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Indirect Optimization of Fuel-Optimal
Many-Revolution Low-Thrust Transfers with

Eclipses
Yang Wang and Francesco Topputo

Politecnico di Milano

Abstract—An efficient indirect method is presented to deter-
mine fuel-optimal many-revolution low-thrust transfers in pres-
ence of Earth-shadow eclipses. Specifically, the events of shadow
entrance and exit are modelled as interior-point constraints.
Following the observation that an ill-conditioned state transition
matrix may occur when the spacecraft flies over the edge of the
shadow, a two-level continuation scheme is introduced to gener-
ate many-revolution trajectories. The established computational
framework integrates analytic derivatives, switching detection
and continuation with an augmented flowchart, which yields
discontinuous bang-bang solutions and their gradients. Transfers
from a geostationary transfer orbit to a geostationary orbit are
simulated to illustrate the effectiveness and efficiency of the
method developed.

I. INTRODUCTION

SOLAR electric propulsion (SEP) enables spacecraft ma-
neuvering with higher specific impulse, thus lowering the

fuel cost compared to chemical propulsion. However, SEP-
based, low-thrust Earth-orbit optimization is challenging. This
is because the low thrust-to-mass radio usually requires long
flight times and large number of revolutions to steer the
spacecraft to the desired orbit. Additionally, the lack of power
from solar panels when flying inside Earth-shadow eclipses
prevents using the engine, which makes this nonlinear optimal
control problem (NOCP) even more difficult to solve [1].

Numerical solution methods dedicated to low-thrust tra-
jectory optimization are mainly categorized as direct meth-
ods, indirect methods, and dynamic programming [2]. Direct
methods convert the originally infinite-dimensional NOCP into
a finite-dimensional nonlinear programming (NLP) problem
by direct transcription and collocation [3]. The low-thrust
optimization with Earth-shadow eclipses was formulated in [4]
as a large-scale multiple-phase NOCP with the phase configu-
ration guessed a priori. In [5], shadow phases were treated as
event constraints, and time-optimal transfers were determined
using a state-of-the-art NLP solver. Direct collocation was
developed in [6] to solve the problem that was formulated
as a multi-objective, single-phase NOCP. The thrust direction
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was parameterized and the averaging technique was lever-
aged in [7–9] to reduce the computational load. Near-optimal
transfers were achieved by patching trajectories generated by
the Q-law and the NLP solver in [10]. Direct methods are
generally robust and can easily tackle path constraints, but
they often require much computational effort, especially for
many-revolution trajectories [3].

Dynamic programming (DP), based on Bellman’s Principle
of Optimality, handles the NOCP by solving a partial differ-
ential equation, called Hamilton–Jacobi–Bellman equation [2].
The solution of DP culminates in an optimal feedback control
law, instead of an open-loop solution. However, the main
drawback is the curse of dimensionality, i.e., the required
memory and computational time grow rapidly with dimen-
sionality, which limits its applications to high-dimensional
NOCPs [2]. A variety of DP methods have been developed
to alleviate the curse of dimensionality [11]. Among them,
differential dynamic programming (DDP) has been applied
to various studies on trajectory optimization [12–14] and
Dawn Discovery mission [15]. DDP approaches the optimal
solution through a succession of quadratic subproblems around
a reference trajectory [2]. The control discontinuity at shadow
entrance and exit was smoothed in [12] to favor the use of the
DDP technique, which culminated in approximate fuel-optimal
solutions.

Alternatively, indirect methods transform the NOCP into
a two-point boundary value problem by using first-order
necessary conditions of optimality, the solution of which is
guaranteed to be a local extremal [16]. In [17], the thrust
modulus was smoothed during shadow entrance and exit
to avoid the discontinuity. The Earth-shadow constraint was
treated as an interior-point constraint in [18, 19] to solve
time-optimal transfers, where the jump conditions of costate
variables at shadow entrance and exit were derived. In [20],
the averaging technique was applied to indirect optimization
to rapidly search nearly time-optimal solutions. Recently, the
hyperbolic tangent smoothing method was proposed in [21] to
approach discontinuous control by a consecutive of continuous
controls expressed by the hyperbolic tangent function, and
fuel-optimal solutions with shadow constraints have been
achieved in [22–24] using this method.

In practice, the performance of many optimization methods
are highly dependent on the accuracy of gradient informa-
tion [25]. Finite difference methods are classical gradient esti-
mation methods that approximate the gradients by truncating
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Taylor series of a function at a given point. These methods
are easy to implement, but the accuracy relies on the selected
perturbation size which is difficult to tune due to the dilemma
to minimize both truncation error and subtractive cancellation
error [26]. In literature, several methods have been proposed
to enable highly accurate gradients. Automatic Differentiation
(AD) exploits the observation that the complicated function
can be expressed by the combination of elementary arithmetic
operators and functions, and evaluated by repeatedly apply-
ing the chain rule [27]. Complex-step differentiation (CSD)
estimates gradients by making use of complex variables [28].
The higher gradient accuracy is achieved since it elegantly
eliminates the subtractive cancellation error [26, 28]. However,
both AD and CSD requires extensive implementation and the
execution time could be high [29]. The variational method is
a promising alternative to offer accurate gradients with short
computational time [25]. In this method, by propagating the
variatonal equation and dynamics along with the trajectory, the
gradients are estimated using state transition matrix (STM) and
the chain rule [25]. Even thought the symbolic manipulations
are generally required, and the integration becomes more
complicated when discontinuities are involved, it is worthy to
exploit it due to its high benefits on computational efficiency
and gradient accuracy.

In order to expand the convergence domain, homotopy
continuation methods have been widely used. The homotopy
method solves the objective problem by tracking the homotopy
path, which is comprised of solutions of a series of auxiliary
problems [30]. In [21, 31, 32], the fuel-optimal bang-bang
control was approached by a sequence of continuous controls.
Moreover, pseudo-arclength method [30], double-homotopy
method [33], bounding homotopy method [34] and TFC-
based homotopy method [35] have been explored to tackle
failures of the continuation process. The solution quality is
also closely linked to the homotopy method. In [36], time-
optimal transfers from a GTO to Halo orbit obtained by using
bounding homotopy method perform better than the solutions
in [37]. In [37, 38], the homotopy method and the variational
method were combined to improve the algorithm performance.

