), although the evidence is quite low, being used in 
two studies only [96, 103]. XGBoost follows with 7.78 ± 4.68 µg/m3 and a higher level of 
evidence, being used in 5 studies [26, 51, 59, 61, 107]. The highest level of evidence was 
reached for RF, applied in 19 studies [10, 12, 13, 15, 19, 20, 37, 45, 48, 52, 60, 63, 68, 70, 

Table 4  Statistics about the performance evaluation (through root mean squared error, RMSE) of algorithms 
used in studies relevant to machine-learning based modelling of particulate matter concentration, subdivided 
according to study aim

A) Correlation B) Interpolation C) Forecast
RMSE reported 8/16 (50%) 59/66 (89.4%) 51/56 (91.1%)
Median [1st-3rd quartile] µg/m3 6.995 [2.278–13.814] 12.4 [7.63-18.625] 8.735 [2.265–21.515]
95% C.I. reported 1/16 (6.25%) 24/66 (36.4%) 23/56 (45.1%)
95% C.I. µg/m3 1.052–46.398 2.397–28.903 0.103–34.734

Fig. 3  Algorithms used in studies relevant to machine-learning based modelling of particulate matter 
concentration, subdivided according to study aim
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73, 89, 95, 109, 122], with a lower but comparable performance of 12.79 ± 9.1 µg/m3, while 
the least performant solution (mainly due to a large confidence interval among the 4 cases of 
application [50, 53, 54, 58]) was the Deep Forest (DF) with 27 ± 14.61 µg/m3.

When considering the scond group, ensemble architectures, the best performances were 
reached when a RF was included (10.44 ± 7.64 µg/m3, with 6 cases of application [42, 64, 
99, 101, 110, 117]), followed by LSTM (13.15 ± 9.1  µg/m3, with 7 cases of application 
[24, 36, 84, 98, 105, 108, 126]). A comparative graphical representation of such results is 
reported in Fig. 4.

As previously stated, the specific aim of each study has a primary impact on the imple-
mented algorithms and their performance. To take this into account, this performance analy-
sis was also conducted separately for the three categories identified in Sect. 3.

For Category A, relevant to correlation analysis, it must be noticed that the full imple-
mentation of a model is not a requirement to fulfill the goal and, as a result, only two algo-
rithms could be evaluated: RF, 5.05 ± 4.04 µg/m3 on 3 applications [10, 19, 20], and GWR, 
30.57 ± 20.8 µg/m3 on 2 applications [11, 18]. In category B, interpolation models, the best 
results were obtained with LSTM into an ensemble architecture (9.9 ± 2 µg/m3), although 
with low evidence (2 only cases of application [36, 84]). The most frequently applied 
approach was the implementation of a single-block framework based on an empowered 
decision-tree-like algorithm, such as an Extremely Randomized Tree (11.22 ± 1.28 µg/m3 
with 2 cases [81, 90]), Deep Forest (DF: 16.66 ± 4.5  µg/m3 with 4 applications [50, 53, 
54, 58]) and XGBoost (13.95 ± 5.15 µg/m3 with 3 applications [51, 59, 61]). Such use of 
empowered decision trees showed, although with lower evidence, a higher performance 
when compared with a basic RF (14.9 ± 8.45 µg/m3 with 10 applications [37, 45, 48, 52, 
60, 63, 68, 70, 73, 89]). A graphical representation of these performance results (category 
B) is provided in Fig.  5. Concerning category C, predictive modelling, the best results 
were obtained with a single-block LSTM (4.32 ± 3.23 µg/m3 with 3 applications [96, 103, 
136]), closely followed by a single RF (6.49 ± 4.91  µg/m3 with 3 applications [95, 109, 
122]), while considering ensemble architectures the most performant were those including 
a CNN (5.81 ± 5.46 µg/m3 with 3 applications [100, 126, 145]). The most frequently applied 
approaches were the inclusion, in the ensemble architecture, of either a RF [99, 101, 110, 
117, 141] (12 ± 7.93 µg/m3) or a LSTM [98, 105, 126, 129, 145] (13.7 ± 9.1 µg/m3), both 
with 5 cases of application. Lower performance, again mainly due to a high range of values 

