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Abstract—The globalization of the electronics supply chain
requires effective methods to thwart reverse engineering and IP
theft. Logic locking is a promising solution, but there are many
open concerns. First, even when applied at a higher level of
abstraction, locking may result in significant overhead without
improving the security metric. Second, optimizing a security
metric is application-dependent and designers must evaluate and
compare alternative solutions. We propose a meta-framework
to optimize the use of behavioral locking during the high-level
synthesis (HLS) of IP cores. Our method operates on chip’s
specification (before HLS) and it is compatible with all HLS
tools, complementing industrial EDA flows. Our meta-framework
supports different strategies to explore the design space and
to select points to be locked automatically. We evaluated our
method on the optimization of differential entropy, achieving
better results than random or topological locking: 1) we always
identify a valid solution that optimizes the security metric,
while topological and random locking can generate unfeasible
solutions; 2) we minimize the number of bits used for locking up
to more than 90% (requiring smaller tamper-proof memories);
3) we make better use of hardware resources since we obtain
similar overheads but with higher security metric.

Index Terms—IP Protection, Logic Locking, Hardware Secu-
rity, High-Level Synthesis.

I. INTRODUCTION

Due to the end of Dennard scaling, modern System-on-
Chip (SoC) architectures are increasingly complex and het-
erogeneous, integrating several processor cores, memories,
and specialized hardware accelerators [1]. Such complexity
is pushing the design of integrated circuits (ICs) towards
system-level methods based on high-level synthesis (HLS) [2].
Figure 1a shows an example of HLS-based IC design flow,
where the designers use HLS tools to automatically translate
high-level, C-based specifications into register-transfer level
(RTL) descriptions. Logic and physical synthesis generate the
layout files ready for fabrication. HLS allows designers to raise
the abstraction level, focusing on the behavior rather than hard-
ware details and significantly improving design productivity.

At the same time, IC’s manufacturing costs are growing.
For example, the equipment becomes 5× more expensive
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(a) Traditional HLS-based IC design flow.
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(b) IC design flow extended with locking.

Fig. 1: HLS design flow. Red elements are untrusted entities.

when scaling from 90nm to 7nm [3]. Many semiconductor
companies cannot afford these costs and are becoming fab-
less, outsourcing the IC fabrication to third-party foundries.
This process creates security concerns [4]. Since the foundry
has access to the design files, a rogue employee can analyze
them to steal the intellectual property (IP) and create illegal
IC copies [5]. Design companies are using several techniques
to thwart reverse engineering and IP counterfeiting [6].

Logic locking is a well-known technique for IP protec-
tion [7]. A high-level view of locking-aware design flow is
depicted in Figure 1b. At design time, gates are added to
hide the correct function. These gates are controlled through
an additional input signal (locking key) that is known to the
design house but not to the foundry. After fabrication, the
design house can activate the correct IC function by placing
the locking key in a tamper-proof key-storage element [8].
This process can apply at different abstractions and assumes
the attacker does not have and cannot guess the locking key.
An IC with an incorrect key produces wrong results. On the
other hand, the attackers should not be able to determine
which results are clearly wrong to rule out incorrect keys
and reduce the search space. While locking has been widely
studied, many open issues remain [9]. First, it must provide
sufficient security protection from structural and functional
viewpoints without suggesting to the attacker which keys are
clearly wrong. Second, the cost should be minimized [10].
Third, the technology of the key-storage can limit the number
of key bits that can be used. However, the effects of locking
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depend on the chip function and are difficult to be predicted.
Behavioral locking addresses these concerns by locking a

design at a higher level of abstraction [10]. Behavior locking
methods operate at or above RTL and allow designers to pro-
tect semantic information before it is optimized and embedded
into the netlist by logic synthesis. These methods scale to
larger designs by reasoning about the design behavior instead
of netlist structure. Their industrial adoption is limited since
they require custom HLS tools. A valid alternative is to operate
at the specification level (e.g., the input C code) [11], assuming
that HLS preserves the behavior, including the locking effects.
However, in both cases designers miss a method to select
which elements to lock, incurring overheads and producing
weak or infeasible solutions [10].

This work follows the key idea that locking all elements of
a design does not necessarily provide maximum security.
The effects of some locking transformations may have limited
visibility on the outputs or can be partially cancelled out by
other transformations. The optimization process is application
dependent and requires design space exploration. The selection
should be guided by the analysis of the effects on the security
metric. A designer must explore the application of locking
transformations to identify the combination that maximizes
the security metric while limiting the resource overhead.
So, optimizing a security metric requires a complex design
space exploration that depends on the effects of the locking
transformations on the design function.

We propose a design framework to explore the functional
effects of existing locking techniques at the C level and
optimize their use. Our main contributions are:

• a meta-framework that integrates state-of-the-art C-level
locking which allows use of HLS tools to generate locked
RTL, enabling integration into IC design flows.

