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Abstract 
The Itelyum Regeneration used oil re-refining plant in Pieve Fissiraga currently employs 
a condition-based maintenance strategy for its thermodeasphalting (TDA) section, 
particularly focusing on the TDA T-401 column. This strategy involves monitoring the 
real-time pressure differential (ΔP) between the column's top and bottom, which increases 
in time due to fouling phenomena. Maintenance is scheduled when ΔP exceeds a 
predetermined empirical threshold, ensuring that the T-401 column operates within 
normal operations limits. However, this approach has limitations with non-conventional 
used oils. To address this, a data-driven machine learning algorithm, previously 
successful in predicting key performance indicators of the PH-401B furnace in the TDA 
section, was applied to the T-401 column datasets. This algorithm, based on Gaussian 
Process Regressions, effectively predicts the evolution of ΔP and reduces the time during 
which T-401 operates in suboptimal conditions. The implementation of this machine 
learning approach marks a significant improvement in the maintenance strategy, shifting 
from a static, condition-based approach to a dynamic, predictive one, thus ensuring more 
efficient and reliable operations, even with non-conventional used oil. 
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1. Introduction 
Maintenance is a crucial aspect of every industrial plant to ensure continuity of operations 
and safety of the workers. Typical approaches in the European industrial context are 
corrective, preventive, opportunistic, condition-based, and predictive maintenance 
(Bevilacqua and Braglia, 2000). The combination of a vacuum distillation column and its 
feedstock fired heater are critical pieces of equipment in crude oil refineries and used oil 
re-refineries that suffer from fouling due to the characteristics of the heavy hydrocarbon 
feed, thus requiring careful maintenance planning (Fuentes et al., 2007; Morales-Fuentes 
et al., 2014). One of the most robust and efficient processes for the regeneration of used 
oil is based on the patented Revivoil® technology, and is currently operated in the Itelyum 
Regeneration re-refining facility in Pieve Fissiraga, Lodi, Italy (Gallo, 2016). The 
maintenance approach in the case of the TDA section of the process is typically condition-
based, using the pressure differential across pieces of equipment as a sentinel key 
performance indicator to be monitored. Maintenance is planned once the parameter 
overcomes a warning threshold value. This static approach is typical for the refining 
industry, where fouling is an ever-present problem. Data-driven approaches have shown 
good results in modeling fouling in refinery equipment such as heat exchangers, with 
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better fitting compared with equation-based, mechanistic modeling approaches, which 
instead often show poor results due to the extremely complex and partially random nature 
of fouling phenomena (Mei et al., 2023). This work uses said data-driven algorithms to 
develop a dynamic predictive maintenance strategy that is more effective in avoiding run-
time within suboptimal operating regions and it is more adaptable to changes in feedstock 
composition, a typical situation for used oil waste. 

2. Materials and Methods 
2.1. Current Maintenance Strategy 
The thermodeasphalting (TDA) section of the Revivoil® process works by fractionating 
dehydrated used oil in a vacuum column. The main products from the TDA T-401 column 
are three semi-finished base lube oil cuts. The TDA column starts every run with a 
project-specified pressure differential between top and bottom which is characterized by 
a dynamic evolution in time, as shown in Figure 1. The graph reports normalized values 
to preserve industrial secret, which have been cleared of gross errors by applying a robust 
methodology (Manenti and Buzzi-Ferraris, 2009). The vertical axis shows the pressure 
differential (ΔP) normalized with respect to the project value, which is the one observed 
at every start-of-run. The horizontal axis shows the length of run normalized so that the 
longest run is divided into ten equally and arbitrarily long time periods (τ). Figure 1 shows 
two curves, each representing a run in which T-401 was processing a certain type of used 
oil. Used oil type “A” is representative of a typical used oil that is treated in Pieve 
Fissiraga facility. Used oil type “B” is a non-conventional type of used oil, more volatile 
than type “A”, for which an industrial test was carried out to understand the possible 
impact on the existing re-refining technology. Both curves show an evolution in time in 
which the ΔP gradually increases, firstly at a relatively slow pace, followed by a sudden 
and rapid degeneration, which is a typical fouling behavior for distillation systems 
working with heavy and unstable hydrocarbon feedstock (Seegulam et al., 2017).  

