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Abstract—This work studies non-coherent Rayleigh fading
channels subject to average- and peak-power constraints. Several
properties of the optimal input distribution are derived based on
the Karush-Kuhn-Tucker conditions. In particular, the capacity-
achieving distribution is characterized in the small peak and
average power regimes, upper and lower bounds on the optimal
input probabilities are presented, insights about the locations
of the support points are provided, and bounds on the channel
capacity are established.

I. INTRODUCTION

Rayleigh fading models help to characterize the impact of
multipath propagation in wireless communication. Wireless
channel signals encounter multiple paths due to reflections,
diffractions, and scattering, resulting in time-varying signal
distortions at the receiver. In this work, we consider non-
coherent models where the channel state information (CSI)
is unavailable at the receiver and transmitter. Non-coherent
Rayleigh fading is often observed for low-power or low-cost
wireless devices, short-range wireless links, or cases where
maintaining coherent detection is impractical or undesirable.

Although significant progress has been made in understand-
ing non-coherent communication, characterizing capacity re-
mains a formidable challenge. The objective of this study is to
investigate properties of capacity-achieving input distributions
when subjected to average-power and peak-power constraints.
We thereby gain insight into the limits of communication.
Besides the theoretical interest, properties of the optimal
distributions guide the design of practical coding schemes.

A. Channel Model
The input-output relationship of a Rayleigh fading channel

with additive white Gaussian noise (AWGN) is

V = HU +W (1)

where H ∼ CN (0, σ2
H), W ∼ CN (0, σ2

W ), and the input U
are mutually statistically independent. Neither the transmitter
nor receiver knows the value of H , but both know the statistics
of H . The input is subject to both average-and peak-power
constraints given by

E
[
|U |2

]
≤ P̃, (2)

P
[
|U | ≤ Ã

]
= 1

(
or equiv. |U | ≤ Ã a.s.

)
(3)

for some 0 ≤ P̃, Ã ≤ ∞. The capacity of the channel is

CR(P̃, Ã) = max
PU : E[|U |2]≤P̃, |U |≤Ã

I(U ;V ). (4)

B. Contributions and Paper Outline

This paper is organized as follows. Sec. II surveys the
literature and Sec. III derives equivalent channel models and
reviews the Karush-Kuhn-Tucker (KKT) conditions. Sec. IV
presents our main results: a characterization of the capacity-
achieving distribution in the small (but non-vanishing) peak
and average power regime, upper bounds on the values of
probability masses of the optimal input distribution, lower
bounds on the probabilities of the maximum point and zero
point of the capacity achieving distribution, and results on the
location of the support points. Most proofs are relegated to
the extended version of the paper [1] due to space constraints.
Sec. V concludes the paper.

C. Notation

All logarithms are to the base e. Deterministic scalar quanti-
ties are denoted by lower-case letters and random variables by
uppercase letters. For a random variable X and any measurable
set A ⊆ R we write the probability distribution of X by
PX(A) = P[X ∈ A]. The support set of PX is

supp(PX) = {x : for every open set D ∋ x

we have that PX(D) > 0}. (5)

When X is a discrete random variable, we write PX(x) for
PX({x}), i.e., PX is understood as a probability mass function
(pmf). The relative entropy between distributions P and Q is
denoted by D (P ∥Q).

II. BACKGROUND

The capacity-achieving input distribution of an AWGN
channel with an average-power constraint is Gaussian [2].
Interestingly, if the average-power constraint is replaced by a
peak-power constraint, then the capacity-achieving distribution
is discrete. This result was shown by Smith in [3] who
introduced a new approach connecting the support of the
capacity-achieving distribution to the zeros of analytic func-
tions. For the Rayleigh-fading channel, the capacity-achieving
distribution with an average-power constraint was conjectured
to be discrete by Richter in [4] by also appealing to properties
of analytic functions. This conjecture was proved by Abou-
Faycal et al. in [5] who also showed that there is positive-
probability mass point at zero input.

