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Abstract: Automated vibration-based structural health monitoring (SHM) strategies have been
recently proven to be promising in the presence of aging and material deterioration threatening the
safety of civil structures. Within such a framework, ensuring high-quality and informative data is
a critical aspect that is highly dependent on the deployment of the sensors in the network and on
their capability to provide damage-sensitive features to be exploited. This paper presents a novel
data-driven approach to the optimal sensor placement devised to identify sensor locations that
maximize the information effectiveness for SHM purposes. The optimization of the sensor network
is addressed by means of a deep neural network (DNN) equipped with an attention mechanism, a
state-of-the-art technique in natural language processing (NLP) that is useful in focusing on a limited
number of important components in the information stream. The trained attention mechanism
eventually allows for quantifying the relevance of each sensor in terms of the so-called attention
scores, thereby enabling to identify the most useful input channels to solve the relevant downstream
SHM task. With reference to the damage localization task, framed here as a classification problem
handling a set of predefined damage scenarios, the DNN is trained to locate damage on labeled data
that had been simulated to emulate the effects of damage under different operational conditions. The
capabilities of the proposed method are demonstrated by referring to an eight-story shear building,
characterized by damage states possibly located at any story and of unknown severity.

Keywords: attention mechanism; optimal sensor placement; sensor networks; structural health
monitoring; deep learning; damage identification

1. Introduction

Civil structures such as buildings, highways, tunnels and bridges are the backbone of
our modern society [1]. Aging and ever-increasing extreme loading conditions threaten
such systems, stressing the need of SHM strategies to detect and identify any deviation from
the damage-free state, ultimately allowing for reducing maintenance costs and avoiding
potential tragic events.

Traditionally, the condition assessment of civil structures is carried out through non-
destructive testing and visual inspection, which can provide only local health assessment
and highly depend on personal expertise. Inservice remote vibration-based SHM is instead
a standard and widespread approach for the continuous and automated global health
monitoring (see, e.g., [2,3]), allowing for assessing damage from the vibration response
in terms of, e.g., acceleration or displacement multivariate time series acquired with per-
vasive sensing systems [4,5]. As these SHM techniques rely on their capability to extract
damage-sensitive features from raw sensor recordings, ensuring a satisfactory quality and
the informativeness of recorded data is a critical aspect. Besides the limited amount of avail-
able sensors due to installation costs, the optimization of sensor deployment in the network
is a key aspect in order to maximize the information effectiveness for SHM purposes.
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The optimal sensor placement (OSP) problem was systematically addressed in the
literature; for an overview, interested readers can refer to [6]. Notable contributions in
this field have been achieved by means of the Fisher information matrix and its related
metrics [7,8], information entropy [9,10], and the value of information [11,12].

This work proposes a novel approach to the OSP, leveraging on data-driven methods
empowered by deep learning (DL) algorithms. Its key component is the use of an attention
mechanism [13,14] in a neural network, trained in a supervised fashion to resolve an SHM
task by exploiting structural response data from a set of feasible sensor locations. Besides
allowing for addressing the considered SHM task, the trained DNN also enables to identify
the most useful input channels by assigning an attention score to each sensor.

The use of DL in SHM is very effective in automatizing the feature engineering stage
required to improve the effectiveness of a damage detection strategy. Indeed, DL allows for
automatizing the selection and extraction of optimized damage-sensitive features through
an end-to-end learning processes, to ultimately relate them with the corresponding struc-
tural states. Nevertheless, supervised techniques require labeled data referring to the
possible damage states of the structure that cannot be obtained for real civil structures. To
address this, we resorted to a simulation-based approach (see, e.g., [15,16]), by adopting the
physics-based model of the structure to be monitored, allowing for systematically simulat-
ing the effect of damage on the structural response under different operational conditions.

The proposed methodology was investigated through the virtual monitoring of an
eight-story shear building, with reference to the damage localization task. The latter was
framed as a classification problem involving a set of predefined damage states, possibly
located at any story. The obtained results confirm the capabilities of the proposed approach
in terms of both damage localization and optimal sensor placement.

2. SHM Methodology

The proposed methodology is detailed as follows: the composition of the training set
is specified in Section 2.1; the working principle of the attention mechanism is described in
Section 2.2; the setup of the proposed OSP approach is explained in Section 2.3.