 
Figure 1. Normalized pressure differential in the TDA column vs time for two types of used oil 
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The evolution of the ΔP in time may be explained by an initial, gradual reduction of the 
effective cross sectional area in the column packed beds, which corresponds to a gradual 
increment in the overall pressure differential. When the ΔP approaches the flooding value 
in one (or more) of the beds, gas and liquid fail to flow correctly through the column, 
eventually leading to a unit shutdown (Rocha et al., 1993). The graph in Figure 1 also 
shows two important thresholds. The first is the warning threshold of 2 mmHg/mmHg, 
which is the value of normalized ΔP at which, according to the historical condition-based 
strategy, maintenance must be scheduled. This threshold has been determined by a 
statistical analysis on the ΔP evolution in time with typical used oil (type “A”). The 
second is the normal operations threshold of 2.5 mmHg/mmHg, which is the value at 
which T-401 starts to perform poorly due to suboptimal hydraulic working conditions, 
thus it is independent from the type of used oil that is being processed. The strategy works 
well for the case with conventional used oil of type “A”, in which T-401 works in an 
inefficient operating region only for a short amount of time, roughly equal to 0.8τ. 
However, the strategy proved to be quite poor for the case with the non-conventional used 
oil of type “B”. The different composition of the oil lead to an unexpected fast worsening 
of the column conditions, with a significant amount of T-401 run time inside the 
inefficient operating region, roughly equal to 1.6τ. 
 
2.2. Data-driven Algorithm for Predictive Maintenance  
Machine-learning-based frameworks have already been successfully implemented in the 
domain of Pieve Fissiraga re-refinery. Some examples of this are the performance 
prediction of the PH-401B furnace of the TDA section (Galeazzi et al., 2023a) and the 
development of a surrogate model for the amine scrubbing section of the plant (Galeazzi 
et al., 2023b, 2022). The data-driven algorithm shown in the work by Galeazzi et al. 
(2023a) was already successfully applied to forecast the pressure differential across the 
PH-401B furnace, which has a dynamic evolution in time due to fouling phenomena. 
Given the data-driven nature of the algorithm that requires no physical description of the 
fundamental phenomena governing a given process unit, it is possible to apply it on the 
T-401 datasets previously shown in Figure 1, to understand the forecast capabilities of 
the method and the possible implications of its usage inside a predictive maintenance 
strategy. The algorithm performs a regression of real plant time-dependent datasets by 
using two different methodologies, a polynomial regression and a Gaussian Process 
Regression (GPR), then performs future forecasting of the possible evolution of the 
dataset. The general polynomial relationship between ΔP and time is shown in Eq. (1), 
where θ are the features of the model, nP is the selected degree of the polynomial, t is the 
time, and ε is the residual normally distributed error (Galeazzi et al., 2023a). 

ΔP(t) =� θiti + ε
nP

i=0

 (1) 

The GPR method uses Gaussian Processes to model the dataset. According to this 
methodology, the time-dependent dataset is modeled as a function of some unknown 
functions of time f(t), and to specify a prior distribution over each function f(t) that is 
Gaussian (Galeazzi et al., 2023a). The advantage of this type of approach is that it is 
possible to model complex relationships in the data without specifying model parameters 
(Rasmussen and Williams, 2008), a feature that is ideal for modeling a complex 
phenomenon such as fouling in the vacuum TDA T-401 column. The functional form of 
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a Gaussian Process expressing ΔP as a function of time is shown in Eq. (2), where m(t) 
and k(t,t’) are respectively the mean and covariance functions (Galeazzi et al., 2023a). 

ΔP(t,t') = GP{m(t),k(t,t')} (2) 

The covariance functions included in the method (also referred to as kernels) are the 
Linear (LIN), the Radial Basis Function (RBF), and the Rational Quadratic (RQ) kernels. 
The optimal solution for the regression is found through a greedy search in which the 
kernels are combined through specific operators by following the local optimum at each 
combination step rather than finding the global optimum, due to computational 
constraints (Galeazzi et al., 2023a). 