In this work, an efficient indirect method is presented
for fuel-optimal low-thrust optimization with Earth-shadow
eclipses. The events of shadow entrance and exit are mod-
elled as interior-point constraints. An analysis of STM and
costate discontinuities across the shadow is carried out. Our
analysis shows that ill-conditioned STM may occur when
the spacecraft flies over the edge of the shadow on the
optimal trajectory, which deteriorates the performance of
energy-optimal to fuel-optimal continuation. Thus, a two-level
continuation method is proposed to tackle this issue. The
first level achieves the fuel-optimal solution without shadow
constraints using energy-optimal to fuel-optimal continuation,
while the second level determines the fuel-optimal solution
with shadow constraints by gradually increasing the number
of eclipsed arcs. The integration flowchart in [37] is aug-
mented to involve event branches of shadow entrance and exit.
The computational framework is established by combining
analytic derivatives, switching detection and continuation into
the augmented flowchart. The main advancement compared to

previous indirect methods mentioned above is the capability to
effectively compute desired discontinuous fuel-optimal bang-
bang solutions for many-revolution transfers by exploiting
analytic gradients and the continuation method. Transfers
from a geostationary transfer orbit (GTO) to a geostationary
orbit (GEO) are simulated to illustrate the effectiveness and
efficiency of the method developed in applied scenarios.

The remainder of the paper is structured as follows. Sec-
tion II presents dynamical equations of modified equinoctial
elements, the geometrical model of Earth-shadow eclipses
and fuel-optimal problem description. Section III depicts the
indirect method developed. In Section IV, simulations are
presented for GTO to GEO transfers. Finally, Section V
concludes the work.

II. PROBLEM STATEMENT

A. Dynamical Equations

The modified equinoctial elements (MEE) are used to de-
scribe the orbital dynamics of the SEP-based spacecraft since
they are non-singular orbital elements and are well behaved in
low-thrust optimization [39]. The relationship between MEE
and classical orbital elements is

p = a(1− e2)

ex = e cos (ω + Ω)

ey = e sin (ω + Ω)

hx = tan(i/2) cos Ω

hy = tan(i/2) sin Ω

L = ω + Ω + θ

(1)

where a is the semi-major axis, e is the eccentricity, i is the
orbital inclination, Ω is the right ascension of the ascending
node, ω is the argument of perigee, θ is the true anomaly, p
is the semilatus rectum and L is the true longitude. Equations
of motion of the spacecraft under equatorial Earth-centered
inertial coordinate (ECI) are

ẋ = f(x,α, u)⇒
(
ẋmee

ṁ

)
=

u Tmax

m
Bα+A

−Tmax

c
u

 (2)

where xmee = [p, ex, ey, hx, hy, L]> is the MEE vector,
x = [x>mee,m]> is the state vector, m is the spacecraft mass;
u ∈ [umin, 1] is the thrust throttle factor. umin = 0 when the
SEP engine is off. 0 ≤ umin ≤ 1 is used in the continuation
scheme, see Section III-C; α is the thrust direction unit vector,
Tmax is the maximum thrust magnitude, c = Ispg0 is the
exhaust velocity where Isp is the specific impulse and g0 is
the gravity acceleration at sea level. Both Isp and Tmax are
assumed constant. In Eq. (2),

A = [0, 0, 0, 0, 0, κ]> (3)
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(4)

where µ is the gravitational parameter and

ν = 1 + ex cosL+ ey sinL

s2 = 1 + h2x + h2y, κ =
√
µp

(
ν

p

)2 (5)

The boundary conditions are

p(ti) = pi, ex(ti) = exi, ey(ti) = eyi, hx(ti) = hxi,
hy(ti) = hyi, L(ti) = Li, m(ti) = mi

p(tf ) = pf , ex(tf ) = exf , ey(tf ) = eyf , hx(tf ) = hxf ,
hy(tf ) = hyf , L(tf ) = free, m(tf ) = free

(6)
where ti and tf are fixed initial and terminal time instants.

The MEE are related to the Cartisian coordinate (r,v)
through [4]

r =


p

s2ν

(
cosL+ α2 cosL+ 2hxhy sinL

)
p

s2ν

(
sinL− α2 sinL+ 2hxhy cosL

)
2p

s2ν
(hx sinL− hy cosL)

 (7)

v =



−
1

s2

√
µ

p

(
sinL+ α2 sinL− 2hxhy cosL

+ey − 2exhxhy + α2ey
)

−
1

s2

√
µ

p

(
− cosL+ α2 cosL+ 2hxhy sinL

−ex + 2eyhxhy + α2ex
)

2

s2

√
µ

p
(hx cosL+ hy sinL+ exhx + eyhy)


(8)

where
α2 = h2x − h2y (9)

B. Earth-Shadow Eclipses

A shadow switching function to discriminate between
eclipsed and illuminated arcs is essential. It is now derived
from the shadow model. In literature, mainly two shadow mod-
els, i.e., cylindrical model [17, 18, 22] and cone model [4, 5],
are widely used. The cone model in [5] is employed here
since it is more accurate. When the spacecraft passes through
the umbra shadow, the solar energy is completely lost, while
limited solar energy is received in the penumbra shadow. To
be on the safe side, we assume that the engine switches off
when the spacecraft passes through either umbra or penumbra.
Since umbra shadow is a portion of the penumbra shadow [4],
only penumbra geometry in Fig. 1 is discussed.

