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A B S T R A C T   

Distribution transformers (DTs) are critical components used in power distribution networks, and they are 
vulnerable to aging failures due to irreversible insulation degradation. Therefore, the accurate estimation of the 
aging-related failure rates (AFRs) is necessary for the reliability-centered maintenance and replacement strate-
gies needed for ensuring service reliability and safety. Various data-intensive models have been proposed for AFR 
evaluation of power equipment. However, these models cannot be used for AFR evaluation of DTs due to the 
limitation of the available data. This paper tackles this important problem in an unconventional way by it de-
velops a novel Restoration-Clustering-Decomposition learning framework to model the AFRs of individual DTs 
and improve evaluation accuracy. The proposed approach requires only the non-intrusive data that can be 
directly extracted from existing available databases, making it feasible to be applying to numerous DTs. First, the 
analysis of the degree of polymerization (DP) degradation and the Latin Hypercube sampling (LHS) technique are 
combined to reproduce aging failure data. Then, an optimal Entropy-weighted K-means (EW-K-means) clustering 
method and the classic 2-parameter Weibull model are used to evaluate the average AFRs of different DT groups 
through failure data analysis. Then, a DP-based decomposition function is introduced to quantify the relative 
aging degree of in-group individuals and to derive the probabilistic AFRs of each DT in the group. Application 
examples of a scrapped DT population in Chongqing Electric Power Company of China are presented and dis-
cussed in detail. The results show that the proposed learning framework has a promising capability for AFR 
evaluation of individual DTs and bears great practicality in the real world.    

Acronyms 
DT Distribution Transformer 
AFR Aging-Related Failure Rate 
DP Degree of Polymerization 
LHS Latin Hypercube Sampling 
EW-K-means Entropy-Weighted K-means 
HST Hottest-Spot Temperature 
EWM Entropy Weight Method 
MLE Maximum Likelihood Estimate 
KDE Kernel Density Estimation 

1. Introduction 

Distribution transformers (DTs) are the most important components 
used in power distribution networks, considering their designed capa-
bility to transform the medium voltage to the low voltage level used for 
households and commercial customers [1,2]. For a medium-sized city, 
there may be hundreds or even thousands of DTs [3,4]. The status of DTs 
plays a crucial role in ensuring the secure and reliable operation of 
distribution networks [5]. Hence, dynamically monitoring and evalu-
ating the performance and the reliability level of DTs is necessary for the 
reliability-centered maintenance and replacement strategies for distri-
bution networks [6,7]. 
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In this context, the failure rate is an important reliability parameter 
of DTs, which is defined as the state transition rate of a DT from normal 
operation to failure at a special time [8,9]. As far as DTs are concerned, 
their failures can be classified into two categories: repairable random 
failures and non-repairable aging failures [10]. Generally, modeling the 
random failure rate is relatively easy because it can be assumed as a 
constant irrelative to operating time in most cases [11]. Aging failures of 
DTs gradually occur because of stressed conditions, including oil leak-
ages, overloading, and unbalanced loadings in the long term, which 
renders the aging-related failure rate (AFR) of DTs uncertain and 
time-variant [12]. 

Because of the significant population of DTs on feeders, it is almost 
impossible to equip all DTs with the advanced sensors for collecting the 
diagnostic data associated with the aging degree, such as oil chro-
matographic, dielectric loss, partial discharge, and frequency response 
data [13–15]. In other words, it is difficult to apply the data-intensive 
methods, including Proportional Hazards Models [16,17], Hidden 
Markov Models [18], and Health Index (HI) based Models [19,20], for 
the AFR evaluation of individual DTs due to their population. 

The asset-age-based Weibull distribution models have been widely 
used in the DT’s AFR evaluation for a long time [21,22]. Existing studies 
proved that the 2-parameter Weibull model could well describe the 
aging processes and AFRs of a DT population. Nevertheless, this model 
only uses age as a single input variable, and other factors causing aging 
are ignored [2]. This results in a difficult situation where DTs with 
differentiated aging degrees have the same AFR at the same age. Such a 
result may significantly deviate from reality in some cases [5]. 

Consequently, it is absolutely necessary to develop an evaluation 
method to accurately quantify and distinguish the aging degrees of in-
dividual DTs only relying on non-intrusive data (e.g., loading data, 
meteorological data, etc.), which can be directly extracted from existing 
databases. 

There is another issue in the AFR modeling process. In many data-
bases of electric utilities, the scrapping ages of scrapped DTs (i.e., the 
span from commission to scrap) are recorded [23]. Using these scrap-
ping age data would lead to a pessimistic AFR evaluation result [24,25]. 
Therefore, it is necessary to convert the collected scrapping age data of 
scrapped DTs into their technical lifetimes, which are defined as the time 
intervals from commission to expected aging failures that occur in this 
paper. This data problem is seldom investigated systematically. 

To tackle the above challenges, this paper proposes a Restoration- 
Clustering-Decomposition learning framework to estimate the AFRs of 
individual DTs. In this framework, aging failure data restoration (pro-
cessing & conversion), DT clustering, in-group AFR decomposition, and 
uncertainty modeling are all integrated to improve the credibility and 
accuracy of DT’s AFR evaluation. To the best of our knowledge, this is 
the first attempt to construct such a framework for the AFR estimation of 
DTs. The proposed approach can be easily applied for numerous DTs 
even without installing monitoring equipment since it only requires the 
available non-intrusive data but does not require other data from 
intrusive health monitoring devices. In addition, the proposed approach 

can also be used for the AFR evaluation of other power distribution 
assets by modifying the established modules that are special for DTs. 

The work extends prior art by adding the following contributions:  

• A long-existing problem that did not gain enough attention but has a 
significant impact in modeling, namely aging failure data restora-
tion, is raised and analyzed. This problem is then solved through the 
proposed DP degradation analysis and Latin Hypercube sampling 
(LHS) techniques.  

• A comprehensive DT clustering feature system and an efficient 
Entropy-weighted K-means (EW-K-means) clustering algorithm are 
developed for grouping DTs, improving the estimation accuracy of 
average AFRs for different DT groups.  

• A DP-based decomposition function is established to quantify the 
relative aging degrees of individual in-group DTs. It can be used to 
derive the probabilistic AFRs of individual DTs considering the data 
uncertainty. 

This paper is organized as follows: Section 2 overviews the proposed 
framework. Section 3 introduces the approach for reproducing the 
collected aging failure data (i.e., scrapping age data). Section 4 describes 
how to derive the average AFR of each DT group based on DT clustering 
and the 2-parameter Weibull model. Section 5 discusses how to compute 
the AFRs of individual in-group DTs through a decomposition function. 
Section 6 demonstrates the applicability of the proposed method by 
applying it to a real DT population. Discussion is given in Section 7, and 
the last section concludes the work. 

2. Overview of the proposed framework 

As mentioned in Section 1 above, in this paper, we develop a novel 
Restoration-Clustering-Decomposition learning framework for AFR 
estimation of individual DTs. The diagram of the proposed framework is 
shown in Fig. 1 below. 

