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Abstract
European efforts to boost competitiveness in the space services sector promote the research and
development of advanced software and hardware solutions. The EU-funded HERMES project
contributes to the effort by qualifying radiation-hardened, high-performance programmable micropro-
cessors and developing a software ecosystem that facilitates the deployment of complex applications
on such platforms. The main objectives of the project include reaching a technology readiness
level of 6 (i.e., validated and demonstrated in relevant environment) for the rad-hard NG-ULTRA
FPGA with its ceramic hermetic package CGA 1752, developed within projects of the European
Space Agency, French National Centre for Space Studies and the European Union. An equally
important share of the project is dedicated to the development and validation of tools that support
multicore software programming and FPGA acceleration. The HERMES project selected the Bambu
High-Level Synthesis tool to integrate capabilities to translate C/C++ code into Verilog/VHDL in
its development ecosystem. In HERMES, Bambu has been and will be extended to support new
FPGA targets, architectural models, model-based design, and input applications. The increased
performance offered by FPGAs is thus made available also to software developers who do not have
hardware design expertise.
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1 Introduction

In space applications, the computational requirements for onboard computing are rapidly
approaching the limits of what space-grade processors and microcontrollers can offer, mainly
because radiation-hardened components are inherently slower than general-purpose CPUs.
Hybrid platforms based on a mix of CPU and FPGA logic have become increasingly important.
European institutions such as ESA, CNES, and the EU funded several efforts to develop
a new generation of rad-hard FPGA platforms, including projects such as BRAVE [8],
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VEGAS [13], OPERA [15], DAHLIA [14], and HERMES [12]. These platforms provide
improved performance with acceptable overhead in size, power consumption, and cost.
However, designing such systems is a challenging task.

High-level synthesis is a process that automatically generates an optimized hardware
implementation from a high-level software description. HLS tools have changed the way we
think about FPGA design by automating the most complex and time-consuming aspects
of the development process: by eliminating the need for manual coding in VHDL/Verilog,
users can now focus on providing a program written in a well-known software language
such as C/C++ along with timing and resource utilization constraints that the final design
must satisfy. This approach has become increasingly popular in the design of hybrid CPU-
FPGA systems. It allows designers to explore different hardware/software partitionings and
optimizations quickly and to generate efficient hardware implementations that meet stringent
requirements. So, HLS in the design of hybrid CPU-FPGA systems for space applications
has become a powerful tool for designers to optimize the performance of their systems while
meeting the strict constraints imposed by space missions. As such, it is a crucial enabling
technology for developing the next generation of rad-hard FPGAs for space applications.

The High-Level Synthesis flow begins with a compilation step to analyze data dependencies
and loops in the input program, optimize the code, and generate a Control and Data Flow
Graph (CDFG). The CDFG is then subjected to three core steps - resource allocation,
scheduling, and binding - to define the structure of the output hardware. These steps
involve assembling functional, storage, and communication units taken from a library of
RTL components. Further optimization and analysis passes are carried out in the front-end,
middle-end, and back-end of the tool to generate efficient accelerator designs. The result is
HDL code ready to be used in a downstream FPGA or ASIC design tool for further analysis,
logic synthesis, and deployment. In the past, the shorter development time offered by HLS
tools used to come at the cost of reduced efficiency in the generated designs. However, with
the availability of several commercial and open-source tools today, that is no longer the case.
These tools can generate efficient designs that are competitive in terms of speed and resource
utilization with hand-optimized RTL code.

This paper shows how the Bambu HLS tool [3] has been extended in the context of the
HERMES project [12] (Qualification of High-pErformance pRogrammable Microprocessor
and dEvelopment of Software ecosystem). The integration of the capabilities of Bambu in the
space development ecosystem allows space application developers with no hardware design
expertise to exploit the performance offered by FPGAs. The paper is divided into three
additional sections. The first section presents Bambu, an open-source HLS tool adopted by
the HERMES project. The second section discusses our most recent extensions to Bambu,
which aim to enhance the tool’s usability in an industrial context for space applications.
The third section provides an overview of representative applications and corresponding
experimental results, followed by the paper’s conclusion.

