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Abstract: - This work deals with the use of the space vector concept to characterize the harmonic content of a 
three-phase voltage/current. It is shown that the shape of the trajectory of the space vector on the complex plane 
(i.e., the locus diagram) provides information about its harmonic content. In particular, it is shown that each 
harmonic contributes to the locus diagram with a number of lobes depending on the relative angular frequency 
between the harmonic and the fundamental component. To this aim, the different contributions of positive-
sequence and negative-sequence harmonics is explained and put into evidence with specific examples. The 
expressions for the magnitude and phase of the space vector as functions of the harmonics are derived 
analytically. Numerical examples are provided to show how the locus diagram can represent a three-phase 
quantity with positive-sequence and negative-sequence harmonics.  
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1   Introduction 
Power quality is an issue of paramount importance 
in modern electrical systems. Many aspects, ranging 
from voltage/current magnitude and frequency 
variations, fluctuation, unbalance and harmonics 
have been extensively investigated in the relevant 
literature in the past decades, [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], [11], [12]. One of the most 
interesting mathematical approaches for power 
quality assessment, emerged in recent years, is the 
use of the space vector concept in a three-phase 
system, [13], [14], [15], [16], [17], [18], [19], [20], 
[21], [22], [23]. A space vector is a time-domain 
complex-valued function representing a set of three 
phase variables (i.e., phase voltages or currents). 
Under ideal sinusoidal conditions the trajectory of 
the space vector on the complex plane (i.e., the 
locus diagram of the space vector) is a circle. In 
case of an event like a single-phase or a double-
phase fault the locus diagram takes an elliptical 
shape. The geometrical characteristics of the space 
vector ellipse allow the detection and classification 
of the fault.  

The use of the space-vector locus diagram for 
the distortion (i.e., harmonic) analysis of a three-
phase system, however, is a new approach not yet 
exploited in the relevant literature. In fact, to the 
Author’s knowledge, the idea of locus diagrams for 

harmonic analysis and power quality 
characterization can be found only in one paper in a 
very early stage, [24]. In that paper, the Authors 
propose the general idea that each harmonic can be 
identified by a specific shape of the locus diagram. 
However, that idea was not furtherly investigated, 
and no analytical details were provided.  

In this work, the impact of harmonics on the 
locus diagram of a space vector is investigated 
analytically. In particular, by resorting to the series 
expansion of space vectors, the analytical 
expressions for the magnitude and the phase of the 
space vector are derived for each harmonic 
component. It is shown that the effect on the locus 
diagram is not related only to the harmonic order, 
but also to the positive or negative sequence of each 
harmonic, according to the well-known Symmetrical 
Component Transformation (SCT). Thus, the locus 
diagram of a space vector can provide information 
about the harmonic content in a very concise way. 
This is a unique property because, unlike a phasor 
diagram, a single locus diagram can fully represent 
a three-phase quantity with harmonics. From this 
viewpoint, the results derived in the paper provide 
an original contribution to power quality analysis of 
distorted three-phase variables.  

The paper is organized as follows. In Section 2 
the space vector definition and series expansion are 
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recalled. In Section 3 the expressions for the 
magnitude and phase of the space vector are 
analytically derived as functions of the harmonics of 
the three-phase quantity represented by the space 
vector. In Section 4 some numerical examples are 
shown in order to show typical shapes of locus 
diagrams for specific harmonics. Conclusions are 
presented in Section 5.  
 

 

2   Space-Vector Series Expansion 
Let us consider the time-domain phase currents 
[𝑖𝑎  𝑖𝑏 𝑖𝑐]𝑇 at a specific point of a given three-phase 
system (the following derivations hold in the case 
where the phase voltages [𝑣𝑎 𝑣𝑏 𝑣𝑐]𝑇 were 
considered instead of the currents).  

The Clarke transformation of the phase currents 
[𝑖𝑎  𝑖𝑏 𝑖𝑐]𝑇 is defined as, [25], [26]: 
 

 [

𝑖𝛼

𝑖𝛽

𝑖0

] = 𝑻 [

𝑖𝑎

𝑖𝑏

𝑖𝑐

] = √
2

3
[

1 −1

2
−1

2

0 √3
2

−√3

2
1

√2

1

√2

1

√2

] [

𝑖𝑎

𝑖𝑏

𝑖𝑐

] (1) 

 
where the transformation matrix T is orthogonal, 
i.e., 𝑻−1 = 𝑻𝑇, such that (1) is power invariant.  