The capacity-achieving distribution of other fading channels
is also discrete. Gursoy et al. [6] considered a Rician channel



with an additional fourth moment constraint and showed that
the capacity-achieving distribution is discrete with a finite
number of points. In [7], Katz and Shamai studied noncoherent
AWGN channels with an average-power constraint and showed
that the optimal input amplitude is discrete with an infinite
number of mass points. Other channels for which either an
input distribution is discrete or some component of the optimal
input distribution (e.g., amplitude) is discrete include sym-
metric coherent vector additive Gaussian channels [8]–[11];
noncoherent block-independent AWGN channels [12]; and
Poisson channels [13]. Attempts to generalize these results to
additive channels are described in [14]–[17]. Generalizations
to multi-user channels such as multiple access and wiretap
channels can be found in [18] and [19]–[21], respectively. We
refer the reader to [22] for a summary of related results.

Recently, alternative techniques were applied to refine our
knowledge about the structure of the capacity-achieving dis-
tribution. For instance, [23] introduced two new techniques
to upper and lower bound the probabilities of the support
points; one of the methods relies on the strong data-processing
inequality. Another method to bound the probabilities can be
found in [24].

Characterizing the capacity-achieving input is often easier
in the low-power regime. For example, several papers show
that the optimal input distribution (or its magnitude for vector
AWGN channel) in the low peak-power regime is supported on
only two points [3], [10], [25]–[27]. We remark that all of these
results hold in the small but non-vanishing peak-power regime.
In contrast, for the non-coherent Rayleigh fading channel, to
the best of our knowledge it has not been shown that two-
point distributions are optimal at low power. Existing results
show only that, as the power vanishes, two-point distributions
attain the same first and second-order terms of the Taylor
expansion of the capacity around zero power [28]. These
binary distributions are called flash-signals in [28] since the
zero signal has large probability and one extremely large
signal value has a vanishing probability as the average power
approaches infinity. In this work, we show that binary inputs
are indeed optimal for small but non-vanishing power.

Bounds on the capacity of non-coherent fading channels
have also been considered in [29]–[31]; the interested reader
is referred to [32], [33] for a literature review. It is known that
the capacity in low-power regime scales as P and in the large
power regime scales as log logP where P denotes power.

III. CHANNEL MODELS AND KKT CONDITIONS

This section presents two equivalent channel models that
we use in our analysis. We also present auxiliary results and
tools such as the KKT conditions, and we briefly argue why
including an additional peak-power constraint is reasonable.

A. Equivalent Channel Models

We present a normalization of the Rayleigh channel model
which lets us focus on the distribution of X ≜ |U | σH

σW
.

Proposition 1. Let

Y = |H̃X + W̃ |2 (6)

where H̃ ∼ CN (0, 1) and W̃ ∼ CN (0, 1). Then, the capacity
of the Rayleigh channel model in (1) with average-power and
peak-power constraints as in (2) and (3) can be equivalently
expressed as the capacity of the channel in (6):

C(P̃, Ã) = max
PX : E[X2]≤P, X≤A

I(X;Y ) ≜ C(P,A), (7)

where P ≜ σ2
H

σ2
W
P̃ and A ≜ σ2

H

σ2
W
Ã. Moreover, the capacity-

achieving inputs and outputs of both channels can be related
as follows:

|Y ⋆| = |V ⋆|2

σ2
W

, and |X⋆| = |U⋆| σH

σW
. (8)

We now propose a channel model based on Prop. 1. This
model will be useful for studying capacity indirectly.

Proposition 2. The capacity of the channel model of (6) is
equivalent to the capacity of the exponential model

Y =
1

S
T (9)

where T ∼ Exp(1) and S are independent random variables,
with input constraints

E
[
1

S

]
≤ 1 + P,

1

1 + A2
≤ S ≤ 1. (10)

The capacity is

C(P,A) = max
PS : E[ 1

S ]≤1+P, S∈
[

1
1+A2

,1
] I(S;Y ). (11)

Proof. The channel transition law fY |X is an exponential
probability density function (pdf) of variable y with parameter
s = 1

1+x2 , i.e.,

fY |S(y|s) = s exp (−sy) , y ≥ 0. (12)

Hence, conditioned on S = s, we can write Y = 1
sT where

T ∼ Exp(1). The other results follow easily.

B. KKT Conditions

We next introduce the Karush-Kuhn-Tucker (KKT) condi-
tions for the optimality of the input distributions PX and PS

of the Rayleigh and exponential models, respectively.

