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Early-predicting dropout of university students: an application of
innovative multilevel machine learning and statistical techniques
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Anna Maria Paganonib

aSchool of Management, Politecnico di Milano, Milano, Italy; bDepartment of Mathematics, Politecnico di Milano,
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ABSTRACT
This paper combines a theoretical-based model with a data-driven
approach to develop an Early Warning System that detects students
who are more likely to dropout. The model uses innovative multilevel
statistical and machine learning methods. The paper demonstrates the
validity of the approach by applying it to administrative data from a
leading Italian university.
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‘Universities should use data regularly and systematically to identify high-risk students, target them with inter-
ventions, and evaluate those interventions’ effectiveness’

von Hippel and Hofflinger 2020

1. Introduction

The Italian Higher Education (HE) system is plagued by a high level of dropout, with many students
abandoning their Bachelor courses during the first or second year. According to the Italian National
Agency for the Evaluation of Universities and Research Institutes (ANVUR 2018), the dropout rate for
the cohort of students from whom complete data are available is around 28.2%, with almost two-
thirds of them (20%) dropping out in the first two years (ANVUR 2018). OECD (2019) indicates
that the percentage of 25–34 years old adults with higher education was 28%, with the same
share being 19% for the adults 25–64 years old (reference year: 2018): both indicators are well
below the OECD average.

A high incidence of dropout rates in the functioning of the HE system generates equity and
efficiency problems. On the equity side, various students demonstrate how there is a correlation
between socioeconomic background and dropout, and the academic literature confirms that disad-
vantaged students are more at-risk of dropping out. Unfortunately, reforms and interventions for
expanding the access to HE were not successful in reducing the socioeconomic gradient of the
dropout (Bratti, Checchi, and De Blasio 2008; Brunori, Peragine, and Serlenga 2012; Oppedisano
2011). When considering efficiency, dropout represents a net waste of resources. Indeed, educating
students is a costly activity, which generates returns in the long run due to the credentials acquired
and the human capital accumulated. When students do not conclude their courses with a degree,
these benefits are not realised.1

Given the problems associated with dropout, a key policy issue is finding ways to understand,
predict and prevent this phenomon. A recent trend in this area is the use of Learning Analytics
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(LA) tools (De Freitas et al. 2015). Advanced techniques, rooted in both the statistical and Machine
Learning (ML) domains, can be used to predict the students who are more at-risk of dropping out. If
algorithms demonstrate to be effective in predicting students’ performance, the early identification
of students at-risk can be used to design targeted interventions for improving their chances of reten-
tion (Burgos et al. 2018). While a growing number of studies starts considering the specific use of
predictions for remedial education, the debate about the best models to be employed for predic-
tions is far from being concluded, and the empirical solutions proposed are not widely accepted.
The potential consequences of using LA for practitioners are immediate and relevant. Indeed, if
the algorithms work well in early predicting dropout, then HEIs’ managers can define interventions
and courses targeted to specific individuals who are more at risk of leaving the studies without a
degree, with the aim of improving their retention.

This paper contributes to this new literature stream and institutional development. We develop
innovative methods to formulate predictions of at-risk students early in their academic career, and
we test them using administrative data from Politecnico di Milano (PoliMi), Italy. The database
gathers various cohorts of first-year Bachelor students (in Engineering) and covers 9 years (from
2010 to 2019); overall, it includes more than 110,000 students, with associated 10,000,000 entries,
each of which is a specific event related to the student journey (her initial administrative record,
exams, etc.).

This paper answers the following research question: How do alternative algorithms’ types (ML vs
Generalised Linear Models) perform in predicting actual dropout and how do we interpret their
results? This paper considers answering this research question a condition paving the way for sub-
sequent interventions to be realized in supporting students who are at-risk of dropping out
university.

This study innovates the current state-of-the-art of the field in two main directions. First, we
develop a comprehensive approach for studying dropout in a data analysis perspective, comple-
menting the application of techniques to the existing data with a conceptual framework for
exploring the determinants of dropout. The current approaches based on Learning Analytics
are indeed very much data-driven, while paying less attention to the theoretical foundations
of the models developed for the empirical analyses (Li, Rusk, and Song 2013; Seidel and Kutie-
leh 2017; Vicario et al. 2018; Korhonen and Rautopuro 2019; Sothan 2019; Barbu et al. 2019). We
build a bridge between the literature about university dropout/success (Aljohani 2016) and the
one about the use of Learning Analytics techniques in the field (De Freitas et al. 2015; Leitner,
Khalil, and Ebner 2017). In practical terms, we exploit all the available administrative data about
students (demographic, academic performance, prior achievement, a proxy for the socioeco-
nomic status, etc.) for identifying the variables that are mostly correlated to the precision of
predicting students’ dropout. While we do not select the variables to be used in the algorithms,
we use the lenses of a specific conceptual framework about dropout to interpret their validity
and conceptual soundness. Second, we compare different algorithms, built following alternative
hypotheses and specifications, to test the validity and robustness of a number of statistical and
ML methods. In so doing, we rely upon a set of newly developed methods (within the family of
mixed models) that take into account the nested structure of data. In particular, the new
methods adopted here consider the students within different degree courses, a feature that
is decisive if dropout probability depends on the specific course chosen. The results provide evi-
dence about the accuracy and robustness of predictions about the probability that a specific
student would actually drop out.

The remainder of the paper is organised as follows. In Section 2, we develop the conceptual fra-
mework for deriving the empirical models in the Learning Analytics perspective. Section 3 describes
the methods and data. Section 4 reports the main results. Lastly, Section 5 discusses the main impli-
cations and general suggestions towards implementing future interventions for helping at-risk
students.
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2. Academic literature and conceptual framework

2.1. Related literature

The academic literature distinguishes between two approaches investigating the features of stu-
dents’ dropout: theory-driven and data-driven.

The first stream deepens the reasons and the psychological constructs behind withdrawing
decisions, identifying theoretical fundamentals and drawing a conceptual model to guide the
inquiry. Different authors (Spady 1970; Tinto 1975; Pascarella and Terenzini 1980; Cabrera,
Stampen, and Lee Hansen 1990; St John, Paulsen, and Starkey 1996) propose models to show the
processes of interactions between students, their characteristics and the institutions that lead to
dropout (Tinto 1975). These approaches consider the interaction between the student and the uni-
versity environment in which individual attributes are exposed to influences, expectations, and
demands from a variety of sources (such as courses, faculty members, administrators, and peers).
The interaction between these two aspects allows the student to have success or failure in both
the academic and social system (Spady 1970).