In the relevant literature it has been shown that 
under the assumption of a symmetrical three-phase 
system (i.e., a three-phase system consisting of 
components with equal phases and equal coupling 
between phases) the α and β variables defined 
through the Clarke transformation (1) fulfil the same 
equations. Thus, a new complex variable (i.e., the 
space vector) combining the α and β variables can 
be defined as: 
 

 𝑖(̅𝑡) = 𝑖𝛼(𝑡) + 𝑗𝑖𝛽(𝑡)              (2) 
 
where 𝑗 = √−1. Therefore, the space vector is 
defined as a complex valued function whose real 
and imaginary parts are given by the α and β 
components, respectively, provided by the Clarke 
transformation (1). 

Under sinusoidal steady-state conditions it can 
be shown that the space vector (2) can be written as: 
 

 𝑖(̅𝑡) = 𝐼𝑝𝑒𝑗𝜔𝑡 + 𝐼𝑛
∗𝑒−𝑗𝜔𝑡      (3) 

 
where asterisk denotes complex conjugate, whereas 
𝐼𝑝 and 𝐼𝑛 are the positive- and negative-sequence 
phasor components, respectively, according to the 
well-known Symmetrical Component 
Transformation (SCT) in the phasor domain, [27], 
[28]: 
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where 𝑎 = 𝑒𝑗2𝜋 3⁄ .  

Thus, under sinusoidal conditions, according to 
(3) the space vector (2) is given by the sum of two 
rotating phasors: the positive-sequence phasor 𝐼𝑝 
rotating with positive angular frequency +𝜔, and 
the complex conjugate of the negative-sequence 
phasor 𝐼𝑛 rotating with negative angular frequency 
−𝜔. The corresponding trajectory of the space 
vector on the complex plane is elliptical, with semi-
major and semi-minor axes given by |𝐼𝑝| + |𝐼𝑛| and 
||𝐼𝑝| − |𝐼𝑛||, respectively. 

Under distorted conditions, i.e., periodic non-
sinusoidal waveforms, the space vector (2) can be 
expanded in series, [23]. By adopting the well-
known complex form of the Fourier series, we can 
write: 
 

 𝑖(̅𝑡) = ∑ 𝐼𝑘𝑒𝑗𝑘𝜔𝑡+∞
𝑘=−∞               (5) 

 
where 
 

 𝐼𝑘 =
1

𝑇
∫ 𝑖(̅𝑡)𝑒−𝑗𝑘𝜔𝑡𝑑𝑡

𝑇

0
               (6) 

 
Notice that, by generalizing (3), each frequency 

component |𝑘|𝜔 results in the sum of two 
components in the Fourier series (5), i.e.,  
 

𝑖�̅�(𝑡) = 𝐼|𝑘|𝑒
𝑗|𝑘|𝜔𝑡 + 𝐼−|𝑘|𝑒

−𝑗|𝑘|𝜔𝑡 (7) 
 
where the first component is the positive-sequence 
SCT component rotating with positive angular 
frequency +|𝑘|𝜔, whereas the second component is 
the negative-sequence (complex conjugate) SCT 
component rotating at negative angular frequency 
−|𝑘|𝜔. 

Notice that, since the space vector is a complex 
valued function, the two Fourier coefficients 𝐼|𝑘| and 
𝐼−|𝑘| are not related by complex conjugation, i.e., 
𝐼−|𝑘| ≠ 𝐼|𝑘|

∗ . 
Thus, the Fourier series expansion (5) provides 

a double decomposition of the space vector. The 
first is the conventional frequency decomposition in 
harmonic frequencies |𝑘|𝜔. The second 
decomposition provides, for each harmonic 
component, the sequence decomposition in a 
positive sequence component rotating with positive 
angular frequency +|𝑘|𝜔, and a negative-sequence 
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component rotating with negative angular frequency 
−|𝑘|𝜔.  

In the general case, all the frequency and 
sequence components can be found in the series 
expansion (5). In many applications, however, due 
to the phase symmetry of the three-phase system, 
the phase variables 𝑖𝑎 , 𝑖𝑏 , 𝑖𝑐 are characterized by the 
same distortion with 𝑇 3⁄  time shift, i.e., 𝑖𝑏(𝑡) =
𝑖𝑎(𝑡 − 𝑇 3⁄ ), and 𝑖𝑐(𝑡) = 𝑖𝑎(𝑡 + 𝑇 3⁄ ). It means 
that the waveforms 𝑖𝑏(𝑡) and 𝑖𝑐(𝑡) are exact replicas 
of the distorted waveform 𝑖𝑎(𝑡) provided that a 𝑇 3⁄  
translation is introduced.  