As Fig. 1 shows, the proposed learning framework contains two 
processes: the training process and the application process. The training 
process mainly includes three steps as follows: 

Step 1: Restoration. Aging failure data are the basic input data 
required by the proposed framework, and these data will be used to 
fit the AFR curves of DT groups. This step focuses on restoring the 
collected scrapping age data of scrapped DTs into their technical 
lifetimes to construct a reasonable and credible aging failure dataset. 
Specifically, the degree of polymerization (DP) analysis and Latin 
Hypercube sampling (LHS) techniques are jointly adopted to restore 
the collected scrapping age data of historical scrapped DTs. It is 
worth noting that the proposed restoration method is derived from 
several widely accepted physical-based and data-driven models. 
Step 2: Clustering. Generally, the average AFR of the DT group can 
be derived by fitting the in-group aging failure data. Since the 
collected scrapped DTs are run under different operating and 

Fig. 1. Structure diagram for the proposed Restoration-Clustering-Decomposition Learning Framework.  
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environmental conditions, it is necessary to stratify them into 
different homogenous DT groups to obtain accurate average AFRs. 
Inspired by this, an EW-K-means clustering method is applied in this 
step to group the scrapped DT population into some homogenous 
groups according to the constructed clustering feature system. Then, 
the classic 2-parameter Weibull model is used for modeling the 
average AFR of each DT group. It should be emphasized that the 2- 
parameter Weibull model has been proved suitable for the simu-
lated dataset according to the hypothesis testing results. 
Step 3: Decomposition. To address the heterogeneity of in-group 
DTs, the average AFRs of DT groups can be set as a reference 
value, and the AFRs of individual in-group DTs can be estimated 
based on their actual aging behavior. On this basis, a DP-based 
decomposition function is adopted in this step to quantify the rela-
tive aging degrees of individual in-group DTs. It will then be used for 
deriving the individual AFRs of in-group DTs from the average AFR. 

After these steps are completed, the established model can be applied 
to evaluate the real-time AFRs of individual in-service DTs. Considering 
the uncertainty resulting from the data restoration operation, the LHS- 
based calculation step is undertaken for AFR probabilistic assessment. 

The above processes will be explained in detail in Sections 3-6. 

3. Aging failure data restoration 

This section illustrates the approach for restoring the collected 
scrapping age data of scrapped DTs to their technical lifetimes based on 
the DP degradation analysis and LHS techniques. 

3.1. Aging failure data restoration 

In general, the reasons for DT being scrapped can be classified into 
two categories: aging failures and preventive management [9]. As is 
shown in Fig. 2, for a DT that is scrapped due to aging failures (e.g., unit 
1), its technical lifetime can be directly set equal to its scrapping age. In 
practice situations, however, most aged DTs are scrapped due to pre-
ventive management [20]. In this case, the technical lifetime of a pre-
ventively scrapped DT (e.g., unit 2) will be longer than its recorded 
scrapping age. As discussed in Section 1, the technical lifetime of a 
preventively scrapped DT can be assumed to be the aging-related life-
time when expected aging failures occur. Accordingly, the key to aging 
failure data restoration is to accurately estimate the aging-related life-
times of the preventively scrapped DTs. Since the non-repairable dete-
rioration of insulation paper is the dominant factor that causes 
limitation in DT’s aging-related lifetime, the lifetime of insulation paper 
is generally considered as the DT’s aging-related life span [26]. The 
insulation papers of DTs are composed of long chains of glucose rings 
that build the cellulose polymer molecule. The average length of these 
chains is termed degree of polymerization (DP) [27]. As the best indi-
cator to evaluate the aging condition of the DT’s insulation paper, the 
DP-value will decrease over time as the paper’s irreversible aging pro-
cess under the combination of thermal, electrical, and chemical stresses. 

Based on previous studies, an end-of-life criterion for DTs is usually 
defined as the time point when DP drops to 200 [27,28]. Accordingly, 
the technical lifetime of a preventively scrapped DT equals the expected 
operation years when its DP-value decreases to 200 [29]. Based on the 
above discussion, Fig. 2 gives the graphical representation of the pro-
posed aging failure data restoration rules in detail. It is worth noting that 
these proposed restoration rules are suitable for numerous DTs in 
existing distribution networks. 

However, in practical engineering, direct measuring the DP-values of 
insulation papers is impossible because this operation implies an inva-
sive manipulation of the insulation system of DTs. Therefore, this paper 
developed a computation-based DP estimation method that combines 
several widely-accepted physical models and data-driven models, 
allowing indirect and non-invasive estimation of the DTs’ time-varying 
DP-values. Details of the proposed approach are given in the following 
sub-sections. 

3.2. Degradation simulation of Degree of Polymerization 

A wide-accepted physical model (the Arrhenius-Kinetic equation), 
which has been recommended by serval industry standards such as 
CIGRE-323, is adopted here to calculate the change in DP-value over a 
specific time [28,30]: 

1
DPt

−
1

DP0
= A × e− Ea

RT × t (1) 

Eq. (1) assumes that the degradation process of DP is controlled by a 
dynamic reaction rate, exp(-Ea/RT). Ea is the activation energy of the 
aging reaction that equals 111KJ mol− 1. R is the universal gas constant 
equal to 8.314 J mol− 1 K− 1. A is a time-varying pre-exponential factor 
for describing the chemical environment in h− 1. T is the time-varying 
hottest-spot temperature (HST) of the DT’s winding in K (Kelvins). t is 
the operating time in hour (h). DP0 and DPt denote the initial DP-value 
and the DP-value after an operating time t, respectively. 

To accurately calculate the time-varying DP-values, a recursive form 
of (1) can be derived as: 

1
DP(k)

−
1

DP(k− 1)
= A(k− 1) × e

− Ea
R(T(k− 1)+273) ×

(
t(k) − t(k− 1)

)
(2)  

where index k represents the iteration stage, and the period of each 
iteration can be discretized into one hour. According to (2), the DP-value 
in each iteration can be calculated as long as the A-value and T-value in 
that iteration are obtained. 

Previous studies have proved that the A-value depends on the 
moisture content in insulation paper and the oxygen level in the trans-
former tank, whereas the T-value is determined by the load ratio and 
ambient temperature [31,32]. In view of this, the following sub-sections 
are devoted to presenting the method applied for obtaining these two 
time-varying parameters of (2) to clarify how the practical concern can 
be considered in the model. 

3.2.1. A-value 
Enough thermal aging test for DT’s paper insulation has proven that 

the A-value can be defined as a polynomial function of moisture content 
and oxygen level, which is given by: 

Ak = ξ1⋅ω3
k,paper + ξ2⋅ω2

k,paper + ξ3⋅ωk,paper + ξ4 (3)  

where ωk,paper represents the moisture content in the insulation papers in 
iteration k. The values of ξ1, ξ2, ξ3, and ξ4, are determined by the oxygen 
levels and paper types, and their recommended values for different ox-
ygen levels and paper types can be found in [31–33]. Since the oxygen 
level of oil-immersed DTs is generally kept at a low level regardless of 
the operating time, and the type of insulation paper is determined before 
the commission, Ak can be directly calculated by (3) when inputting ωk, 

Fig. 2. Graphical representation of the aging failure data restoration rules.  
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paper. 
Nevertheless, directly measuring the moisture content in the insu-

lation paper at each iteration is impossible for many utilities because the 
measurement kit is not cost-effective. As an alternative, a practical 
method for calculating moisture content in insulation papers, i.e., the 
ABB model [30], is adopted here, which is given by: 

ωk,paper = 2.069⋅exp
(
− 0.030⋅θtu,k

)
× ωk,oil

χ(θtu,k) (4)  

ωk,oil = 10

(

7.420− 1670
θtu,k

)

× RHk (5)  

χ(k) = 0.405⋅θtu,
0.097
k (6)  

where ωk,oil, θtu,k, and RHk are the moisture content in the insulation oil 
(μg/g), top-oil temperature (◦C), and environmental relative humidity 
(%) in iteration k, respectively. In practice, θtu,k can be derived from the 
ambient temperature data, and relative humidity data can be exported 
from the local meteorological centers. Accordingly, the A-value in each 
iteration can be obtained by substituting (4)-(6) into (3). 