• A design-space exploration strategy (solution encoding
and meta-heuristics) to select the best combination of
locking points to optimize given security metrics.

• A proof-of-concept implementation for the optimization
of different entropy with a standard genetic algorithm.

Since our framework uses a standard integer-based encoding
of the solutions, the designer has the possibility to integrate
any state-of-the-art exploration algorithms.

The rest of the paper continues as follows. After introducing
the threat model and motivating the work (Section II), we
present our design framework to apply behavioral locking
with the support of commercial HLS (Section III). In this
section, we also detail the different components: solution rep-
resentation and analysis (Section III-A), design space explo-
ration (Section III-B), and solution evaluation (Section III-C).
Finally, we present a proof-of-concept implementation and
evaluation of our approach (Section IV).

II. PROBLEM DEFINITION

In the following, we show that identifying the points to
be lock is a complex and application-dependent problem that
requires to explore the design space.

Problem Formulation: Given a C specification and a
locking key K, select the design points to be locked along with
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Fig. 2: Differential entropy for each value of Pi. The function
has a maximum when Pi = 0.5.

the corresponding parameters, such that the corresponding
RTL solution has two properties: 1) it is one of the solutions
with the best security metric; 2) it requires the minimal amount
of hardware resources compared to other solutions.

This problem formulation has the optimization of the security
metric as the primary goal, determining the design with
minimal resources only afterwards. In the rest of this section,
we define the threat model and the security metric (along
with a motivating example) that we consider for the proof-
of-concept implementation in this work.

A. Threat Model

We base our work on existing solutions for behavioral and
RTL locking [10], [12]. These methods assume an untrusted
foundry that wants to identify the functionality of the given IC,
i.e., the correct RTL implementation of the IP and its behavior
over time, to make illegal IC copies. The untrusted foundry has
access to the layout files of the locked chip. From these files,
the foundry can reverse engineer the types of modules used
in the design (i.e., registers, functional units, interconnection
elements) and can identify the operations executed by each
functional unit [13]. With this RTL description, the foundry
can perform RTL simulations with different input and locking
key values to extract information from the circuit that can help
reconstruct the functionality. If successful, the foundry has the
possibility of creating illegal copies of the IP.

In this work, we assume the untrusted foundry has neither
access to the correct key nor to a functioning unlocked IC
(oracle). This model is common for low-volume IC customers
where the activated chips are used and available only in sen-
sitive designs (e.g., US DoD). Even in consumer electronics,
when the foundry is fabricating the chip for the first time, we
can assume that an activated chip is not yet available [9].

When no activated chip is available, SAT attacks are not
possible and the attacker can only use random methods and
the defender has to make all possible key-dependent variants
equally plausible without leaking any additional information
to the attacker [14]. Indeed, behavioral locking has been
demonstrated to be able to thwart a wide range of attacks
when the attacker has no access to an unlocked chip [12].
The resulting solutions can be then combined with scan-based
methods to protect the key against oracle-based attacks [15].

B. Locking Evaluation

Security evaluation is based on the assumption that only
the chip activated with the correct key produces the expected
results, while the other keys introduce errors making the
corresponding chips unusable [12]. So, we evaluate the locking



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

of a design s based on the effects on the output results.
Given N output bits, we compute the average differential
entropy [14] as follows:

Hs =

sumN
i=1

(
P s
i · log 1

P s
i
+ (1− P s

i ) · log 1
1−P s

i

)
N

(1)

where P s
i is the probability that the output bit i of the locked

design s results different from its correct value. The probability
Pi is estimated with random simulations, where different test
cases (i.e., input sequences) and wrong key values are applied.
Let T and W be the number of input sequences and wrong
keys that have been provided for evaluation, respectively. The
probability P s

i of each output bit i is computed as:

P s
i =

∑W
w=1

∑T
t=1OUT [i]

g
t ⊕OUT [i]st,w

W · T
(2)

where OUT [i]gt represents the correct value of the output
bit i when the input sequence t is tested, while OUT [i]st,w
represents the actual value of the same output bit when the
wrong key w is provided to the given solution s together with
the same input sequence t.

The differential entropy metric is used to quantify output
corruptibility, i.e. how much the locking techniques affect the
outputs. This value should be maximized to avoid leaking any
information on the correct output values to the attacker. Since
0 ≤ Pi ≤ 1, Eq. 1 has a maximum value Ĥs when Pi = 0.5
for each output bit i (see Figure 2). This corresponds to the
case where each output bit assumes value 0 or 1 with equal
probability when wrong key values are applied. As a result, the
attacker has no information on the correct output values and
can only make random guesses. For this reason, our framework
aims at maximizing Hs. Although we used differential entropy,
our methodology is general and requires a security metric to
evaluate each candidate for the given threat model.

