
POSTER: High-Level Synthesis of the OpenMP runtime to
improve the generation of parallel accelerators

Giovanni Gozzi
giovanni.gozzi@polimi.it
Politecnico di Milano

Milan, Italy

Michele Fiorito
michele.fiorito@polimi.it
Politecnico di Milano

Milan, Italy

Serena Curzel
serena.curzel@polimi.it
Politecnico di Milano

Milan, Italy

Fabrizio Ferrandi
fabrizio.ferrandi@polimi.it

Politecnico di Milano
Milan, Italy

CCS CONCEPTS
• Hardware→ Electronic design automation; Reconfigurable
logic and FPGAs; Emerging languages and compilers.

KEYWORDS
FPGA, OpenMP, High-Level Synthesis
ACM Reference Format:
Giovanni Gozzi, Michele Fiorito, Serena Curzel, and Fabrizio Ferrandi. 2023.
POSTER: High-Level Synthesis of the OpenMP runtime to improve the
generation of parallel accelerators. In 20th ACM International Conference
on Computing Frontiers (CF ’23), May 9–11, 2023, Bologna, Italy. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3587135.3592182

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are reconfigurable hard-
ware components that can be programmed using a hardware specifi-
cation language such as Verilog or VHDL. Writing code to program
an FPGA requires a set of different skills than software program-
ming, for example, related to the use of signals and registers instead
of variables and the explicit description of parallelism. High-Level
Synthesis (HLS) tools can help by automatically translating soft-
ware specifications into hardware descriptions.

This work aims to further improve the HLS process by adding
the possibility to synthesize parallel applications to increase the
performance of the resulting hardware accelerator. In particular,
we extend the open-source Bambu HLS tool [2] to support the
generation of parallel architectures described with OpenMP direc-
tives (pragmas). We draw inspiration from the Svelto architecture
[3], but we employ a fundamentally different approach: instead of
pattern matching and substituting a small subset of pragmas, we
use Bambu to synthesize part of the OpenMP LLVM runtime. In
fact, using pattern recognition, the compilation flow applies spe-
cific transformations on code regions marked by the programmer,
and it becomes difficult to move instructions outside or inside the
parallel region. Moreover, the set of patterns that can be recognized
is always limited and difficult to extend; the implementation of the
runtime, instead, improves the performance and flexibility of the
HLS compiler.

In the proposed synthesis flow, all the OpenMP runtime functions
and primitives are mapped on low-level C or Verilog components.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3592182

The resulting architecture is highly configurable: several parallel
cores are instantiated, and a group of OpenMP threads is allocated
on each of them; context switches are performed to avoid idle cycles
when memory requests are issued. The architecture is particularly
suitable for complex applications (e.g., graph processing) with ir-
regular memory access and work distribution patterns.

2 PROPOSED SYNTHESIS FLOW
Users identify parallel regions in the input code (C/C++) using
OpenMP pragmas, which can also specify other important informa-
tion like synchronization mechanisms and the number of threads.
Then, the hardware generation flow in Bambu starts from the high-
level OpenMP representation and uses the Clang LLVM frontend
to lower it to an LLVM intermediate representation (LLVM IR)
containing calls to OpenMP runtime functions. Calls to runtime
functions are generated from the translation of OpenMP constructs,
and they describe how to perform the parallelization. They contain
particular operations called primitives that are an extension of the
C language and serve for low-level synchronization and thread han-
dling. Bambu replaces runtime function calls in the LLVM IR with
corresponding calls to functions from a modified implementation
of the LLVM OpenMP runtime library, which has been streamlined
and reduced to the essential in order to generate small and fast
components when synthesized on FPGA. For example, the logic to
support the reuse of threads has been removed because hardware
threads cannot be reassigned to other tasks that require a different
datapath and controller. Low-level synchronization primitives such
as ’wait for thread’ or ’barrier reached’ have been implemented
as Verilog components. Bambu HLS performs its standard set of
analyses and transformations on the IR to optimize the code and
prepare it for hardware synthesis. Finally, the remaining calls to
OpenMP primitives are mapped on hardware components from the
Bambu library and connected to the rest of the design.

3 ARCHITECTURE
The architecture generated by Bambu is highly configurable: the
user can tune every element using parameters and, in this way, im-
prove the performance of the resulting hardware. Bambu replicates
each OpenMP parallel region in the input code and creates parallel
hardware cores; a set of OpenMP threads is statically allocated to
each core. Every core has a hardware module that manages the
active context and performs a context switch between threads when
there is an operation with a latency greater than one. A typical
situation that requires context switching is when a thread accesses
the external memory: instead of stalling the execution for tens of
clock cycles, the execution state (context) is saved, and the core
is dedicated to the execution of a different thread. Registers and

https://doi.org/10.1145/3587135.3592182
https://doi.org/10.1145/3587135.3592182

CF ’23, May 9–11, 2023, Bologna, Italy Giovanni Gozzi, Michele Fiorito, Serena Curzel, and Fabrizio Ferrandi