3.2.2. T-value 
IEEE standard C57.91-2011 has presented a well-known dynamic 

thermal model that explains how DT’s dynamic HST (T-value) can be 
affected by loading and ambient temperatures. In this model, the vari-
able T-value is a function of loading and ambient temperature in each 
iteration, which is given by: 

Tk = θtu,k + Δθh,k = θae,k + Δθtu,k + Δθh,k (7)  

where θtu,k and θae,k are the HST, top-oil temperature, and ambient 

temperature in iteration k, respectively. Δθtu,k and Δθh,k are the top-oil 
and hottest-spot temperature rise over ambient and top-oil tempera-
ture, respectively, which are given by the following equations [34]: 

Δθtu,k = Δθtu,r⋅
(

LF2
k R + 1

R + 1

)σ1

(8)  

Δθh,k = Δθh,r⋅(LFk)
2σ2 (9)  

where LFk is the load ratio in iteration k. R is the ratio of load loss at rated 
loads to lose at zero loads. Δθtu,r and Δθh,rare the top-oil and hottest-spot 
temperature rise at rated load, respectively. σ1 and σ2 are the constant 
transformer parameters determined through a lookup table depending 
on the cooling system of DTs [1]. Based on (7)-(9), the T-value in each 
iteration can be obtained. 

Following the above procedures, the sequential DP-values of any 
preventively scrapped DTs from commission to scrap can be obtained. 
The technical lifetimes of these scrapped DTs can be determined by 
matching the degrading-over-time DP profiles and the corresponding 
criteria (i.e., DP=200). In practice situations, however, the DP-values of 
these preventively scrapped DTs have not yet dropped to 200 when they 
got replaced. In this case, it is necessary to generate artificial data about 
these preventively scrapped DTs’ future loading, ambient temperature, 
and relative humidity to simulate their future operational and envi-
ronmental conditions for forecasting the subsequent DP-values. Detailed 
modeling procedures are given in the following part. 

3.3. Restoration of the technical lifetime of DTs based on the Latin 
Hypercube Sampling technique 

The preventively scrapped DT’s future load ratio, ambient temper-
ature, and relative humidity data can be simulated by exploiting the 
distribution rules from their historical data [35,36]. Considering the 
inherent uncertainties (i.e. stochastic nature) associated with their 
future operational and environmental conditions, the Latin Hypercube 
sampling (LHS) technique is adopted in this paper to generate multiple 
sets of future data for determining the technical lifetime distributions of 
these preventively scrapped DTs. 

LHS is an integration of stratified and random sampling, which can 
be used for generating a random sample of parameter values from the 
established distribution. Previous studies have proved that LHS is more 
stable and precise than Monte Carlo simulation for a given sample size 
[37]. By repeated sampling, it can account for the uncertainty in envi-
ronmental and operational conditions that power equipment may 
experience in the future. This calculation uses simulation to generate 
future load ratio data to illustrate the proposed data generation method. 
Note that the generation of hourly ambient temperature and relative 
humidity follows the same procedures. The procedures for generating 
future load ratio data are described by Algorithm 1: 

Following Algorithm 1, the merged data that includes the real his-
torical data and simulated future data can be made long enough, 
enabling us to capture the time point when the DP-value decreases to 
200 (i.e., determine the technical lifetimes of preventively scrapped 
DTs). The restored technical lifetime in each simulation can be used to fit 
the technical lifetime distributions of the preventively scrapped DTs 
through kernel density estimation. 

Since this proposed data restoration method integrates several 
physical-based models and data-driven models that are all derived from 
thermal aging tests, it can construct a more reasonable and credible 
aging failure dataset (technical lifetime dataset) of preventively scrap-
ped DTs. The constructed dataset will then be used as the input data in 
the subsequent AFR modeling. 

4. Clustering-based average AFR model for DT groups 

In previous studies, the DTs of the same type will form a DT 

Algorithm 1 
Generation method of future load ratio data.  

Input: S # the total simulation times; 
ϑ # the simulation duration (in yr); 
LF = [LF1, LF2,…, LF23, LF24 ] # daily mean load ratio for the DT calculated from the 

historical data; 
ψ = [ψ1,ψ2,…,ψϑ− 1,ψϑ] # the expected cumulative annual growth rate of the DT’s 

load in future ϑ years obtained from the electrical utility; 
SD% # the standard deviations of hourly means. 
Output: the simulating load ratio profile of future ϑ years in each simulation; 
1: Set the iteration index of simulation times q=0. 
2: Let q=q +1. Set the iteration index of simulation year in qth simulation, j =0. 
3: Let j=j+1. Generate the normal distribution of load ratio in wth hour of a day in year 

q, i.e., N(LFw⋅(1+ψq), LFw⋅(1+ψq)⋅SD%) (w=1,2,…,24). 
4: Randomly sample the load ratio of every hour in year q based on area-partition and 

inverse transformation of the corresponding normal distributions [37]. 
5: If j > ϑ, GOTO Step-6. Otherwise, GOTO Step-3. 
6: If q >S, then STOP. Otherwise, GOTO Step-2. 
7: Print the simulating load ratio profile in each simulation.  

Fig. 3. Structure of the clustering-based average AFR model.  
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population and are assumed to have the same aging process and average 
AFR. In practice, however, these DTs are installed in different calendar 
years and run at different operating and environmental conditions [38]. 
In this case, a mixed DT population exists, and using the same average 
AFR would lead to a biased evaluation [39]. Thus, the DT populations 
with the same type should be stratified into different homogenous DT 
groups, and the in-group DTs follow a similar aging process and can have 
the same average AFR. 

Based on the above discussion, this section developed a novel 
clustering-based approach for modeling the average AFRs of different 
DT groups combined with the 2-parameter Weibull model. The structure 
of the approach is shown in Fig. 3. 

It can be seen from Fig. 3 that the proposed clustering-based average 
AFR modeling approach mainly includes the following three procedures:  

1) Feature engineering: building a comprehensive clustering feature 
system that can describe and distinguish individualized character-
istics of different DTs. 

2) Transformer grouping: stratifying the collected scrapped DT popu-
lation into relatively homogeneous groups using the proposed EW-K- 
means clustering method based on the clustering features.  

3) Weibull parameters estimation: estimating the Weibull distribution 
parameters in the average AFR functions of different DT groups using 
the Maximum Likelihood Estimate (MLE) technique. 

Details about these three procedures are illustrated in the following 
sub-sections. Before this, the 2-Parameter-Weibull-based average AFR 
function is briefly reviewed. 

4.1. 2-Parameter-Weibull-based average AFR model 

The 2-parameter Weibull distribution model has been widely used 
for in-group asset reliability studies, and it can efficiently describe the 
average AFR of in-group DTs [40,41]. For this reason, this work uses the 
2-parameter Weibull model as the basic function to model the average 
AFR of each DT group, given by: 

λ(t) = lim
Δt→0

P(t < T < t + Δt|T > t)
Δt

=
f (t)
R(t)

(10)  

where λ(t) denotes the average AFR for a DT group at time t. R(t) and f(t) 
are the reliability function and probability density function corre-
sponding to the 2-parameter Weibull model, respectively. R(t) and f(t) 
are expressed as follows: 

R(t;α, β) = 1 − F(t;α, β) (11)  

F(t;α, β) = 1 − exp
[
− (t/α)β

]
(12)  

f (t; α, β) =
(

β
α

)( t
α

)β
⋅exp

[
− (t/α)β

]
(13)  

where α and β are the Weibull scale and shape parameters, respectively, 
and they can be estimated through MLE analysis of the collected in- 
group aging failure data [25]. Incorporating (11)-(13) to (10), the spe-
cific expression of the average AFR function is given by: 

λ(t; α, β) ==
f (t; α, β)
R(t; α, β)

=

(
β
α

)( t
α

)β
(14) 

It is worth noting that the DTs in the same group share the same 
Weibull scale and shape parameters, whereas the values of the two 
Weibull parameters are different for different DT groups. In other words, 
different DT groups have different average AFRs. 