Several assumptions are made to simplify the penumbra
shadow model. Firstly, both the Sun and the Earth are as-
sumed spherical bodies, thus the penumbra shadow is conical.
Secondly, the Earth orbit is assumed planar and circular with

pD

,p s

p

2 p

S/C




r

sr

Sun
Earth

sD

Penumbra

S/C Trajectory

s

Fig. 1. Geometry of penumbra shadow (S/C: spacecraft).

respect to the Sun. In the ecliptic ECI, the Sun–Earth angle is
θs = θs,i + n(t− ti), where θs,i is the Sun–Earth angle at ti
and n = 360/365.25636306 deg/day, and the solar unit vector
is sec = [cos θs, sin θs, 0]>. Transforming sec to s in equato-
rial ECI yields s = [cos(θs), cos(ie) sin(θs), sin(ie) sin(θs)],
where ie = 23◦26′21.448′′ is the ecliptic obliquity, i.e., the
angle between the equatorial plane and the ecliptic plane.

Remark 1: The assumption of planar and circular Earth orbit
is to simplify the computation of θs and its derivative θ̇s. A
more realistic model of the Earth orbit can be included, if
accurate θs and θ̇s can be obtained, otherwise the performance
of the indirect method may deteriorate.

In Fig. 1, Dp and Ds are diameters of the Earth and the
Sun, δp,s is the distance between them, and χp satisfies

χp =
Dp δp,s
Ds +Dp

(10)

The angle αp is

αp = sin−1
Dp

2χp
(11)

The projection of the spacecraft position vector on the solar
unit vector s is

rs = (r · s)s (12)

The vertical vector between the center of the penumbra cone
and the spacecraft is

δ = r − rs (13)

The distance between the penumbra terminator point and the
center of the penumbra cone at the projection point is

σ = (χp + ‖rs‖) tanαp (14)

where ‖rs‖ is the Euclidean norm of rs. The difference of
δ = ‖δ‖ to the distance σ is

Sd(t, r) = δ − σ (15)

along with its partial derivatives as

∂Sd
∂r

=
δ>

‖δ‖
(
I3×3 − ss>

)
− tanαp
‖rs‖

r>s ss
> (16)

∂Sd
∂t

= −

(
δ>

‖δ‖
+
r>s
‖rs‖

tanαp

)(
r>sI3×3 + sr>

) ∂s
∂θs

n

(17)
where ∂s/∂θs = [− sin(θs), cos(ie) cos(θs), sin(ie) cos(θs)]

>.
The spacecraft is inside the penumbra cone if r · s < 0 and
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Sd < 0. The shadow entrance and exit occur when Sd = 0
and r · s < 0. Thus, Sd is defined as the shadow switching
function, under the condition r · s < 0.

To ease the discussion, a signal variable ptype is defined to
label the position of the spacecraft with respect to the shadow

ptype =

{
In, if Sd < 0 and r · s < 0

Out, otherwise
(18)

To favor the explanation of the continuation scheme in Section
III-C, the following definitions are given. Let Ns(t) be the
number of accumulated eclipses at a time t, and let Nmax be
the user-defined maximum number of eclipses. The shadow is
deemed active when Ns ≤ Nmax. Inactive shadows contribute
to Ns, yet they do not affect the engine status. Let p̃type denote
the spacecraft position with respect to the active shadow. Then

p̃type =

{
In, if Sd < 0 and r · s < 0 and Ns ≤ Nmax

Out, if otherwise
(19)

Thus p̃type = ptype if sufficiently large Nmax is adopted. If
the initial point is located outside the shadow, Ns(ti) = 0,
otherwise, Ns(ti) = 0.5. The rule Ns ← Ns + 0.5 is
executed every time ptype switches its value. The updated Ns
is then used to evaluate p̃type. Thus, Nmax = 0 indicates that
the shadow constraints are inactive. In Section III-C, Nmax

continuation is adopted, where Nmax ← Nmax +1 is executed
to gradually turn inactive shadows into active shadows.

C. Fuel-Optimal Problem

The fuel-optimal performance index is

Jf =
Tmax

c

∫ tf

ti

udt (20)

Since the optimal thrust throttle profile u∗ is bang-bang [22],
a continuation parameter ε is employed [37]. The performance
index becomes

Jε =
Tmax

c

∫ tf

ti

[u− εu(1− u)] dt (21)

The energy-optimal problem (ε = 1) is solved first, then the
solution manifold is traced by gradually reducing ε, until the
fuel-optimal problem (ε = 0) is obtained.

The Hamiltonian function reads

Hε =
Tmax

c
[u− εu(1− u)]

+ λLκ+ u
Tmax

m
λ>meeBα− λm u

Tmax

c

(22)

where λ = [λ>mee, λm]> is the costate vector associated to x,
and λmee, λm, λL are the costates associated to MEE, m, L,
respectively. By virtue of the Pontryagin minimum principle
(PMP), the optimal thrust direction α∗ satisfies [22]

α∗ = − B>λmee

‖B>λmee‖
(23)

Substituting α∗ into Eq. (22) yields

Hε = λLκ+ u
Tmax

c
[Sε − ε(1− u)] (24)

where the throttle switching function Sε is

Sε = − c

m
‖B>λmee‖ − λm + 1 (25)

u∗ is determined by PMP and the Earth-shadow constraint (19)
as

u∗ =


umin, if Sε > (1 − 2umin)ε or p̃type = In
ε− Sε

2ε
, if − ε < Sε < (1 − 2umin)ε and p̃type = Out

1, if Sε < −ε and p̃type = Out
(26)

Here, umin applies to both eclipsed and illuminated arcs.
Remark 2: An interior-point constraint should be addressed

to ensure that Eq. (26) satisfies necessary conditions of opti-
mality, see Section II-D.

Let y := [x>,λ>]> be the combined state and costate vec-
tor, the motion of the spacecraft is determined by integrating
the state-costate dynamics ẏ = F (t,y), i.e.,

ẋmee = u
Tmax

m
Bα+A

ṁ = −Tmax

c
u

λ̇mee = −λL
[

∂κ

∂xmee

]>
− uTmax

m

[
∂B>λmee

∂xmee

]>
α

λ̇m = u
Tmax

m2
λ>meeBα

(27)
with α and u as in Eqs. (23) and (26), respectively.