An alternative approach deals with data-driven studies, in which students’ characteristics are ana-
lysed longitudinally to predict dropout or graduation (Kotsiantis, Pierrakeas, and Pintelas 2003; Li,
Rusk, and Song 2013; Seidel and Kutieleh 2017; Vicario et al. 2018; Solís et al. 2018; Nagy andMolontay
2018; Mayra andMauricio 2018; Korhonen and Rautopuro 2019; Sothan 2019; Barbu et al. 2019; Alban
and Mauricio 2019; Silva et al. 2020; Heredia-Jiménez et al. 2020). The methodological approach to
study dropout in HE described in these works is innovative. Indeed, as highlighted by Agrusti, Bona-
volontà, and Mezzini 2019, researches on university dropout prediction increased considerably start-
ing from 2017. The applications proposed in literature are various. Starting from the models adopted,
ranging from the more traditional logistic regression (Mayra and Mauricio 2018) to the innovative
Machine Learning algorithms (Alban andMauricio 2019; Nagy andMolontay 2018), also the university
considered may be one (Heredia-Jiménez et al. 2020) or more (Silva et al. 2020) or with open courses
(Kotsiantis, Pierrakeas, and Pintelas 2003). Moreover, the information considered for predictions may
relate to specific students’ features, such as only demographics and pre-college information (Heredia-
Jiménez et al. 2020; Nagy and Molontay 2018), or they exploit all possible knowledge about students
(Silva et al. 2020). Results show that Machine Learning models often provide accurate predictions,
leaving room for further interventions aiming at retaining potential dropout students. Anyway, in
the cited cases, researchers are less interested in explaining the phenomenon per se, while the
focus is on predicting withdrawing students with the highest level of accuracy.

Placing at the mid-way between theory and data-driven studies, some research papers show how
the Machine Learning approach may be valuable to support the understanding of dropout (Berens
et al. 2018; Rodríguez-Muñiz et al. 2019; Del Bonifro et al. 2020; Sandoval-Palis et al. 2020). Del Bonifro
et al. (2020) concentrates on the on-time prediction to detect and then help at risk students as early
as possible. On practical strand, they consider only the information acquired at the moment of the
students’ enrolment. Sandoval-Palis et al. (2020) and Rodríguez-Muñiz et al. (2019) enrich the predic-
tion of dropout students with a deep interpretation of the main determinants of withdrawal, with the
aim of arriving to the root causes of the problem. Sandoval-Palis et al. (2020) find that students with
the highest risk of dropping out are those in vulnerable situations, with low application grades,
enrolled in the levelling course for technical degrees. Results of Rodríguez-Muñiz et al. (2019)
work show that the influence of personal and contextual variables and the academic performance
in the first year represent the main predictors of dropout. Further, this model highlights other inter-
esting factors: the importance of dedication (part or full time), and the vulnerability of the students
with respect to their age. Lastly, Berens et al. (2018) supplement traditional administrative data with
approximations of learning behavior and student-teacher interactions recalling the Tinto’s inte-
gration model. Indeed, they adopted registration in online learning platforms, use of the university
library, reading behavior data from the online library as well as online activity level.
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2.2. Conceptual framework

The present paper develops a clear conceptual framework for the comprehesion and interpretation
of dropout at university. It considers both the educational process and the need of predicting stu-
dents’ outcome as early as possible. In particular, the data-driven approach is substituted with an
information-driven modelling, since the data mining approach to education is fastly becoming an
important field of research due to its ability to extract new knowledge about this aspect from a
huge amount of students’ data (Wook, Yusof, and Ahmad Nazri 2017).

With the aim of filling the gaps within the two approaches, the conceptual framework proposed
here poses its basis on a student’s ‘educational journey’. This concept lays its foundation on Cunha
and Heckman (2007), where the formation of individual skills (both cognitive and non-cognitive) is
the result of a cumulative process where different factors (e.g. investments, environments and
genes) intervene. The technology that governs this process is formed by sequential periods influen-
cing each others and resulting in the educational formation of the individual. Contextualizing this
framework into our research, we consider educational stages as school cycles: childhood, primary
school, middle school, high school (we use ‘K12’ to refer to all school’s grades until the 12th) and
university. During each stage, it is possible to gather different types of information about students’
characteristics and performance. The collected information deal with educational path, such as
grades or school data, or with personal and demographic information, for instance the citizenship
or family’s income. The key feature of this model is that individual experiences enrich students’ per-
sonal timeline. The milestone of the proposed framework relies on the possibility to predict student’s
dropout, considering the previous educational stages as input. This conception brings to deal with
an optimization problem, facing the trade-off between prediction accuracy, which normally
improves when adding more features, and the potential timing to intervene, that needs to be
reduced as much as possible, so with early predictions. This trade-off lays behind the managerial
and policy implications of this research: the timing of the prediction is equally important to its accu-
racy. The incorrect prediction about possible dropouts may lead institutions to promote targeted
remedial interventions for wrong students, risking to esclude the real dropouts. On the other side,
intuitively, the more information is available, the more accurate is the prediction. Anyway, collecting
data on students’ educational path require time, during which students may decide to leave the uni-
versity. Hence, balancing time of prediction and information collected is an optimization problem for
dropout detection. Further, the critical choice is not only related to the time of prediction, but also to
the model adopted, which needs to be the one which better optimize the trade-off between accu-
racy and timing.

From an operational standpoint, a reduced view of the proposed conceptual framework needs to
contextualise it into real-world practice. Our main assumption related to the optimization problem
states that the first moment where we are able to predict, with satisfying accuracy, students’
outcome (graduation or dropout) is the end of the first semester of their first year. So, the complete
timeline from HE’s perspective comprises students’ information, grouped according to educational
path stages, as illustrated in the previous paragraph: (i) demographic characteristics, (ii) previous
studies information (K12 information) and (iii) academic performance (related to first semester of
first year).

3. Methodology and data

3.1. The methodological approach for the empirical analysis: overview

When developing a sound methodology for an accurate and timely prediction of student dropout,
this paper considers two main methodological challenges and issues.

First, we must take into account that students are nested within different engineering degree
courses. This induces a natural source of dependence among students due to the fact that they
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are enrolled in the same degree course. Since classical regression models assume all observations to
be independent and do not take into account any type of latent structure, multilevel regression
models (Pinheiro and Bates 2006; Goldstein 2011; Agresti 2018) are adopted. This class of models
are suited to handle the hierarchical structure of data, taking into account the induced dependence
among observations. Besides modelling this intrinsic data structure, these models disentangle the
variability explained by each level of grouping, helping the analyst in understanding the contri-
bution given by each different level to the response.