3. Results and Discussion 
3.1. Application of a Novel Predictive Maintenance Strategy 
The aforementioned data-driven algorithm is applied to the dataset shown in Figure 1. 
Considering a horizontal time axis divided into 10τ periods as shown previously in Figure 
1, it was found that an acceptable compromise between prediction accuracy and length of 
run to be fed to the algorithm is a dataset with a length of 7τ. Forecast accuracy is shown 
in Figure 2. It is possible to notice that the most probable evolution in time predicted by 
the algorithm (the orange dashed line in the middle of the green-shaded prediction area) 
almost never precisely follows the real data from the plant. This is to be expected due to 
the complexity of the situation that is being analysed, which consists of a gradual 
increment in ΔP due to fouling that gradually modifies the hydraulic behaviour of the T-
401 column, until an unfeasible operating region characterized by flooding is approached. 
The abrupt change from a feasible to an unfeasible hydraulic operating region translates 
effectively in an abrupt change in the behaviour of the ΔP as a function of time. The data-
driven nature of the algorithm does not allow it to model the future change in the 
behaviour of the ΔP if no signs of this change are present in past data. Despite this, it is 
interesting to notice that the natural variability of the dataset generates a 95% confidence 
interval for the prediction which almost in all cases, shown in Figure 2, fits the real data 
up to the normal operations limit of 2.5 mmHg/mmHg. This can be explained by 
observing that the time period of 7τ includes both a “clean” operating condition which 
oscillates around the start-of-run value of ΔP, and a later different operating condition in 
which the ΔP starts increasing at a certain rate due to fouling phenomena. This effective 
change in the underlying physics generates a variability in the data that is noticed by the 
method, which then proposes a more conservative confidence interval for the forecast. 
The reason why the algorithm overall predictive capabilities are remarkably different 
between type “A” and type “B” oil is due to the unexpected early occurrence of the 
unfeasible hydraulic working condition for type “B” oil, with no past data showing the 
sign of this change. A similar behaviour would be shown for oil “A” as well, if enough 
time was given to the system. Defining a robust and adaptable strategy for maintenance 
in this domain is crucial. One may define a predictive-maintenance approach based on 
ΔP forecasting combined with a proper reference threshold, namely the normal operations 
limit. In this case, a dataset having a length of 7τ is used as input, and the algorithm is 
rolled daily. Daily rolling stops when the 2.5 mmHg/mmHg normal operations limit falls 
within the 95% forecast confidence interval. This threshold is used since it is 
representative of T-401 hydraulics and thus it is independent from the oil type. 
Maintenance can be scheduled for the day in which it is forecasted with a 95% confidence 
interval that the 2.5 mmHg/mmHg threshold will be overcome. Table 1 reports T-401 run 
time in the suboptimal operating region above the normal operations limit under different 
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strategies. It is possible to see that in three cases out of four, the algorithm allows the 
length of the suboptimal operating region to be reduced down to zero. In those three cases, 
the algorithm contains within the 95% confidence interval the moment in which T-401 
overcomes the normal operations limit, meaning that the prediction can be reliably used 
to schedule the maintenance much in advance compared to what usually happens with the 
condition-based approach. The only case in which the prediction does not provide benefits 
is the polynomial regression for used oil of type “A”. It is interesting to notice that 
Gaussian Process Regressions proved to be effective both with type “A” and type “B” oil. 

 

Figure 2. Forecasts on the ΔP time profile for used oil of type “A” (a) and type “B” (b) 
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Table 1. T-401 run time in suboptimal operating region under different strategies 

Used oil 
type 

Condition-based 
approach 

Polynomial predictive 
approach 

GPR predictive 
approach 

Type “A” 0.8 τ 0.8 τ 0.0 τ 
Type “B” 1.6 τ 0.0 τ 0.0 τ 

4. Conclusions 
The work has shown the limitations of a conventional condition-based maintenance 
strategy applied to a thermodeasphalting section in a used oil re-refinery. This approach 
is acceptable for typical used oil due to the consistency of its composition, but it fails 
when non-conventional, more volatile feedstock is processed, leading to long periods of 
run time inside a suboptimal operating region. It is possible to solve this problem by 
applying a data-driven algorithm to T-401 datasets. The algorithm predicts correctly the 
evolution in time of the pressure differential between top and bottom of the column up to 
the normal operations limit of 2.5 mmHg/mmHg, inside a 95% confidence interval. This 
allows to schedule the maintenance in advance and avoid altogether suboptimal run time 
periods. Gaussian Process Regressions have proven to be systematically better for this 
purpose, even with non-conventional used oil feedstock. Prediction capabilities of the 
algorithm may be upgraded in the future with hybrid modelling.  
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