C. Behavior Locking

Behavioral locking hides parts of the function (e.g,. con-
stants, control branches and arithmetic operations) based on
the locking key K. It can be applied on C code [11], during
HLS [10], or at RTL [12]. The key K is provided by the
designer through an input port and partitioned into sub-keys to
lock each element, as shown in Figure 3. The circuit will work
correctly only when the correct key is given. This approach is
more scalable than gate-level locking, protecting the semantics
of the design instead of its structural netlist. We consider the
following behavior locking techniques [10], [11], [12].

Control Branch Locking. Branches in the input behavior
can be locked to hide the control flow. Each condition can be
locked with one bit key. The condition cp == 1 is modified
as cp ⊕ kj == 1, where kj is a one-bit key. This kj is part
of the locking key K and locks this condition checking. The
required branch is taken only when the correct kj is provided.

Operation Locking. Fake operations are added to hide real
RTL operations. Given an operation l to be locked, the outputs
of the two operations (correct and fake) are multiplexed by a
key bit kl. The correct output is connected to 0 or 1 input of
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Fig. 3: HLS-generated IP with behavior locking.

this MUX based on the value of kl. Only with the correct key,
the correct operation results are produced.

Constant Locking. We assume a predefined number of bits
x to implement all constants, typically 32 bits (corresponding
to an integer value in C), regardless the real bit-widths. Each
constant cpi of the behavior is locked as cei = cpi ⊕ ki, where
cei is the locked value stored in hardware and ki is a x-bit key.
The correct constant can be obtained in hardware by reversing
the operation, i.e., cpi = cei ⊕ ki.

We define a locking point as any of the RTL elements
(i.e., a control branch, an operation, or a constant) where it is
possible to apply the given locking techniques.

D. Motivating Example

While behavioral locking is a powerful solution to hide
the IC functionality, we argue that locking a large number
of locking points may produce a large overhead [10] without
necessarily improving the given security metric. Consider
locking the cyclic redundancy check (CRC) code IP. For
simplicity, we use Bambu HLS tool [16] targeting a Xilinx
Virtex-7 XC7VX690T FPGA at 100MHz. The algorithm has
5 operations and 7 constants that can be locked with 167 bits.
When we constrain behavioral locking to use no more than
50% of these bits and we use TAO approach [10] (this is also
known as topological locking), the RTL has an overhead of
1,430 look-up tables (LUT) and 815 flip-flops (FF) compared
to the unlocked version. Differential entropy of the design is
∼50.53 (where maximum is 64) and the algorithm locks all
operations and 2 constants. A high differential entropy (63.08)
can be achieved by selecting and locking only 5 operations and
1 constant. This uses 730 LUTs and 385 FFs with a reduction
of overhead by about 50%. Thus optimizing behavioral locking
is important to improve security metric and reduce overhead.

III. PROPOSED EXPLORATION META-FRAMEWORK

We propose a modular and integrated meta-framework
(see Figure 4) to optimize the use of behavioral locking during
HLS. The input is a synthesizable C code of the accelerator.
Behavioral locking is applied as a source-to-source transforma-
tion on such input C code. In this way, we can leverage existing
HLS tools for generating the locked RTL description. We
assume that the input C code is already synthesizable with the
given HLS tool. Since we consider a metric that analyzes only
the IC behavior and we assume that HLS-generated designs
have the same behavior of the corresponding input C codes,
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Fig. 4: Framework to optimize behavioral locking.

we can perform security assessment directly on the locked
C code. This approach is much faster than performing RTL
simulations, enabling its use in an exploration framework. To
perform locking, we provide the locking key K. The locking
key must be independent of the design to avoid that the
attacker can infer it. So, it is an input of our methodology.
The size of the locking key determines the maximum number
of bits that can be used for locking, limiting the locking
techniques that can be applied. To compute the differential
entropy of each candidate solution (see Section II-B), the
framework requires the corresponding C-based test-bench and
a set T of representative inputs to evaluate the behavior of
locked circuit versions with correct and incorrect keys. Such
input vectors are the same that are used to evaluate the circuit
functionality. An additional set W of wrong keys is also
provided. Each wrong key in W has the same length as the
locking key K and is randomly generated by altering the
correct key. By leveraging the given HLS tool, the framework
outputs an RTL description of the best locked solution that is
ready for the front- and back-end synthesis steps.