2 The Bambu Open-Source High-level Synthesis tool

Bambu is a command-line tool developed at Politecnico di Milano providing support to
designers for the HLS of complex applications. Most C/C++ constructs are supported,
including function calls, access to arrays and structs, parameters passed by reference or
copy, pointer arithmetic, dynamic resolution of memory accesses, and module sharing. The
flow resembles a software compilation process: it begins with a high-level specification and
generates low-level code through a series of analysis and optimization steps. Like a standard
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Figure 1 Bambu high-level synthesis flow.

software compilation flow, Bambu has three phases (Figure 1): front-end, middle-end, and
back-end. In the front-end, the input code is parsed and translated into an intermediate
representation (IR) that is used in the following parts of the flow. In the middle-end, target-
independent analyses and optimizations are performed. The back-end performs the actual
synthesis of Verilog/VHDL code ready for simulation, logic synthesis, and implementation
through external tools.

Bambu front-end. Within Bambu, the user can choose several different front-end compilers,
such as GCC and Clang. If GCC is selected, a plugin extracts the call graph and the Control
Data Flow Graph of the functions under analysis from GCC’s internal IR. Similarly, a Clang
plugin extracts the same information from the input and serializes it into a textual format
that is easy to parse. Bambu then parses all the compiler serialized information plus all the
annotations to build a Static Single Assignment in-memory IR. This approach decouples the
compiler front-end code from the rest of the HLS process. Localizing all the changes in a
GCC or LLVM/Clang plugin allows rapid and easy integration of many different versions of
the compilers. Bambu supports GCC versions from 4.9 to 8, and LLVM/CLANG versions
from 4.0 to 16.

Bambu middle-end. Starting from the GCC/Clang IR, Bambu rebuilds data structures,
such as the Call Graph and the Control Data Flow Graphs, and builds additional data
structures, such as the Program Dependence Graphs. Next, it applies a set of device-
independent analyses and transformations. Some of these steps are commonly used in a
software compilation flow (e.g., data flow analysis, loop recognition, dead code elimination,
constant propagation, LUT expression insertion, etc.). Multiplications and divisions by
constant values are transformed into expressions that use only shifts and adders to reduce
area utilization and improve timing. The resulting expression structure depends on the
target device and technology since adders and multipliers may have different performances
on different devices. Differently from general-purpose software compilers, designed to target
a processor with a fixed-sized data-path (usually 32 or 64 bits), a HLS compiler can exploit
custom-sized operators (e.g., a multiplier with the minimum number of I/O bits) and registers.
Consequently, we can select the minimal number of bits required for the specific algorithm’s
operations and value storage, which leads to less area, less power, and shorter critical
paths. At this stage, Bambu also performs Bitwidth and Range Analysis, aiming at reducing
the number of bits required by data-path operators. This analysis is crucial during the
optimization process because it impacts all non-functional requirements (e.g., performance,
area, power) of a design without affecting its behavior.

PARMA-DITAM 2024
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Bambu synthesis back-end. In this phase, Bambu performs the actual architectural
synthesis of the specification. The synthesis process works on each function separately,
and the resulting architecture reflects the structure of the call graph. A single function is
implemented through at least two sub-modules: the control logic and the data-path. Control
logic modeled as a Finite State Machine handles the routing of the data values and the
temporal execution of the operations. The data-path is a custom mux-based architecture
with optimized data types to reduce the number of flip-flops and bit-level multiplexers,
implementing all the operations and memories required during the function execution. The
following paragraphs describe the sequence of steps that Bambu follows to generate control
and data-path modules.

Function Allocation. Function Allocation associates the high-level functions with specific
resources available in the technology library associated with the target device. The technology
library coming with Bambu integrates standard functions described in Verilog or VHDL,
standard system libraries such as libc and libm, and designer-defined components written
in Verilog or VHDL. Bambu supports function pointers and sharing of (sub)modules across
module boundaries [7]. Sharing of functions is achieved using function proxies that act as
intermediaries between function calls in the original specification and shared modules. This
method of sharing results in significant area savings when dealing with complex call graphs,
without any notable impact on execution delays.

