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Abstract: The COVID-19 epidemic has required countries to implement different containment
strategies to limit its spread, like strict or weakened national lockdown rules and the application of
age-stratified vaccine prioritization strategies. These interventions have in turn modified the age-
dependent patterns of social contacts. In our recent paper, starting from the available age-structured
real data at the national level, we identified, for the Italian case, specific virulence parameters for a
two-age-structured COVID-19 epidemic compartmental model (under 60, and 60 years and over) in
six different diseases transmission scenarios under concurrently adopted feedback interventions. An
interpretation of how each external scenario modifies the age-dependent patterns of social contacts
and the spread of COVID-19 disease has been accordingly provided. In this paper, which can be
viewed as a sequel to the previous one, we mainly apply the same general methodology therein
(involving the same dynamic model) to new data covering the three subsequent additional scenarios:
(i) a mitigated coordinated intermittent regional action in conjunction with the II vaccination phase;
(ii) a super-attenuated coordinated intermittent regional action in conjunction with the II vaccination
phase; and (iii) a last step towards normality in conjunction with the start of the III vaccination phase.
As a new contribution, we show how meaningful updated information can be drawn out, once the
identification of virulence parameters, characterizing the two age groups within the latest three
different phases, is successfully carried out. Nevertheless, differently from our previous paper, the
global optimization procedure is carried out here with the number of susceptible individuals in each
scenario being left free to change, to account for reinfection and immunity due to vaccination. Not
only do the slightly different estimates we obtain for the previous scenarios not impact any of the
previous considerations (and thus illustrate the robustness of the procedure), but also, and mainly,
the new results provide a meaningful picture of the evolution of social behaviors, along with the
goodness of strategic interventions.

Keywords: COVID-19 epidemic; model identification; parameter estimation; compartmental model;
vaccine effects; global optimization

MSC: 37M10; 34H05; 37M05; 62P25; 93B30; 91C05; 00A06

1. Introduction

The worldwide reaction to the unprecedented challenges posed by the COVID-19
pandemic has been marked by a diverse array of strategic initiatives and interventions,
implemented with the collective goal of not only containing the transmission of the virus
but also mitigating the far-reaching impacts it has had on public health, socio-economic
structures, and the overall fabric of global societies. Scientific research, particularly that
grounded in mathematical models, has played a pivotal role in steering these interventions,
providing valuable insights and innovative ideas that have informed decision-making
processes and enhanced the effectiveness of public health strategies on a global scale. These
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proposed strategies have encompassed a spectrum of measures, including widespread
lockdown and social distancing protocols [1,2], the promotion and enforcement of mask-
wearing, extensive testing, and contact tracing efforts [3–5], the rapid development and
deployment of vaccines [6,7], and public awareness campaigns [8–10].

Moreover, scientific research has been instrumental in comprehending the multifaceted
impact of each proposed measure, offering a nuanced understanding from both health and
socio-economic perspectives [11–13]. This dual assessment has been crucial in shaping
a holistic approach, ensuring that interventions not only address the immediate health
crisis but also consider the broader implications on societies and economies [14–16]. By
integrating scientific findings into policy discussions, nations have been better equipped to
navigate the intricate balance between safeguarding public health and minimizing socio-
economic disruptions, exemplifying a commitment to evidence-based decision-making in
the face of this complex global health crisis.

The aspect of utmost significance that has garnered scientific and societal attention
for COVID-19 is its mortality rate. Although all age groups have been susceptible to
COVID-19 infection, older age groups have faced an elevated risk of severe symptoms and
mortality [17–19]: the case fatality rate among adults over 60 years has been estimated to
be four times higher than that of young adults [20]. This stark reality has prompted a series
of studies aimed at understanding how the virus spreads within a population, considering
the variations in age distribution. For instance, ref. [21] introduced a compartmental
model to predict the number of infected, hospitalized, and deceased individuals in a
population divided into 17 age classes, parameterizing it using COVID-19 infection data
from Switzerland. Taking a step further in analyzing the virus spread across different age
groups, ref. [22] proposed a partial differential equation model, forecasting the disease
progression in three countries spanning different continents: the United States of America,
the United Arab Emirates, and Algeria. These studies also provided recommendations for
interventions based on age including prioritizing vaccination for older individuals and
implementing stricter age-dependent social distancing measures.