Lemma 1. Let PX⋆ be an input distribution of the Rayleigh
channel model of Prop. 1, and let fY ⋆ be the induced optimal
output pdf. Then, PX⋆ is capacity-achieving if and only if there
exists λ ≥ 0 such that

D
(
fY |X(·|x)

∥∥ fY ⋆

)
≤ C(P,A) + λ(x2 − P), x ∈ [0,A],

(13)

D
(
fY |X(·|x)

∥∥ fY ⋆

)
= C(P,A)+ λ(x2 − P), x∈ supp(PX⋆)

(14)

Proof. See Proposition 2 and [5].



Lemma 2. Let PS⋆ be an input distribution of the exponential
model of Prop. 2, and let fY ⋆ be the induced optimal output
pdf. Then, PS⋆ is capacity-achieving if and only if there exists
λ ≥ 0 such that

D
(
fY |S(·|s)

∥∥ fY ⋆

)
≤ C(P,A) + λ

(
1

s
− 1− P

)
, s ∈

[
1

1 + A2
, 1

]
, (15)

D
(
fY |S(·|s)

∥∥ fY ⋆

)
= C(P,A) + λ

(
1

s
− 1− P

)
, s ∈ supp(PS⋆). (16)

Proof. See [5].

Note that the Lagrange multiplier λ that accounts for
the average-power constraint is the same for the different
formulations of the KKT conditions. Indeed, λ depends only
on the capacity as

λ =
∂

∂P
C(P,A) (17)

and it is a function of P and A.
Next, we introduce the following functions:

ΞR(x; fY ⋆) ≜ D
(
fY |X(·|x)

∥∥ fY ⋆

)
− C(P,A)− λ(x2 − P),

(18)

ΞE(s; fY ⋆) ≜ D
(
fY |S(·|s)

∥∥ fY ⋆

)
− C(P,A)

− λ

(
1

s
− 1− P

)
, (19)

that let us rewrite the KKT conditions as follows:

Rayleigh Model:
{

ΞR(x; fY ⋆) ≤ 0 x ∈ [0,A]
ΞR(x; fY ⋆) = 0 x ∈ supp(PX⋆)

(20)

Exponential Model:

{
ΞE(s; fY ⋆) ≤ 0 s ∈

[
1

1+A2 , 1
]

ΞE(s; fY ⋆) = 0 s ∈ supp(PS⋆)
(21)

While the KKT conditions refer to channels with the same
capacity, certain proofs are easier with one or another model.
We will convert and report the results in the Rayleigh model.
We also distinguish between two different types of zeros.

Definition 1. Suppose that s⋆ is a zero of ΞE(s; fY ⋆). Then, s⋆

is called a non-nodal zero if and only if both of the following
two conditions hold:

• s⋆ ∈ (0, 1) (i.e., s⋆ is not at the boundary of the support);
and

• Ξ′
E(s

⋆; fY ⋆) = 0 (i.e., s⋆ is critical point) .
Otherwise, s⋆ is referred to as nodal zero.

Remark 1. s⋆ = 1 is a nodal zero.1

Remark 2. All internal global maxima of ΞE are non-nodal
zeros, and we have Ξ′′

E(s
⋆; fY ⋆) ≤ 0.

1In [5], it was shown that s⋆ = 1 is a support point.

Remark 3. The point s⋆ = 1
1+A2 may or may not be a support

point; when it is, it may or may not be a nodal zero. For
example, if P = ∞, then s⋆ = 1

1+A2 is a nodal zero. In
addition, if A2 is much larger than P, then s⋆ = 1

1+A2 might
not be a support point.

C. Why Peak Power is Needed

For non-coherent channels subject only to the average-
power constraint, flash signaling achieves the capacity slope
for P → 0 [28]. Flash signaling is not peak-power limited,
i.e., the maximum support point x⋆

max converges to infinity as
P goes to zero.

Proposition 3. Let PX⋆ be the capacity-achieving input dis-
tribution, and let

x⋆
max(P,A) = argmax{supp(PX⋆)} (22)

be its largest amplitude. Then we have

lim
P→0

lim
A→∞

x⋆
max(P,A) = ∞, lim

P→0
lim

A→∞
PX⋆(x⋆

max) = 0.

