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Hydrogels & drug delivery
For the past four decades, both academia and industry have paid much attention to the promise of designing
smart drug-delivery carriers [1]. The need to overcome the main issues of traditional routes such as oral and
intravenous administration has caused advancements in the medical field. While pills and injections represented a
substantial improvement in medicine, they cannot address the main medical challenges of today. These challenges
include the need for controlled release kinetics and reductions in the number of doses required, drug drawbacks
due to overdosing differing from drug-to-drug and the use of drugs that have short half-lives and show toxicity
if administered without control [2]. These conditions caused the development of a discipline dedicated to the
development of controlled drug-delivery systems. This field brings together historically multidisciplinary topics
across engineering, biology, chemistry, pharmacology and medicine, facilitating the ability to guarantee an effective
plasma drug level for a therapeutic time period, avoiding over- and underdosing [3]. Novel controlled delivery
systems should also allow protection of the drug from hostile environments, stimuli-responsive behavior and cell
selectivity for targeted therapies. Among the possibilities in the biomaterials field for drug-delivery purposes, one
of the most promising is hydrogels. These are hydrophilic polymeric networks that have found many applications
in the medical field due to their elasticity, biocompatibility and ability to load aqueous solution in a semisolid
state. Drug molecules can be loaded either before the gelation is complete and the system is still in a liquid state
with consequent entrapment within the polymeric network or after gelation, which takes advantage of the sponge
ability of hydrogel systems at their dry state. Despite good results obtained in many hydrogel applications, there
are several critical issues linked to high burst release and uncontrolled delivery kinetics, which are driven almost
entirely by Fickian diffusion. The drug flux related to this phenomenon is very fast due to the high in vivo clearance
typical of body fluids [4]. In addition, the hydrophilicity of the loaded drug molecules, if they are not somehow
confined, plays a key role in causing uncontrolled release kinetics and a high burst effect. Over the past 15 years,
many strategies have been developed to slow release rates and guarantee a controlled and sustained release of drugs.
Among them, postpolymer functionalization seemed extremely promising. It was initially developed to introduce
additional properties to polymeric networks using chemical reactions compatible with biological systems, without
toxic solvents and reagents and with mild reaction conditions [5]. This topic can be considered one of the precursors
of sustainable chemistry, now applied in all research fields. The properties added to the polymeric networks were, in
the beginning, limited to peptide sequences to improve cell attachment and growth or tracking agents to monitor
materials’ fate and degradation in living systems [6]. It was also successfully applied to improve the drug-delivery
performance of hydrogels by linking drug molecules to their networks with cleavable bonds. This increases the
stability of polymer–drug chemical bonds and slows release kinetics. The main drawback of this approach is that
the chemical modification of a drug can permanently reduce or eliminate its pharmacological activity. Even if it
is maintained, as observed in many papers, this approach would limit materials’ translatability and increase the
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amount of money needed to reach the market [7]. In this commentary, we focus on alternatives to this strategy
with high clinical potential without involving chemical reactions or polymer functionalization. The main focus is
strategies where drug molecules are physically entrapped within the polymeric network and their release is triggered
by an external stimulus that is able to change the network conformation and allow sustained release with reduced
burst effect. Considering common medical practice, external stimuli that can be used to avoid patient-related pain
and drawbacks are light (at different wavelengths), magnetism and ultrasound [8].