Under such assumption, with simple algebra it 
can be shown that the series expansion (5) can 
include only the frequency components with 
frequency index 𝑘 = 1 + 3𝑚 with 𝑚 =
0, ±1, ±2, ±3, …, [29], [30]. Thus, according to the 
double decomposition outlined above, the allowed 
positive-sequence harmonics are given by the list 
{𝐼1, 𝐼4, 𝐼7, 𝐼10, … }, whereas the allowed negative-
sequence harmonics are given by 
{𝐼−2, 𝐼−5, 𝐼−8, 𝐼−11, … }.  
 

 

3   Space-Vector Locus Diagrams 
The space vector defined in (2) is a complex valued 
function of time whose trajectory on the complex 
plane, according to (5), can provide information 
about the harmonic content and the sequence 
decomposition. In this Section the main properties 
of such trajectories, called locus diagrams, will be 
investigated under the assumption of symmetrical 
phase distortion introduced at the end of Section II.  

The simplest case is the sinusoidal non-distorted 
case (see (3)). Indeed, when only the fundamental 
component 𝐼1 is present it means that only the 
positive-sequence component 𝐼𝑝 = 𝐼1 at 
fundamental frequency is present. The 
corresponding locus diagram of the space vector 
rotating with positive angular frequency +𝜔 is a 
circle with radius |𝐼1|. 

According to the assumption of symmetrical 
phase distortion, the next harmonic component is 
𝐼−2, i.e., a negative-sequence (complex conjugate) 
phasor rotating with negative angular frequency 
−2𝜔. The resulting space vector is the sum of the 
two rotating phasors. Notice that, in terms of 
relative rotation, the second harmonic phasor is 
rotating with angular frequency −3𝜔 with respect to 
the fundamental frequency phasor. The two rotating 
phasors and the resulting space vector are depicted 
in Figure 1. For the sake of simplicity, we assumed 
that the two phasors were aligned at 𝑡 = 0. By using 

the well-known cosine rule the magnitude of the 
space vector can be readily evaluated: 
 
|𝑖(̅𝑡)| = √|𝐼1|2 + |𝐼−2|2 − 2|𝐼1||𝐼−2|cos(𝜋 − 3𝜔𝑡) 

 
 = √|𝐼1|2 + |𝐼−2|2 + 2|𝐼1||𝐼−2|cos(3𝜔𝑡)  (8) 
 

By introducing normalization with respect to the 
fundamental component |𝐼1| we obtain: 
 
 𝑖(𝑡) =

|𝑖(̅𝑡)|

|𝐼1|
= √1 + 𝑟2

2 + 2𝑟2cos(3𝜔𝑡) (9) 
 
where 𝑟2 = |𝐼−2| |𝐼1|⁄ . Notice the term 3𝜔𝑡 in (9) 
due to the relative angular frequency between the 
rotating phasors 𝐼1 and 𝐼−2. Indeed, as far as the next 
harmonic is considered, i.e., the rotating positive-
sequence phasor 𝐼4, from Figure 2 and by using the 
cosine rule we obtain a n expression similar to (9): 
 
 𝑖(𝑡) =

|𝑖(̅𝑡)|

|𝐼1|
= √1 + 𝑟4

2 + 2𝑟4cos(3𝜔𝑡) (10) 
 
where 𝑟4 = |𝐼4| |𝐼1|⁄ .  

The above results can be generalized to the 
contribution of any harmonic. Indeed, by 
considering that the allowed harmonic indices are 
given by 𝑘 = 1 + 3𝑚, the corresponding 
normalized absolute value of the space vector is 
given by: 
 

𝑖(𝑡) =
|𝑖(̅𝑡)|

|𝐼1|
= √1 + 𝑟𝑘

2 + 2𝑟𝑘cos(3𝑚𝜔𝑡) 

(11) 
 

Notice that since 𝑚 = 0, ±1, ±2, ±3, …, the 
same behavior is obtained for each positive and 
negative value of m, i.e., for two rotating phasors 
(one positive-sequence and one negative-sequence 
phasor). Thus, the two phasors 𝐼4 and 𝐼−2 (𝑚 =
 ±1) rotating at the same relative angular frequency 
3𝜔 with respect to 𝐼1, the two phasors 𝐼7 and 𝐼−5 
(𝑚 =  ±2) rotating at the same relative angular 
frequency 6𝜔 with respect to 𝐼1, and so on. 