Memory Allocation. Memory Allocation refers to the storage of aggregate variables such
as arrays and structures, global variables, and the implementation of dynamic memory
allocation. Bambu adopts an architecture for memory accesses that supports a wide range
of cases. Statically analyzing the memory accesses, Bambu builds a hierarchical data-path
where memories can be classified as read-only, local, with aligned or unaligned memory
accesses, or those requiring dynamic resolutions. The memory interconnection defines multiple
buses connecting load/store components to their respective memories. Dual-port BRAMs
or memory controllers with complex parallel channels are supported by replicating such
memory interconnections as needed. The same memory infrastructure can connect to external
components (e.g., scratchpads, caches, and DRAMs) or directly to the bus to access off-chip
memory. Supporting protocol-based accesses (e.g., FIFO or stream-based access) is obtained
by generating specific components that replace load/store units.

Resource Allocation. Resource allocation associates operations not mapped on a function
to resource units (RU) available in the resource library. During the middle-end phase, the
specification is inspected to identify the characteristics of the operations: these include the
type of the operation (e.g., addition, multiplication, etc.) and the types of the operands
(e.g., integer, float, etc.). Floating-point operations are supported through the HLS of a
soft-float library containing basic soft-float operators [4] or alternatively by exploiting the
FloPoCo software [2], a generator of arithmetic Floating-Point Cores. The allocation step
maps operations on the set of available RUs; their characterization includes latency, area,
and the number of pipeline stages. Usually, more operation/RU matchings are feasible; in
this case, selecting a proper RU is driven by design constraints. The library of RUs used
by Bambu is quite rich and may include several implementations for the same operation.
Furthermore, the library includes RUs that are provided as templates in a standard hardware
description language, such as Verilog or VHDL. These templates can be customized and
retargeted in accordance with the characteristics of the target technology. In this case,
the underlying logic synthesis tool will determine the best architecture to implement each
operation (for example, multipliers can be mapped on dedicated DSP blocks or implemented
with LUTs). To perform aggressive optimizations, each library component is annotated
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with helpful information during the entire HLS process, such as resource occupation and
latency. Bambu adopts a pre-characterization approach through a tool called Eucalyptus to
synthesize different configurations of library components and collect their resulting latency
and resource consumption metrics as XML files in the Bambu library. The configurations are
obtained by specializing a generic template of the resource component, such as a multiplier
or an adder, according to the bit widths of its input and output arguments and the number
of pipeline stages.

Scheduling. By default, Bambu employs a list-based scheduling algorithm. In its basic
formulation, list-based scheduling associates each operation with a priority according to
particular metrics. Scheduling proceeds iteratively, associating a set of operations to be
executed with each control step. Ready operations (i.e., whose dependencies have been
satisfied in previous iterations of the algorithm) can be scheduled in the current control
step, considering the availability of the resources. If multiple ready operations compete for a
resource, then the one having a higher priority is scheduled. In addition to this old but efficient
algorithm, Bambu also features a more aggressive scheduling algorithm, the speculative
scheduling algorithm based on System of Difference Constraints [6]. This algorithm builds
an integer linear programming formulation of the scheduling problem, allowing code motion
and speculation of operations that belong to different basic blocks.

Module Binding. Within the computed schedule, operations that execute concurrently
are not allowed to share the same resource instance. In Bambu, binding of operations to
resources is performed through a clique covering algorithm on a weighted compatibility
graph [11]. The compatibility graph is built by analyzing the schedule: operations scheduled
on different control steps are marked as compatible. Weights express how valuable it is
for two operations to share the same hardware resource. They are computed considering
area/delay trade-offs caused by sharing; for example, RUs that occupy a large area will be
more likely shared. Weights computation also considers the cost of interconnections required
by the steering logic. Bambu also offers several other algorithms for solving the covering
problem on compatibility/conflict graphs.