2.1. Datasets Definition

Considering an observation time window (0, T) that is short enough to assume in-
variant operational and damage conditions, a training set D is assembled by collecting
vibrational data from a virtual sensing network deployed to feature Nu feasible sensor
locations, and a sampling period ∆t. The training set D is built from the assembly of I
instances as follows:

D = {(Ui, yi)}I
i=1 , (1)

with each instance consisting of vibrational time histories Ui = U(xi, yi, δi) = [u1, . . . , uNu ]i ∈
RNu×L shaped as Nu arrays of L = 1 + T/∆t measurements. This was obtained from
a numerical model of the structure to be monitored for the corresponding Npar input
parameters xi ∈ RNpar defining the operational conditions (for instance the loadings acting
on the structure), and for the relevant damage state characterized by yi and δi, with
yi ∈ {0, . . . , Y} that labels the specific damage scenario that the structure undergoes while
collecting the i-th instance from among a set of predefined Y damage states, each referring to
a different damage location, and with yi = 0 identifying the damage-free baseline. Damage
was modeled as a selective reduction in the material stiffness of amplitude δi, taking place
within the predesignated region associated to yi. In this work, xi and δi were not considered
to be part of the label, as only the damage localization task is addressed. To populate D,
the parametric input space was assumed to display a uniform probability distribution for
each parameter, and it was sampled via the latin hypercube rule. Unless necessary, index i
is dropped in the remainder of the paper for ease of notation.
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2.2. Attention Mechanism for Data Analytics in SHM

In the neural network community, attention is a mechanism to mimic the cognitive
attention behavior that is useful in adaptively focusing on a few but important components
of the data stream. This is achieved by means of learnable weights optimized through
gradient descent algorithms that can change at runtime as a function of the input data.
Originally proposed for neural machine translation problems [13], attention is a state-of-
the-art technique in NLP. The main reason behind its popularity is that it allows for coding
the data stream into a series of embeddings and learning how to adaptively choose a subset
of them, thus preventing early information from becoming lost, as is often the case when
processing long sequences with sequence-to-sequence recurrent encoder–decoders.

The corresponding working principle can be described as mapping a query and a set
of key-value pairs to an output, computed as a weighted sum of the values, and weights
assigned by a compatibility function of the query with the corresponding key. Queries,
keys, and values can be obtained in several ways, and most often are the output of previous
layers in the neural network. In this work, the scaled dot-product attention introduced
in [14] was employed as an effective and efficient form of self-attention. The input consisted
of a set of mQ queries Q ∈ RmQ×dQ of length dQ, of a set of mK keys K ∈ RmK×dK of
length dK, and of a set of mK values V ∈ RmK×dV of length dV . The output of the scaled
dot-product attention was computed as follows:

A(QWQ, KWK, VWV) = Softmax

(
QK>√

sK

)
V , A(Q, K, V) ∈ RmQ×sV , (2)

where: RmQ×sK 3 Q = QWQ, RmK×sK 3 K = KWK, and RmK×sV 3 V = VWV are the
projections of queries, keys, and values, respectively, onto different subspaces spanned by
learnable matrices WQ ∈ RdQ×sK , WK ∈ RdK×sK and WV ∈ RdV×sV ; the scaled dot-product
in brackets is the previously mentioned compatibility function measuring the alignment
of each query with each key; the Softmax function serves to obtain a set of weights on the
values, which are the so-called attention score, summing to 1 for each query.

There are only a few contributions in the SHM literature exploiting attention tech-
niques; see e.g., [17–19]. However, to the best of our knowledge, this is the first application
explicitly using the attention scores to address the OSP problem. In particular, each atten-
tion score is exploited to assess the informativeness of the corresponding sensor for the
downstream damage location task. That is, attention is applied across a fictitious sensor
dimension, comprised by the set of feasible sensor locations, deprived of any geometrical
notion of spatial location.

2.3. Attention-Mechanism-Driven Sensor Placement

The DNN adopted to address the OSP problem for damage localization purposes
is reported in Figure 1. The architecture is composed of two main branches, namely, the
query branch and the key/value branch. The former takes vibrational recordings U from
all the available channels and runs them through three one-dimensional (1D) convolutional
units, each comprising a ReLU-activated 1D convolutional layer and a max pooling layer.
The resulting output is then passed through a fully connected layer to obtain a query
Q ∈ R1×dQ , representing the current structural response. The key/value branch instead
consists of a stack of Nu base neural networks operating in parallel, each receiving input
data uj from the corresponding j-th sensor, with j = 1, . . . , Nu, but all sharing the same
set of tuneable parameters. The base neural network features three ReLU-activated 1D
convolutional layers and a normalization layer. The output of each base neural network is
a key kj ∈ RdK , with mK = Nu, that coincides with the associated value vj ∈ RdV=dK , and
accounts for sensor-specific damage-sensitive features extracted by acting separately on
each input channel.
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Figure 1. Scheme of the DNN architecture adopted to address the OSP problem.