Configuration Cycles LUTs Register Slice DSP Frequency Speed Up
CC-Baseline 22463720 1404 1198 499 0 192.20 1
CC-1core-8cs 3061152 5944 1893 1958 0 111.63 7.34
CC-8core-1cs 2889317 15470 11829 5286 0 124.35 7.77
CC-8core-8cs 610005 43601 13916 13474 21 105.70 36.82

Table 1: GAPBS Connected Components
Results obtained on the Connected Components (CC) test of the GAP Benchmark Suite [1] on a Xilinx xc7vx690t FPGA with a target frequency of 100 MHz.
The external memory has 16 channels with a latency of 200 ns, connected through the NoC to 8 accelerator channels. The design does not utilize any BRAMs.
DSPs are used to compute the bounds of the loop iterations; on core 0, and when there is only a context on the core, they are simplified by the synthesis tool.

Parallel region (N Channels)

External memory

NoC N-to-K

Parallel region

Thread
synchronization

Sequential region Sequential code

K channels

N channels

Core 0
CS manager

Core 1 Core N....

CS manager CS manager

Local memory Local memory Local memory

omp_outlined

omp_barrier

Figure 1: Multi-threaded architecture with a network-on-
chip to arbiter requests to the external memory.

local memory are replicated on each core to store data from multi-
ple contexts; Bambu performs a liveness analysis to only replicate
hardware elements that are actually needed when a context switch
is performed.

Several components are allocated to guarantee the correct ex-
ecution and synchronization between threads, corresponding to
the critical, wait, barrier, and reduction OpenMP primitives. The
architecture is generated starting from the OpenMP runtime, so it
is not limited to a specific set of patterns and it can be adapted to
input programs containing e.g. nested loops or OpenMP sections.

Storage for variables can be allocated in local or external memory,
or memory belonging to other cores (this is the case of reduction
variables). Every core has a memory channel to retrieve variables
that are allocated outside of it, filters are automatically generated to
redirect the request to the correct location. The number of cores is
not linked to the number of external memory channels going out of
the FPGA, which can lead to interconnection problems. Instead of
using hardware modules to arbiter the incoming requests, we intro-
duced a custom network-on-chip (NoC) interconnect that connects
multiple sources to multiple destinations keeping the clock period
low. The NoC consists of a group of interconnected nodes that can

be crossed by a memory request in a number of cycles proportional
to the logarithm of the number of nodes. The proposed architecture
can be connected to different kinds of external memory, banked or
not banked, and it can manage multiple pending requests.

4 CONCLUSION
Preliminary results reported in Table 1 show that our approach can
speed up applications by adding more cores, performing context
switches, or both. Until the load on the memory channels is limited,
the performances obtained are near the theoretical limits, and they
are satisfying even as traffic increases due to an increase in cores
or contexts issuing requests.

By synthesizing the OpenMP runtime, we extended Bambu with
a new approach to the problem of generating parallel hardware for
FPGA, improving the integration between the front-end compilers
and the back-end synthesis engine. The proposed approach features
a highly configurable architecture that can be adapted to parallelize
complex applications written in OpenMP. The architecture can
achieve both SIMD (e.g., OpenMP for) and MIMD (e.g., OpenMP
sections) parallelism and it can hide the latency of external memory
accesses through context switching without losing clock cycles.

There are more OpenMP constructs that we would like to sup-
port in the future, like for example tasks and atomic operations.
Another possible improvement is the introduction of a broadcasting
mechanism to forward a response from the external memory to
multiple threads; this would enable the generation of efficient ac-
celerators for sparse applications, as multiple accesses to the same
memory location would quickly become a bottleneck otherwise. All
of these developments will allow us to improve the quality of the
generated accelerators, but also to further extend the applicability
of the proposed approach to more and more application domains1.

REFERENCES
[1] S. Beamer, D. Patterson, and K. Asanović. 2021. GAP Benchmark Suite. https:

//github.com/sbeamer/gapb
[2] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M. Min-

utoli, C. Pilato, and A. Tumeo. 2021. Bambu: an Open-Source Research Framework
for the High-Level Synthesis of Complex Applications. In Proceedings of the 58th
ACM/IEEE Design Automation Conference (DAC). 1327–1330.

[3] M. Minutoli, V. G. Castellana, N. Saporetti, S. Devecchi, M. Lattuada, P. Fezzardi,
A. Tumeo, and F. Ferrandi. 2022. Svelto: High-Level Synthesis of Multi-Threaded
Accelerators for Graph Analytics. IEEE Trans. Comput. 71, 3 (2022), 520–533.

1This research has been partially supported by the HERMES project, which has received
funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement N° 101004203.

https://github.com/sbeamer/gapb
https://github.com/sbeamer/gapb

	1 Introduction
	2 Proposed synthesis flow
	3 Architecture
	4 Conclusion
	References