Register Binding. Register binding associates storage values to registers and requires
a preliminary analysis step, the liveness analysis [11]. Liveness analysis starts from the
schedule to identify each variable’s life intervals, i.e., the sequence of control steps in which a
temporary value needs to be stored. Variables with non-overlapping life intervals may share
the same register.

Interconnection Binding. Interconnections are bound according to the outcome of the
previous steps: if a functional or memory resource is shared, then the algorithm introduces
steering logic on its inputs. It also identifies the set of control signals that will be driven by
the controller.

Netlist Generation. The final architecture is then generated and represented through
a hyper-graph, highlighting the interconnection between modules. The netlist generation
step translates such representation in a register transfer-level (RTL) description in Verilog or
VHDL. The process accesses the resource library, which embeds the RTL implementation of
each resource. This process is target-dependent, and the hardware descriptions may differ
for different technologies (e.g., ASIC or FPGA) or target devices.

Generation of Synthesis and Simulation Scripts. Bambu automatically generates synthesis
and simulation scripts that can be customized via XML configuration files. The RTL-
synthesis tools currently supported are AMD/Xilinx ISE, AMD/Xilinx Vivado, Yosis-Vivado,
Intel/Altera Quartus, Lattice Diamond, NanoXplore, and OpenRoad. Supported simulators
are Mentor Modelsim, Xilinx XSIM, and Verilator.

PARMA-DITAM 2024
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Figure 2 NanoXplore Impulse design flow.

3 New HLS Features

3.1 NanoXplore Logic Synthesis Integration

The first step in the integration of Bambu into the HERMES design flow for space applications
was to add support for the NanoXplore synthesis tool Impulse (Figure 2). The Impulse design
suite translates HDL code into a device-specific bitstream for NanoXplore radiation-hardened
FPGAs through logic synthesis, place-and-route compilation steps, and static timing analysis
tools for performance estimation. Seamless integration of Bambu and Impulse is achieved by
automatically generating backend synthesis scripts after the generation of the RTL code.

During the HLS process, Bambu applies optimizations that are specific to a target, and
therefore, its backend has been customized to support three new types of space-grade FPGAs:
NG-MEDIUM, NG-LARGE, and NG-ULTRA. Before integrating the logic synthesis backend
based on Impulse and running characterization through Eucalyptus, it was necessary to map
Bambu library components correctly to the actual DSPs and True Dual Port RAMs available
on the NG-ULTRA fabric. Since the mapping occurs through behavioral HDL templates,
the components used by Bambu for arithmetic operations and storage modules have been
customized to comply with the Impulse synthesis guidelines.
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3.2 AXI Protocol Interfaces
The NG-ULTRA board’s ARM processor uses the AXI4 protocol interfaces to communicate
with the rest of the system. AXI4 is a standard that includes AXI4, AXI4-stream, and
AXI4-Lite protocols. These are used to access memory banks, streaming channels, and
memory-mapped registers.

Bambu was therefore extended to offer the possibility to access data outside of the
accelerator over an AXI4 bus, which is the standard also for other on-chip communications
(e.g., to communicate with HBM on AMD/Xilinx FPGAs). This can be used to connect
modules created with Bambu with modules created by other sources, or with external
memories. AXI4 is a master/slave protocol that defines a series of channels, i.e., independent
groups of signals exchanged between the master and slave devices. As shown in figure 3,
AXI4 defines five channels: Address read, Read data, Address write, Write data and Write
response, and collects them into bundles associated with different parameters. Each channel
contains a set of information signals and two handshake signals, xVALID and xREADY,
where x depends on the actual channel. These signals indicate the availability of one of the
endpoints to exchange the channel information. In particular, the xVALID signal indicates
that the source of the information on the bus has provided valid data, and the xREADY
signal indicates that the recipient is ready to accept the information. The handshake can only
be completed once both signals are active simultaneously. The address read/write channels
contain the signals needed to define the transaction, such as the data address, the burst
type that should be used, the length of the burst, and more. The read channel contains
the data requested by the transaction and a read response, indicating whether the request
was successful. The write channel contains the data that must be passed to the slave device
and a write strobe signal, specifying which data bytes are valid. The write response channel
contains a signal indicating whether the write transaction was successful. AXI supports
unaligned operations: it can exchange data even if the requested value has a size different
from the bus or its address is not a multiple of the bus size. The AXI protocol is burst-based,
which means the master must only specify the initial address and the burst information.
The slave will then compute the correct addresses for each subsequent data transfer, or beat,
autonomously based on the information passed when the burst was defined. Using pragmas,
Bambu can add an AXI4 controller module inside the hardware design linked to a specific
memory parameter or a set. Each master module is responsible for the communications on
a bundle of AXI4 channels and can act independently from the others. When a memory
operation is issued, the finite state machine activates only the AXI master module related
to the requested memory parameter. This allows the execution of parallel memory accesses
when there are multiple AXI bundles.