Italy, being at the forefront of the pandemic’s impact, underwent a series of rigorous
measures and interventions to combat the unprecedented challenges posed by the novel
coronavirus [2]. In our study [23], we ventured into uncharted territory by pioneering
the development of a two-age-structured COVID-19 epidemic model. This model utilizes
real data at the national level to discern how the various phases of the pandemic in Italy
has changed our typical social behaviors between the elder and the young population.
Leveraging available age-structured real data, we uncovered valuable insights into the
nuanced relationships between age demographics, social contacts, and the transmission of
COVID-19. The model not only offered a comprehensive understanding of the disease dy-
namics but also facilitated an interpretation of how external scenarios, such as public health
interventions and societal behaviors, modified age-dependent patterns of social contacts.

As a logical progression of our earlier work [23], this paper serves as a consequential
sequel, in which we not only incorporate new and updated data but also perform the global
optimization procedure by leaving the number of susceptible individuals in each scenario
free to change, to account for reinfection and vaccination-owing immunity. The present
work does not thus present a contribution to the theory of epidemic models, namely, no
new model is proposed. Instead, it presents how to use the model of [23] to further interpret
reality wisely. Changing the parameter identification procedure generates slightly different
estimates for the previous scenarios, which, notably, do not impact any of the previously
drawn considerations, thus illustrating the robustness of the procedure and the goodness
of our previous results. Through the lens of our two-age-structured model, we aim to
provide a nuanced analysis of the dynamic interplay between strategic actions, societal
behaviors, and the evolving patterns of COVID-19 transmission. In essence, this paper
serves as a bridge between the theoretical constructs of our initial model and the evolving
realities of the pandemic. By applying our established framework to fresh sets of data, we
seek to unravel the intricate ways in which the implemented interventions have shaped
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the trajectory of the virus. This effort is not merely an academic exercise; it is a timely
exploration of the real-world implications of strategic actions and behavioral adaptations
in the ongoing battle against COVID-19.

2. Incorporation of New Data into the Methodology of [23]
2.1. Retrospect

The real data that were analyzed in [23] had been taken from the Italian context, where
the following subsequent-in-time different strategies were implemented:

(a) A strict national lockdown rule (scenario a, from ta
0 = 9 March 2020 to ta

e = 28
April 2020) that removes social contacts in workplaces, schools, markets, and other
public areas;

(b–d) A weakened feedback social distancing and contact reduction intervention, which
is composed of a weakened lockdown phase (scenario b, from tb

0 = 7 May 2020 to
tb
e = 3 June 2020), a low-distancing phase (scenario c, from tc

0 = 9 June 2020 to tc
e =

8 September 2020), and a low-distancing + workplace/school-contacts re-activation
phase (scenario d, from td

0 = 15 September 2020 to td
e = 27 October 2020), with a

progressive release of the population back to their daily routine;
(e) A coordinated intermittent regional action (scenario e, from te

0 = 7 November 2020
to te

e = 29 December 2020), where social distancing measures are put in place or
relaxed independently by each region based on the ratio between hospitalized
individuals and the specific regional health system capacity;

(f) Direct mRNA-vaccination of subjects—especially the elderly—(scenario f, from t f
0 =

5 January 2021 to t f
e = 12 May 2021) at highest risk for severe outcomes, along with

Vaxzevria vaccination of young subjects within specific occupational categories (to
protect subjects at highest risk for severe outcomes indirectly).

2.2. The New Three Subsequent Scenarios

We now identify another three scenarios, characterized by a successive weakening of
the rules adopted during lockdown (until the abolition of the mandatory use of masks in
public places and hospitals) during the vaccination campaign. The three such scenarios are
characterized by:

(G) A mitigated coordinated intermittent regional action in conjunction with the II
vaccination phase (scenario G, from tG

0 = 19 May 2021 to tG
e = 14 July 2021): during

this phase, only people with a COVID-19 vaccination certificate (Green Pass) can
leave their city of residence, and schools that were teaching online until scenario (f)
resume normal operation (in presence);

(H) A super-attenuated coordinated intermittent regional action, without mobility
restrictions, where even large events (such as sports competitions, congresses, fairs,
private parties) can be held in the regions with a sufficiently low number of cases,
in conjunction with the II vaccination phase (scenario H, from tH

0 = 21 July 2021 to
tH
e = 22 September 2021);

(I) The last step towards normality (normal reopening of schools, with the vaccination
certificate only mandatory for teachers, complete lifting of the obligation to use
face masks, reopening of entertainment activities such as discos and ballrooms) and
start of the III vaccination phase (scenario I, from tI

0 = 29 September 2021 to tI
e = 10

November 2021).