Since the terminal true longitude and mass are free, there
exists

λL(tf ) = 0, λm(tf ) = 0 (28)

D. Interior-Point Constraint

The SEP engine switches on/off when the spacecraft
exits/enters Earth-shadow eclipses. However, this operation
maybe not optimal since it is not related to the minimization
of Hε. In order to satisfy necessary conditions of optimality,
the events of shadow entrance and exit should be treated as
interior-point constraints [18]. Let ts be the time of either
entrance or exit of the active eclipse, then p̃type switches
between In and Out at ts, and the following conditions should
be satisfied [16]

Hε(t
−
s ) = Hε(t

+
s )− πε

∂Sd
∂t

(ts) (29)

λ>mee(t
−
s ) = λ>mee(t

+
s ) + πε

∂Sd
∂xmee

(ts) (30)

where t−s and t+s are time instants instantaneously before and
after ts, and πε is a scalar Lagrange multiplier. In Eq. (30),
costate λmee is discontinuous since ∂Sd/∂xmee(ts) 6= 0>. It
can be verified that

∂r

∂xmee
B = 03×3 (31)
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Since Sd(t, r) is the function of t and r, there exists

B>λmee(t
+
s ) = B>

[
λmee(t

−
s )− πε

(
∂Sd
∂xmee

)>]

= B>λmee(t
−
s )− πε

(
∂r

∂xmee
B

)>(
∂Sd
∂r

)>
= B>λmee(t

−
s )

(32)
Thus α∗ in Eq. (23) and Sε in Eq. (25) are continuous across
ts. The time derivative of Sd is simplified as

Ṡd =
∂Sd
∂xmee

(
A+ u

Tmax

m
Bα

)
+
∂Sd
∂t

=
∂Sd
∂L

κ+
∂Sd
∂t
(33)

The Hamiltonian function at t−s and t+s is

Hε(t
−
s ) = λL(t−s )κ+ u(t−s )

Tmax

c

(
Sε − ε+ εu(t−s )

)
(34)

Hε(t
+
s ) = λL(t+s )κ+ u(t+s )

Tmax

c

(
Sε − ε+ εu(t+s )

)
(35)

Combining Eq. (29), (30), (33), (34) and (35) yields the
analytical expression of πε as

πε = ∆u
Tmax

c

Sε − ε+ (u(t+s ) + u(t−s ))ε

Ṡd
(36)

where ∆u = u(t+s )−u(t−s ), u(t+s ) = umin at shadow entrance
and u(t−s ) = umin at shadow exit.

Remark 3: Let y(t) = ϕε([xi,λi], ti, t) be the solution flow
of Eq. (27) integrated from the initial time ti to a generic
time t, using xi, λi at ti, u∗ in Eq. (26), α∗ in Eq. (23)
and λmee(t

+
s ) in Eq. (30). The energy-to-fuel-optimal problem

is to find λ∗i such that y(tf ) = ϕε([xi,λ
∗
i ], ti, tf ) satisfies

Eqs. (6) and (28).

III. INDIRECT METHOD

A. Analytic Derivatives

The variational method evaluates the gradients through the
state transition matrix (STM) and the chain rule. The STM
maps small variations in the initial conditions δyi over ti → t,
i.e., δy = Φ(t, ti)δyi. The STM is subject to

Φ̇(t, ti) = DyF Φ(t, ti) (37)

where DyF , the Jacobian matrix of dynamical equations Eq.
(27), has two different expressions based on whether u is
constant or not. Φ(ti, ti) = I14×14. Let z := [y, vec(Φ)] be
the 210-dimensional vector consisting of y and the columns of
Φ, where the operator ‘vec’ converts the matrix into a column
vector. There exists

ż = G(z)⇒

{
ẏ = F (y)

vec(Φ̇) = vec(DyF Φ)
(38)

Note that the integration of Φ matrix maps states and
costates along a continuous trajectory. When the discontinuity
is encountered at the switching time ts, the STM com-
pensation matrix, Ψ(ts), across the discontinuity should be
determined [40]. Suppose that there are N discontinuities at

t1, t2, · · · , tN , Φ(tf , ti) is calculated through the chain rule
as

Φ(tf , ti) =Φ(tf , t
+
N )Ψ(tN )Φ(t−N , t

+
N−1)Ψ(tN−1) . . .

. . .Φ(t−2 , t
+
1 )Ψ(t1)Φ(t−1 , ti)

(39)

Suppose that the discontinuity detected at ts is indicated by
a switching function S crossing a threshold η, there are two
possible cases that require to compute Ψ(ts):
• Case 1: S = Sε, ε = 0, η = 0 in the fuel-optimal prob-

lem. In this case, y is continuous but ẏ is discontinuous.
The thrust throttle u jumps between 0 and 1 at ts.

• Case 2: S = Sd, η = 0 for the energy-to-fuel-optimal
problem. In this case, both y and ẏ are discontinuous.
The thrust throttle u jumps between u(t±s ) and umin at
ts, if u(t±s ) 6= umin.

For both cases, the switching function S at t−s + dts of the
neighboring extremal trajectory must satisfy

S(y(t−s + dts), t
−
s + dts) = η (40)

Expanding S at t−s yields

dS =
∂S

∂y
dy(t−s ) +

∂S

∂t
dts

=

(
∂S

∂y
δy(t−s ) +

∂S

∂y
ẏ(t−s )δts

)
+
∂S

∂t
δts = 0

(41)

thus there exists

δts = − 1

Ṡ

∂S

∂y
δy(t−s ) (42)

In Case 1, since y is continuous across ts, there satisfies

y(t+s ) = y(t−s ) (43)

Taking full differentials on both sides of Eq. (43) yields

δy(t+s ) = δy(t−s ) + (ẏ(t−s )− ẏ(t+s ))δts (44)

Substituting Eq. (42) into Eq. (44) yields Ψ(ts) as

Ψ(ts) =
∂y(t+s )

∂y(t−s )
= I14×14 +

(
ẏ(t+s )− ẏ(t−s )