Bambu can also create a testbench that includes the AXI4 slave counterparts of the
master interfaces. This enables users to simulate data exchange and verify its correctness.
Users can configure memory delay estimates to assess the application’s performance, taking
into account an estimated latency for data transfers.

3.3 AXI Caches
When requesting an AXI interface, Bambu offers the possibility to add a customizable cache
that can intercept or forward memory access requests coming from the memory controller to
the AXI slave. These caches can help reduce the average memory access latency by accessing
the data present in the cache rather than performing the full transaction over the AXI bus.
Caches are requested by the user through pragma annotations, and several different options
can be specified to generate caches with e.g., different write policies, replacement policies,
and cache line sizes.

PARMA-DITAM 2024



1:8 HLS Developments in EU Space Research

Figure 3 AXI4 channels descriptions: on the left the Write address, Write data and Write
response channels, while on the right the Read address and Read data channels.

The caches provided by Bambu are largely based on the work done in [10], with some
modifications that allowed it to be integrated into our tool and to improve its performance
and customization. The basic element of the Bambu cache is a single datum of the same size
as the data type of the kernel argument being stored. These are grouped in cache lines, i.e.,
a sequence of elements that are contiguous in memory. When there is a cache miss, the cache
reads an entire line from memory, so whenever a datum is requested all the content of the
line is immediately available for future requests. Cache lines can also be grouped in ways.
Unlike elements in a line, lines in a way are not necessarily contiguous. Inside each way, a
cache line can only be stored in a single position, depending on the starting address of the
line. When more than one way is present, each of them provides a position to hold the line.
Multiple memory areas are mapped to the same cache lines, so while populating the cache it
is common that new data must be placed in an already populated line. In this case, the line
is simply overwritten and requests regarding the old data will need to go through the main
memory again.

While caches typically have the same behavior with read operations, different policies are
available when performing writes. Bambu caches offer two different policies: write through no
allocate and write back allocate. When using the first policy, the cache always immediately
forwards the write operation to the main memory. If the address that was written is already
present in the cache it is updated in the internal memory too, otherwise, no other action
is performed. When the write back policy is selected, the data is not transferred to the
main memory: only the internal state of the cache is updated. In case the element that was
written was not already present in the cache the line in which it is contained is first read
from memory, then the data is updated. The write policy also impacts what happens when
a cache line needs to be replaced: in the case of write through policy, the data in the main
memory and the cache are always consistent, so no action is needed when replacing lines.
However, write back caches need to keep track of modified lines using a dirty bit that is set
whenever any element of the line is modified. When a line must be replaced, if the dirty bit
is set, the entire line is first written to the main memory, then it can be replaced. Otherwise,
no action is needed, and the line can immediately be overwritten. Finally, another difference
is that at the end of the computation write back caches need to write all their dirty lines
back to main memory, while write though caches do not need this operation. In general,
write through policies perform better when the time between two write operations is greater
than the latency of the memory because by the time the second write is received, the cache
is already done with the previous operation and its state is consistent with the main memory.
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On the other hand, write back caches are more useful when performing a lot of writes to
the same cache lines in a small period, because the whole line is then transferred in a single
memory transaction either when it is replaced or at the end of the computation.