All the data are taken from the official Ministerial website https://www.epicentro.
iss.it/coronavirus/aggiornamenti (accessed on 26 September 2023), which report: (i) the
cumulative detected cases on a weekly scale, C(t), divided per age (to compute Cy(t) and
Co(t)); and (ii) the number of recovered people (not divided per age), R(t).

https://www.epicentro.iss.it/coronavirus/aggiornamenti
https://www.epicentro.iss.it/coronavirus/aggiornamenti
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3. Model and Simplifying Assumptions

In this section, for the sake of exhaustiveness, we recall the deterministic compartmen-
tal model proposed in [23]. The model was proposed to investigate how different epidemic
phases, characterized by different political strategies used to contain the epidemics, affected
the age-dependent patterns of social contacts and the spread of COVID-19. It is a natural
extension of the classical SIR model in which the fluxes between the susceptible and the
infected compartments are assumed to be proportional to the encounter rate. Each compart-
ment is subdivided into different age groups. In order to avoid issues related to the lack
of parameter identifiability, modeling and analysis were limited to two age groups. The
two age groups correspond to individuals below the age of 60 and those aged 60 and older.
As already highlighted in [23], at least four reasons guide the choice of such two groups.
1. Such a division highlights a division of active and retired populations, with different
patterns of social interactions leading to different transmission dynamics. 2. Empirical
estimates based on population-level data recognize a sharp difference in fatality rates
between young and old people. 3. Priority for vaccination in Italy has been given to people
older than 60 years. 4. A closer look at the Italian data reveals that this choice leads to a
uniform division of the number of COVID-19 cases most uniformly.

We recall that the model aims to identify the parameters in the aforementioned time
windows. More specifically, the length of the periods for our model equates, on average, to
a couple of months, and always less than 4 months. At the beginning of each time window,
moreover, the initial conditions are estimated from the data. In light of this, the following
simplifying assumptions are here further specified:

• Aging, reproduction, and natural death have negligible effects so that the variation in
the number of susceptible in the time window only depends on infection.

• Infected people cannot be infected another time in the time window.
• Effect of vaccines against infection is negligible in the time window.

The above assumptions limit the maximum length of the time windows; in other
words, the model cannot be used to make any forecast on long time windows, since it
neglects fundamental characteristics such as aging, reinfection, and vaccination. These
assumptions, however, hold in the short time, and aging, becoming susceptible after an
infection, or gaining immunity with vaccination are captured by the model at the beginning
of the time window at which the estimation of the current susceptible subjects is carried
out. The resulting model is accordingly given by:

Sy(t + 1) = Sy(t)− Sy(t)(v11 Iy(t) + v12 Io(t))/N(t)
So(t + 1) = So(t)− So(t)(v21 Iy(t) + v22 Io(t))/N(t)
Iy(t + 1) = (1 − τ1 − γ)Iy(t) + Sy(t)(v11 Iy(t) + v12 Io(t))/N(t)
Io(t + 1) = (1 − τ2 − γ)Io(t) + So(t)(v21 Iy(t) + v22 Io(t))/N(t)

Cy(t + 1) = Cy(t) + τ1 Iy(t)
Co(t + 1) = Co(t) + τ2 Io(t)

(1)

in which:

• t is the time, measured in days;
• Si, Ii, i = y, o are the numbers of susceptible and infected for the two age classes,

respectively;
• Cy and Co are the numbers of reported cases for the two age classes;
• N(t) is the number of persons who are not quarantined, hospitalized, or dead at time t.

A schematic of the model is proposed in Figure 1, in which each state variable is
represented by a node, and the arrows represent the fluxes between the state variables.
The parameters vij, i, j = 1, 2 represent the virulence of the virus among the different age
classes, while 1/τi, i = 1, 2 is the average time for disease identification, and γ = 0.07 is the
rate of asymptomatic infected who recover without being reported. As for the SIR model,
an explicit solution to Equation (1) is not available. On the other hand, being a dynamical
model, it can provide us with the forward evolution of the time series of the state variables,
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once an initial condition is given. However, note that the presented model needs the time
series of active people, N(t), to be simulated. This series cannot be reconstructed from
the state variables, since the number of quarantined, hospitalized, recovered, or dead are
not taken into account. As in [23], the scope of this model is not to make a prediction, but
just to estimate its parameters to overview people’s reactions, subject to the new three
different scenarios.

Sy

So

Iy

Io

Cy

Co

τ1

τ2

v11
N(t)

v12
N(t)

v22
N(t)

v21
N(t) γ1

γ2

Figure 1. Schematic of model (1). Each node represents a state variable of the model (Si, Ii, Ci, i = y, o
are the numbers of susceptible, infected, and reported cases for the two age classes, respectively),
with each arrow representing a flux—proportional to the reported parameter and the departing node
value—toward the arriving node. The dotted lines represent nonlinear proportional interactions that
also modulate the flux.