Query Q and keys K then feed the scaled dot-product attention to compute the
attention scores and the attention module output V ∈ R1×sV , according to Equation (3).
Each query can be interpreted as: “where should I look for to most sensitive answer to the
damage localization problem given the current structural behavior?” Similarly, we can look
at the keys as “the possible answers to the query, i.e., sensor locations, with good answers
aligned to the question, i.e., high attention score, and bad answers orthogonal to it, i.e., low
attention score”.

The remainder of the DNN architecture simply addresses the downstream damage
localization task, and consists of a normalization layer and of two fully connected layers;
the first is ReLU-activated, while the second is activated by a Softmax function, which is the
standard choice for classification problems.

During training, the set of tuneable weights parametrizing the DNN is optimized by
minimizing the categorical cross-entropy between the predicted and target label classes
using the Adam algorithm, which is a first-order stochastic gradient descent optimizer.
Once the DNN is trained, the OSP is addressed by processing a testing set not seen during
training, and by extracting the corresponding attention scores from the attention module.
These attention scores can then be used in several ways to rank the sensors according to
their relevance to locate the damage. In the present work, we simply computed the mean
attention score for each channel under different operational conditions and looked for the
channels featuring the highest values.

3. Results: Eight-Story Shear Building

The proposed approach was assessed on the eight-story shear building model depicted
in Figure 2a, adapted from [20]. Each story featured a mass m = 625 t with an interstory
stiffness ksh = 106 kN/m. Structural damping was introduced through a Rayleigh model,
accounting for a 1% damping ratio on each vibrational mode. By neglecting the axial
deformability of the elements, only the horizontal degrees of freedom were considered.
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The structure was excited by harmonic loads, acting on each floor with the same frequency
and phase according to:

pj(t) =
j
8

P0 sin (2π f t) , j = 1, . . . , 8 , (3)

where: P0 ∈ [2, 3] kN is the load amplitude; f ∈ [0, 13] Hz is the load frequency sampled in
a range including all the natural frequencies of the structure; factor j

8 shapes a triangular
load distribution along the building elevation, with j growing from the bottom. Therefore,
the parametrization ruling the operational conditions was based on x = {P0, f }>.

The possible damage states were defined by a δ = 25% reduction in the corresponding
interstory stiffness, with associated labels y = 1, . . . , 8 from the ground interstory to the
roof one, and with y = 0 labeling the undamaged case.

Displacement time histories U(x, y, δ) = [u1, . . . , u8] were recorded from a virtual
sensing system made of Nu = 8 sensors, placed at each floor. The recordings were provided
for a time interval characterized by T = 5 s and with a sampling period of ∆t = 0.01 s, thus
consisting of L = 501 measurements each.

The dataset D was assembled from I = 9999 instances generated for different values
of the parameters selected via the latin hypercube sampling rule. Before training, data
were polluted by adding an independent identically distributed Gaussian noise featuring a
signal-to-noise ratio equal to 100. Moreover, the data were preprocessed via discrete Fourier
transform and subsequently standardized to improve the damage localization performance
of the DNN.

In terms of damage localization capabilities, the classifier achieved a satisfactory 88.6%
classification accuracy against a testing set without showing any particular misclassifi-
cation trend. The obtained results are summarized by the confusion matrix in Figure 2b,
characterized by high values along the main diagonal.

Given the good damage localization capability of the DNN, the corresponding atten-
tion scores can be considered to be optimized. The average attention score for each input
channel is reported in Figure 2c, showing a clear trend with increasing values from the
ground to the top floor. This is reasonable, as the response of the upper floors is expected
to be more sensitive to damage on a floor below it than that to damage on a floor above it.

i
i
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6. Example 2: Shear building

Figure 6.1: Example 2: shear building model with constant story mass and story sti↵ness. Adapted from [45]

response of the model is advanced in time using the Newmark time-integration scheme explained
in Chapter 1.