The following sub-sections will detail introduce the methods for DT 
grouping and each group’s Weibull parameters estimation. Once these 
tasks are completed, the average AFR function of each DT group can be 
obtained. 

4.2. Construction of clustering feature system 

The selection of clustering features has a great influence on the re-
sults of the DT grouping. The feature engineering step aims to extract 
and establish a comprehensive system of features for describing the asset 
conditions and degradation processes of individual DTs. 

Generally, the performance of DTs mainly depends on their factory 
quality, operating conditions, and environmental conditions where they 
are located [42,43]. Accordingly, the following three categories of data 
are selected to form the clustering feature system, as shown in Fig. 4 
below. 

In the first data category, the type of DTs refers to their technical 
parameters in terms of voltage classes (Vc), available capacity (Ac), and 
cooling systems (Cs). The manufacturer information includes the eval-
uation scores of electric utilities to the suppliers’ product quality (Es). 
The factory electric test results include the no-load current/loss (Inl /P0), 
short-circuit impedance/loss (Zsi/Pd), and ground resistance (Ωgr) before 
DT commission. These nine extracted indicators can be derived from the 
Power Grid Equipment Ledger or Maintenance Management Systems. 

Since the degradation of DTs has also been traced back to the three 
time-varying factors in Section 3, i.e., load ratio, ambient temperature, 
and relative humidity, these three corresponding data types are selected 
as the source of the second and third categories. To describe the time- 
space characteristic and the uncertainty (resulting from simulated 
future data) of these factors during the actual life spans of scrapped DTs, 
the following three indicators are defined (taking load ratio data as 
examples) [44]: 

Define 1. : The Absolute Quantity Feature of load ratio: 

Fig. 4. Comprehensive data structure for DTs.  
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AQFLF =
1
S

∑S

s=1

(
1

Ws

∑Ws

w=1
LFs,w) (15)  

where S is the simulation times and Ws is the restored lifetime (in hr) in 
the sth simulation of a scrapped DT. LFs,w is the load ratio in wth hour in 
the sth simulation. This feature can reflect the average absolute degree of 
the load ratio during a DT’s life span. 

Define 2. : The Variance Feature of load ratio: 

VALF =

1
S

∑S

s=1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ws

∑Ws

w=1

(

LFs,w − 1
Ws

∑Ws

w=1
LFs,w

)√

AQFLF
(16)  

This feature is interpreted as the degree of load ratio dispersion 
during the life span of a scrapped DT. The larger VALF is, the higher the 
fluctuation degree of the load ratio is. 

Define 3. : The Trend Feature of load ratio: 

TFLF =
1
S
∑S

s=1

∑Ws

w=1

(
LFs,w − 1

Ws

∑Ws

w=1
LFs,w)

(
w − Ws

2

)

∑Ws

w=1

(
w − Ws

2

)2
(17)  

This feature is used to describe the long-term variety trend of the 
load ratio. A bigger and positive TFLF implies that the trend of DT’s load 
ratio is getting larger over time, and this situation is probably due to the 
increase in the user’s power load. 

Similarly, the other six features corresponding to the ambient tem-
perature and relative humidity data, AQFAT, VAAT, TFAT, AQFRH, VARH, 
and TFRH can be obtained. These nine features can be used to describe 
the heterogeneity in the individual DTs’ operating and environmental 
conditions. 

An example of a clustering feature vector (FV) for an individual DT 
Tm can be given below: 

The feature vectors of these collected scrapped DTs will then be used 
as the input data in the following DT grouping. 

4.3. DT grouping based on EW-K-means method 

This sub-section describes the addopted EW-K-means clustering 
method that is used for DT grouping. Firstly, assuming that the collected 
scrapped DT population contains M individual DTs, then the feature 
matrix can be described as: 

x =

⎡

⎢
⎢
⎣

x1,1 x1,2 … x1,N
x2,1 x2,2 … x2,N
⋮ ⋮ ⋱ ⋮

xM,1 xM,2 … xM,N

⎤

⎥
⎥
⎦ (19) 

In matrix x, element xm,n is the initial value of the nth feature of the 
mth DT. In practice, each feature type has a different unit, and the dif-
ference between the feature magnitudes can be quite large. Therefore, it 
is necessary to normalize the numerical values. The Min-Max normali-
zation is adopted here [45]: 

Xm,n =
xm,n − min

(
x1,nx2,n…xM,n

)

max
(
x1,nx2,n…xM,n

)
− min

(
x1,nx2,n…xM,n

) (20)  

where Xm,n represents the normalized value of the nth feature of the mth 

DT (n=1,2,…,19). 
Furthermore, considering the different importance of the various 

features for the DT’s performance description, the Entropy Weight 
Method (EWM) is adopted to adaptively determine the weights of 
different features. Compared with various subjective weighting models, 
the biggest advantage of the EWM is the avoidance of the interference of 
human factors on the weight of features [46]. The detailed process is 
given as follows:  

1) Calculate the entropy value of the nth feature (hn) [47] 

hn = −
1

InM
∑M

m=1
fm,n⋅Infm,n (21)  

fm,n =
Xm,n

∑M

m=1
Xm,n

(22)   

where fm,n is the contribution of the mth evaluated DT under the nth 

feature (n=1,2,…,19).  

1) Calculate the entropy weight of the nth feature (ewn) 

ewn =
1 − hn

M −
∑N

N=1
hn

(23)   

where 1-hn is the entropy redundancy of the nth feature, and the sum of 
ewn (n=1,2,…,19) is equal to 1. 

Then, the classic K-means clustering algorithm is used for DT adap-
tive grouping analysis based on the entropy-weighted Euclidean dis-
tance. The K-Means method is a very popular unsupervised clustering 

method for dealing with large datasets with great efficiency and low 
computational complexity [25]. It only requires one input parameter, i. 
e., the expected number of clusters (the C-value), making it more suit-
able for industrial applications compared with other clustering methods 
[48]. The mathematical description of the improved K-Means method 
based on entropy-weighted Euclidean distance (i.e., the EW-K-means 
method proposed in this paper) is discussed as follows.  

1) Initialization. Let the number of DT groups be C, and randomly select 
C samples in the dataset as the initial group centers.  

2) DT grouping. Associate all the collected DTs to their nearest group 
center Xc= [Xc,1, Xc,2,…,Xc,n] based on entropy-weighted Euclidean 
distance (c=1,2,…,C). The weighted distance from DT m to the cth 

group center is calculated by: 

Dis(m, c) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

n=1
ewn
(
Xm,n − Xc,n

)

√
√
√
√ (24)    

3) Group center update. According to the result of step 2), the average 
value for each group is calculated as the new group center. 

FV =
[
Vc,Ac,Cs,Es, Inl,P0, Zsi,Pd,Ωgr,AQFLF ,VALF, TFLF,AQFAT ,VAAT ,TFAT ,AQFRH ,VARH ,TFRH

]
(18)   
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X̂ c,n =
1
|Gc

⃒
⃒

∑

Xm∈Gc
Xm,n (25)   

where Gc and |Gc| represent the cth DT group and the number of DT in 
group c, respectively. m=1,2, …, |Gc| and n=1,2,…,19.  