4. Estimation of Model Parameters

The methodology proposed in [23] is aimed at identifying the changes in behavior
and social interactions between older and young people based on the number of COVID-19
reported cases. The key parameters used to achieve this goal are:

• vi
11, characterizing the intra-juvenile virulence;

• vi
12, characterizing the juvenile–elder virulence;

• vi
21, characterizing the elder–juvenile virulence;

• vi
22, characterizing the intra-elder virulence;

• 1/τi
1, denoting the average time for disease identification in young subjects;

• 1/τi
2, denoting the average time for disease identification in old subjects;

• Ii
t0y, representing the young subjects infected at the beginning of the scenario time

window;
• Ii

t0o, representing the old subjects infected at the beginning of the scenario time win-
dow.

The parameters are identified in the new aforementioned scenarios by adapting the
procedure proposed in [23], which uses the relationship

N(t) = N(0)− (Cy(t) + Co(t)) + R(t)

representing the number of active people each day, while fitting the model (namely, param-
eters and initial conditions) to the real data by minimizing a cost function. More specifically,
starting from the time window that identifies scenario a, i.e., t ∈ [ti

0, ti
e], i = a, we compute

the trajectory of the model

Si
y(t + 1) = Si

y(t)− Si
y(t)(v

i
11 Ii

y(t) + vi
12 Ii

o(t))/N(t)

Si
o(t + 1) = Si

o(t)− Si
o(t)(v

i
21 Ii

y(t) + vi
22 Ii

o(t))/N(t)

Ii
y(t + 1) = (1 − τi

1 − γ)Ii
y(t) + Si

y(t)(v
i
11 Ii

y(t) + vi
12 Ii

o(t))/N(t)

Ii
o(t + 1) = (1 − τi

2 − γ)Ii
o(t) + Si

o(t)(v
i
21 Ii

y(t) + vi
22 Ii

o(t))/N(t)

that starts from the initial conditions

Si
y(ti

0) = Si
t0y, Ii

y(ti
0) = Ii

t0y,
Si

o(ti
0) = Si

t0o, Ii
o(ti

0) = Ii
t0o.
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Notice that this is different from what was performed in [23], where, for each time window
i, the number of susceptible at the beginning of the time window was set to Si

c(ti
0) =

Nc(0) − Cc(ti
0) − Ii(ti

0), c ∈ {y, o}. As mentioned before, this is done to account for
both the reinfection and the immunity against infection that is possibly provided by the
vaccination. At last, we compute—as a cost—the relative error between the predicted and
the real new daily cases. Finally, to guarantee the continuity of the identified solution, we
impose the initial condition of the current scenario (parameters Si

t0y, Si
t0o, Ii

t0y, Ii
t0o) to be

different from the final condition of the previous one by at most 30%.
The details of such a procedure are provided hereafter. Let C̄y(t), C̄o(t) denote the

reported cases for the two age classes (the bar-notation specifies the real nature of the data);
the new cases reported at time t + 1 are thus given by C̄k(t + 1)− C̄k(t), k = y, o. On the
other hand, the new cases predicted—by the model—within the i-th time window come
from the last equations of (1), so as to obtain Ck(t+ 1)−Ck(t) = τj Ii

k(t), (k, j) = (y, 1), (o, 2).
Accordingly, the cost associated with the i-th time window is given by

Ji
c =

ti
e

∑
t=ti

0

((
C̄y(t + 1)− C̄y(t)

)
− τi

1 Ii
y(t)

C̄y(t)

)2

+

(
(C̄o(t + 1)− C̄o(t))− τi

2 Ii
o(t)

Co(t)

)2

.

Now, on the basis of the time series of the reported cases for the two age classes, C̄y(t),
C̄o(t), and the time series of the recovered people, R̄(t), the number of active people is
computed as

N(t) = N(ta
0)− (C̄y(t) + C̄o(t)) + R̄(t)

and the model parameters and initial conditions are then determined as solutions—through
the fmincon routine in Matlab©—to the optimization problem

min
vi

jl ,τ
i
j ,Si

t0k ,Ii
t0k

Jc = ∑
i

Ji
c, j, l = {1, 2}, k = {y, o}, i ∈ {a, . . . , I}

such that vi
jl ≥ 0 j, l = {1, 2}, i ∈ {a, . . . , I}

τi
j ≥ 0 j = {1, 2}, i ∈ {a, . . . , I}
|Si

t0k−Sh
k (t

h
e +1)|

Sh
k (t

h
e +1)

< 0.3 k = {y, o}, i ∈ {b, . . . , I}, h just preceding i

|Ii
t0k−Ih

k (t
h
e +1)|

Ih
k (t

h
e +1)