The damage is modelled similarly to what done for Example 1: the possible damage states
are defined by a 25% reduction of the corresponding inter-story sti↵ness. The inter-story sti↵ness
ki of the building for the damage state DS j can be therefore expressed as:

ki =

8>><>>:
0.75ksh , i f i = j

ksh , i f i , j
, (6.1)

where i = 1, ...,8 is the floor index counting from the bottom to the top, j = 0, ...,8 is the damage
state index, and ksh = 106 kN/m is the undamaged inter-story sti↵ness. The case j = 0, or DS 0,
refers to the undamaged state.

As a preliminary analysis, the natural frequencies of the building are shown in Tab. 6.1.
In comparison with Example 1, this case study considers much closer natural frequency

values, and the changes in this property due to the damage are less marked. This could potentially
make the classification problem harder to tackle. Nevertheless, the damaged states still show
lower natural frequencies than the undamaged state case, as expected.

A virtual sensing system is deployed over the structure by placing a sensor on each floor to
monitor the corresponding horizontal displacement, for a total of 8 sensors. While collecting the
training/testing instances, each recording is carried out for a duration of 5 s with a sampling rate
of 100 Hz, so that it includes linput = 500 time steps. The sampling rate is reduced in comparison
to the previous cantilever beam case due to the much lower natural frequencies of the structure.

Two di↵erent load conditions are considered for this model: a single sinusoidal load case,
used in Example 2A, by sampling the relevant load frequency from a uniform distribution for
each instance; a white noise load case, used in Example 2B, generated from a predefined range
of frequencies. These load conditions and the procedure used to populate the dataset in the two
cases are explained in detail in the next sections.
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6.2 Example 2B: white noise load

Gatt on the damage localization task is good, the attention scores are considered optimized. After
feeding Gatt with the test set, the attention scores are extracted and processed to produce the plot
shown in Fig. 6.12, which reports the attention scores averaged across all instances channel by
channel. The observed attention scores increase from the bottom floor to the top floor. This can

Figure 6.12: Example 2A: means of the attention scores computed across the test set for each channel.

be due to the reasoning that the behavior of the floors is likely to be more a↵ected by damage
on a floor below it, than by damage on a floor above it. In this example, the addition of noise
makes this result even more justifiable: the assumed noise induces vibration corruptions of the
same amplitude on every floor, and as on the bottom floors the vibrations are smaller, the SNR at
the bottom floor is quite low. As a result, the information coming from the upper floors can be
considered as more reliable.

6.2 Example 2B: white noise load

In this example, the load condition corresponds to the one of random vibrations, for instance due
to low-energy seismicity of natural or urban sources, and is frequently adopted in the literature
[6, 25, 45]. In this case, the acting load is generated to be a white noise, which is a random signal
having equal intensity over the entire frequency spectrum. The applied load function pi(t) on the
floor i can be expressed as:

pi(t) = P0hi(t), (6.4)

where P0 is the magnitude of the applied force, set for this example as P0 = 2.5 kN, and hi(t)
is modulation function evaluated by sampling values from a normal distribution N ⇠ (0,1)
(Gaussian white noise) and then low-pass filtering it with a cuto↵ frequency fmax = 30 Hz. The
low-pass filter is a filter that let pass the signal components featuring a frequency content lower
than the selected cuto↵ frequency and attenuates all the rest.. A di↵erent modulation function is
generated independently for each of the floors, so that no mode shape is specifically excited.

As in Example 2A, the dataset size is ndata = 9999, with each instance consisting of 5 s
time histories recorded with a sampling rate of 100 Hz, and resulting in linput = 500 time steps.
Each instance is assigned a random damage state, sampled from a discrete uniform distribution.
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(c)

Figure 2. Eight-story shear building case study: (a) physics-based numerical model; (b) confusion
matrix relevant to the classifier testing; (c) average attention scores for each monitored channel.

4. Conclusions

This paper presented an approach to the optimal sensor placement for structural
health monitoring purposes. By relying on deep neural networks, the strength of the
procedure stems from the interpretability of the attention scores associated to a set of
feasible sensor locations. The method rests on a numerical model of the structure, which is



Eng. Proc. 2022, 27, 43 6 of 7

useful in obtaining labeled data pertaining to specific damage conditions. With reference to
a damage localization case study, the obtained results showed the capability of the attention
mechanism to identify the most informative input channels to locate damage.

Future studies will investigate the proposed method while exploiting multiple atten-
tion heads, as dealing with features from different representation subspaces is expected to
improve the overall performance. Moreover, the effect of a strong L1 regularization will
also be analyzed with the aim of inducing sparsity in the attention score vector.
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