A second methodological aspect concerns models’ assumptions. Generalised linear models are
the most frequently used techniques in the literature to predict student dropout. Nonetheless,
they impose a parametric functional form on the association between the covariates and the
response that sometimes results to be too restrictive or unrealistic for describing complex data.
For this reason, we compare the results of generalised linear models with the ones obtained applying
ML techniques, such as Classification and Regression Trees (CARTs) and Random Forest (RF) (Hastie,
Tibshirani, and Friedman 2009; Breiman 2001). These are flexible methods able to investigate non
linear associations among the covariates and the response and to model interactions among
them. Recent developments in this context allow classification trees to handle hierarchical data: in
Fontana et al. (2021), the authors propose a method to fit generalised mixed-effects regression
trees (GMET), while, in Pellagatti et al. (2021), the authors develop a new method to fit generalised
mixed-effects random forest (GMERF). These methods have the strength and the flexibility of ML
techniques, still maintaing the ability to model the nested structure of data. Moreover, although
the literature already investigates the main determinants of student dropout (Li, Rusk, and Song
2013; Seidel and Kutieleh 2017; Vicario et al. 2018; Korhonen and Rautopuro 2019; Sothan 2019;
Barbu et al. 2019), their estimated effects might vary across methods (i.e. parametric and nonpara-
metric methods). Linear models provide a coefficient for each covariate, that measures the increase
in the response for one unit increase in the covariate. Tree-based methods provide a different type of
result that consists in the quantification of each covariate’s importance (measured adopting different
criteria) and in the estimation of the functional form that marginally links each covariate to the
response. In this perspective, we are interested in comparing the predicive power and the interpret-
ative potential of the aforementioned types of methods, considering these two methodological
reflections in the analyses of results.

3.2. The methodological approach: mathematical details

We recall now the basics of multilevel models, specifying their modelling both for generalised linear
models and tree-based methods. Let Yij be the binary variable that is equal to 1 if the jth student
within the ith degree course, for j = 1, . . . , ni and i = 1, . . . , N, dropped his/her studies and equal
to 0 otherwise. ni is the total number of students who concluded their career (either dropped or
graduated) enrolled in the ith degree course and N = 20 is the total number of engineering
degree courses at PoliMi. Being Yij a Bernoulli variable where Yij = 1 with probability pij and
Yij = 0 with probability (1− pij), the classical logistic regression model (Agresti 2018) takes the form:

mij = E[Yij] j = 1, . . . , ni, i = 1, . . . , N

g(mij) = hij

hij =
∑K+1

k=1

bkxijk (1)

where mij = pij. pij is the probability that student j within degree course i drops, g(mij) is the logit link

function, i.e. g(mij) = log it(mij) = log it( pij) = log pij
1−pij

( )
. K is the total number of predictors, b is the

(K + 1)-dimensional vector of coefficients and �xij is the (K + 1)-dimensional vector of the covariates
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(including 1 for the intercept) relative to the (ij)th observation. This modelling assumes that all obser-
vations Yij (i.e. single students) are independent, that is to say, the production process of the
outcome (dropout or not) is not affected by common factors across students.

If we now take into account the nested structure of data (i.e. students being enrolled into degree
courses), the Generalised (logistic) Linear Multilevel Model, GLMM (Agresti 2018), considering two
levels, takes the following form:

mij = E[Yij|�bi] j = 1, . . . , ni, i = 1, . . . , N

g(mij) = hij

hij =
∑K+1

k=1

bkxijk +
∑Q+1

q=1

biqzijq

�bi � N (0, C). (2)

Conditionally on the random effects coefficients denoted by �bi, the multilevel logistic regression
model assumes that the elements of �Yi are independent. �zij is the (Q+ 1)-dimensional vector of pre-
dictors for the random effects, �bi is the (Q+ 1)-dimensional vector of their coefficients and C is the
(Q+ 1)× (Q+ 1) within-group covariance matrix of the random effects coefficients. In multilevel
models, fixed effects are identified by parameters associated to the entire population, while
random ones are identified by group-specific parameters. In our case study, �bi are the coefficients
relative to the ith degree course. To verify whether the hierarchical structure taken into account
by multilevel models improves dropout predictions, we compare multilevel models’ performances
with the ones of models not considering degree courses and of models including the degree
courses information as a categorical student-level covariate (see Tables A1 and A2 in Annex).

Moving now to an ML setting, the GMET modelling (Fontana et al. 2021) basically substitutes the
linear fixed-effects part in Equation (2) with a tree structure:

mij = E[Yij|�bi] j = 1, . . . , ni, i = 1, . . . , N

g(mij) = hij

hij = f (�xij)+
∑Q+1

q=1

biqzijq

�bi � N (0, C) (3)

where f (�xij) is not a linear combination of the coefficients b but it is a partition of the covariates space
into boxes (or rectangles) and the prediction within each box is the mode of all the observations that
belong to that box. The boxes are automatically built by tree in order to minimize the variability
within them and maximize the variabilty between them. The absence of a specific functional form
makes this method very flexible and able to better model interactions among the covariates.
GMET, as standard CARTs, makes an intrinsic selection of the covariates: not all covariates are
used in the splits that define the tree, but only the ones that result to be relevant. The covariate
used in the first split is the most relevant one and so on. Moreover, different branches of the tree
can be defined by different subsets of covariates and this building process reveals the interaction
structure among covariates.2

Similarly, GMERF (Pellagatti et al. 2021) substitues the standard tree f (�xij) in Equation (3) with a RF,
that is an ensemble of trees. RF basically works taking many training sets from the entire population,
building a separate prediction model using each training set, and averaging the resulting predic-
tions. Moreover, during this process, it considers different subsets of covariates for each training
set, in order to give all variables the possibility to be taken into account in the tree splits – avoiding
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the risk that some variables cover the effect of other significant and correlated ones (Hastie, Tibshir-
ani, and Friedman 2009). Therefore, the advantage of RFs is twofold: they reduce the model variance
and they handle the presence of highly correlated covariates, disentangling their associations with
the response variable. RFs provide the importance ranking of the covariates in predicting the
response, measured as the mean decrease in Gini index – obtained by adding up the total
amount that the Gini index is decreased by splits over a given predictor, averaged over all trees
of the ensemble (Raileanu and Stoffel 2004). Moreover, related partial plots displays the marginal
association, estimated by GMERF, between each covariate and the response, averaging out the
effect of all other covariates.

In the light of these methodological aspects, we expect tree-based methods to identify a similar
set of significant covariates. Nonetheless, our main interest is not this one, but it regards two other
aspects. The former is the quantification and the qualification of the estimated associations between
relevant covariates and the response, compared across different methods. In particuar, we compare
results interpretability and releasability. The latter is the quantification of the effect that different
assumptions on fixed effects have on the models predictive power.

In this light, standing on the proposed methods and on the different usages we propose about
the degree courses information, we run six different empirical methods, listed in Table 1.

3.3. Application – data about Politecnico di Milano

Politecnico di Milano (PoliMi) is the best-ranked Italian public university, and trains students in Engin-
eering, Architecture and Design majors. PoliMi counts around 46,000 students in 2019/2020 in
Bachelor and Master courses, among which almost 35,000 in Engineering. This study investigates
the phenomenon of student dropout at PoliMi (with specific reference to Engineering bachelor stu-
dents) and develops a method to early predict it, making a further distinction between early and late
dropout. To clarify the application, a dropout definition is needed: dropout occurs when the student
leaves PoliMi for a reason different from graduation. In particular, early dropout occurs when the
student drops within the 3rd semester after enrolment,3 while late dropout occurs when the
student drops later on. Taking the insitutional standpoint, it is not specified whether the student
drops from educational system in general, or he/she shifts major. As stated by Tinto (1982, 2017),
it is a matter of perspective and different interests between students, who aim at obtaining a
degree, and institutions, which aim at retaining their students. The choice of distinguishing
between early and late dropout is motivated by our interest in investigating the determinats of
these two types of dropout, that might be potentially different. We expect drivers of an early
dropout to be different from the ones of a late dropout. Therefore, each classification model will con-
sider as outcomes of interest early dropout versus graduate and late dropout versus graduate.