Our exploration framework operates as follows. First, we
execute the input C code on the set T of representative
inputs to compute the golden outputs. These values will be
used to assess the effects of applying the candidate set of
locking techniques to the input C code. We parse the input
C code to build the corresponding abstract syntax tree (AST)
of the functionality to be locked. Each AST node describes
a construct occurring in the source code. This representation
aids the next steps since it can be analyzed to identify locking
points and edited to create alternative locked versions. The
rest of the framework has three main steps.
1 analysis: we analyze the input C description to identify the

potential locking points. A locking point is an element of
the algorithm (i.e., constant, operation, branch condition)
that can be potentially locked based on the available
techniques (see Section II-C).

2 exploration: we perform design space exploration to iden-
tify the sub-set of solutions that optimize the given security
metric. Each solution represents a combination of decisions

for (i=0; i < N; i++) {
   C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] + 9*A[i+3] - A[i+4]; }
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for (i=0; i < N; i++) {
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Input C
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Code

Fig. 5: Example of solution encoding. Note that N2 and N4
are the encrypted constants obtained by XOR-ing the original
constant with the key (see cei in Section II-C)

concerning how to apply the techniques to each locking
point. The corresponding locked C codes are generated by
applying the locking techniques specified in the solutions
to evaluate the security metric.

3 selection: we apply HLS on the set of locked C codes
produced in the previous step and we determine the cost
of the resulting RTL designs to select the final solution,
which is our best design.

In the exploration phase, we can use several strategies, ranging
from random changes (similar to approach used for logic
locking in [17]) to complex meta-heuristics like genetic algo-
rithms and simulated annealing. Meta-heuristics are based on
the observation of natural behaviors. For example, simulated
annealing (SA) is inspired by annealing in metallurgy to
create perturbations and move around the design space and a
genetic algorithm (GA) maintains a population of alternative
solutions to be recombined. These algorithms perform well in
the identification of sub-structures in the problem [18], [19].

A. Identification and Representation of Locking Points

During the analysis step, we perform a depth-first analysis
of the AST of the input C code to identify the potential
locking points in the design region to be protected. The type
and number of locking points depend on the algorithm to
be implemented and the locking techniques. We identify all
potential locking points in the candidate region considering
the techniques described in Section II-C as follows:
• constants: we lock constants with a pre-defined number

Bc of key bits. The number of key bits is the same for all
constants to prevent information leakage about the constant
range. Each constant is represented with 0/1 value to
specify whether a constant value must be locked. Each
constant to be locked (i.e., with the corresponding value
set to 1) requires Bc key bits.

• operations: we lock logic and arithmetic operations with
extra fake operations. For each operation type, we pre-
select a set of alternative types. Each operation o is rep-
resented in the corresponding vector element with a value
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that ranges between 0 (no locking) and No, where No is
the number of alternative operation types pre-defined for
the type of operation o. Each locked operation (i.e., with
a value different from 0) requires 1 key bit to multiplex
the output of the correct operation with the fake one.

• branches: we lock the control flow (e.g., if/else state-
ments or ternary operators) with key bits, reordering
branches as needed. Each condition evaluation is repre-
sented in the solution with 0/1 value to specify whether
the corresponding branch is locked or not. Each locked
branch (i.e., value set to 1) requires 1 key bit.

When a locking point i has Oi alternatives, the decision can
be represented with an integer value between 1 and Oi when
it should be locked and 0 otherwise (see the upper part of
Figure 5). For example, if an addition can be locked with two
types of “fake” operations: subtraction and multiplication, the
corresponding element can take on: 0 (no locking), 1 (lock
with subtraction), and 2 (lock with multiplication). On the
contrary, a control branch can assume only two values: 0 (no
locking), 1 (locking). So, the analysis creates a vector of inte-
gers that represents decisions for all locking points. Figure 5
shows a solution encoding for a simple algorithm. The integer
vector represents a locking solution has as many elements as
the number of locking points. It can be manipulated by meta-
heuristics to generate alternatives and search the design space.

Key-bit Requirements. The number of key bits Ks re-
quired to lock a solution s is:

Ks =

NC∑
1

bc ∗Bc +

NO∑
1

bo +

NB∑
1

bb (3)

where NC , NO, and NB is the total number of locking points
for constants, operations and branches, respectively. bc, bo, and
bb have value 1 when the value in the solution is different than
0 (i.e., the corresponding locking technique must be applied).
Bc is the key bits pre-assigned to lock the constant c. This
work considers Bc = 32 for all constants. The designer can
integrate additional constraints. Functions can be excluded
from locking and from analysis. We can also force locking
of specific parts, and explore how to spend the key bits. In
this case, the analysis phase does not add value 0 to the list
of values for the corresponding locking points, forcing them
to have a value always different than zero. A solution s is
always valid since the locking techniques are orthogonal to
each other, but it is feasible (i.e., it can be implemented in the
target system) if and only if there are enough key bits in the
key (i.e., Ks ≤ K).