One of the modules used internally by the caches is the write buffer. This is a data
structure that holds write transactions to main memory that must be performed but have
not yet been completed. It is similar to a circular buffer and is handled by three indexes:
a write index, indicating the next slot where data can be written, a read index, indicating
the next write transaction that must be initiated, and a backup index, indicating the first
transaction that has been started but has not yet completed. The write index is increased
whenever a new item is inserted in the buffer, i.e., when a cache line should be written to
memory. As long as the buffer is not empty and the AXI bus is available, the controller
handling the bus will pick up the element marked by the read index and increase it, while
beginning the write transaction on the bus. The controller also monitors the write responses
of the AXI slave device and forwards them to the queue. The response indicates whether the
transaction was successful or not. In the first case, the write operation has been completed
and is no longer needed in the buffer, so the backup index in the write buffer is increased.
In case the write response indicated an error, the transaction must be repeated. This is
done by reading the element in the buffer marked by the backup index and writing it at the
next available position in the buffer. Both the backup index and the write index are then
increased. By using this buffer, it is possible to perform pipelined write transactions to the
main memory, exploiting the AXI bus more efficiently. While waiting for the response of a
transaction (if the buffer is not full), new write operations can be performed without stalling
the entire cache. Increasing the size of the buffer is especially useful for write through caches
since they typically perform a higher number of smaller data transfers with respect to write
back caches, which perform a smaller number of larger transfers. While it can be useful even
in this case, it should be noted that while write through caches transfer data one element at
a time, write back caches transfer entire lines, so the buffer will use more resources when
using the same size parameter.

Caches can be classified as direct-mapped, n-way set-associative, and fully associative.
All three types of caches are made available by Bambu by selecting appropriate values for
the n_ways and way_size parameters in the pragmas that instruct the tool to generate a
cache. Greater associativity can improve the effectiveness of the cache, as it provides more
options for storing cache lines. However, associativity has a great cost in terms of resource
usage, so it should only be used as needed.

Associative caches can have multiple positions in which a cache line can be located. For
this reason, a policy must be enacted that decides which way will store data whenever a new
line is read from memory. Bambu offers two different replacement policies: least recently
used (LRU) and a tree-structure-based pseudo-LRU.

4 Applications

In the context of the HERMES project, Bambu has been used to automate the design
of space-related applications. In particular, the project use cases cover image and vision
processing algorithms, software-defined algorithms, and artificial intelligence applications. In
this section, as an example of the results achievable with Bambu, we provide some simple
benchmarks showcasing the features described in this paper. All the benchmarks have been
synthesized using Bambu to create the hardware description and NXmap to map it on the
FPGA.

PARMA-DITAM 2024
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Table 1 Comparison between different Boards for the Sparse Matrix-Vector Multiplication
benchmark.

Target Latency(µs) Cycles Frequency LUTs Registers DSPs
nx1h35S 2109 75586 35.85 MHz 1453 1669 10
nx1h140tsp 2083 85960 41.28 MHz 1508 1603 10
nx2h540tsc 1190 81020 68.11 MHz 1664 1642 10

Table 2 Effect of caches on Matrix-Matrix Multiplication benchmark.

Target Latency(µs) Cycles Frequency MEM LUTs Registers DSPs
nx2h540tsc 5945 302160 50.82 MHz 0 2719 3312 6
nx2h540tsc Cache 3415 129706 37.98 MHz 112 5806 3832 6

4.1 Sparse Matrix-Vector Multiplication
The first benchmark is an implementation of a double precision sparse matrix-vector multi-
plication (SPMV) from the MachSuite benchmark suite [9]. The results are reported in Table
1 and focus on comparing three boards from Nanoexplore: the first one is the NG-MEDIUM
(nx1h35S), the second one the NG-LARGE (nx1h140tsp), and the last one the NG-ULTRA
(nx2h540tsc). The considered application implements a sparse matrix-vector multiplication
using fixed-size neighbour lists: the matrix has 494 rows and columns, but only 10 elements
are assumed to differ from zero for each row vector multiplication.