) 1

Ṡε

∂Sε
∂y

(45)

In Case 2, y(t+s ) is computed as

y(t+s ) = y(t−s ) + ∆y (46)

where ∆y = [07×1, ∆λmee, 0] and ∆λmee is computed by
Eq. (30). Taking full differential on both sides of Eq. (46)
yields

δy(t+s ) = δy(t−s ) +
∂∆y

∂y
δy(t−s ) + (ẏ(t−s )− ẏ(t+s ) + ∆ẏ)δts

(47)
where

∆ẏ =
∂∆y

∂y
ẏ(t−s ) +

∂∆y

∂t
(48)

Substituting Eq. (42) into Eq. (47) yields Ψ(ts) as

Ψ(ts) =
∂y(t+s )

∂y(t−s )

= I14×14 +
∂∆y

∂y
+
(
ẏ(t+s )− ẏ(t−s )−∆ẏ

) 1

Ṡd

∂Sd
∂y
(49)
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Remark 4: From Eqs. (45) and (49), it is clear that the
STM becomes ill-conditioned on singular arcs indicated by
either Ṡε(ts) = 0 or Ṡd(ts) = 0. The case Ṡε(ts) = 0 is not
considered in this work. The case Ṡd(ts) = 0, implying that
the spacecraft flies over the edge of the shadow at ts, may
occur for optimal trajectories with many revolutions. The ill-
conditioned STM deteriorates the performance of the shooting
method.

B. Switching Detection Technique

A switching time detection is twofold. First, knowing Ψ(ts)
at the switching time ts is indispensable for the accuracy of
gradients. Second, the integration error accumulates across the
discontinuity if the switching time is not explicitly detected.
Suppose that at consecutive time instants tk and tk+1, a
switching function S and the constant threshold η satisfy
(Sk − η) × (Sk+1 − η) < 0, where Sk := S(tk,y(tk)) and
Sk+1 := S(tk+1,y(tk+1)), the switching detection in [37] is
then implemented to find ts such that S(ts,y(ts)) = η. The
switching detection is embedded into the integration process,
with the accuracy set as 10−12.

However, the assumption (Sk−η)×(Sk+1−η) < 0 may not
hold. For example, suppose the shadow entrance is detected at
tk, but the spacecraft flies out of the shadow at tk+1, the time
detection of the shadow exit fails since S(tk) = 0. In this case,
the time instant t̃k ∈ (tk, tk+1) that satisfies (S(t̃k,y(t̃k)) −
η)× (Sk+1 − η) < 0 and |S(t̃k,y(t̃k))| > 10−12 is searched
first using the bisection method. Then the switching time ts ∈
(t̃k, tk+1) is detected using the method in [37].

Remark 5: It is assumed that the throttle switching time and
shadow switching time do not coincide. The proposed algo-
rithm fails if this assumption is violated. If this coincidence
occurs, since shadow constraints are physical constraints and
the engine switches on/off is not related to the minimization
of Hε, the costate and STM should be computed using Eqs.
(30) and (49), respectively. From u∗ in Eq. (26), it can be
verified that costates are continuous (πε = 0) in this case.

C. Continuation Scheme

Since the discontinuity produced by shadow constraints
narrows the convergence domain, the Nmax continuation is
proposed to approach the solution by gradually turning inactive
shadows into active shadows, achieved by increasing Nmax.
The combination of ε continuation and Nmax continuation is
employed.

There are mainly two possible schemes. The starter of both
schemes is the solution to the energy-optimal problem without
shadow constraints. The first strategy consists of determining
the energy-optimal solution with shadow constraints by using
Nmax continuation, and then determining the fuel-optimal
solution with shadow constraints by using ε continuation.
However, this strategy maybe not effective for many-revolution
transfers, since the ill-conditioned STM may occur during ε
continuation process. The second strategy consists of deter-
mining the fuel-optimal solution without shadow constraints
by using ε continuation, and then determining the fuel-optimal
solution with shadow constraints by using Nmax continuation.

u

t

Inactive Shadow

u

t

u

t

u

t

u

t

(a) (b) (c)

(d) (e)

Fig. 2. Position of the inactive shadow with respect to the bang-bang thrust
throttle profile.

This scheme is preferred since the ill-conditioned STM will
not be encountered unless at final few steps.

Figure 2 shows five possible cases related to the position of
the inactive shadow with respect to the bang-bang u profile.
When the inactive shadow is switched to the active shadow,
the u profile of case (e) is unchanged, while a new u profile
has to be sought for cases (a)-(d). The continuation process is
shown in Fig. 3, where the case (a) is employed without loss of
generality. In Fig. 3, let uζ be the thrust throttle for Nmax–th
time passage of the shadow, the fuel-optimal solution without
shadow constraints (Nmax = 0 and uζ = 0) is obtained first
through ε continuation. This solution is used as the initial
guess to search the fuel-optimal solution with Nmax = 1 and
uζ = 0 using the single shooting method. The algorithm may
fail due to the narrow convergence domain produced by the
control and costate discontinuity. Suppose that the fuel-optimal
solution with Nmax = 1 and uζ = 0 is obtained, but fails for
Nmax = 2 and uζ = 0, then the fuel-optimal problem with
Nmax = 2 and uζ = 1 is solved first. The uζ continuation
proceeds by gradually reducing uζ from uζ = 1 to uζ = 0.
Once the solution is obtained, the fuel-optimal solution with
Nmax = 3 and uζ = 0 is sought. This process continues until
Ns ≤ Nmax is true, or fails due to the ill-conditioned STM.

Remark 6: Doing ε and Nmax continuation simultaneously
requires a careful design, since the total number of eclipsed
arcs for the optimal trajectory is not known a priori. Addition-
ally, the proposed continuation scheme adds one active shadow
at one time. The number of active shadows added at one time
is the tradeoff between convergence and computational time.