The Information Technology (IT) system of the university collects both dynamic and static data
about enrolled students. The former ones are the so-called ‘digital prints’ left in correspondence
to some key administrative facts, such as register at exams’ sessions, accept or retake grades or
pay university’s fees. Static data comprise all the information that administrative office registers at
the moment of enrolment, such as citisenship, gender or date/place of birth, previous school per-
formance or the university admission test score. The university Administration and IT offices

Table 1. Proposed empirical models for analyzing early and late dropout.

Degree courses approach Type
of models

Degree courses not
considered

Degree courses considered:
dummy variable

Degree courses considered:
multilevel model

Generalised linear model Model 1a Model 1b Model 1c
Classification tree Model 2a Model 2b Model 2c
Random forest Model 3a Model 3b Model 3c

Note: the table presents the overview of the run models, dividing them according to their typology (linear, tree or random forest)
and to the ways of considering the degree courses information (ignored, included as a categorical variable or by a multilevel
approach).
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supply the dataset used in the analysis, recording students’ information from 2010 to 2019. The
number of observations is more than 10 million and each of them represents an administrative
event or a student’s set of features. The whole dataset is divided into multiple sub-datasets, accord-
ing to type of information. Hence, data cleaning activity requires to merge the datasets through their
linkage with unique encrypted key and to keep only concluded careers, using the student as a unit of
analysis. The students’ features lastly selected and included into the analysis are summarised in
Table 2, divided into demographic, previous studies and academic information.

Our final sample includes all concluded careers (for dropout or graduation) of students enrolled in
an engineering degree course between a.y. 2010/2011 and a.y. 2015/2016. This sample counts
31,071 concluded careers of students, 62.7% of which are graduated, 21.7% are early dropout and
15.6% are late dropout. For both early and late dropout prediction, we train our models on a training
set, that is composed by randomly selected 70% of the sample, while the test set is composed by the

Table 2. Student-level variables’ list: description and domain.

Group
Variable’s
name Description Possible values

Descriptive
statistics8

Demographic
information

Gender Student’s gender 1: male 76.17%
0: female 23.83%

Income (range) Student’s contribution fee Highest income (reference) 33.58%
High income 32.55%
Low income 27.97%
DSU (if the student receives a
grant)

3.20%

DK, Unknown income 2.70%
Access to study
age

Student’s age at enrolment From 17 to 50 19.27
(IQR: 18.00–

19.00)
Student’ origins Student’s Citizenship &

Residency
Native Milan: if the student is
Italian and live in Milan
(reference)

25.54%

Native out Milan: if the student
is Italian and live outside
Milan

67.57%

Non-Italian abroad: if the
student is not Italian and lives
outside Italy

3.87%

Non-Italian in Milan: if the
student is not Italian, but lives
in Milan

1.69%

Non-Italian out of Milan: if the
student is not Italian and lives
out of Milan

1.33%

Previous studies and
performance
information

Previous
Studies

High school track Scientific (reference) 73.33%
Classic 6.32%
Technical 15.97%
Other 4.38%

Admission
score

Admission test grade From 60 to 100 72.45
(IQR: 81.07–

64.57)
Academic information TotalCredits1s Total credits earned at 1st

sem. of 1st year
From 0 to 40 17.97

(IQR: 30.00–0.00)
Attempts 1s n. of attempts to pass an exam

in the 1st semester of the 1st
year

One: the student attempted the
exam once (reference)

24.17%

No: no attempts are done, so
the student never attempted
the exam

12.94%

More: if the student attempted
the exam more than once

62.89%

Note: The table presents the list of variables adopted in the models with their description and assumed values. When dealing
with a categorical variable, we point out the reference level – usually the most populated one.
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remaining 30%. In particular, in our models, Yij = 1 when student jwithin degree course i drops, early
or late depending on the model setting, and Yij = 0 when he or she graduated; �X is the matrix of the
fixed-effects covariates that contains all student-level characteristics shown in Table 2. When we take
into account the degree courses information as a categorical student-level variable (Models 1b, 2b
and 3b of Table 1), 19 dummy variables are included. Each dummy variable represents the belonging
to one degree course with respect to the reference one (the first one in alphabetic order). When
running multilevel models, i.e. when we take into account the hierarchical structure of students
nested within degree courses, we include in the random effects part a random intercept, i.e.

pij = E[Yij|bi] j = 1, . . . , ni, i = 1, . . . , N

log it( pij) = hij

hij = f (�xij)+ bi

bi � N (0, s2
c) (4)

where bi is the value-added given by the ith degree course to the dropout probability (either early or
late, depending on the model setting): if bi is negative, students within the ith degree course are on
average less likely to drop with respect to the others; while, if bi is positive, students within the ith
degree course are on average more likely to drop with respect to the others. Given Equation (4) , f (�xij)
is equal to a linear combination of the fixed-effects covariates in the case of a multilevel linear model
(Model 1c), to a classification tree in the case of a multilevel classification tree (Model 2c) and to a
random forest in the case of a multilevel random forest (Model 3c). In order to compare the perform-
ance of the fitted models, we compute two types of indexes: (i) the Area Under the ROC Curve (AUC),
that provides an aggregate measure of performance across all possible classification thresholds; (ii)
accuracy, sensitivity ans specificity indexes. Among the set of these performance indexes, we are
mainly interested in the sensitivity, because we aim at finding the model that better identifies the
at-risk students, i.e. the model with highest sensitivity.

4. Results

We run the nine models presented in Table 1, for both early dropout versus graduated and late
dropout versus graduated.4 We analyze the results from two perspectives, recalling the methodologi-
cal aspects presented in Section 3.1. First, we compare the models’ performance, highlighting the
main differences between hierarchical and non-hierarchical models and between statistical and
ML ones. Then, we compare the types of information about the dropout phenomenon extracted
from the proposed models in order to deepen the related mechanisms.

4.1. The performance of the empirical models – overview

The first set of results from the empirical analyses are reported in Tables 3 and 4, which cointain the
predictive performances, measured in terms of AUC, sensitivity, accuracy and speificity, of the fitted
models, for early and late dropout prediction, respectively. All models’ predictive performances are
very high, both for early and late dropout. The lowest value of AUC is 0.8714 and it is reached by the
simple tree for predicting late dropout, while the highest one is 0.9615 and it is reached by the
GLMM for predicting early dropout. All other models’ AUC range between these two values. In par-
ticular, classification trees have always slightly lower predictive power than GLM and RF, that,
instead, have very similar performances. This difference is more pronounced for early than for late
dropout and decreases when considering multilevel models. For both linear and tree-based
models, taking into account the degree courses students are enrolled in (both as a dummy variable
and by employing a multilevel model) increases their performances, with multilevel models having
the highest peak (see Tables 3 and 4). Strengthened by this evidence, we retain multilevel models to
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be extremely informative in this application. Besides providing the best performance, they fit the real
nested structure of students and, especially, they provide interpretable information about the het-
erogeneities across degree courses (see Section 4.2).