1) Error calculation. Calculate the squared error E under the new group 
centers: 

E =
∑C

c=1

∑

Xm∈Gc

∑N

n=1
ewn
(
Xm,n − X̂ c,n

)2 (26)    

2) Iterative calculation. Repeat steps 2) to 4) until the location of the 
group centers and the minimum E-value no longer change. 

In practice, to optimize the performance, different C-values can be 
tested, and the clustering quality evaluation metrics, the elbow crite-
rion, can be applied to identify the best C-value [49]. In addition, a 
minimum number of 20 DTs is required for each group because this is 
the qualifying criterion for Weibull function modeling [39]. 

Following the above procedures, the collected scrapped DT popula-
tion can be grouped, which is the basis for each group’s average AFR 
modeling. Note that different state-of-art clustering algorithms can also 
be used for DT grouping. 

4.4. Weibull parameters estimation for each DT group 

After completing the DT grouping, the restored in-group aging fail-
ure data (i.e., technical lifetimes) can be used to fit each group’s 
Weibull-based average AFR. The MLE is adopted here for the Weibull 
parameters estimation for each DT group. 

Suppose the cth DT group has |Gc| scrapped DTs. Thus, the likelihood 
function of the Weibull-based average AFR function corresponding to 
the cth group can be written as [50]: 

Lc(αc, βc)

= Lc

⎛

⎜
⎝t1,1,…, t1,Sr⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

DTT1

, t2,1,…, t2,Sr⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
DTT2

,⋯, t|Gc |,1,…, t|Gc |,Sr
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

DTT|Gc |

⃒
⃒
⃒
⃒
⃒
⃒
⃒

αc, βc

⎞

⎟
⎠

=
∏|Gc |

i=1

∏Sr

sr=1
fc
(
ti,s
⃒
⃒αc, βc

)

=
∏|Gc |

i=1

∏Sr

sr=1

(
βc

αc

)(
ti,sr

αc

)βc

exp

(

−

(
ti,sr

αc

)βc
)

(27)  

where αc and βc are the scale and shape parameters to be estimated for 
the cth DT group. fc(⋅) is the probability density function of the Weibull 
model for group c. Since the restored failure time of a preventively 
scrapped DT is not a definite value but a probability distribution, its 
failure time set obtained from the Sr sampling is included in the likeli-
hood function (Sr is set as 200 here). ti,sr denotes the restored failure time 
of DT Ti in the sr

th sampling. 
To simplify computation, we take the logarithm of Lc(αc, βc), and the 

optimal parameter estimators (α̂c, β̂c) should satisfy: 

(α̂c, β̂c) = argmaxLc(αc, βc) = argmaxIn(Lc(αc, βc)) (28) 

Some numerical methods, such as Newton–Raphson have been used 
for solving (28) [51]. In this paper, the default function ‘wblfit’ in 
MATLAB software is adopted to estimate the confidence intervals of the 
two parameters at 95% confidence, and the corresponding mean values 
are selected as the α̂c.and β̂c 

Incorporating (27) to (14), the time-dependent average AFR function 
for the cth DT group can be expressed as: 

λc(t; α̂c, β̂c) =

(
β̂c

α̂c

)(
t

α̂c

) β̂c

(29)  

where t is the asset age (i.e., operating years) of the DTs within group c 
(c=1, 2, …, C). It is worth noting that the confidence intervals of the 
average AFR can also be calculated by considering the confidence in-
tervals of estimated Weibull parameters. 

5. Individual AFR modeling of in-group DTs based on the 
decomposition function 

This section presents the method for modeling the individual AFRs of 
in-group DTs based on a decomposition function, which quantifies the 
relative aging degree of an individual DT with respect to the whole 
group. Details are introduced in the following sub-sections. 

5.1. Brief introduction of in-group decomposition 

As mentioned above, the average AFR model established in Section 4 
can more finely reflect the aging-related aggregated features of the 
whole DT group. Nevertheless, different DTs within the same group 
should have different individual AFRs at the same time point due to their 
heterogeneous aging processes. 

To consider this in this paper, we have developed a novel decom-
position function to link the individual aging degrees with the average 
AFR and to derive the heterogeneous FRs of in-group DTs. Take an in-
dividual DT Tm in group c for example, given the group’s average AFR 
λc(t)and Tm’s real-time aging covariate Qc,m, its AFR at time t can be 
expressed as: 

λc,m(t) = λc(t)⋅R
(

t;Qt
c,m

)
=

(
β̂c

α̂c

)(
t

α̂c

) β̂c

⋅R
(

t;Qt
c,m

)
(30)  

where Qt
c,mis the covariate that describes the aging degrees of Tm at time 

t. R(⋅) is the decomposition function that is used to quantify the relative 
aging degree of Tm towards the whole group c. R(t;Qc,m) = 1 represents 
that the individual aging degree of Tm is the same as the average aging 
degree of group c, and then the individual AFR of Tm equal to λc(t). When 
R(t;Qc,m) > 1, the individual AFR of Tm is large than λc(t), and if R(t;
Qc,m) < 1 it is less than λc(t). 

To build such a decomposition function, the following tasks need to 
be solved: 1) Selection of the time-dependent aging covariate of indi-
vidual DTs. 2) Determination of the specific form of eq. (30). The so-
lutions proposed in this paper are as follows. 

5.2. Selection of the time-dependent aging covariate 

The aging covariate is generally derived from the aging-related 
measurements of DTs [8]. In practice, the selection of aging covariates 
depends on the availability, variation, and sensitivity of the measure-
ment data. More importantly, the aging covariate should be able to 
significantly distinguish the heterogeneous aging degrees of individual 
DTs. 

As well known, the DTs will be aging gradually under the combi-
nation of thermal, electrical, and chemical stresses resulting from dy-
namic operating and environmental conditions. Based on this, previous 
studies [8,15] used various measurements such as the temperature or 
gas and oil results to construct a complex aging covariate vector and 
then derived a weighted index to distinguish the individual aging de-
grees. However, the following limitations make difficult the application 
to the in-service aged DTs: 
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1) Various DT health or aging monitoring devices are required to obtain 
these measurements, which is impossible for the in-service aged DTs 
since most of them do not install the devices due to cost limits.  

2) Determination of the weights of different covariates highly depends 
on expert knowledge and lacks explicit physical meanings, making 
its application even more difficult for electric utility engineers. 

3) The aging covariate vector contains many operating and environ-
mental features, and these features may be highly correlated, which 
will bring potential errors in aging degree evaluation. 

For these issues, in this way, we select a widely accepted aging index, 
the time-varying DP-value (Degree of Polymerization) of DT, as the 
single aging covariate to distinguish the aging degrees of individual DTs, 
and the reasons are as follows:  

1) The DP-value has been regarded worldwide as the best indicator to 
quantify the aging degree of DTs [52]. It can accurately reflect the 
coupling impact of operating and environmental factors through 
prior aging mechanism analysis.  

2) The real-time DP-value can be obtained through the computation- 
based method (introduced in Section 3) without any additional 
measurements, which is more convenient for aged DTs in industrial 
applications. 

Therefore, the observed aging covariate vector of |Gc| DTs in group c 
at time t can be expressed as: 

Qt
c =

[
Qt

c,1,Qt
c,2,⋯,Qt

c,|Gc |

]
(31)  

where |Gc| is the number of DT in group c and Qt
c,|Gc |

is the value of aging 
covariate (i.e., DP-value) of |Gc|th DT at time t. Vector Qt

c is used to 
calculate the relative aging degree of individual DTs through the 
decomposition function established in the following sub-section. 