< 0.3 k = {y, o}, i ∈ {b, . . . , I}, h just preceding i

Si
k(t

i
0) = Si

t0k, Ii
k(t

i
0) = Ii

t0k k = {y, o}, i ∈ {a, . . . , I}
Si

y(t + 1) = Si
y(t)− Si

y(t)
vi

11 Ii
y(t)+vi

12 Ii
o(t)

N(t) t ∈ [ti
0, ti

e], i ∈ {a, . . . , I}

Si
o(t + 1) = Si

o(t)− Si
o(t)

vi
21 Ii

y(t)+vi
22 Ii

o(t)
N(t) t ∈ [ti

0, ti
e], i ∈ {a, . . . , I}

Ii
y(t + 1) = (0.93 − τi

1)Ii
y(t) +

Si
y(t)(vi

11 Ii
y(t)+vi

12 Ii
o(t))

N(t) t ∈ [ti
0, ti

e], i ∈ {a, . . . , I}

Ii
o(t + 1) = (0.93 − τi

2)Ii
o(t) +

Si
o(t)(vi

21 Ii
y(t)+vi

22 Ii
o(t))

N(t) t ∈ [ti
0, ti

e], i ∈ {a, . . . , I}

that exhibits 90 free parameters (the others being fixed by the equality constraints).
Note that data are collected weekly so that the cost function is computed only at the

time for which the data are present and not each day, t. The total number of data we use for
our fitting procedure is 198, while the problem of estimation needs at least 90 data points
(one for each of the parameters we are estimating). As in [23], a practical identifiability
analysis of the parameters around the estimation point confirms that the values we obtained
with this procedure can be locally determined from the data we used (the local minimum
we have found has no directions on which the cost function does not significantly increase
with respect to the parameter variations). Moreover, the obtained estimates turn out to
be robust with respect to the hyper-parameters characterizing the optimization method,
including the 30% barrier imposed to guarantee the continuity of the identified solution.
The resulting picture of the age-dependent patterns of social contacts and of the spread of
COVID-19 disease in the Italian context is reported in Figure 2. It highlights the following
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practical evidence: (i) the abrupt increase of detected cases is counteracted, from 9 March
2020 to 28 April 2020, by the strict national lockdown rule; (ii) the low-increasing profile of
detected cases, from 7 May 2020 to 8 September 2020, corresponds to a weakened feedback
social distancing and contact reduction intervention; (iii) the workplace/school-contacts
re-activation phase, from 15 September 2020 to 27 October 2020, as well as the coordinated
intermittent regional action, from 7 November 2020 to 29 December 2020, correspond to
a new increase of the detected cases, in which the number of young cases is larger than
old cases; (iv) the further increase in cases corresponds to the subsequent scenario, from 5
January 2021 to 12 May 2021, in which a direct mRNA vaccination of subjects—especially
the elderly—at highest risk for severe outcomes, along with Vaxzevria vaccination of young
subjects belonging to crucial occupational categories, is performed; a low-speed increase in
detected cases corresponds to the final aggregate window proceeding, in order, from 19 May
2021 to 14 July 2021 (a mitigated coordinated intermittent regional action in conjunction
with the II vaccination phase), from 21 July 2021 to 22 September 2021 (a super-attenuated
coordinated intermittent regional action in conjunction with the II vaccination phase), and
from 29 September 2021 to 10 November 2021 (normal reopening of schools, complete
lifting of the obligation to use face masks, reopening of entertainment activities, and start
of the III vaccination phase).
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Figure 2. Data fitting for the compartmental model: actual and estimated cumulative profiles for
young subjects infected and old subjects infected (logarithmic scale).

The parameters estimated in the different scenarios (i ∈ {a, . . . , f }) vi
kl , τk

l k, l ∈ {1, 2}
are reported in Table 1, along with the new ones estimated in the new three scenarios G, H,
and I. The same happens for the estimated initial conditions Ii

t0y, Ii
t0o, Si

t0y, Si
t0o that appear

in Table 2. Note that, since the optimization procedure is global and since we have left the
susceptible in each scenario free to change in order to consider reinfection and immunity
due to vaccination, the obtained parameters differ slightly from the one reported in [23].
Even though such differences do not impact any of the considerations in [23], according to
the data reported in Table 1 (values in red):

• The juvenile–elder virulence—when compared with [23]—will appear to be smaller in
scenarios c (namely, low-feedback social distancing and contact reduction intervention)
and e (namely, decreased social contacts in schools at a national level and social
distancing measures put in place or relaxed independently by each region) to identify
successfully, within c and e, a sort of decoupling (that is lost in all the other scenarios)
between the two age classes and recognize the benefits, within e, of a reduction in the
social contacts in schools at a national level.