4.2. Understanding and interpreting students’ dropout – findings from multilevel
generalised linear model and tree-based methods

We now focus on the interpretation of the results, reflecting on the various types of information
gathered from the proposed models output, adopting a student-level and course-level perspec-
tives. We are interested in investigating whether these methods, that lead to slightly difference
performance, give supplemental insights about the dropout phenomenon. In the light of the
results shown in Section 4.1, we focus on the multilevel models output, that we retain to be the
most informative.

4.3. Individual-level factors associated with dropout

Table 5 reports the results of the GLMM (Model 1c), both for early and late dropout, respectively.5 Not
significant covariates are removed from the final model using a step-by-step procedure.

Table 4. Area Under the Curve (AUC) and accuracy, sensitivity and specificity indexes of the 9 models run for late dropout versus
graduated.

Not nested
(a)

Dummy
(b)

Nested
(c)

Generalised Linear Model
(1)

AUC = 0.8977 Acc = 0.8637 AUC = 0.9089 Acc = 0.8593 AUC = 0.9091
VPC=0.0852

Acc = 0.859
Sen = 0.7634 Sen = 0.8003 Sen = 0.7979
Spec = 0.8855 Spec = 0.8721 Spec = 0.8723

Classification Tree
(2)

AUC = 0.8714 Acc = 0.8851 AUC = 0.89019 Acc = 0.8157 AUC = 0.9049
VPC = 0.1193

Acc = 0.8393
Sen = 0.673 Sen = 0.8718 Sen = 0.8118
Spec = 0.9312 Spec = 0.8035 Spec = 0.8453

Random Forest
(3)

AUC = 0.8897 Acc = 0.864 AUC = 0.9016 Acc = 0.8519 AUC = 0.9065
VPC = 0.1276

Acc = 0.8549
Sen = 0.7354 Sen = 0.788 Sen = 0.8036
Spec = 0.8919 Spec = 0.8658 Spec = 0.866

Note: The sensitivity is obtained as sensitivity = # true positive / (#true positive + #false negative), where the true positives are the
students correctly classified as dropout by the model and the false negatives are the students that are wrongly identified as
graduated by the model. ROC curve is a graphical plot that illustrates the diagnostic ability of the classifier system as its dis-
crimination threshold is varied. AUC measures the area under the ROC curve and is equal to the probability that the classifier
will rank a randomly chosen dropout student higher than a randomly chosen graduated one (assuming dropout ranks higher
than graduate). AUC = 1 is the perfect fitting.

Table 3. Area Under the ROC Curve (AUC) and accuracy, sensitivity and specificity indexes of the 9 models run for early dropout
versus graduated.

Not nested (a) Dummy (b) Nested (c)

Generalised Linear Model (1) AUC = 0.9576 Acc = 0.9178 AUC = 0.9614 Acc = 0.9219 AUC = 0.9615
VPC = 0.1063

Acc = 0.9224
Sen = 0.8943 Sen = 0.8913 Sen = 0.8921
Spec = 0.9234 Spe = 0.9291 Spec = 0.9296

Classification Tree (2) AUC = 0.8748 Acc = 0.9342 AUC = 0.8748 Acc = 0.9342 AUC = 0.9473
VPC = 0.0857

Acc = 0.9118
Sen = 0.7789 Sen = 0.7789 Sen = 0.9004
Spec = 0.9708 Spe = 0.9708 Spec = 0.9145

Random Forest (3) AUC = 0.9512 Acc = 0.9183 AUC = 0.9553 Acc = 0.9155 AUC = 0.9598
VPC = 0.1803

Acc = 0.916
Sen = 0.8709 Sen = 0.8898 Sen = 0.8966
Spec = 0.9294 Spe = 0.9216 Spec = 0.9205

Note: The sensitivity is obtained as sensitivity = # true positive / (#true positive + #false negative), where the true positives are the
students correctly classified as dropout by the model and the false negatives are the students that are wrongly identified as
graduated by the model. ROC curve is a graphical plot that illustrates the diagnostic ability of the classifier system as its dis-
crimination threshold is varied. AUC measures the area under the ROC curve and is equal to the probability that the classifier
will rank a randomly chosen dropout student higher than a randomly chosen graduated one (assuming dropout ranks higher
than graduate). AUC = 1 is the perfect fitting.
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Several interesting observations emerge from the associations between student-level infor-
mation and dropout probability. First, some differences are related to personal characteristics
and background. Males are more likely to late drop out than females; although the literature
did not reach an agreement about the direction of gender differences in HE dropout, some
studies found that female students drop less than their male counterparts (Johnes and McNabb
2004). Native Italians off-site (i.e. not living in Milan) are more likely to early drop than Italians
in-site, perhaps suggesting that commuters and/or students who moved for studying reasons
could have encountered additional obstacles to regular academic activities. Non-Italian students
are more likely to late drop than native Italians in-site, all else equal – this finding echoes a
similar one reported by Meggiolaro, Giraldo, and Clerici (2017) for another Italian university. Stu-
dents starting their careers at PoliMi at an older age than the average, are more likely to late
drop, potentially indicating that these students have a nonlinear educational trajectory until
their starting moment at PoliMi (for example, they could be students who repeated a grade

Table 5. Coefficients of GLMMs for early and late dropout prediction.

Dependent variable:

Dropout vs. Graduated

(Early) (Late)
Gender (ref.: female) 0.616***

(0.087)
Prev Stud: Classic (ref.: scientific) −0.186

(0.131)
Prev Stud: Other (ref.: scientific) 0.266*

(0.161)
Prev Stud: Technical (ref.: scientific) 0.177**

(0.08)
Native out of Milan (ref.: Native Milan) 0.341*** 0.101

(0.086) (0.067)
Non-Italian abroad (ref.: Native Milan) 0.008 0.760**

(0.457) (0.36)
Non-Italian in Milan (ref.: Native Milan) 0.209 0.485**

(0.364) (0.228)
Non-Italian out of Milan (ref.: Native Milan) 0.002 0.347

(0.337) (0.238)
Admission Score 0.015*** −0.006**

(0.004) (0.003)
Access to studies age 0.188***

(0.025)
TotalCredits1.1 −0.228*** −0.171***

(0.005) (0.004)
attempts1: more (ref.: one) −0.682*** 0.463***

(0.096) (0.089)
attempts1: none (ref.: one) 2.339*** 0.973***

(0.288) (0.274)
Family Income: DSU (ref.: highest) −0.332 −0.754***

(0.286) (0.264)
Family Income: High (ref.: highest) −0.222** −0.1

(0.094) (0.077)
Family Income: Low (ref.: highest) −0.163* 0.116

(0.097) (0.078)
Family Income: DK (ref.: highest) −1.227 −0.773

(1.031) (0.514)
Constant 1.103*** −2.665***

(0.322) (0.552)
Observations 16,216 15,901
Log Likelihood 2,703.508 −4,019.046
Akaike Inf. Crit. 5,435.017 8,076.093
Bayesian Inf. Crit. 5,542.729 8,221.901

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in brackets). Stars
represent the statistical significance: *p < 0.1; **p < 0.05; ***p < 0.01.
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during secondary education, so are intrinsically more at-risk). Students who attended Other and,
especially, technical high schools are more likely to late drop than the ones who attended aca-
demic, scientific high schools. This evidence corroborates the heterogeneity across students with
different educational background; in Italy, students can attend academic, technical or vocational
secondary education, a practice that can hinder equality of opportunities, including later academic
success (Brunello and Checchi 2007).