5.3. Determination of the decomposition function 

Several functions have been proposed to describe the relationship 
between asset conditions and measurement information. Among them, 
the linear function is a rather general approach and applicable for a wide 
range of measurements, and it assumes that the relationship between the 
relative aging degree and aging covariate is linear [8]. Therefore, this 
paper adopts a negative-linear decomposition function to calculate the 
relative aging degree of an individual DT Tm, which is defined as: 

R
(
t;Qc,m

)
=

Qc,per − Qt
c,m

Qc,per − Q
t
c

(32)  

where R(t;Qc,m) is the relative aging degree of Tm towards group c at 
time t. Qc,per is defined as the value that describes the perfect condition 

(non-aging condition) of DTs, and it generally equals 1000 [26]. Qt
c is 

the average DP-value of all obtained values Qt
c,iin group c at time t, 

which is calculated as: 

Q
t
c =

1
|Gc|

∑|Gc |

i=1
Qt

c,i (33) 

It can be seen from (32) that the value of R(t;Qc,m) increases with the 
decrease Qt

c,m. Incorporating (32) into (30), the individual AFRs of DTs 

with the same group can be evaluated. 
In practice application, the DP-values of the scrapped DTs may not be 

determined values but the probability distributions resulting from the 
data restoration operation. In this case, the AFR evaluation result is also 
probabilistic. To quantity the uncertainty, the Latin Hypercube Sam-
pling (LHS) method is adopted. Take a new in-service DT Tnew that be-
longs to group c as an example, the evaluated AFR of Tnew in the sth 

simulation at time t can be expressed as: 

λs
new(t) =

(
β̂c

α̂c

)(
t

α̂c

) β̂c

⋅
(Qc,per − Qt

c,m

Qc,per − Q
t,s
c

)

(34)  

where Qt,s
c is the average DP-value of group c in the sth simulation. The 

above steps should be performed sufficient times to obtain the proba-
bility density distribution of the individual AFR of Tnew at time t using 
nonparametric estimation methods [53]. Here, an effective nonpara-
metric estimation method, i.e., the Nonparametric Kernel Density Esti-
mation (KDE) method, is adopted for probability density distribution 
estimation, and the technical details of the KDE method can be found in 
[54]. 

6. Empirical analysis 

6.1. Dataset description & Preliminary assumptions 

In this section, 207 oil-immersed DTs (mode: S9-30kVA/10/0.4kV) 
that were scrapped between 2017 and 2021 years in Chongqing Elec-
tric Power Company of China are selected and employed to verify the 
usefulness of the proposed approach. A practical value for the initial DP- 
value of these DTs is set as 1000 [55]. The cooling system’s parameters 
of these DTs can refer to [56]. The historical meteorological data can be 
derived from the Greenhouse Data Analysis Platform of China [57]. The 
SD% used for generating these DTs’ future condition data is set as 10% 
[58]. The simulation times S and simulation duration ϑ are set as 10000 
times and 80 years, respectively. All simulations are implemented in the 
MATLAB 2017b platform on a personal computer with a 3.0 GHz Intel 
(R) Core (TM) i5 CPU and 8 GB RAM. 

6.2. Empirical results 

This section is devoted to demonstrating the empirical results using 
the proposed Restoration-Clustering-Decomposition learning approach. 
Detailed processes and analysis are also presented in the following part. 

6.2.1. Results of aging failure data restoration 
This case focuses on applying the proposed data restoration approach 

to the 207 preventively scrapped DTs for constructing a credible aging 
failure dataset. 

By inputting the historical operating and environmental data of these 
DTs into the process, their heterogeneous DP degradation curves can be 
simulated. According to the restoration rules given in Section 3, the 
restored technical lifetimes (i.e., aging-related lifetimes) of these DTs in 
each simulation corresponds to the time points when their time-varying 
DP-values drop to 200. To better illustrate the usability of the proposed 
restoration approach, two illustrative scrapped DTs are selected for 
discussion. Basic information about these two illustrative scrapped DTs 
is provided in Table 1 below. 

As listed in Table 1, the scrapping ages of T1 and T2 are 23.12 and 
20.61 years, respectively. For comparison, their restored technical life-
times obtained from 10000 times sampling are shown in Fig. 5-(a) and 
(b). 

Based on the datasets, the probability density distributions of the 
restored technical lifetime of T1 and T2 can be fitted using the KDE 
method. Detailed results are shown in Fig. 5-(c) and (d), respectively. 
Specifically, the following observations can be made from Fig. 5 and 

Table 1 
Basic information of the two illustrative scrapped DTs.  

ID Commissioning time Scrapping time Scrapping age (yrs) 

T1 April 1998 May 2021 23.12 
T2 December 2000 July 2021 20.61  
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Table 1:  

• The restored technical lifetime of T1 is between 31.99 and 35.87 
years, whereas that of T2 is between 26.34 and 30.16 years. The 
restored lifetimes of these two DTs are longer than their scrapping 
ages and the designed usage years (20 years in China). This is 
because these two DTs do not always operate under the rating load 
rate and rating environmental temperature (40 ◦C) during their 
entire service life.  

• The restored technical lifetimes of T1 and T2 are not fixed values 
under different simulations. This is because the uncertainty of their 
future environmental and operating conditions are fully considered 
in the data restoration process. The intervals of restored results imply 
that the uncertainty of DTs’ future environmental and operating 
conditions indeed has a significant influence on the restoration 
results.  

• The restored lifetimes of T2 are smaller than that of T1, although 
they are put into operation and scrapped in the same periods. To cite 
an instance, the maximum difference between their restored lifetime 
can be up to 9.53 years. This is because T2 has a higher loading factor 
during its service life compared with T1, making it has a faster aging 
process. This finding indicates that taking the scrapping ages as the 
aging failure dataset for the AFR modeling and evaluation is 
inaccurate. 

Similarly, the probability distributions of the restored technical 
lifetimes of the other 205 scrapped DTs can be obtained. For illustration, 
the restored results of 50 randomly selected DTs are shown in Fig. 6 
below. For comparison, their statistically scrapping ages are given in 
Fig. 7. 

As can be seen from Figs. 6 and 7, the restored lifetimes of these 50 
scrapped DTs are generally larger than their scrapping ages, which 

Fig. 5. Dataset and corresponding probability density distributions of the restored technical lifetime of T1 and T2.  

Fig. 6. Restored technical lifetimes of the 50 DTs.  

Fig. 7. Scrapping ages of the 50 individual DTs.  
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further illustrates the importance of the aging failure data restoration 
process. Noteworthy is that the proposed data restoration approach 
enables us to involve multiple aging factors in the aging process analysis 
for a credible restoration of the scrapped DTs’ aging-related lifetimes. 
The industrial experts also confirm that the restored aging failures data 
are reasonable and acceptable. Moreover, this approach is feasible for 
other types of scrapped DTs as the input data required can be made 
available from the existing databases in utilities. 

6.2.2. Results of DT’s AFR evaluation 
Having restored the aging failure data, this case is devoted to 

grouping the 207 preventively scrapped DTs and evaluating the average 
AFRs of different DT groups through the clustering process introduced in 
Section 4. 

Firstly, the 207 scrapped DTs are divided into some homogenous 
groups using the proposed EW-K-means method. The relationship be-
tween the number of groups (i.e., C-value) and the corresponding 
squared error E-value is shown in Fig. 8 below. 