• The reasonable punctual reduction—when compared with [23]—of the intra-elder
virulence during the summer of scenario c (now of the same magnitude as the intra-
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juvenile virulence) will preserve the already established trend of such a parameter
over the scenarios.

• The increase—when compared with [23]—of the average time for disease identification
in old subjects within scenario c better shapes the behavior of such a parameter by
consistently moving to scenario d (re-activation of social contacts in workplaces and
schools) the moment in which the elderly paid a higher level of attention to symptoms
while preserving the remaining, already established trend over the scenarios.

Table 1. Estimated parameters vi
kl , τi

l , k, l ∈ {1, 2} in the different scenarios i ∈ {a, . . . , f , G, H, I}
[vi

11 for intra-juvenile virulence; vi
12 for juvenile–elder virulence; vi

21 for elder–juvenile virulence;
vi

22 for intra-elder virulence; 1/τi
1 as average time for disease identification in young subjects; and

1/τi
2 as average time for disease identification in old subjects]. Parameter values that significantly

differ from the one reported in [23] are reported in red. The new scenarios G–I are highlighted with a
gray background.

Scenario a

va
11 va

12 va
21 va

22 τa
1 τa

2

0.7532 0.0000 1.3718 0.0001 0.349 0.2372

Scenario b

vb
11 vb

12 vb
21 vb

22 τb
1 τb

2

0.0016 0.5709 0.0211 0.4174 0.13 0.1928

Scenario c

vc
11 vc

12 vc
21 vc

22 τc
1 τc

2

0.5319 0.0018 0.0355 0.4953 0.1906 0.2327

Scenario d

vd
11 vd

12 vd
21 vd

22 τd
1 τd

2

0.1108 2.0435 0.0252 0.7988 0.24 0.32

Scenario e

ve
11 ve

12 ve
21 ve

22 τe
1 τe

2

0.6418 0.0256 0.2003 0.4538 0.3023 0.5258

Scenario f

v f
11 v f

12 v f
21 v f

22 τ
f

1 τ
f

2

0.6403 1.3348 0.2658 0.5990 0.4465 0.5754

Scenario G

vG
11 vG

12 vG
21 vG

22 τG
1 τG

2

0.2903 0.0014 0.0421 0.0024 0.1203 0.1134

Scenario H

vH
11 vH

12 vH
21 vH

22 τH
1 τH

2

2.1727 0.0013 0.4060 0.1909 0.8976 0.5847

Scenario I

vI
11 vI

12 vI
21 vI

22 τ I
1 τ I

2

2.2546 0.0019 0.7842 0.0042 0.9913 0.9991
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Table 2. Estimated initial conditions Ii
t0y, Ii

t0o, Si
t0y, Si

t0o in the different scenarios i ∈ {a, . . . , f , G, H, I}
[Ii

t0y for the initial young subjects infected; Ii
t0o for the initial old subjects infected; Si

t0y for the initial

young subjects susceptible; and Si
t0o for the initial old subjects susceptible]. The new scenarios G–I

are highlighted with a gray background.

Scenario a

Ia
t0y Ia

t0o Sa
t0y Sa

t0o

5.5299 × 103 0.546 × 103 3.3372 × 107 2.6981 × 107

Scenario b

Ib
t0y Ib

t0o Sb
t0y Sb

t0o

4.9100 × 103 3.2500 × 103 3.3372 × 107 2.6978 × 107

Scenario c

Ic
t0y Ic

t0o Sc
t0y Sc

t0o

3.2991 × 102 6.499 × 102 3.3377 × 107 2.6981 × 107

Scenario d

Id
t0y Id

t0o Sd
t0y Sd

t0o

8.6983 × 103 0.2895 × 103 3.3368 × 107 2.6981 × 107

Scenario e

Ie
t0y Ie

t0o Se
t0y Se

t0o

9.5000 × 104 1.3000 × 104 3.328 × 107 2.6969 × 107

Scenario f

I f
t0y I f

t0o S f
t0y S f

t0o

2.2000 × 104 0.5000 × 104 3.3355 × 107 2.6977 × 107

Scenario G

IG
t0y IG

t0o SG
t0y SG

t0o

3.6619 × 104 1.5647 × 104 2.9177 × 107 2.5467 × 107

Scenario H

IH
t0y IH

t0o SH
t0y SH

t0o

2.7712 × 103 0.3423 × 103 2.9078 × 107 2.5454 × 107

Scenario I

I I
t0y I I

t0o SI
t0y SI

t0o

9.3518 × 103 0.1367 × 103 2.8975 × 107 2.5437 × 107

Once the estimates of the model parameters have been obtained (Tables 1 and 2), the
values of the reproduction number, Ri

t[m], associated with model (1) in each scenario i [m
stands for model-based computation], as the average number of new infections caused by
an infected person, can be computed through the formula