Differences in dropout probability are also associated with students’ previous academic per-
formances. The higher is the admission test score at PoliMi, the higher is the probability of students
early dropout, but the lower is the probability of students late dropout. While the negative associ-
ation with late dropout confirms the right ‘signalling’ effect of the entry test, the positive assocaion
with early dropout is quite anomalous. There could be several reasons for this result. It can be the
case that high admission scores encourage less motivated students to enrol at PoliMi, then it could
happen that they get recruited into the labor market early on or they change university. Further,
the higher is the number of credits obtained at the first semester, the lower are both the early and
late dropout probabilities, suggesting that students with a good (regular) early start benefit of less
risks later on. Students doing more than one attempt per exam during the first semester are less
likely to early drop and more likely to late drop with respect to students doing one attempt per
exam. These are students who try to pass exams with strong commitment (so they do not drop
immeditely), but then are more likely to drop out later if their performance continues struggling.
Students that do not attempt any exam during the first semester are more likely both to early and
late drop with respect to students doing one attempt per exam; these are students who almost
immediately find strong difficulties, and do not even show up at first exams, becoming unable
to fill the gap later in their career.6 Lastly, students with more disadvanatged background (as
measured through the income group) are less likely to early drop than their more advantaged
counterparts. Also, DSU students (e.g. with a study grant) are less likely to late drop, meaning
that socioeconomic background still plays a role in dropout (Rodriguez-Hernandez, Cascallar,
and Kyndt 2020). It is worth to notice that this finding is conflicting to the one identified by the
majority of the worldwide literature, that sees students from disadvantaged backgrounds facing
a higher risk of dropping out, but is in line with previous findings on the Italian case (Belloc, Mar-
uotti, and Petrella 2010). A possible explanation could be that, with respect to the majority of stu-
dents that are in the highest income range and have a wide range of opportunities, more
disadvantaged students are more motivated or feel financial pressures. Their choice to enroll at
university may request sacrifices to their family, spurring them to commit. Moreover, those disad-
vantaged students who decide to enroll at PoliMi are somehow already self-selected and more
motivated than average.

Regarding tree-based methods, Figure 1 reports the fixed-effects trees estimated by GMET, for
both early and late dropout, respectively. The number of credits the student obtains at the first seme-
ster results to be the most important variable to predict both early and late dropout probability. In
particular, this is the only covariate used to build the trees. This result helps us in further understand-
ing the dropout phenomenon. GMET output reveals that, by using the number of total credits as
single fixed-effects covariate, we build a classificator that performs very close to much more
complex models. This evidence is also corroborated by the variables importance ranking shown in
Figure 2, obtained by GMERF. Variables importance rankings in Figure 2 confirm that, for both
early and late dropout prediction, the number of total credits obtained at the first semester is the
most important covariate, and also, it way distance itself, in terms of importance, from the other cov-
ariates. The second covariate of the ranking adds very low information to the prediction with respect
to it, and so on so forth. The only other covariate that significantly affects the estimates of early
dropout probability is the number of attempts.

Besides this clear and interpretable result regarding the covariates’ importance, Figure 3
reports the partial dependence plot of the most important covariate selected by GMERF, i.e.
the number of credits. Partial dependence plots show the association between the selected
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covariate and the response, estimated by GMERF net to the effect of all other covariates. In the
perspective of investigating the type of association between the single covariate and the
response, this graphical tool is extremely informative since it shows the functional form that
links the covariate to the response, estimating it directly from the data without imposing any
parametric assumption on it. Panels (3a) and (3b) of Figure 3 show that the associations
between the number of credits obtained at the first semester and both early and late dropout
probability are approximately linear. Being the number of credits obtained at the first semester
the most important variable and having it a linear association with the response, it is reasonable
to observe similar performances in GMERF and GLMM.

Although the early academic performance results to be the most significant determinant of
student dropout probability, some differences in the dropout probability still emerges between stu-
dents with different origin, gender or previous study. This finding suggests that there are other
unobservable factors at play, connected to student origins and previous studies, that lead to signifi-
cant differences in the dropout probability.

Figure 1. Fixed-effects trees obtained by GMET (Model 2c), for early (panel 1a) and late (panel 1b) dropout prediction.
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4.4. Dropout differences across degree courses

Besides the information about student-level characteristics, multilevel models give easily interpret-
able insights about the nested structure, i.e. the degree courses effect. Standing on the predictive
performance of the models and on the coefficients significance, both early and late dropout prob-
abilities vary across engineering degree courses. The Variance Partition Coefficient (VPC) is a
common index computed in the multilevel model framework to quantify the portion of variability
in the response explained at the highest level of grouping. In our case study, VPC quantifies the
portion of variability in student dropout that is explained at the degree courses level. Regarding
early dropout, VPCs measure 0.1063 for GLMM (Model 1c), 0.0857 for GMET (Model 2c) and 0.1803
for GMERF (Model 3c). For late dropout, VPCs measure 0.0852 for GLMM (Model 1c), 0.1193 for
GMET (Model 2c) and 0.1276 for GMERF (Model 3c). These percentages are not negligible, suggesting
that there are significant differences in dropout dynamics across degree courses. Random intercepts
estimated by multilevel models represent the value-added (positive or negative) of the 20 degree
courses to the dropout probability of their students.7 These estimates are graphically reported in
Figure A4 in Annex.

Figure 2. Fixed-effects variable importance plots computed by GMERF (Model 3c), for both early and late dropout prediction.

Figure 3. Variable importance plots of total credits for early (panel 3a) and late dropout (panel 3b), respectively, estimated by
GMERF (Model 3c).
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Differences among degree courses might be due to various aspects, as for example heterogenous
quality and difficulty and/or structural differences or movement of students across courses. Available
data do not allow investigating these mechanisms more in details, and this topic deserves further
attention in the future.

4.5. The number of credits obtained at the first semester: the real milestone

Results of the empirical models confirm that the most powerful predictor of both early and late
student dropout is the number of credits the student obtains at the first semester of the first year
of career. The initial student performance at the university results to be decisive for the career
and observing the number of credits obtained by each student at the first semester gives by itself
a very good indicator of the student dropout probability. This does not mean that other character-
istics are not relevant, especially, considering that all students characteristics antecedent to the
enrolment are somehow partially endogenous with the number of credits obtained at the first seme-
ster. Type of previous studies, nationality, residence, admission score and income are potential pre-
dictors of the student early academic performance.