Size of the Design Space. The size of the design space
corresponds to the combinations of locking techniques that
the designer can apply. Given a locking solution described by
a vector of N candidate locking points (NC + NO + NB),
the number of different solutions is:

Space =

N−1∏
i=0

(Oi + 1) (4)

where Oi is the number of alternatives for the locking point
i plus the possibility of not locking the point. The size of the
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Fig. 6: Manipulation of locking solution to generate new ones.

design space is thus proportional to the functional complexity
of the region to be protected. The designers can apply more
design-specific knowledge to restrict the analysis to specific
code portions (i.e., critical sub-functions) or prune the total
number of candidate points to speed-up the computation. The
rest of the flow will operate only on the candidate points
resulting from this analysis step.

B. Exploration Phase and Security Assessment

In the exploration phase, we can use and compare different
search methods to identify the best combination of locking
techniques for the input C code. Our optimization framework
can use any exploration method that is able to manipulate a
vector of integers like in Figure 6.

As a proof-of-concept, we implemented a standard GA with
integer encoding. GAs maintain a population of N alterna-
tive solutions (initialized randomly) and re-combine them to
identify the best sub-set of locking techniques. Classic GA
operators, like random mutation and single-point crossover,
are applied with probability Pm and Pc, respectively, to
generate offspring solutions. At the end of each generation,
all individuals are ranked based on the given security metric,
checking for the best solution and passing the best individuals
to the next generation. The procedure terminates when the
solution is not improved for some generations or we reach the
limit on the number of generations.

Each solution s encodes locking transformations to be
applied. First, we compute the number of key bits (see
Equation (3)) to determine if the solution is feasible. We then
proceed with security assessment. We consider a threat model
without an oracle. So we optimize the differential entropy
(i.e., effects on the output values), which is a behavioral
metric. We perform security evaluation on the locked C code
by computing differential entropy in Equation (1). We apply
locking techniques to the C code in the solution vector. This
new code is compiled with the testbench and executed on test
vectors for each alternative wrong key w ∈W . The outputs are
compared with golden outputs to compute differential entropy
Hs. Exploration phase maximizes this value. If the designers
want to trade-off more (security) metrics, they can use a linear
combination of the corresponding values or perform multi-
objective optimization [20].

C. Resource Evaluation and Selection

Applying different locking techniques can lead to the same
security level but with different overheads. Once we identify
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TABLE I: Characterization of the benchmarks.

Locking Points

Benchmark Suite #Ctrl. #Op. #Const. #Bits

arf Bambu [22] 0 28 0 28
patricia MiBench [23] 2 9 3 107
bubblesort Bambu [22] 0 11 4 139
crc MiBench [23] 0 5 7 167
sha MiBench [23] 0 76 40 1,356
adpcm CHStone [24] 7 121 69 2,336
aes CHStone [24] 4 111 149 4,883
gsm CHStone [24] 29 251 172 5,784

the solutions that optimize the given security metric, we
evaluate their resource consumption. First, to increase the
number of solutions to evaluate, we pass to the selection
phase solutions whose security metric is within a pre-defined
range from the best ones. We obtain more solutions with
a minimal degradation (pre-defined by the designer) on the
security metric. We perform commercial HLS on the locked
C codes to obtain the corresponding locked RTLs. We rank
these RTL designs according to the use of hardware resources,
selecting the best as the final solution.

IV. EXPERIMENTAL RESULTS

To validate our solution, we implemented a prototype in
Python. We used pycparser parser (ver. 2.19) for C ma-
nipulation (analysis and locking) and the DEAP framework
(ver. 1.30) [21] for the GA-based DSE. Due to the stochastic
nature of the GA, we averaged the results over 30 runs.

We selected eight benchmarks from the Bambu [22],
MiBench [23], and CHStone [24] suites. The benchmarks have
been selected because used for HLS-based locking [10] and
already supported by the given HLS tool. Table I characterizes
benchmarks in terms of locking points (branches, operations,
and constants) and the total number of key bits required
for complete locking. Benchmarks are ordered by increasing
number of total key bits.

We configured the GA as follows. GA population has 300
individuals evolved for 1,000 generations or until the best
fitness value does not improve for 10 consecutive generations.
Crossover and mutation probabilities are set to Pc = 0.5
and Pm = 0.2. Single-element mutation probability is set to
Pl = 0.05. The initial population is randomly created. For
each benchmark, we consider 100 input sets to evaluate the
differential entropy. For each benchmark, we generate four
keys of different length, namely c1, c2, c3, and c4 to
evaluate effect of key size (25%, 50%, 75% and 100% of
the required key bits). For each key, we generate 100 random
variants that represent wrong keys for security evaluation [14].
We compare our solution with TAO [10], a state-of-the-art
behavioral locking technique that locks the elements depth-
first (i.e., topological locking), and a random locking. For fair
comparison, we re-implemented TAO in our framework. In
TAO, the security metric is evaluated on the final solution,
without security optimization and is identified as TAO in
our experiments. Random locking corresponds to the best
individual in the initial GA population, i.e., the best solution
among 300 alternatives.