Since u∗ is set to umin in Eq. (26) when the spacecraft is
located inside the active shadow, incorporating Nmax contin-
uation leads to the setting of umin as

umin =

{
uζ , if Ns > Nmax − 1 and Ns < Nmax

0 Otherwise
(50)

Thus, the value of umin is set to uζ for Nmax-th eclipse, while
umin is set to 0 for the rest of the trajectory.
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Fig. 3. Nmax Continuation scheme from the fuel-optimal solution without
shadow constraint (Nmax = 0 and uζ = 0) to the fuel-optimal solution with
Nmax = 2 and uζ = 0. uζ is the thrust throttle for Nmax–th time passage
of the shadow.

D. Integration Flowchart

The integration flowchart presented in [37] is insufficient
to solve low-thrust transfers involving Earth-shadow eclipses.
In this section, the flowchart is augmented to involve shadow
related branches.

For simplicity of discussion, let utype be the engine status,
the logic of which is

utype =


On, if u = 1

Medium, if u ∈ (umin, 1)

Off, if u = umin

(51)

The augmented flowchart is presented in Fig. 4. The inputs
required to execute one-step integration are 1) tk, the k–th time
step; 2) hp, the size of time step predicted by previous step of
integration; 3) zk, the full 210-dimensional state; 4) utype, the
engine status; 5) Ns(t), number of accumulated eclipses; 6)
ptype, the position of the spacecraft with respect to the shadow
defined in Eq. (18); 7) p̃type, the position of the spacecraft with
respect to the active shadow defined in Eq. (19); 8) umin, the
minimum level of thrust throttle; 9) uζ , the thrust throttle of
the Nmax–th time of the shadow crossing.

In Fig. 4, three branches separate at the beginning of
integration according to utype. For each integration block,
a prediction on zk+1, i.e., zk+1 = ψRK(zk, tk, tk + hp),
is executed, using variable-step seventh/eighth Runge–Kutta
integration scheme. Note that zk+1 is the state corresponding
to tk+1 = tk + hf , where hf is the corrected time step
according to the integration accuracy set as 1 × 10−14. The
value of ptype,k+1 corresponding to zk+1 is computed using
Eq. (18). Ns is updated as Ns ← Ns+0.5 if ptype 6= ptype,k+1,
which is then used to compute p̃type,k+1 in Eq. (19).

For utype being On or Medium, execution blocks are similar.
The branch of utype = On is depicted in the following.
utype = On implies that p̃type = Out and umin = 0. Since
the engine switches off when the active shadow is entered
into, the first task after the one-step integration prediction is
to check p̃type,k+1 at tk+1. If p̃type,k+1 = Out, the next step
is to check whether ptype equals to ptype,k+1. Even though
ptype does not affect the status of the engine, the detection of
ptype switching offers more information of the trajectory. If
ptype 6= ptype,k+1, Block 2 is executed to detect the shadow

switching time. If Sε < −ε is satisfied, the solution is saved
and ptype is updated to ptype,k+1. Otherwise, if Sε ≥ −ε, it
indicates that the throttle switching exists between [tk, tk+1],
the step hp is reduced and Ns is rollback as Ns ← Ns − 0.5.
When p̃type,k+1 = Out and ptype = ptype,k+1, the same
execution block on the branch utype = On of the flowchart
in [37] is implemented. Otherwise, if p̃type,k+1 = In, Block 2
is required to execute to determine the shadow switching time
ts. If Sε < −ε is satisfied, umin is set by Eq. (50), Block 3 is
executed, and utype is set to Off.

The most complex branch is the case when utype = Off. The
first task after one-step prediction is to check p̃type to verify
the reason that utype switches Off. If p̃type = In, implying that
the spacecraft is located inside the active shadow at k–th step,
the next task is to check whether the spacecraft is still inside
the active shadow at tk+1. If p̃type,k+1 = In, the solution is
saved. Otherwise, if p̃type,k+1 = Out, the spacecraft flies out
of the active shadow at tk+1. Block 2 is executed to determine
the shadow switching time ts. The u(t+s ) instantaneous after ts
is determined by the value of Sε with umin = 0. For example,
if Sε < −ε, utype is updated to On and Block 3 is executed.

If p̃type = Out, the spacecraft is located outside the active
shadow and utype switches Off due to Sε > ε. If p̃type,k+1 =
In, the spacecraft flies inside the shadow at tk+1. Then the
shadow switching time is detected. Since ∆u = 0, there is
no need to update STM, but the shadow status is updated if
Sε > ε. Otherwise, if p̃type,k+1 = Out and ptype = ptype,k+1,
it indicates that the Earth’s shadow is not encountered at tk+1,
the same execution block on the branch utype = Off of the
flowchart in [37] is implemented.

IV. NUMERICAL SIMULATIONS

The physical constants used are listed in Table I, where LU
is the Earth radius, VU =

√
µ/LU and TU = LU/VU. The

GTO to GEO transfer example from [22] is simulated, and the
corresponding initial and terminal orbital elements are listed
in Table II. Since the terminal inclination and eccentricity are
both set to null, the definitions of Ω and w are invalid, thus
they are set as free variables. Then the terminal conditions
Eq. (6) are determined by Eq. (1). Moreover, m0 = 100 kg,
Isp = 3100 s. All simulations are conducted under an Intel
Core i7–9750H, CPU@2.6 GHz, Windows 10 system with
MATLAB R2019a. The steps in ε continuation and uζ contin-
uation are ∆ε = 0.025 and ∆uζ = 0.1, respectively. Slightly
larger steps ∆ε ← 1.01 × ∆ε and ∆uζ ← 1.01 × ∆uζ are
used for the next step if the current step succeeds, otherwise,
half of the step is used. uζ continuation fails if ∆uζ < 0.005.
The maximum iteration for solving the NOCP is set as 150.