In order to investigate this association, we regress the number of credits obtained at the first
semester against student characteristics antecendent to the enrollment. We consider all students
in the sample, i.e. enrolled at PoliMi between 2010 and 2015. In particular, we dichotomise the vari-
able TotalCredits1s in a binary variable called Credits_01 that takes value 1 if TotalCredits1s < 7.5 and
value 0 if TotalCredits1s≥ 7.5. We chose the threshold value 7.5 identified by the GMET model (Model
2c) as the most important split to differentiate graduate vs early drop students.

Results of the generalized linear model are reported in Table 6 (the model’s AUC values 0.733). All
student characteristics antecedent to the enrolment result to be significant for predicting the
amount of credits (low or high) obtained by the student at the first semester. This result
somehow confirms that students’ features are intrisecally and structurally dependent each other,
confirming the conceptual framework exposed in Section 2.

5. Discussion, implications and concluding remarks

The results presented in Section 4 can be summarized and commented by answering the research
question of this paper.

First, we find a number of factors and variables that are associated with likelihood of dropout,
classifiable in the two broad categories of (i) personal background and (ii) previous and early aca-
demic performance. Broadly speaking, information belonging to the latter group is more statistically
relevant for predicting dropout. All the models tested in this paper performs very well in identifying
students who are at risk of dropout, and this is especially true for methods based on multilevel mod-
elling. The major validity of multilevel approaches suggests how sorting across different majors, as
well as structural differences across the majors themselves, is an important factor affecting the
decision of students to drop out.

Second, the use of tree-based classification methods highlights how the formative credits
obtained in the first semester is by far the most important factor associated with dropout. The visu-
alization by means of partial plots identifies the relationship between credits and dropout as an
almost linear one. This linear correlation explains why machine learning models (i.e. random
forests) do not outperform multilevel ones in correctly predicting students who will droput.
Indeed, ML techniques are known to be very flexible and to perform good prediction results in
complex data structures, when nonlinearities and interactions are at play. In the case presented
here, the situation is partly different.

Third, the importance associated with early performance to influence dropouts calls for a reno-
vated attention to explore the determinants of first-semester performance. In the paper, we
present some exploratory analyses that are able to explain a significant portion of variability
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across students in this early performance. This type of analysis can help in identifying the at-risk stu-
dents even before they obtain their first academic results.

The findings hold a number of policy and managerial implications. The ability to early predict stu-
dents’ dropout is crucial for targeting interventions in a very personalized way. For example, once
identified the at-risk students with sufficient precision, it is possible to develop individualized tutor-
ing systems – eventually, with the support of technology. This is a promising direction to develop a
fruitful integration between institutional research and student support systems. In this vein, the
results presented in the paper are encouraging. Indeed, they provide sufficient evidence about
the positive performance of the statistical and machine learning methods employed for the predic-
tion of students’ results. Such predictions happen soon enough in time to develop remedial inter-
ventions, which can sustain the difficulties of students in early stages of their higher education path.

Lastly, a discussion about the limitations of this work and future research is needed. The ML meth-
odologies that we chose to address our research question can handle a binary response, but not a
multi-category one. To the best of our knowledge, while linear mixed-effects models have been
developed also for multinomial responses (Hadfield 2010). This is not the case for mixed-effects
trees and RF, that, when dealing with hierarchical observations, can handle only continuous or
binary responses. Because of this limitation, we implemented two different models to estimate
early and late dropout probability instead of considering a unique multinomial mixed-effects
models with a three categories response (i.e. early dropout, late dropout and graduate). The multi-
nomial approach would be of interest since it would allow to include the entire set of observations,

Table 6. Results of the GLM for predicting Credits_01, considering all students enrolled between 2010 and 2015.

Dependent variable: Credits_01

Gender (ref.: female) 0.224***
(0.048)

Previous Studies: Classic (ref.: scientific) 0.061
(0.077)

Previous Studies: Other (ref.: scientific) 0.527***
(0.101)

Previous Studies: Technical (ref.: scientific) 0.045
(0.055)

Native out of Milan (ref.: Native Milan) −0.011
(0.043)

Non-Italian abroad (ref.: Native Milan) 0.358
(0.236)

Non-Italian in Milan (ref.: Native Milan) 0.624***
(0.164)

Non-Italian out of Milan (ref.: Native Milan) 0.390***
(0.160)

Admission Score −0.651***
(0.023)

Access to studies age 0.316***
(0.024)

Family Income: DSU (ref.: highest) −5.809***
(1.005)

Family Income: High (ref.: highest) −1.080***
(0.047)

Family Income: Low (ref.: highest) −0.743***
(0.048)

Family Income: DK (ref.: highest) −14.572
(97.677)

Constant −0.993***
(0.057)

Observations 18,865
Log Likelihood −8,483.819
Akaike Inf. Crit. 16,997.640

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in brackets). Stars
represent the statistical significance: *p < 0.1; **p < 0.05; ***p < 0.01.
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i.e. students, in the multinomial model instead of excluding late dropout students when studying
early dropout phenomenon and vice-versa, introducing a natural bias in the model. In this perspec-
tive, future research will be devoted to the identification of flexible models, able to handle hierarch-
ical observations and multinomial responses.

Notes

1. An important note is needed here. Dropout represents a net waste of resources in the cases in which students
leave university, but sometimes they do so for switching major or university. In this latter case, the effect is not a
net waste of resources for the society, but only for the abandoned university. The argument holds its validity
then, although its application is dependent upon the specific definition of dropout. In this paper, we consider
the viewpoint of the single university involved (see the section about Methodology and data).

2. It is worth to recall that relevance of covariates and threshold values in the splits are automatically identified by
the tree, standing on certain input parameters.

3. We chose this threshold because the third semester after the enrolment represents the deadline for students to
enrol in the second academic year.

4. In the early dropout analyses, late dropout students are excluded from the sample and vice-versa.
5. Tables in Annexes A1 and A2 report detailed results of Models 1a, 1b and 1c, for early and late dropout, respect-

ively. The association between student-level covariates and the response remains coherent across the models.
6. We are aware that there could be a portion of students who do not take any attempts because they have already

decided to drop, creating a potential endogeneity issue in studying the phenomenon. In order to check the
robustness of our results and to avoid this potential confounding factor, we re-run our linear models for predict-
ing early dropout excluding from the sample those students who did not take any attempts at the first semester.
Results, reported in Table A3, confirm that student characteristics associated to the dropout probability,
together with models predictive performance, remain quite unchanged (AUC indexes are slightly lower when
excluding zero attempts students).

7. The technical and mathematical details about the computation of degree courses’ effects are reported in Pin-
heiro and Bates (2006) and Pellagatti et al. (2021).

8. We provide mean and interquartile range for numerical variables and percentage for categorical variables.
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Annexes

Table A1. Complete results of GLMs (Models 1a, 1b) and GLMM (Model 1c) for the prediction of early dropout vs. graduation.