A. Security Metric Optimization

This paper does not aim at evaluating the security of
the locking techniques, which is given (see [12] for more
information on the security guarantees), but aims at optimizing
their use for a given security metric. For each benchmark s,
we computed the theoretical maximum H∗

s of the security
metric Hs and we normalized the values obtained with DSE
and TAO. The perfect differential entropy is thus equal to 1
but it can be impossible to be achieved for some benchmarks
due to the nature of their algorithms and operations.

Figure 7 compares the differential entropy (normalized
with respect to the maximum value) of the state-of-the-art
topological locking (TAO), the random solutions (RND), and
our method (DSE). The results clearly show that topological
locking fails to optimize the security metric. The analysis on
the AST is not able to predict the effects on the outputs,
leading in most of the cases to solutions with differential
entropy equal to zero. These cases happen when the locked
solutions invalidate the algorithms with fixed outputs (e.g.,
always equal to zero) or leading to time-outs (e.g., in case
of infinite loops). Also, the points where these solutions
are invalidated depends on how the algorithm is written.
For example, in the crc benchmark, the topological locking
invalidates the design only when the locking impacts the
second half of the locking points. These invalid solutions are
instead discarded by our exploration method that is always able
to find solutions that are close to the optimal value. Random
locking can achieve good solutions, but it lacks scalability.
Indeed, when increasing the key budget (i.e., c4), it is more
probable to select invalidating locking points. Our method is
instead able to discard those points thanks to the exploration
and recombination of alternatives.

Figure 8 shows the number of bits used for locking the
solutions and the breakdown for the three techniques. First,
results show that topological locking uses pre-defined number
of bits proportional to the budget, while our DSE method
number of bits independent of the budget (in many cases less
than the limit). The number of bits depends on optimizing the
security metric rather than the budget. Constant locking has
the most impact on differential entropy as it is selected most
and uses most of the key bits. Branches are less used since
manipulating control flow is likely to produce invalid designs.

B. Locking Overhead

We use Bambu an open-source HLS tool [16] to generate
RTL corresponding to plain and locked C codes. Bambu
uses gcc 4.8 targeting a Xilinx Virtex-7 FPGA XC7VX690T
with a clock period of 10ns. We targeted FPGAs since the
ASIC backend of Bambu is only partially supported [22].
However, results are comparable between the technologies.
Logic synthesis is done using Xilinx Vivado 2019.2.

Table II reports the characteristics of the designs obtained
from the plain (unlocked) C codes and the overheads of TAO
and DSE for different key budgets (c1-c4). We report look-up
tables (LUT) and flip-flops (FF), along with DSP and BRAM
elements. We also report total power consumption (in mW)
of the synthesized accelerators. Our DSE has a better use of
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Fig. 7: Differential entropy comparison between our work (DSE) and topological locking (TAO) for different key budgets.
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Fig. 8: Number of locking bits used by our DSE and TAO topological locking for different key budgets. Each bar reports the
number of bits used for locking constants (*-C), operations (*-O), and branches (*-B).

resources than TAO. There are cases when LUT overhead is
more, due to the complex alternative operators. Our method
selects fake operators to optimize for security, while TAO uses
a pre-defined alternative. DSP changes are minimal and limited
to cases where fake operations are implemented as multipliers.
BRAM elements are generally not affected because locking is
not applied to memory elements. There are few cases where
constant values cannot be converted into BRAM look-up
tables, reducing the number of these elements and increasing
logic. Power consumption is incremented proportionally to

the additional logic. Using behavioral locking with different
operators affects the HLS scheduling and liveness of tempo-
rary values. This impacts the number of registers and number
of flip-flops. On the other hand, performing HLS and logic
synthesis after behavioral locking has two positive effects.
First, it allows us to reorganize the microarchitecture in a
way that does not affect the total number of clock cycles
since extra fake operations are executed in parallel to original
ones. Second, since the extra logic is small compared to the
original design, locked designs always meet the clock period,
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TABLE II: Hardware resources and corresponding overheads for topological locking (TAO) and our work (DSE).

arf patricia bubblesort crc

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

R
es

ou
rc

es

Pl
ai

n

#LUT 644 185 374 285
#FF 247 123 233 264
#DSP 33 0 0 0
#BRAM 0 0 0 0
Power [mW] 442 377 328 327