Numerical simulations for various thrust level Tmax =
[2, 0.5, 0.1, 0.035] N are executed. The corresponding energy-
optimal and fuel-optimal solutions, as well as the transfer
time tf , final mass mf , Nmax, Ns and computational time
(CT) are reported in Table III. The energy-optimal solutions
without shadow constraints (cases 1, 4, 7 and 10) are solved
first, which is used as the starter to find fuel-optimal solutions
without shadow constraints (cases 2, 5, 8 and 11) using ε
continuation. Fuel-optimal solutions with shadow constraints
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TABLE I
PHYSICAL CONSTANTS.

Physical constant Value

Earth gravitational constant, µ 398600.4418 km3/s2

Gravitational field, g0 9.80665 m/s2

Length unit, LU 6378.1371 km
Time unit, TU 806.8111 s

Velocity unit, VU 7.9054 km/s
Mass unit, MU 100 kg

Earth diameter, Dp 2 LU
Sun diameter, Ds 1391020 km

Earth-Sun distance, δp,s 1.4959787069 × 108 km

TABLE II
INITIAL AND TERMINAL CLASSICAL ORBIT ELEMENTS.

Type a (km) e i (deg) Ω (deg) w (deg) θ (deg)

GTO 24505 0.725 7 0 0 0
GEO 42165 0 0 free free free

for various Tmax and θs,i (case 3, 6, 9, 12-15) are further
found through Nmax continuation. For cases with θs,i = 0◦

(vernal equinox departure), accurate fuel-optimal solutions
are returned without encountering ill-conditioned STM for
Tmax = 2 N (case 3), 0.5 N (case 6) and 0.1 N (case 9).
On the other hand, approximate fuel-optimal solutions are
obtained for Tmax = 0.035 N (case 12). More computational
time is required when the thrust level is reduced and when ill-
conditioned STM occurs. Fuel-optimal solutions for different
thrust levels (cases 3, 6, 9, 12) are shown in Figs. 5. It can
be seen that the shadow of fuel-optimal trajectories exists near
apogee and thrust-off segments indicated by Sε appear around
perigee. From variations of u, Sε and Sd, it can be seen that
the bang-bang switching becomes more frequent as Tmax is
reduced.

More solution information of case 6 is provided. The cor-
responding fuel-optimal variations of a, e and i are shown in
Fig. 6. Costate discontinuities produced by shadow constraints
in Fig. 7 are clearly demonstrated. The computational time
in this case is ' 7 mins, while the continuation fails when
finite-difference method inherently embedded in MATLAB is
used. The failure is caused by the inaccuracy of the finite
difference method analyzed in the following. Differently from
the energy-optimal to fuel-optimal continuation, the control
of auxiliary solutions in the second continuation scheme is
discontinuous. Based on the optimal trajectory in Fig. 5b, the
gradient accuracy of the finite difference method is assessed.
The Jacobian obtained by analytic gradients is used as the
reference value, denoted as JAG(t). The formula of the central
finite difference method is used, as [41]

f ′(x) =
−f(x+ 2η) + 8f(x+ η)− 8f(x− η) + f(x− 2η)

12η

where η = 1 × 10−6 is a small perturbation step. The
obtained Jacobian is denoted as JFD(t). The gradient accuracy
of the finite difference method at a given time t is calcu-
lated as the maximum value in the element of the matrix
|JFD(t)− JAG(t)|.
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(a) Solution with Tmax = 2 N (case 3).
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(b) Solution with Tmax = 0.5 N (case 6).

0 5 10 15 20 25 30
0

0.5

1

0 5 10 15 20 25 30
-1

-0.5
0

0.5

0 5 10 15 20 25 30
0
2
4

(c) Approximate solution with Tmax = 0.1 N (case 9).
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(d) Approximate solution with Tmax = 0.035 N (case 12).

Fig. 5. Fuel-optimal solutions with different thrust levels and θs,i = 0◦ in
Table III. Left: fuel-optimal trajectories. Blue dashed line: thrust-off segments
outside shadow; red line: thrust-on segments; green dashed dot line: thrust-off
segments inside shadow ‘o’: initial point; ‘x’: terminal point. Right: variations
of u, Sε, and Sd w.r.t. time. Red dash line: threshold of Sd. Line types are
the same for Figs. 9 and 10.

Figure 8 shows the variation of the gradient accuracy
using the finite difference method. It can be seen that the
gradient accuracy deteriorates rapidly around the time of the
discontinuous control and the error is accumulated as time
increases. When the terminal state of an auxiliary trajectory is
close to the shadow entrance and exit, the inaccurate gradient
obtained by the finite difference method would deteriorate the
performance of the shooting method.

Additionally, the second fuel-optimal solution for this case
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TABLE III
SUMMARY OF SIMULATION RESULTS.

Case Type θs,i Tmax (N) (λ∗i )> tf (days) mf (kg) Nmax Ns CT (mins)d

1 EO w/oa / 2 [−0.024240,−0.042279, 0.000130, 0.039448,−0.000181,−0.000083, 0.075124] 2 93.84 / / /
2 FO w/ob / 2 [−0.026538,−0.062339, 0.000234, 0.033722,−0.002614,−0.000009, 0.062911] 2 94.74 / / 0.62
3 FOc 0◦ 2 [−0.029159,−0.057720,−0.000427, 0.041554,−0.008385,−0.000079, 0.077206] 2 94.22 3 3 1.54
4 EO w/o / 0.5 [−0.043971,−0.122824, 0.000083, 0.052453,−0.001645, 0.000040, 0.106335] 6 93.66 / / /
5 FO w/o / 0.5 [−0.041008,−0.132771, 0.000090, 0.040169,−0.002677, 0.000098, 0.083086] 6 94.12 / / 1.7
6 FO 0◦ 0.5 [−0.049630,−0.111368, 0.002182, 0.069476,−0.025579,−0.000004, 0.138935] 6 93.18 8 8 7.0
7 EO w/o / 0.1 [−0.042528,−0.114285, 0.000011, 0.052643,−0.000245, 0.000007, 0.103373] 30 93.73 / / /
8 FO w/o / 0.1 [−0.036987,−0.104961, 0.000024, 0.042263,−0.000462, 0.000011, 0.083938] 30 94.15 / / 6.0
9 FO 0◦ 0.1 [−0.040920,−0.102379, 0.004436, 0.058269,−0.041627, 0.000006, 0.105747] 30 93.63 29 29 43
10 EO w/o / 0.035 [−0.036844,−0.054583, 0.000016, 0.065573,−0.000096,−0.000006, 0.124880] 80 93.67 / / /
11 FO w/o / 0.035 [−0.033988,−0.063944, 0.000014, 0.054932,−0.000116,−0.000003, 0.102696] 80 93.96 / / 10
12 FO 0◦ 0.035 [−0.037486,−0.062639, 0.003888, 0.071624,−0.031690,−0.000004, 0.121337] 80 93.61 49 50 95
13 FO 90◦ 0.035 [−0.034889,−0.067054,−0.000268, 0.056064,−0.000141,−0.000003, 0.103954] 80 93.94 118 118 28
14 FO 180◦ 0.035 [−0.028093,−0.021725, 0.000015, 0.059236,−0.000069,−0.000007, 0.109418] 80 93.93 87 87 26
15 FO 270◦ 0.035 [−0.034330,−0.063464,−0.000270, 0.056766, 0.002185,−0.000004, 0.105290] 80 93.92 45 45 73