Fig. 4  Statistics about the perfor-
mance evaluation (through root 
mean squared error, RMSE) of 
algorithms used in studies rel-
evant to machine-learning based 
modelling of particulate matter 
concentration. Blue lines refer to 
single-block frameworks, while 
green ones represent the use 
of algorithms within ensemble 
architectures. Lines thickness 
is proportional to the level of 
evidence (number of studies 
presenting that solution), also 
reported in labels
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in the 3 cases of application [101, 131, 147], was provided by ensemble models including 
a CTM (18.79 ± 11.99 µg/m3). A graphical representation of such results (category C) is 
provided in Fig. 6.

7  Conclusions

A scientific literature review was performed on the topic of advanced data computational 
techniques (mainly machine learning ML) applied to air quality models, with a specific 
focus on particulate matter (PM). This topic resulted to be of very high interest for the 
international scientific community, with a production of scientific literature of impressive 
dimension. As a matter of fact, by considering a single year (2022) it was already possible to 
identify a total of 138 relevant studies to be included and fully analyzed. While, on one side, 
this represents a limitation (resulting in a very small time period for the review), it is also 
to be considered as a relevant result in itself, showing a unique level of interest and atten-

Fig. 6  Statistics about the 
performance evaluation (through 
root mean squared error, RMSE) 
of algorithms used in studies 
relevant to machine-learning 
based predictive modelling of 
particulate matter concentration. 
Blue lines refer to single-block 
frameworks, while green ones 
represent the use of algorithms 
within ensemble architectures. 
Lines thickness is proportional to 
the level of evidence (number of 
studies presenting that solution), 
also reported in labels

 

Fig. 5  Statistics about the 
performance evaluation (through 
root mean squared error, RMSE) 
of algorithms used in studies 
relevant to machine-learning 
based interpolation modelling of 
particulate matter concentration. 
Blue lines refer to single-block 
frameworks, while green ones 
represent the use of algorithms 
within ensemble architectures. 
Lines thickness is proportional to 
the level of evidence (number of 
studies presenting that solution), 
also reported in labels
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tion from the scientific community towards this field, and its characteristic of exceptional 
dynamicity and speed of advancement.

According to the analysis, ML is the edging technology in air quality modelling, and 
recent scientific research confirms a widely spread application of this approach, thus posi-
tively answering (on a global scale) to the primary research question addressed with this 
work. In particular, three main fields of application emerged, with the largest share of studies 
focused on the spatial and/or temporal interpolation of data (either filling gaps in recordings 
or inferring a continuous measurement from sparse samples), followed closely by prediction 
models for concentration forecast, and a smaller amount of studies focused on a correlation 
analysis between explicative factors and concentration levels.

Despite a wide enough geographical distribution of the countries under examination, a 
larger part of the production was focused on southern-eastern Asia, in particular in China 
(in absolute numbers) and South Korea (in proportion to the population). The most frequent 
approach in PM modelling was to implement multi-variate models (almost 9 cases out of 
10), including additional measurements on top of ground stations, mainly meteorological 
data and satellite-derived information (such as AOD), but many more additional data were 
frequently considered (land-use, demography, previous models etc.), thus confirming estab-
lished knowledge in the field [4].

With regards to the implemented methodological solutions, a strong sparsity was found, 
with the vast majority of studies developing ad-hoc unique frameworks. While literature [3] 
enlightens that there is not a single best solution suiting all needs, which can to some extent 
explain the recorded sparsity, this variety hinders replicability and therefore comparisons, 
thus being a potential barrier to identify best-practices for new future studies on this topic. 
As a result, the second research question addressed is left unanswered, having to notice the 
impossibility to identify a specific architecture/model that consistently outperforms other 
solutions.