It can be seen from Fig. 8 that the E-value will decrease when the C- 
value increases. Specifically, the E-value decreases dramatically when 
the C-value is smaller than 4, whereas it decreases slowly when the C- 
value is larger than 4. When the C-value is equal to 4, the E-value has 
decreased by 56.71% compared to that of the C-value equals 1. As a 
result, the optimal number of groups is determined as 4 in this paper 
according to the classic elbow method [49]. 

Based on the above grouping results, each group’s Weibull distri-
bution parameters, i.e., scale parameter α̂c and shape parametersβ̂c, can 
be estimated using the default function ‘wblfit’ in MATLAB software. 
Detailed results about each DT group, including the number of contained 
DTs and the estimators of Weibull parameters, are summarized in Case 1 
of Table 2. For comparison, the results that treat all 207 DTs as one 
group (i.e., group UD) are also provided in Case 2 of this Table. More-
over, the results of the goodness of fit tests regarding the four built 
Weibull distributions are given in Appendix B. 

It can be seen from Table 2 that there are quite some differences in 
the estimation values of the Weibull parameters between the four DT 
groups in Case 1, indicating that these four DT groups indeed have non- 
negligible differential aging processes. Specifically, group 1 has the 
fastest degradation speed, whereas group 4 has the slowest degradation. 
Furthermore, the estimators of group UD in Case 2 are at the average 
level of Case 1. For quantitative analysis purposes, the time-varying 
average AFR curves corresponding to each DT group are shown in 
Fig. 9 below. 

From Fig. 9 and the enlarged subgraph, the following quantitative 
observations can be summarized: 

• The average AFRs of all groups in Case 1 and Case 2 gradually in-
crease after 20 years. This observation indicates that the irreparable 
aging failures will become an unavoidable factor of DT populations’ 
unreliability after 20 years, which agrees with the practical findings 
in engineering. 

• The average AFRs in the four groups in Case 1 have significant dif-
ferences in both growth trends and numerical values. The AFR curve 
of group 1 has the fastest growth rate whereas while group 4 has the 
lowest. In the 45th year, the AFR of group 1 reaches 0.182 times/ 
year, 27.27%, 65.08%, and 126.64% larger than that of groups 2-4 in 
Case 1, respectively. 

Fig. 8. Relationship between the number of groups C-value and squared error 
E-value. 

Table 2 
Detailed information about different DT groups.   

DT Group ID Number of DTs α̂c β̂c 

Case 1 1 55 42.08 5.35 
2 82 43.44 5.18 
3 47 45.72 5.51 
4 23 48.35 5.97 

Case 2 UD 207 44.19 5.27  

Fig. 9. Comparison of average AFR results.  

Fig. 10. Comparison of the relative aging degrees at the age of 45 years.  
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• The AFR curve of group UD in Case 2 has a larger growth rate and 
values than groups 3-4 of Case 1 but is smaller than the other two 
groups. In the 45th year, the AFR of group UD is 0.131 times/year, 
28.01%, 8.37% smaller than groups 1-2, and 18.86%, 63.18% larger 
than group 3-4, respectively. 

The above observations demonstrate the importance of the DT 
grouping process on AFR evaluation. Based on the evaluated average 
AFR results, the individual AFRs of in-group DTs can be assessed using 

the proposed decomposition function method. For demonstration, two 
DTs that belong to group 2, namely T3 and T4, are selected for com-
parison and discussion. For better illustration, the KDE method is also 
adopted here to calculate the probability density distributions of relative 
aging degree and AFRs of T3 and T4 at the age of 45 years. Details about 
the used KDE method have been discussed in Section 5 above. 

The relative aging degrees of T3 and T4 towards group 2 at a repre-
sentative age (45 years) are shown in Fig. 10 below. 

According to Fig. 10, the AFRs of T3 and T4 at the age of 45 years can 

Fig. 11. Probabilistic AFRs of T3 and T4 at the age of 45 years.  

Fig. 12. Probabilistic AFRs of T3 from 0–50 years.  

Fig. 13. Inversion results at different age periods.  
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be calculated using (34) in Section 6. Detailed results are shown in 
Fig. 11. 

From Figs. 10 and 11, the following several observations can be 
drawn.  

• The relative aging degrees of T3 and T4 at the age of 45 years are not 
fixed values but are described by probability distributions. Fig. 11 
shows that the relative aging degree of T3 is between 1.065 and 
1.212 at the age of 45 years, whereas that of T4 is around 0.670 to 
0.942. The reason for these uncertainties is that the DP-values of 
some DTs in group 2 at 45 years are not fixed values but others, and 
they are described by the probability distributions obtained from the 
data restoration process.  

• The probabilistic AFR of T3 is larger than the average AFRs of group 
2 at the age of 45 years. The reason lies in that the relative aging 
degree of T3 is higher than the average aging degree at this age, and 
therefore it would have higher AFRs. In comparison, the probabilistic 
AFR of T4 is smaller than the average AFR. Specifically, at the age of 
45 years, the AFRs of T3 and T4 are between 0.153 and 0.173, 0.096 
and 0.135 times/year, respectively. These two results are signifi-
cantly different from the average AFR (i.e., 0.143 times/year). 

The above discussions indicate that considering the individual aging 
degrees of DTs in the AFR evaluation is of great importance. Compara-
tively, using the conventional age-based 2-parameter Weibull model 
cannot distinguish the individuals, and it would lead to a less accurate 
AFR evaluation. Additionally, Fig. 12 provides the area of the probabi-
listic AFR of the T3 age range (0–50 years). 

It can be concluded from the shaded area of Fig. 12 that the uncer-
tainty in the AFR evaluation results is non-ignorable, especially when 
the DT is greater than 20 years old. Furthermore, this observation shows 

another superiority of the proposed AFR evaluation approach, i.e., it can 
generate probabilistic descriptions of AFRs, allowing the operators to 
grasp the lower and upper limits of DT’s operational risks and to make 
proper maintenance and retirement decisions. 

6.3. Accuracy analysis 

An inversion analysis method proposed in [38] is adopted in this case 
to test the accuracy of the above AFR evaluation results. This method 
compares the number of failed DTs calculated from the proposed 
approach with the actual statistical results at different age periods. The 
Mean Relative Error (MRE) is used to quantitative the error between the 
calculation results and the actual results: 

MREh =
1
C

∑C

i=1

⃒
⃒
⃒NFcal

c,h − NFact
c,h

⃒
⃒
⃒

NFact
c,h

× 100%, h= 1,…,H (35)  

where NFcal
c,h and NFact

c,h denote the number of failed DTs during age period 
h that is calculated from the proposed approach and actual statistics, 
respectively. It is worth noting that a lower MRE indicates higher AFR 
evaluation accuracy. 

The inversion results at four representative age periods (20-30 years, 
30-40 years, 40-50 years, 50-60 years) using the above inversion method 
are provided in Fig. 13. 

It is evident from Fig. 13 that the calculated numbers of failed DTs 
are very closer to the actual statistics at the four representative age 
periods. Specifically, the average MRE-value is 0.516%, indicating that 
the proposed Restoration-Clustering-Decomposition learning approach 
is a superior and promising approach for accurately evaluating the AFRs 
of individual DTs. 

7. Discussion 

This section focuses on discussing the practical applications of the 
proposed AFR estimation framework and the potential research 
directions. 

7.1. Practical applications 

The regulation reform of the electric power industry has created an 
important challenge for the ongoing maintenance of the aging DT assets. 