O
ve

rh
ea

d TA
O

#LUT +523 +817 +1387 +1602 +2162 +1769 +1846 +1842 +143 +315 +498 +955 +1552 +1430 +1860 +2149
#FF +285 +353 +586 +751 +1229 +932 +937 +937 +61 +223 +329 +534 +751 +815 +831 +740
#DSP -15 -12 -24 -30 - - - - - - - - - - - -
#BRAM - - - - - - - - - - - - - - - -
Power [mW] -15 -6 -14 -14 +12 +7 +1 +1 - +4 +26 +12 +12 +13 +22 +27

Pl
ai

n

#LUT +564 +1841 +2232 +1982 +510 +144 +263 +112 +673 +688 +673 +267 +1441 +730 +1471 +1522
#FF +377 +1079 +1218 +1324 +262 +87 +123 +37 +518 +518 +518 +223 +751 +385 +847 +783
#DSP -15 -11 -20 -23 - - - - - - - - - - - -
#BRAM - - - - - - - - - - - - - - - -
Power [mW] -11 -9 -25 -17 +3 +1 +2 +1 +7 +8 +8 +4 +22 +11 +22 +22

sha adpcm aes gsm

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

R
es

ou
rc

es

Pl
ai

n

#LUT 3017 6543 9641 6594
#FF 2660 4345 7903 3574
#DSP 0 67 14 49
#BRAM 4 2 14 8
Power [mW] 442 377 328 327

O
ve

rh
ea

d TA
O

#LUT +1885 +6990 +8917 +8873 +13777 +12436 +16102 +17166 +5250 +10898 +20047 +10892 +17221 +23023 +20235 +21503
#FF +291 +2768 +3825 +4042 +5956 +5784 +8583 +9613 -469 +2982 +2865 +2989 +8730 +13206 +11923 +12951
#DSP - - - - +19 -5 -2 -15 +3 +3 +3 +4 -10 -48 -48 -48
#BRAM - - - - - - - - - - - - +4 -2 -2 -2
Power [mW] +219 +154 +208 +237 +18 +46 +56 +43 +12 +7 +10 +10 -18 +23 -26 -8

D
SE

#LUT +8992 +4379 +7403 +3286 +6302 +7376 +5357 +1758 +4142 ++1430 +155 +5651 +15210 +28175 +21469 +35325
#FF +6415 +2906 +5236 +3286 +1894 +1090 +1418 +751 +1786 +339 +254 +232 +8900 +14275 +9452 +16621
#DSP +6 +3 - +3 +14 +28 -4 -12 +6 +4 - +1 +49 +55 +18 +42
#BRAM - - - - - - - - +2 -2 +2 -2 +2 +2 +4 -
Power [mW] +84 +199 +143 +4 +7 +26 +7 +47 +3 +1 +2 +1 +289 +369 +72 +241

TABLE III: Additional results for DSE: Equivalent solutions
and number of generations.

c1 c2 c3 c4

Benchmark #Sol. #Gen. #Sol. #Gen. #Sol. #Gen. #Sol. #Gen.

arf 4 29 8 58 10 39 27 38
patricia 2 22 2 14 4 12 2 45
bubblesort 10 22 1 22 20 17 7 35
crc 19 11 24 11 12 14 47 11
sha 95 20 39 16 144 16 53 39
adpcm 4 60 2 79 1 39 3 93
aes 25 56 34 51 52 43 25 48
gsm 1 73 2 62 8 64 2 77

even when the plain design has a small positive slack. In both
cases, the major effect is an increase of the area overhead to
instantiate the fake operations or to recover the slack and meet
the timing.

C. Design Space Exploration Performance

Table III shows the number of alternative solutions that are
identified during exploration. Several solutions (up to 100)
can reach a similar level of security. Remember that we
maintain the solutions that are within an ε-distance from the
best one. Solutions that are resource hungry are filtered during
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Fig. 9: Evolution of the DSE exploration when providing 75%
of key budget (c3) for two representative benchmarks.

selection phase. The design exploration that we perform is
more expensive than single-run heuristics like TAO. While
TAO completes the locking in few seconds in the worst case,
our DSE engine requires many hours to complete (up to
one day in the worst case). Table III shows the number of
generations required to converge to “stable” solutions. Figure 9
shows the evolution of the DSE runs for two benchmarks (sha
and gsm) when the key budget is 75%. This is an interesting
trade-off between a large design space and the constraint
given by the number of key bits. The graphs show how the
explorations progress towards better values for the security
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metrics. For sha, the best solutions are easy to find and the
best value of the metric is almost immediate. The exploration
terminates quickly. For the gsm benchmark, the DSE requires
more generations to optimize the metric since the design
is complex. The average is sometimes decreasing because
the exploration phase introduces new individuals that are not
necessarily better than the previous ones. However, ranking
and selection procedures keep the best ones and use the
worst ones to explore alternative regions of the design space.
These results show that the method is robust and converges
in about 20-30 generations. The execution time is affected
mostly by time to compile the C code and time to evaluate
security. Complex benchmarks require more time even if they
have small code. They may lead to longer execution times
when invalid solutions time out. The execution times are
order of magnitude lower than RTL simulations. However, the
improvements justify the extra time required by the designer
to explore different solutions. Such exploration is performed
only once during the design phase.