Although the time behavior of the space vector 
magnitude (9) and (10) is the same, from Figure 1 
and Figure 2 it is apparent that the space vector 
phase 𝜑(𝑡) is different in the two cases.  
From Figure 1, by using the sine rule: 
 

 |𝑖(̅𝑡)|

sin(𝜋−3𝜔𝑡)
=

|𝐼−2|

sin(𝜔𝑡−𝜑(𝑡))
    (12) 

 
we obtain: 
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 𝜑(𝑡) = 𝜔𝑡 − arcsin (
𝑟2

𝑖(𝑡)
sin(3𝜔𝑡))      

(13) 
 
where 𝑖(𝑡) is given by (9). 

Similarly, for the case in Figure 2 we obtain: 
 

 𝜑(𝑡) = 𝜔𝑡 + arcsin (
𝑟4

𝑖(𝑡)
sin(3𝜔𝑡))     (14) 

 

 
Fig. 1: Rotating phasors and space vector in the case 
of a negative-sequence second harmonic 
 

 
Fig. 2: Rotating phasors and space vector in the case 
of a positive-sequence fourth harmonic 
 
where 𝑖(𝑡) is given by (10). 

Notice the negative sign in (13) related to the 
phasor 𝐼−2 rotating with negative angular frequency, 
whereas the positive sign in (14) related to the 
phasor 𝐼4 rotating with positive angular frequency. 

Thus, in the general case we can write: 
 

 𝜑(𝑡) = 𝜔𝑡 + arcsin (
𝑟𝑘

𝑖(𝑡)
sin(𝑚𝜔𝑡))     (15) 

 
where 𝑚 = 0, ±1, ±2, ±3, … provides the right sign 
in the equation.  

Finally, the space-vector locus diagram is the 
diagram of the complex valued function with 
magnitude 𝑖(𝑡) and phase 𝜑(𝑡). 
 
 

4  Numerical Validation and 

Investigation 
In this Section, (11) and (15) are used to draw locus 
diagrams of space vectors under distorted 
conditions. Typical shapes of locus diagrams will be 
obtained and discussed. 

As a first example, let us consider the following 
phase currents including fundamental and second 
harmonic components: 𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) +
0.3 ∙ cos(2𝜔𝑡)], 𝑖𝑏(𝑡) = 𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) =
𝑖𝑎(𝑡 + 𝑇 3⁄ ). Notice the large relative magnitude of 
the second harmonic (i.e., 30%) to the aim of 
highlighting its effects on the locus diagram. By 
using (9) and (13) (i.e., the general results (11) and 
(15) specialized to the second harmonic) the locus 
diagram represented by the black line in Figure 3 
was obtained. Notice the three lobes due to the 
relative angular frequency 3𝜔 between the 
fundamental and the negative-sequence second 
harmonic. Moreover, notice the sharp shape of the 
three lobes due to the fact that the two rotating 
phasors (Figure 1) rotate in the opposite direction. 
The blue line in Figure 3 shows the case of the 
fourth harmonic, i.e., 𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) +
0.3 ∙ cos(4𝜔𝑡)], 𝑖𝑏(𝑡) = 𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) =
𝑖𝑎(𝑡 + 𝑇 3⁄ ). Also in this case we obtain three lobes 
because the relative angular frequency between the 
fundamental and the fourth harmonic is still 3𝜔. 
However, notice that the shape of the lobes in this 
case is round, due to the fact that the two rotating 
phasors rotate in the same direction (Figure 2). The 
red line in Figure 3 shows the case where both the 
second and the fourth harmonics are present with 
equal magnitude, i.e., 𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) +
0.15 ∙ cos(2𝜔𝑡) + 0.15 ∙ cos(4𝜔𝑡)], 𝑖𝑏(𝑡) =
𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) = 𝑖𝑎(𝑡 + 𝑇 3⁄ ). The resulting 
locus diagram has an intermediate behavior between 
the black and the blue lines.  