Nanodrug delivery enhancers using optics
Light is one of the most frequently used external stimuli in medicine and has been reported in many drug-
delivery systems integrated with technologies like lasers, lamps and light-emitting diodes (LEDs). The intrinsic
characteristics of light make the corresponding responsive devices both temporally and spatially tunable and may
be used in a wide range of therapeutic applications. To induce light responsivity to hydrogels, it is necessary to
introduce, within the polymeric network, nanostructures able to respond to a wide range of light wavelengths,
from microwave to infrared. Therefore, depending on the type of light-emitting instrument, the effect of the
therapy will be triggered, taking into consideration the balance between the effect caused by nanostructures and
the penetration ability associated with the light emitted. It is indeed well known that UV light presents high
energy but extremely poor penetration ability. To have an optimal drug dosage using UV sources, mechanisms
like photocrosslinking, photoisomerization and photocleavage can be used [9]. The results of this interaction are
changes in conformation and covalent bonding. Attention should also be paid to the interactions between UV light
and organic molecules, like polymers that form the hydrogel 3D network or drug molecules. For example, UV
light can cause the production of reactive oxygen species, conformational change and bond cleavage. Regarding
therapeutic applications, the most widely used light source is near-infrared (NIR), which is in the range of 700 nm
and 1 mm. The penetration ability of NIR is higher than UV and is able to reach deep areas in the human body,
but the energy is generally lower. Other advantages include its better safety compared with UV light, capacity as
a remote stimulus, noninvasiveness and ease of use with standard medical instruments. Several studies underlined
the importance of semiconductor-based, carbon-based and plasmonic metal-based nanoparticles that can convert
excitation energy into heat. Nanoparticles embedded in the polymeric network can sustain release rates and, more
importantly, allow the on/off release of a loaded drug. This is possible because the interaction between NIR light
and nanoparticles can trigger hydrogels to change conformation either cyclically or on a one-off basis, enlarging
their pores and allowing the release of their content. Indeed, plasmonic nanoparticles can concentrate light, with
a consequent local heating effect, working as nanoheaters [10]. In this framework, gold nanoparticles (spheres, stars
or rods) can be entrapped within a composite (natural/synthetic) hydrogel and can regulate the release of drug
molecules dispersed within the 3D network [11]. The use of NIR light is also extremely promising, as found by
Takatsuka et al. [12], in therapies where the active agent should be protected from the immune system, such as for
gene therapies based on adeno-associated viruses.

They can also be loaded within microsystems such that their release is regulated by the interaction between NIR
light and Fe3O4 microparticles entrapped within the hydrogel network. Indeed, by irradiating alginate hydrogel
systems with an NIR source, adeno-associated viruses were released on demand, maintained their activity and
consequently induced gene transfection to cell culture. Among medical applications, the use of enhancers that use
light showed great promise in cancer treatment with many preclinical and clinical studies in solid tumors [13]. Light-
activated systems can work either as photodynamic therapy with localized chemical damage in the target lesion or
as photothermal therapy causing localized thermal damage. In addition, research has evidenced the formation of
an antitumor immune response. However, some drawbacks should be addressed before considering them common
medical practice, particularly thermal damage directed to other tissues, multiple drug loading within drug-delivery
systems to obtain a synergistic effect and formation of reactive oxygen species.

Nanodrug delivery enhancers using magnetism
The use of magnetic fields in medicine involves the application of high- or low-frequency alternating magnetic
fields. These are able to penetrate deeply into human tissues while avoiding interactions with biological matter,
which makes this technique extremely promising for clinical applications [14]. Using this technique, magnetic
materials can be tracked using a static magnetic field, and their release can be tuned using an alternating field. In
general, this function comes from the ability of magnetic nanoparticles to convert the electromagnetic input into
thermal energy to work as nanoheaters. As a result, magnetic nanoparticles that are able to change their structure
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in a temperature-responsive way can be linked or embedded within hydrogel polymeric networks. Depending on
the physicochemical properties of the polymeric network, magnetic nanoparticles that work as nanoheaters can
induce changes in the 3D structures to open pores and favor the release of their drug-molecule contents. For
example, different systems, based on breaking thermocleavable bonds like aliphatic azo linkers or Diels Alder-based
bonds, have been reported to be successful in triggering drug delivery. The main advantage is that the drug can
be entrapped within the network because these bonds are not cleavable at body temperature, while the high local
temperature induced by the nanoheaters causes their rupture with consequent drug release. Loading iron oxide
nano- and microparticles within hydrogel networks can make them magnetic and thus control drug release using
static magnetic fields. Applying a low-frequency alternating magnetic field increases the release rates of the loaded
drug while it can be reduced using a static magnetic field [15]. With the sequential application of alternate cycles of
static magnetic field and low-frequency alternating magnetic field, it is possible to obtain sustained release that can
be remotely triggered and tuned. This function is possible because hydrogel networks swell or shrink depending on
the type of magnetic field applied. Low-frequency alternating fields have been shown to be an extremely promising
treatment for cancer, and importance is given to the stability of nanoparticles to facilitate efficient response to
external treatment for a long period of time. However, the need for expensive magnets or coils to generate the
required field is a significant limit on the easy use of this release strategy.