Ri
t[m] =

1
N(t)

σ1

([
Si

y(t) 0
0 Si

o(t)

](
1

τi
1 + γ

[
vi

11 vi
12

vi
11 vi

12

]
+

1
τi

2 + γ

[
vi

21 vi
22

vi
21 vi

22

]))

where σ1(·) denotes the biggest among the moduli of the eigenvalues of the matrix argu-
ment. The resulting mean reproduction numbers, Ri

i [m], over i ∈ {a, . . . , f , G, H, I} read:
1.2, 0.7, 1.1, 1.3, 1, 1, 0.8, 1, 1. They are compatible with the maximum likelihood values
of the national reproduction number in Figure 3, computed from raw data through the
EpiEstim toolbox. This shows that model (1) is able to catch the main epidemic features
along the considered scenarios.
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Figure 3. National reproduction number, Rt, within the considered time windows. Each shaded
portion of the plane corresponds to a specific scenario. The mean value, R̄i

t (among the values
corresponding to our sampling) within each time window, i ∈ {a, . . . , f , G, H, I}, is reported at the
bottom of each shaded region.

5. Discussion

The following comments are reported. They provide a deep interpretation of the
estimation results in Tables 1–3.

• All the estimates corresponding to the different scenarios, including the estimated Ii
t0y,

Ii
t0o (initial young subjects infected; initial old subjects infected), allow the estimated

profile to reproduce the actual one along the different scenarios satisfactorily, as shown
in Figure 2.

• The number of susceptible individuals in both age groups continuously decreases
in all the scenarios starting from scenario G (including additional scenario J), as an
effect of the vaccination campaign starting within scenario f and continuing within
G. However, a non-drastic reduction in such a number seems to confirm that the
vaccination action principally protects against severe symptomatology rather than
giving total immunity [24].

• Starting from scenario G, again as an effect of the vaccination campaign starting within
scenario f and continuing within G, the juvenile–elder and the intra-elder virulences
exhibited a large reduction. The major strength of the vaccination action for the elderly,
however, allows for relatively large elder–juvenile virulence values.

• The average time for disease identification in young subjects in all the scenarios,
a–f and G–I, ranges from 1 to 9 days across the scenarios. Notably, scenarios b–c
have an average time of approximately 5–7 days, whereas new scenario G has a
slightly longer time of about 8 days. This variation can be attributed to the fact
that, after the lockdown period and related concerns, young individuals tended to
pay less attention to their symptoms, particularly in scenarios b and c (covering the
summer period, from 7 May 2020 to 8 September 2020). The same phenomenon was
observed in new scenario G, which occurred from tG

0 = 19 May 2021 to tG
e = 14 July

2021. This period coincided with weakened, intermittent regional actions and the
second vaccination stage (booster), along with no festivities, like Christmas and Easter.
In contrast, scenarios H–I exhibited a substantial reduction in the average time for
disease identification among young subjects, possibly due to more immediate reliance
on testing in the presence of: (i) typical entertainment habits during the summer
that saw a large increase in travel (compared with previous analogous scenario c);
(ii) normal reopening of schools and entertainment activities such as discos and
ballrooms. These scenarios also witnessed an increase in intra-juvenile virulence
(2.1727, 2.2546) compared with G (0.2903).

• Even the average time for disease identification in old subjects in all the scenarios,
a–f and G–I, varies from 1 to 9 days, with less than 4 days occurring in scenarios
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d–f (in which the elderly paid a higher level of attention to symptoms) and H–I
(corresponding to an increase of the intra-juvenile and elder–juvenile virulences).

• The elder–juvenile virulences exhibit a specific increasing trend starting from scenario e
(namely, coordinated intermittent regional action), except for scenario G (namely, weak-
ened intermittent regional actions, second vaccination stage (booster), and, mainly,
no festivities, like Christmas and Easter), in which all the virulences show a relatively
large reduction. The subsequent increase of intra-juvenile and elder–juvenile viru-
lences seems to suggest a sort of greater decoupling of social habits between young
subjects and old ones, and allows us to pose a question while recognizing scenario G
as the most favourable one in terms of virulence values: what would have happened
if, after the first vaccination campaign, the super-attenuated coordinated intermittent
regional actions and the last step towards normality had been delayed until after the
summer vacations, and actions like the ones in a–b, e had been performed to reduce
the intra-juvenile virulence?