Fig A1. The generalized Restoration-Clustering-Decomposition framework.  

Table B1 
Results of the goodness of fit tests.   

K-S statistic Critical value 

DT group 1 0.0091 0.0130 
DT group 2 0.0066 0.0106 
DT group 3 0.0056 0.0140 
DT group 4 0.0110 0.0201 

*The significance level α is set as 0.05. 
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Power utilities need to make the most cost-effective maintenance 
strategy to maintain the safe operation of these aging DTs [59]. One 
important and challenging task in developing such a strategy is priori-
tizing maintenance activities for different DTs. To compute better re-
sults, the reliability level of the individual DTs and the impact of their 
maintenance interruption on the system’s reliability are required to be 
considered in the maintenance priority assignment decision-making. 
The failure rate has been regarded worldwide as the preferred reli-
ability measure of power equipment, and therefore the AFR evaluation 
results will be directly used as the essential input data for a maintenance 
priority assignment algorithm [8]. Another essential issue in optimal 
maintenance strategy-making is determining the optimal inspection 
interval of DTs to minimize the maintenance and failure loss costs [60]. 
The maintenance cost mainly depends on the implemented maintenance 
strategies (major or minor maintenance), which are determined based 
on the real AFRs of DTs. Meanwhile, the failure loss cost mainly depends 
on the loss of load resulting from DT failure, while the AFRs of DTs 
determine the expected loss of load. Therefore, It can be said that the 
aforementioned works (maintenance priority assignment and mainte-
nance interval scheduling) all need accurate AFR evaluation results to 
gain the best results. 

7.2. Future research 

In the clustering step of the proposed framework, an EW-K-Means 
clustering method is adopted for DT grouping, whose effectiveness has 
been demonstrated through numerical analysis. In our future study, 
more advanced clustering algorithms can be developed and embedded 
in the proposed framework to promise the robustness of the proposed 
approach when applied to the AFR estimation of other power distribu-
tion assets. Recently, some novel neural-network-based clustering al-
gorithms (e.g., the Learning Vector Quantization method) have been 
proposed, which are suitable for clustering large and complex datasets 
[61]. Inspired by this, a feasible research direction in the future is 
developing a neural network-based clustering method that can be 
specially used for power distribution asset grouping. The chief challenge 
for this work will be to design an efficient neural network model that can 
achieve an optimal trade-off between network topology simplification 
and clustering ability improvement. For this optimization problem, a 
potential solution is integrating advanced optimization algorithms into 
the neural network construction. 

In fact, there are many different domains where advanced optimi-
zation algorithms have been applied as solution approaches, such as 
track schedules, traffic resource allocation, vehicle routing planning, 
etc. [62]. For example, [63] proposed a novel adaptive polyploid 
memetic algorithm for the cross-docking terminal truck scheduling 
problem that can assist CDT operators with proper operations planning 
from the truck scheduling perspective. To minimize the total cost asso-
ciated with traversing the edges of the network and the total cost asso-
ciated with visiting the nodes of the network in vehicle routing, a 
customized nature-inspired evolutionary algorithm is designed in [64]. 
Furthermore, A multi-objective heuristic model is also proposed in [65] 
for resource allocation among level crossings, which can minimize not 
only the total hazard severity due to potential accidents but the asso-
ciated traffic delays as well. In addition to the above studies, much effort 
has also been devoted to improving the generalization ability & scal-
ability of these optimization algorithms [66–68]. In conclusion, these 
efficient optimization algorithms have played an important role in 
solving optimization & decision problems in various engineering fields. 
We believe these algorithms can also be applied to neural network 
optimization in our future research. 

8. Conclusion 

This paper proposes a novel and comprehensive Restoration- 
Clustering-Decomposition learning framework for AFR evaluation of 

DTs. Compared to previous works, this framework has the following 
advantages:  

1) It can distinguish and evaluate the AFRs of individual DTs under 
different aging degrees with higher credibility and accuracy 
compared to the conventional Weibull model.  

2) It can effectively promise the data quality of AFR modeling by using a 
proposed hybrid-driven approach in which physical-based and data- 
driven models are integrated to reproduce aging failure data.  

3) It can significantly improve the evaluation accuracy of average AFRs 
by establishing an unsupervised learning method, i.e., the EW-K- 
means method for DT grouping.  

4) It can help provide credible results in the subsequent reliability 
assessment by utilizing a practical decomposition function to 
distinguish the aging degrees of in-group DTs and to calculate the 
probabilistic AFRs. 

The paper has established the theoretical framework for AFR eval-
uation and proved its feasibility and benefits. This approach can also 
subsequently be used for distribution network reliability evaluation and 
transformer asset management (e.g., maintenance and investment 
decision-making). It is our belief that the proposed approach can be 
further verified by more cases of other utilities. A feasible extension of 
the current work is to extend the proposed framework to a generic 
framework that is also suitable for the AFR evaluation of other power 
distribution assets. Some advanced forecasting algorithms can also be 
embedded in this framework for predicting the AFR within a predefined 
horizon. 
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Appendix A 

This manuscript constructed a novel Restoration-Clustering- 
Decomposition framework and developed feasible modules that are 
specific for distribution transformers (DTs) for the AFR evaluation. The 
proposed framework can be used in a general way upon the substitution 
of the modules specific for transformers are modified (in replacement of 
the modules that are specific for other types of power assets). The 
generalized framework is provided in the Figure below. 

As shown in Fig. A1 above, the generalized Restoration-Clustering- 
Decomposition framework mainly includes three parts:  

1) Aging failure dataset construction: this step aims to restore the 
collected scrapping data of different power assets into their technical 
lifetimes to construct a reasonable and credible aging failure dataset. 
Due to the differential degradation mechanism in different power 
equipment, different data approaches should be devised for each 
type of power equipment and then embedded in part 1 of the pro-
posed framework. In this manuscript, the data restoration approach 
of distribution transformers (DTs) is proposed. When it comes to 
other types of power assets, the corresponding data restoration 
modules should be developed and embedded into part 1 of the 
framework. 

2) Power asset group: this step aims to group the power asset pop-
ulations of the same type into some homogenous groups based on 
their individualized clustering feature systems. In this manuscript, 
the clustering feature system suitable for DTs has been devised. 
Furthermore, this manuscript proposed a universal EW-K-means 
clustering method for the DT grouping, which can also be directly 
used for the grouping of any type of power asset. In summary, when 
it comes to other types of power assets, the corresponding clustering 
feature systems should be developed and embedded into part 2 of the 
framework. On this basis, the power assets can be grouped by using 
the universal EW-K-means method.  

3) AFR decomposition: this step aims to derive the individual AFRs of 
in-group power assets according to their individualized relative 
aging degrees. For the DTs studied in this manuscript, the DP indi-
cator is selected as the aging covariate, and a universal decomposi-
tion function is used to quantify the relative aging degrees of 
individual in-group DTs. When it comes to other types of power as-
sets, the correspondingly aging covariates should be explored and 
embedded into part 3 of the framework. On this basis, the universal 
decomposition function can be directly used for the quantification of 
the relative aging degree of other types of power assets. 

Appendix B 

In order to prove that the Weibull model can well fit the constructed 
aging failure dataset, the built Weibull distributions corresponding to 
each transformer group (a total of 4 groups) have been tested using the 
Kolmogorov-Smirnov goodness of fit method. Test results are given as 
follows. 

It can be observed from Table B1 that the values of the test statistic 
are all greater than the critical values at a significance level of 0.05 
(α=0.05), indicating that the Weibull distribution is suitable for the used 
aging failure dataset. 
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