Nanodrug delivery enhancers using ultrasound
Ultrasound is a technology that has been incorporated into many conventional medical techniques, such as contrast
imaging and tissue healing. Compared with optics, ultrasound reaches deeper into the body because of its lower
attenuation and is promising for the treatment of diseases deep within the body. Ultrasound-based drug-delivery
systems have conventionally used nanosized drug carriers. These include phase-change droplets releasing the drug
from a liquid to a gas by applying heat with ultrasound [16], and liposomes dissolving the gas in the inner water layer
to disrupt the lipid membrane [17], which has been developed as an efficient method of drug release by Orita et al.
Recently, hydrogels were also used to actively release drugs by ultrasound irradiation. The drug-release mechanisms
for ultrasound-responsive hydrogels can be divided into two main categories, similar to those for ultrasound-
responsive release from nano-sized drug carriers. One is to control the drug release from thermosensitive hydrogels
by the thermal effect generated by ultrasound. The other releases the drug by changing or destroying the hydrogel
structure using vibration or cavitation. An et al. showed that hyaluronic acid-based hydrogels with gold cross-links
are ultrasound-responsive and can significantly increase their temperature, leading to the dissociation of gold clusters
and subsequent drug release [18]. While such drug release by thermal effect is easy to design for hydrogel materials,
there is a risk of damaging other biological tissues.

Therefore, a combination with high-intensity focused ultrasound is effective. In the latter method, a self-healing
gel for injection has been reported by Meng et al. [19] in which nanovaccines are encapsulated in a precursor
solution containing polymer monomers and physical cross-linking agents, cleverly utilizing ultrasound-induced
sol–gel transition. The hydrogel is transformed into a viscous flow sol by ultrasonic treatment, which results in the
controlled release of the nano-vaccines. When not irradiated with ultrasound, the gel self-repairs and maintains
its shape. In this method of changing or destroying the hydrogel structure, it is necessary to pay attention to the
ultrasonic permeability of the hydrogel. Since the acoustic impedance of hydrogel is almost the same as that of
biological tissue, more than 90% of the ultrasound is transmitted through the hydrogel, so it cannot efficiently
react to irradiating ultrasound. Encapsulating particles as a vibration enhancer in hydrogel improved drug-release
efficiency [20]. However, ultrasound, reaching deep into the body, has a longer wavelength, which results in a lower
resolution. In addition, the ultrasound applied must be powerful enough to release the drug, which causes thermal
damage and the formation of reactive oxygen species, in a similar manner to optical irradiation. Therefore, the
development of better ultrasonic transducers and hydrogel nanocomposites is expected.

Conclusions & future perspectives
In recent years, nanotechnology has been responsible for many significant improvements in different fields including
medicine, where it was utilized to overcome the limits of previous technologies and reach the market with commercial
products. In addition, in the last decade, in many other medical applications, great attention was dedicated to
the advantages of these new formulations able to overcome the drawbacks of classic treatments: inability to
cross biological barriers, toxicity and quick clearance by body fluids. In this field, the possibility of working as
nanoactuators, typical of magnetic and photonic nanoparticles, opened the door to their use as drug-delivery
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enhancers when coupled with hydrogel systems. This combination can ensure a more sustained release together
with the ability to tune drug-release rates in time as well as in space. Indeed, the use of external stimuli on these
nano-objects can induce molecular and physicochemical changes in the 3D hydrogel network and guarantee an
engineered and tunable release of their contents. In particular, nanomaterials responsive to magnetic fields, NIR
irradiation or ultrasound exhibited better outcomes in terms of the reduction of side effects and improvement of
treatment efficacy. Although the literature is full of examples of preclinical studies, only a few have begun clinical
trials. Their translation is hampered by various factors, including a lack of standardized procedures, regulatory
problems and the uncertain fate of nanoparticles in the tissues. Consequently, regulatory organizations in many
different countries are moving to build a standardized compendium to improve the safety and reproducibility of
these nanoparticles for clinical use. Indeed, uniform legislation will help facilitate translation from in vitro studies
to preclinical studies, toward the complexity of clinical trials.
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