Despite this obstacle, it was possible to draw some significant conclusions, and to 
address the last research question about the expected performance. In particular, the most 
interesting assessment regards the relationship between the estimated performance and the 
level of complexity of the models. In this sense, a primary distinction can be made between 
classic ML (e.g. RF) and Deep Learning DL (e.g. CNN), with this last approach result-
ing, in line with literature [4–6], more diffused for prediction tasks. However, the overall 
evidence does not point clearly to a superiority of DL over the simpler basic ML. As a 
matter of fact, when considering single-block frameworks, an increase in the performance 
is present, despite a different robustness of the evidence: for instance, it is possible to con-
sider DL approaches such as LSTM with RMSE = 5.75 ± 5.18 µg/m3, against basic ML such 
as XGBoost with RMSE = 7.78 ± 4.68 µg/m3 or RF with RMSE = 12.79 ± 9.1 µg/m3. When 
instead considering ensemble architectures, an inverse result emerges, such as was recorded 
for RF, with RMSE = 10.44 ± 7.64 µg/m3, and LSTM, with RMSE = 13.15 ± 9.1 µg/m3. It 
must be noticed that, considering the large overlapping in confidence intervals, there is no 
evidence about the higher suitability of one approach over the other. However, it is anyway 
possible to partly confirm previous literature results [4, 5] in the field of DL. For instance, 
a primary role of LSTM and CNN, considered by literature to solve many issues affecting 
older approaches (e.g. vanishing gradient issue), was verified. On the contrary, other parts 
of established knowledge were not confirmed, such as the preferability of Gated Recurrent 
Unit (GRU) over other approaches, which did not emerge clearly in this analysis, where 
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one case only [24] was recorded in which it was selected as the best solution (moreover, in 
this case, GRU was put in series with an LSTM building an ensemble architecture, reaching 
a higher performance compared to each of the two used singularly). Anyway, it is recom-
mendable to always base the choice on the final goal of the modelling task. As a matter of 
fact, ML offers the possibility to easily implement explainable-AI models [148], which is 
vital to generate evidence about the impact of different factors on the levels of pollution, 
thus generating insights for policy makers about a proper management of the territory in 
terms of land-use [149] and human activities.

Secondarily, in addition to the distinction between classic ML and DL, another important 
distinction is between single-block frameworks and the more complex ensemble architec-
tures. Previous reviews [3–6] generally agreed in identifying ensemble architectures as the 
most performant approaches. At first sight, in this review, a different result seems to have 
emerged, with an average lower performance of ensemble architectures across the different 
studies. However, considering the 37 studies that implemented an ensemble architecture 
(and were included in the comparison, being evaluated through RMSE), the vast majority 
of them (26, 70.3%) made this choice after a comparison between the ensemble architecture 
and other single-block models, thus recording a performance increase when the more com-
plex solution was tested. Therefore, it is possible to hypothesize that the overall higher per-
formance of single-block models is actually due to the different experimental set-ups, rather 
than to the characteristics of the models themselves. This hypothesis is also corroborated 
by the fact that the inversed scenario, thus a single-block model preferred over an ensemble 
architecture when both were tested, was a very rare occurrence, with only 3 cases out of 
96 (3.13%). Therefore, while it is possible to state that an ensemble architecture can help 
reaching higher performances, it must be also specified that the opportunity of this approach 
depends strongly on the experimental set-up. An increase in complexity does not automati-
cally result in a higher performance, thus partly denying previous literature. The trade-off 
between complexity and expected performance should therefore be accurately analyzed 
case-by-case, according to needs and specifics in terms of context, application scenario, 
aim, available data sources, and characteristics of target and explicative data, resulting in 
different choices being suitable according to the different situations. While some solutions 
resulted generally more robust and have stronger evidence compared to others, an extensive 
effort emerges recommendable in terms of comparative analysis of different models when 
implementing a new solution. Choosing the model that is reported to have the best numeri-
cal performance can be misleading, as the quantitative evaluations resulted more dependent 
from the initial set-up rather than the developed model.

In conclusion, this study shows that the target field is one of the most fast-evolving 
and manifold applications of machine learning technologies. In this scenario, a relevant 
application of the performed analysis is to provide a reference framework for researchers in 
this field to address the topic, having identified the most relevant features in cases-studies 
to be taken into account when defining the experimental set-up. In light of all the above, 
while this literature review can be considered a reference for general benchmarking, an even 
higher relevance should be attributed to the methodological guidelines proposed.
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