As shown in the table, there is almost no difference in the number of resources used on
the different boards: the number of LUTs, Registers and DSPs is approximately the same
on all the proposed designs. This is also true for the number of cycles, as there is only a
tiny difference between the fastest and slowest board. However, using larger boards has an
advantage: the frequency that NXmap can achieve on nx2h540tsc is two times faster than
the one achieved on nx1h35S.

4.2 Matrix-Matrix Multiplication
The second benchmark is an implementation of a single precision dense matrix-matrix
multiplication with tiling to increase the locality of the requested data. The results are
reported in Table 2 and focus on comparing the effect of the introduction of caches around
a kernel synthesized from a regular application. We assumed a memory delay of 20 cycles
for both read and write operations to simulate the delay of an external memory. The
matrices used in the computations have 32 rows and columns for a total of 1024 elements.
In this benchmark, we used AXI4 to exchange data between the external memory and the
accelerator; we used Bambu to create three different AXI4 bundles, one for each input matrix
and one for the output, to parallelize the memory operations. The difference between the
two configurations is that in the one with the caches, we added a 16 elements line cache for
each bundle, which allows burst operations and reduces the latency of the external memory.

This benchmark shows the effect of the caches on the performance of kernels synthesized by
Bambu. In this application, which is highly regular and with data locality, the configuration
with caches can achieve a 2.5 times speed-up while only using 2.1 times LUTs, which is an
efficient trade-off. Another critical factor when evaluating the performances of the caches is
that the number of physical resources used does not depend on the specific design but is
constant. This means that the cost of the caches proportionally decreases with larger and
more complex designs as the area used by the kernel increases.
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Table 3 High-level synthesis of the quantized digit classifier.

Target Latency(µs) Cycles Frequency MEM LUTs Registers DSPs
NG-ULTRA Embedded 3712 169649 45.7 MHz 34 4627 5714 54

4.3 Quantized Digit Classifier Synthesis
In the third example, we consider a simple MNIST model for digit classification taken from
one of the TensorFlow tutorials [16], demonstrating how to convert a TensorFlow model
from 32-bit floating-point to the nearest 8-bit fixed-point model using post-training integer
quantization. The aim of this process is to encode the model weights with fewer bits, thereby
increasing the inference speed. This is particularly useful for low-power devices such as
microcontrollers or edge devices, and the same is true for FPGA-equipped space missions.

The process followed to synthesize the quantized model into an FPGA accelerator is
the MLIR-based SODA methodology, which is described in detail in [1]. The Multi-Level
Intermediate Representation (MLIR) [5] is a flexible and reusable infrastructure available
within the LLVM project for building domain-specific compilers. MLIR allows the creation
of specialized intermediate representations (IRs), known as dialects, which can implement
analysis and transformation passes at different levels of abstraction. It can interface with
multiple software programming frameworks, including the ones used for implementing deep
learning algorithms.

The MNIST model is first described in Python, trained, and then quantized using
the tutorial directives. Instead of running the TensorFlowLite model using the standard
TensorFlowLite runtime, we output the MLIR description with the quantized weights and
activations. Then, we follow a slightly modified SODA flow that translates the MLIR
representation into a low-level IR that is understood by Clang/LLVM and, consequently, by
Bambu, which is used to generate a corresponding hardware accelerator. Performance and
area consumption metrics are shown in Table 3.

5 Conclusions

The HERMES project has extended an open-source High-Level Synthesis tool to suit the
specific needs of space applications, as described in this paper. FPGAs are highly versatile
and can be used in many different applications, including the space market, where HLS
can help reduce the burden of developing hardware accelerators for radiation-hardened
FPGAs by raising the level of abstraction required. The HERMES project has many use
cases, including machine learning models, and the paper demonstrates how dedicated design
methodologies can be integrated into the hardware acceleration process to improve the
quality of results of the resulting FPGA design. Future developments will focus on more
optimization techniques and architectural templates that can address the specific needs and
requirements of aerospace applications, including both general computational demand and
artificial intelligence applications.
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