The second example, represented in Figure 4, is 
related to the case of fifth and seventh harmonics. In 
particular, the black line in Figure 4 corresponds to 
the case of fifth harmonic, i.e., it was assumed 
𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) + 0.2 ∙ cos(5𝜔𝑡)], 𝑖𝑏(𝑡) =
𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) = 𝑖𝑎(𝑡 + 𝑇 3⁄ ). Notice that, 
since in this case the relative angular frequency 
between the fundamental and the negative-sequence 
fifth harmonic is 6𝜔, the number of lobes is six. 
Also in this case the sharp shape of the lobes can be 
observed due to the fact that the two rotating 
phasors rotate in the opposite direction. On the 
contrary, when the seventh harmonic is considered 
(blue line), i.e., 𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) + 0.2 ∙
cos(7𝜔𝑡)], 𝑖𝑏(𝑡) = 𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) =
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𝑖𝑎(𝑡 + 𝑇 3⁄ ), the six lobes have round shape 
because the two rotating phasors rotate in the same 
direction. When both the fifth and the seventh 
harmonics are present, i.e., 𝑖𝑎(𝑡) = √2[1 ∙
cos(𝜔𝑡) + 0.1 ∙ cos(5𝜔𝑡) + 0.1cos(7𝜔𝑡)], 𝑖𝑏(𝑡) =
𝑖𝑎(𝑡 − 𝑇 3⁄ ), 𝑖𝑐(𝑡) = 𝑖𝑎(𝑡 + 𝑇 3⁄ ), the 
corresponding behavior (red line) is intermediate 
between the black and the blue lines.  

Figure 5 shows the case of fifth and seventh 
harmonics with phases different from zero. In this 
specific case, the phase of the fundamental was 
assumed 𝜋 6⁄ , whereas for the fifth and the seventh 
harmonics the phases were assumed 𝜋 4⁄  and 𝜋 3⁄ , 
respectively. Notice that the locus diagrams show 
same shapes and a simple rotation with respect to 
Figure 4 due to the phases different from zero.  

Figure 6 shows an example of mixed harmonics, 
i.e., rotating phasors with different relative angular 
frequency with respect to the fundamental. In this 
case it was assumed 𝑖𝑎(𝑡) = √2[1 ∙ cos(𝜔𝑡) + 0.3 ∙
cos(2𝜔𝑡) + 0.2 ∙ cos(5𝜔𝑡)], 𝑖𝑏(𝑡) = 𝑖𝑎(𝑡 − 𝑇 3⁄ ), 
𝑖𝑐(𝑡) = 𝑖𝑎(𝑡 + 𝑇 3⁄ ). The second harmonic is 
responsible of three lobes as in Figure 3, whereas 
the fifth harmonic is responsible of six lobes as in 
Figure 4. Notice that the characteristic marks of 
both the harmonics can be still observed in Figure 6. 
Of course, in the more general case where many 
harmonics are present, it is expected that the 
characteristic shape of each harmonic cannot be 
clearly identified. Thus, the analysis derived in this 
work is mainly devoted to the case where the 
frequency spectrum has one dominant harmonic. 

 
 

5   Conclusion 
The locus diagram of a space vector has been used 
to provide a concise representation of a three-phase 
variable with harmonics. It has been shown that the 
number of lobes of the diagram is related to the 
harmonic order, whereas the shape of the lobes is 
related to the positive or negative sequence of the 
harmonic. In fact, the number of lobes depends on 
the relative angular frequency between the harmonic 
and the fundamental components. Thus, for 
example, it was made clear that a positive-sequence 
fourth harmonic provides the same number of lobes 
(i.e., three) as a negative-sequence second harmonic 
because both space vectors rotate with angular 
frequency equal to three times the angular frequency 
of the fundamental component. Similar 
considerations can be extended to higher order 
harmonics. 

Future work will be devoted to further 
investigate the analytical properties of locus 

diagrams, with particular focus on the case of 
superposition of harmonics with similar magnitude. 
Indeed, the results proposed in this paper hold in the 
case of one dominant harmonic. However, in many 
practical cases the concurrent contribution of several 
significant harmonics must be evaluated. 

 

 
Fig. 3: Locus diagram of the space vector in case of 
second harmonic (black line), fourth harmonic (blue 
line), and both the harmonics (red line) 
 

 
Fig. 4: Locus diagram of the space vector in case of 
fifth harmonic (black line), seventh harmonic (blue 
line), and both the harmonics (red line) 
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Fig. 5: Locus diagram of the space vector in case of 
fifth harmonic (black line) and seventh harmonic 
(blue line) with phases different from zero. A 
change in the phase values results in diagram 
rotation with respect to Figure 4 
 

 
Fig. 6: Locus diagram of the space vector in case of 
both second and fifth harmonics. The three lobes 
corresponding to the second harmonic (Figure 3) 
and the six lobes corresponding to the fifth 
harmonic (Figure 4) can be still observed  
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