6. One and Two Years Later

Furthermore, new real data about the pandemic on the following time window:

(J) from tJ
0 = 1 March 2023 to tJ

e = 3 May 2023

Are also taken in order to allow for a direct comparison with analogous scenario a two
years before and with f two years before. The estimated parameters for additional scenario
J (estimated by minimizing J J

c ) appear in Table 3.

Table 3. Estimated parameters for time window J (to be compared with a and f ).

Time Window J from tJ
0 = 1 March 2023 to tJ

e = 3 May 2023

vJ
11 vJ

12 vJ
21 vJ

22 τ J
1 τ J

2

0.4451 0.1670 0.2065 0.1740 0.1453 0.2067

I J
t0y I J

t0o SJ
t0y SJ

t0o

1.7655 × 103 0.5398 × 104 2.8915 × 107 2.5418 × 107

From tj
0 = 1 March 2023 to tj

e = 3 May 2023: two years later than a, one year later
than f. The average time for disease identification in young subjects is larger than a and
f (about 7 days compared with the previous 2–4 days). The disease has become endemic
with no more strong restrictions in social habits: (i) young subjects somehow pay less
attention than old ones, for whom the average time changed from 2–3 days to just 5; (ii) by
forming a completely novel picture, a balance between (not small) juvenile–elder and
elder–juvenile virulences appears, as never happened before, with the intra-juvenile and
intra-elder virulences concurrently decreasing, when compared with f, but again being
non-small, again confirming that the vaccination action has definitely attenuated severe
symptomatology rather than providing total immunity. Finally, the estimate of the average
reproduction number in this scenario is 1.04, again confirming the endemic nature of
COVID-19 in Italy.

7. Conclusions

The epidemiological model for COVID-19 developed in [23], which considers the
epidemic within the younger age group and older age group separately, has been used to
provide an updated insight into the different evolution of the epidemic in the considered
two age groups, while simultaneously evaluating, through the estimation of crucial model
parameters, the impact of changes in social distancing measures and vaccination actions.
The exact structure of the contact patterns in the general population is, in fact, still unknown
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to a large extent and deserves specific research efforts, to characterize better the effects of
political choices that, over time, change the rules governing social distancing and behaviors.

The methodological contribution of this paper, compared with what was proposed
in [23], is incremental: given the high probability of reinfection and to take into account
the low probability of immunity to infection acquired by vaccination, we introduced the
number of susceptible at the beginning of each time window within the set of parameters
to be estimated. Such a number was fixed to the number of non-infected individuals in [23].
Interestingly and retrospectively, we have shown that the introduction of this degree of
freedom did not significantly affect the results of the already analyzed scenarios a-f (in
line with the results presented in [23]), showing the correctness of the hypotheses put
forward in [23], as well as the robustness of the procedure. Furthermore, the new results
provide a meaningful picture of the evolution of the social behaviors and the goodness of
the performed strategic interventions.

The significance of this work thus lies in the application and validation of methodologi-
cal frameworks proposed in [23] to newly updated data. By adopting the approach outlined
in previous work, we showcase the enduring relevance of established methodologies in
the ever-evolving landscape of the current pandemic. This underscores a critical message:
the wealth of knowledge amassed through extensive scientific endeavors in recent years
remains indispensable. As we navigate the dynamic challenges posed by COVID-19, it is
imperative for policymakers and researchers alike to continuously leverage and update
the methodological foundations already established. The findings of this study reinforce
the notion that the synergy between established methodologies and real-time data analysis
is paramount for informed decision-making. Through this, we advocate for an ongoing
commitment to evidence-based practices, ensuring that our scientific insights persistently
inform strategies and policies, ultimately contributing to the effective management of the
res publica.

This paper underscores the significance of the extensive scientific endeavors conducted
in recent years, emphasizing that the wealth of knowledge acquired must be consistently
employed to interpret the ongoing situation. Serving as the conclusion to the Special Issue
“New Challenges in Mathematical Modelling and Control of COVID-19 Epidemics: Analysis
of Non-pharmaceutical Actions and Vaccination Strategies” we curated, it highlights the
significance of the Special Issue itself, showing the importance of utilizing methodological
achievements to navigate the current landscape effectively. By demonstrating how the
overarching principles guide the interpretation of data, in our view, this paper further
underscores the critical role that accumulated scientific insights play in addressing the
complexities of the COVID-19 pandemic (as well as other pandemics) nowadays.

Future research efforts shall be devoted to analyze different model structures compar-
atively, even within the stochastic framework.
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