Dependent variable:

Early dropout vs graduated

Logistic models Mixed-effects generalized linear model

(a) (b) (c)
Native out of Milan 0.338*** 0.352*** 0.341***

(0.083) (0.086) (0.086)
Non-Italian abroad 0.122 0.004 0.008

(0.432) (0.46) (0.457)
Non-Italian in Milan 0.319 0.202 0.209

(0.362) (0.367) (0.364)
Non-Italian out of Milan 0.094 −0.008 0.002

(0.33) (0.338) (0.337)
Admission Score 0.017*** 0.014*** 0.015***

(0.003) (0.004) (0.004)
TotalCredits1.1 −0.220*** −0.229*** −0.228***

(0.004) (0.005) (0.005)
attempts1: more −0.528*** −0.694*** −0.682***

(0.091) (0.097) (0.096)
attempts1: none 2.461*** 2.352*** 2.339***

(0.284) (0.289) (0.288)
Family Income: DSU −0.364 −0.325 −0.332

(0.288) (0.287) (0.286)
Family Income: High −0.257*** −0.217** −0.222**

(0.091) (0.094) (0.094)
Family Income: Low −0.172* −0.158 −0.163*

(0.094) (0.097) (0.097)
Family Income: DK −1.315 −1.219 −1.227

(1.038) (1.034) (1.031)
Constant 0.802*** 1.016*** 1.103***

−0.27 −0.331 −0.322
Control for course enrolment No Yes No
Observations 16,216 16,216 16,216
Log Likelihood −2,778.236 −2,667.904 −2,703.508
Akaike Inf. Crit. 5,582.472 5,399.808 5,435.017
Bayesian Ing. Crit. 5,542.729

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in brackets). Stars
represent the statistical significance: *p < 0.1; **p < 0.05; ***p < 0.01.

Table A2. Complete results of GLMs (Models 1a, 1b) and GLMM (Model 1c) for the prediction of late dropout vs. graduation.

Dependent variable:

Late dropout vs graduated

Logistic models
Mixed-effects generalized

linear model

(a) (b) (c)
Gender Male 0.770*** (0.083) 0.607*** (0.088) 0.616*** (0.087)
Previous Studies: Classic −0.105 (0.128) −0.188 (0.132) −0.186 (0.131)
Previous Studies: Other 0.370** (0.152) 0.265 (0.161) 0.266* (0.161)
Previous Studies: Technical 0.408*** (0.073) 0.174** (0.08) 0.177** (0.08)
Native out of Milan 0.071 (0.065) 0.107 (0.067) 0.101 (0.067)
Non-Italian abroad 0.950*** (0.345) 0.749** (0.361) 0.760** (0.36)
Non-Italian in Milan 0.741*** 0.466** (0.228) 0.485** (0.228)
Non-Italian out of Milan 0.606*** (0.222) 0.334 (0.239) 0.347 (0.238)
Admission Score −0.006** (0.003) −0.006** (0.003)
Access to studies age 0.206*** (0.024) 0.188*** (0.025) 0.188*** (0.025)
TotalCredits1.1 −0.171*** (0.003) −0.172*** (0.004) −0.171*** (0.004)
attempts1: more 0.462*** (0.09) 0.463*** (0.089)
attempts1: none 0.974*** (0.274) 0.973*** (0.274)
Family Income: DSU −0.752*** (0.264) −0.754*** (0.264)

(Continued )
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Table A2. Continued.

Dependent variable:

Late dropout vs graduated

Logistic models
Mixed-effects generalized

linear model

(a) (b) (c)
Family Income: High −0.098 (0.077) −0.1 (0.077)
Family Income: Low 0.116 (0.078) 0.116
Family Income: DK −0.779 (0.514) −0.773
Constant −3.197*** −2.894*** −2.665***

(0.461) (0.553) (0.552)
Control for course enrolment No Yes No
Observations 15,901 15,901 15,901
Log Likelihood −4,169.700 −3,981.816
Akaike Inf. Crit. 8,361.400 8,037.631 8,076.093
Bayesian Inf. Crit. 8,221.901

Note: Results are reported in terms of regression coefficients point estimates with their standard deviation (in brackets). Stars
represent the statistical significance: *p < 0.1; **p < 0.05; ***p < 0.01.

Table A3. Complete results from GLM (Models 1a and 1b) and GLMM (Model 1c) for the prediction of early dropout vs. graduation
considering students with more than 0 attempts (i.e. excluding from the analysis those students who did not attempt any exam).

Dependent variable:

Early dropout vs. graduated

Logistic models Mixed-effects generalized linear model

(1) (2) (3)
Gender Male 0.191** 0.144

(0.09) (0.097)
Native out of Milan 0.329*** 0.349*** 0.329***

(0.083) (0.086) (0.086)
Non-Italian abroad −0.104 −0.194 −0.187

(0.492) (0.535) (0.526)
Non-Italian in Milan −0.034 −0.072 −0.118

(0.391) (0.389) (0.38)
Non-Italian out of Milan 0.359 0.24 0.248

(0.364) (0.378) (0.372)
Admission Score 0.011*** 0.010** 0.010***

(0.004) (0.004) (0.004)
TotalCredits1.1 −0.215*** −0.225*** −0.226***

(0.004) (0.005) (0.005)
attempts1: more −0.638*** −0.828*** −0.813***

(0.09) (0.097) (0.096)
Family Income: DSU −0.531* −0.488

(0.319) (0.316)
Family Income: High −0.221** −0.187**

(0.092) (0.095)
Family Income: Low −0.043 −0.037

(0.094) (0.098)
Family Income: DK −1.241 −1.126

(1.038) (1.041)
Constant 0.997*** 1.100*** 1.330***

(0.28) (0.336) (0.32)
Control for course enrolment No Yes No
Observations 14,790 14,790 14,790
Log Likelihood −2,709.975 −2,591.232 −2,632.042
Akaike Inf. Crit. 5,445.949 5,246.463 5,282.084
Bayesian Ing. Crit. 5,350.500

Note: AUC indexes are 0.9258, 0.9311 and 0.9311 for Models 1a, 1b and 1c, respectively. Results are reported in terms of
regression coefficients point estimates with their standard deviation (in brackets). Stars represent the statistical significance:
*p < 0.1; **p < 0.05; ***p < 0.01.
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Figure A4. Random effects intercepts with relative 95% confidence intervals, estimated by GLMM (Model 1c), GMET (Model 2c)
and GMERF (Model 3c). In particular, first line reports the results for early dropout, for GLMM (Panel 4a), GMET (Panel 4b) and
GMERF (Panel 4c), respectively. Second line reports the results for late dropout, for GLMM (Panel 4d), GMET (Panel 4e) and
GMERF (Panel 4f), respectively. Note: For anonymity reasons, we do not report degree courses names alongside the estimated
rankings. This figure is intended only as a tool to visualize and quantify the variability across degree courses, estimated by
the proposed multilevel models.
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