V. RELATED WORK

Several approaches have been proposed to protect IP cores
from reverse engineering and IP theft, including split man-
ufacturing, camouflaging, watermarking, logic locking. Split
manufacturing divides the IC design in two parts that are
fabricated in separate foundries [25], [26]. Camouflaging hides
the Boolean function of a gate at the layout level [27].
Watermarking allows certifying ownership of IP by embedding
a designer’s signature into the design [28]. Logic locking
makes the circuit function dependent on a key unknown to the
foundry [29]. These techniques can apply at the transistor [30],
logic [31], [32], or behavior [13] levels.

Locking modifies the behavior of a circuit, which does not
produce the expected outputs until it is “activated” with a
secret key. It protects the circuit from illegal copies since the
correct execution requires access not only to the IC layout
but also the key. This approach protects against attackers
with access to the design files [29]. Circuit locking can be
performed at logic [17], [33] or behavioral level [34], [35].
Protection techniques depend on the threat model assumed by
the designer: if the attacker has access to an activated chip
(oracle), locking must resist SAT attacks [36]. If no oracle
is available, the attacker can only analyze the design files,
which hardly reveal knowledge on the structure or function.
The attacker can only apply random guesses. To scale to larger
designs approaches raise the abstraction level such as applying
locking during HLS [10], [37], even if they require tool
modifications. Indeed, DSE at the RTL level has been shown
to suffer poor performance because of the high number of
locking points [38]. On the contrary, our method can integrate
algorithm-level analysis and pruning steps to reduce the num-
ber of candidate locking points. They are not compatible with
industrial EDA flows. Existing methods propose alternative
techniques without explicitly optimizing security metrics [14].
We focus on identifying the best combination of techniques
by analyzing the effects on the security metric.

Design space exploration has been recently applied to
hardware IP protection [39], [40], [41]. In [39], the DSE

optimizes an area-delay function for IP watermarking. In [40],
the designers analyze the effects of restricted design spaces
on obfuscated specifications. In [41], locking is applied to
selectively protect specific regions of the search space and
not the hardware IP core. However, in all cases the security
metric was not the primary optimization goal.

VI. POTENTIAL FRAMEWORK EXTENSIONS

We propose a solution to optimize differential entropy for
behavioral locking in an oracle-less attack scenario. However,
our framework can be extended in several directions.

Locking techniques: Designers can integrate new locking
techniques. They must define the values for the alternatives
for the technique and modify the analysis step to generate the
elements in the solution vector. They can also develop further
analysis and pruning steps to reduce the design space.

DSE heuristics: Design space exploration meta-heuristics
are transparent to the locking techniques. Assuming that
all techniques are orthogonal with each other, any common
operator for design space exploration generates valid solutions
by manipulating the vector of integers representing the locking
solution. as shown in Figure 6.

Locking metrics: Our framework can protect the circuit
against oracle-based attacks, where the security metric is
resilience to SAT-attacks. In this case, HLS must be performed
already during security evaluation to create RTL designs on
which SAT attacks are performed [42]. Solutions that are
broken (i.e., the key is recovered) can be marked as infeasible
and discarded. To limit the execution time of the exploration,
the designer can use the number of SAT clauses as a metric that
corresponds to the complexity of SAT attacks. Eventually, the
designer selects the solution that minimizes overhead among
the ones that maximize the resilience to SAT.

VII. CONCLUSIONS

Although HLS is popular, security constraints are not yet
supported by commercial HLS tools. Countermeasures are
applied to the code executing on the processors or manually
implemented into IP blocks yielding suboptimal and even in-
secure designs. HLS should consider security side-by-side per-
formance and cost [43]. Recent solutions are adding security
awareness into HLS [10], [44], [45]. They are not yet mature
for industrial adoption. Our method optimizes IP cores with
locking before HLS while limiting the overhead via design
space exploration at the C level. Locked RTL is obtained
by using any HLS tools. This is a pathway for behavior
locking of industrial designs using commercial design flows.
The proposed locking maximizes a given security metric (i.e.,
differential entropy) by exploring the locking effects with a
genetic algorithm. Results demonstrate that full locking is not
necessary to maximize security. By selecting the locking points
one can maximize security while limiting resource overhead.
Operating at the C level makes our solution compatible with
commercial HLS. Future research will work in two directions.
To improve the framework, we will evaluate and compare
alternative DSE techniques. To expand its application, we will
apply it to new scenarios and security metrics.
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