(23)

On the other hand, for A → ∞ and for P as small as
10−6, we compute x⋆

max ≈ 2.6746. A similar argument can
be made for those P’s at which a new mass point appears
in PX⋆ . Since at those P’s the evolution of the capacity-
achieving input distribution is abrupt, considering a peak
power constraint has several advantages. First, the constraint
is physically reasonable and, for sufficiently large A < ∞,
the capacity is almost identical to the capacity with only the
average-power constraint while being mathematically more
tractable. However, many of our results will hold for A = ∞.

IV. MAIN RESULTS

The next theorem presents our main results. Let x⋆
max =

max supp(PX⋆) and ζ =
E[(1+(X⋆)2)−1]
E[(1+(X⋆)2)−2] .

Theorem 1. Suppose P ∈ (0,∞] and A ∈ (0,∞], and let
PX⋆ be the capacity-achieving input distribution. Then:

1) (Small Average- and Peak-Power Regime)
• If A2 ≤ P, then λ = 0 (i.e., the average-power constraint

is not active) and x⋆
max = A;

• If A2 <
√
2, then λ = 0 or supp(PX⋆) = {0,A};

• If λ = 0, then supp(PX⋆) = {0,A} or A2 ≥ e
3−e .

2) (On the Location of Support Points)
• 0 ∈ supp(PX⋆);
• If the average-power constraint is active, then

P ≤ P

1− PX⋆(0)
≤ (x⋆

max)
2

≤ min

{
A2,

1 + P

PX⋆(x⋆
max)

− 1

}
, (24)

ζ − 1 ≤ (x⋆)2, x⋆ ∈ supp(PX⋆) \ {0}. (25)

Also, if a non-nodal support point x⋆ ̸= 0 exists, then

max

{√
2,

3

2
ζ − 1

}
≤ (x⋆

max)
2, (26)



√
2

1− 1
1+(x⋆

max)
2

− 1 ≤ (x⋆)2, x⋆ ∈ supp(PX⋆) \ {0}.

(27)

• If the average-power constraint is not active, then

ζ − 1 ≤ (x⋆)2 ≤ A2, x⋆ ∈ supp(PX⋆) \ {0}. (28)

Also, if a non-nodal support point x⋆ ̸= 0 exists, then

(x⋆)2 ≤ A2 − 1

2
, x⋆ ∈ supp(PX⋆) \ {0}. (29)

3) (Upper Bounds on the Probabilities) Let η̃ = A2

(1+A2)
1+ 1

A2
.

Then:
• If the average-power constraint is not active:

PX⋆(x⋆) ≤ e−
C(P,A)

η̃ , x⋆ ∈ supp(PX⋆); (30)

• If the average-power constraint is active:

PX⋆(x⋆
max) ≤ e−

C(P,A)
η̃ . (31)

Moreover, if A = ∞, then:

PX⋆(x⋆
max) ≤ e−

C(P,A)− (1+P)

1+(x⋆
max)2

+1

η̃ ≤ e−
C(P,A)

η̃ . (32)

• Location dependent bound:

PX⋆(x⋆) ≤ min{P,A2}
(x⋆)2

, x⋆ ∈ supp(PX⋆). (33)

Moreover, if the average-power constraint is active, then

PX⋆(0) ≤ 1− P

(x⋆
max)

2
≤ 1− P

A2
. (34)

4) (Lower Bounds on the Probabilities)
• If the average-power constraint is active and there

exists a non-nodal support point, then

PX⋆(0) ≥ 1− min{P,A2}√
2− 1

; (35)

• If the average-power constraint is not active and there
exists a non-nodal support point, then

PX⋆(x⋆
max) ≥

0.3

(A2 + 1)A2eA2+1(1− e−1)
. (36)

The results in Theorem 1 depend on the value C(P,A) and
on the Lagrange multiplier λ which are unknown. Therefore,
it is useful to have upper and lower bounds.

Proposition 4. Fix some P ∈ (0,∞] and A ∈ (0,∞]. Then,

C(PA) ≤ C(P,A) ≤ C(PA), (37)

where PA := min(P,A2) and

C(PA) =
{
log(1 + PA), (38)

log(1 + log(1 + PA)) + 1 + Γ

(
1− 1

1 + log(1 + PA)

)}
,

C(PA) = log

(√
(e−γ−1 log(PA + 1))

2
+ 1

)
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A2 =
√
2

from Eq. (44)

Fig. 1. Small average- and peak-power regime regions.