a energy-optimal solution without shadow constraints; b fuel-optimal solution without shadow constraints; c fuel-optimal solution with shadow constraints; d approximate computational time
starting from EO w/o.
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Fig. 6. Fuel-optimal variations of a, e and i for Tmax = 0.5 N and θs,i = 0◦

(case 6).

is obtained by using the first continuation scheme, as

λ∗i =[−0.048686,−0.049344, 0.003478, 0.093319,

− 0.042607,−0.000173, 0.180324]>

The corresponding fuel-optimal trajectory and variations of
u, Sε and Sd are shown in Fig. 9. The accurate bang-bang
solution is returned with Nmax = 8 and Ns = 8. Compared to
the solution in [22], both fuel-optimal trajectories pass through
8 times the shadow, and the variations of u almost coincide
with each other. The final mass of fuel-optimal solution in
[22] is 93.085 kg, while our solution results in 92.955 kg.
The slight difference exists since the explicit time dependence
of the shadow model is considered here. Compared to the
hyperbolic tangent smoothing method in [22], the desired
discontinuous bang-bang solution is obtained by our method.
The first scheme requires only ' 1.1 mins to obtain the
solution, faster than the second scheme, but the final mass of
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Fig. 7. Costate variations of the fuel-optimal solution for Tmax = 0.5 N and
θs,i = 0◦ (case 6).
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Fig. 8. Variation of the gradient accuracy w.r.t. the time using the finite
difference method.

this solution is lower than the final mass 93.18 kg obtained by
the second scheme. When the finite-difference method is used,
' 20 mins is required, taking much longer time than analytic
gradients. The first continuation scheme is further used to solve
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(a) Fuel-optimal trajectory.

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-3
-2
-1
0

0 1 2 3 4 5 6
0
2
4

(b) Variations of u, Sε and Sd.

Fig. 9. Second fuel-optimal solution for Tmax = 0.5 N and θs,i = 0◦.

cases 9 and 12. For Tmax = 0.1 N (case 9), an accurate
energy-optimal solution with shadow constraints is obtained
but ε continuation fails. For Tmax = 0.035 N (case 12), an
approximate energy-optimal solution with shadow constraints
is obtained, which fails to proceed ε continuation.

In order to further verify the effectiveness of the second
scheme, fuel-optimal solutions for Tmax = 0.035 with summer
solstice (θs,i = 90◦), autumnal equinox (θs,i = 180◦) and
winter solstice (θs,i = 270◦) departures are summarized as
cases 13–15 in Table III. The corresponding fuel-optimal
trajectories and variations of u, Sε and Sd are shown in
Fig. 10. For all three cases, accurate solutions are obtained
without encountering ill-conditioned STM, and final mass of
these three cases are close to each other. For the summer
solstice transfer, the spacecraft travels through the shadow
region at each revolution. For autumnal equinox transfer, the
initial point is located inside the shadow, and the shadow
region appear in the beginning of the transfer. For the winter
solstice transfer, additional shadow region appears in the last
few revolutions. Simulation tests reveal that the first scheme
solves cases 13 and 14 taking ' 45 mins and ' 70 mins,
respectively, slower than the second scheme, and it fails to
converge for case 15.

The comparison for both integration accuracy 1×10−14 and
1×10−16 are further executed, and the solutions coincide with
each other. The computational time for accuracy 1× 10−16 is
generally longer than that for accuracy 1×10−14 since smaller
step is used during the integration, but the exception is case
15. In this case, the computational time for accuracy 1×10−16

requires ' 40 mins, shorter than the computational time for
accuracy 1×10−14. This is mainly because the uζ continuation
is triggered for accuracy 1 × 10−14, while it is not triggered
for accuracy 1×10−16. Therefore, higher integration accuracy
generally requires longer computational time. It sometimes
leads to better convergence, thus shorter computational time.

V. CONCLUSION

This work considers the low-thrust optimization in presence
of Earth-shadow eclipses. The developed method incorporates
analytic derivatives, switching detection, and continuation with
an augmented integration flowchart. The advantages of the
proposed indirect method include that: 1) there is no need
to prescribe the thrust structure a priori; 2) it enables to
find many-revolution bang-bang solutions; 3) it provides ac-
curate gradients for robust convergence; 4) the possible ill-
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Fig. 10. Fuel-optimal solutions for Tmax = 0.035 N and different θs,i in
Table III.

conditioned STM can only occur in the final few iterations.
GTO to GEO mission simulations are conducted to test the
algorithm performance.

Future work will consider the following issues: (1) Although
the proposed flowchart suits time-optimal problems with
shadow constraints as well, a more robust continuation strategy
is required; (2) A higher-fidelity dynamical model, involving
Earth’s second zonal harmonics and Moon’s perturbation, is
necessary to improve the fidelity of many-revolution solutions.
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