≥ max {0, log(log(1 + PA)))− γ − 1} , (39)

where Γ is the Gamma function and γ ≈ 0.577 is the Euler-
Mascheroni constant. Moreover, the gap between the bounds
is at most 4 nats.

We emphasize that Proposition 4 does not give the tightest
possible bounds but shows how capacity scales in the large
power regime.

Proposition 5. If the average-power constraint is active, then:
• P 7→ λ is a decreasing function of P;
• If A < ∞, then

0 ≤ λ ≤ C(P,A)

P
≤ 1; (40)

Also, if there exists a non-nodal support point x⋆, then

λ ≥ 3e−1

1 + (x⋆
max)

2
− ζ(3e−1 − 1). (41)

• If A = ∞, then

0 ≤ 1

1 + (x⋆
max)

2
≤ λ ≤ C(P,A)

P
≤ 1. (42)

A. Discussion

Fig. 1 subdivides the space spanned by P and A2 into
regions, each characterized by specific properties. The region
R0 includes the pairs (P,A2) outside of the Small Average-
and Peak-Power Regime defined in Theorem 1. The union⋃3

i=1 Ri constitutes the Small Average- and Peak-Power
Regime region. To better understand when the average-power
constraint is active, consider the following result.

Lemma 3. Suppose supp(PX⋆) = {0,A} and define

ρ := E [log fY (Y ) | X = 0]− E [log fY (Y ) | X = A]

− log(1 + A2) (43)



∫ ∞

0

(
1

1 + A2
e
− y

1+A2 − e−y

)
log

(
(1− PX⋆(A))e−y +

PX⋆(A)

(1 + A2)
e
− y

1+A2

)
dy + log(1 + A2) = 0. (44)

TABLE I
PROPERTIES OF THE SMALL-POWER REGIONS.

Region Average-power
constraint PX⋆ properties

R1 OFF max supp(PX⋆ ) = A
R2 ON supp(PX⋆ ) = {0,A}
R3 OFF supp(PX⋆ ) = {0,A}

where

fY (y) =

(
1− P

A2

)
e−y +

P

A2

1

1 + A2
e
− y

1+A2 , y ≥ 0.

(45)
If ρ > 0, then the average-power constraint is active with λ =
ρ
A2 and PX⋆(A) = P

A2 . Otherwise, if ρ ≤ 0, the average-power
constraint is not active (λ = 0) and PX⋆(A) is a solution to
the equation in (44).

By combining Theorem 1 and Lemma 3, the regions R1 to
R3 are characterized by properties summarized in Table I.

B. Numerical Results for the Optimal Input Distribution

We provide further insights on PX⋆ and its support for the
regions R0–R3 of Fig. 1. For some values of A2, we evaluated
an estimate P̂X⋆ of the capacity-achieving distribution by
adapting the numerical algorithm in [21] to the Rayleigh fad-
ing channel. The new algorithm iteratively updates a tentative
pmf P̂X⋆ and stops when the KKT conditions in (20) are
satisfied within a small tolerance ε, see [21, Sec. 5.1].

Fig. 2 shows the support of the pmf estimate P̂X⋆ vs. P, for
A2 = 1, 6.25, 100. The size of the blue dots qualitatively shows
the probability associated with each mass point. Comparing
Fig. 2 to Fig. 1 shows that our definition of the small power
regime regions Ri’s is conservative, especially for R1, and
that one could improve the characterization of R1 and R3.
Moreover, as expected, for each A2 the pmf estimates do not
change in the regions with inactive average power constraint,
i.e., in R1 and R3. Finally, for the wide range of points given
by P,A2 ≤ 200, we have |supp(PX⋆)| = 2.

V. CONCLUSION

We studied non-coherent Rayleigh channels and developed
properties of the capacity-achieving input distribution based on
the KKT conditions. Both average- and peak-power constraints
were considered. Our main focus was on small, but non-
vanishing, average- and peak powers. We showed that the
capacity-achieving distribution is binary for sufficiently small
values of the power constraints. We also derived upper and
lower bounds on the optimal input probability values, provided
insight into the mass point positions, and derived bounds on
the channel capacity.
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Fig. 2. Approximate optimal pmf support vs. P for A2 = 100, 6.25, 1.
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