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González*

*Correspondence:

sergioluis.herrera@polimi.it

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano, 20133,

Milan, Italy

Full list of author information is

available at the end of the article

Abstract

The diffusion of domotics solutions and of smart appliances and meters enables
the monitoring of energy consumption at a very fine level and the development of
forecasting and diagnostic applications. Anomaly detection (AD) in energy
consumption data streams helps identify data points or intervals in which the
behavior of an appliance deviates from normality and may prevent energy losses
and break downs. Many statistical and learning approaches have been applied to
the task, but the need remains of comparing their performances with data sets of
different characteristics. This paper focuses on anomaly detection on
quasi-periodic energy consumption data series and contrasts 12 statistical and
machine learning algorithms tested in 144 different configurations on 3 data sets
containing the power consumption signals of fridges. The assessment also
evaluates the impact of the length of the series used for training and of the size
of the sliding window employed to detect the anomalies. The generalization
ability of the top five methods is also evaluated by applying them to an appliance
different from that used for training. The results show that classical machine
learning methods (Isolation Forest, One-Class SVM and Local Outlier Factor)
outperform the best neural methods (GRU/LSTM autoencoder and multistep
methods) and generalize better when applied to detect the anomalies of an
appliance different from the one used for training.

Keywords: Anomaly detection; Time series; Machine Learning.

Introduction
Appliance-level energy consumption monitoring is a core component of the con-

trol system of smart buildings [1, 2]. The consumption data can be either directly

collected with such devices as smart plugs, or inferred with non intrusive load moni-

toring (NILM) algorithms able to break down the household aggregate consumption

signal into the contributions of individual appliances [3]. The analysis of energy con-

sumption data series enables forecasting and diagnostic applications, such as load

prediction [4], anomaly detection (AD) [5] and predictive maintenance [6].

AD in temporal data series is the task of identifying data points or intervals in

which the time series deviates from normality. AD finds application in different

fields such as healthcare, where it applies to the analysis of clinical images [7]

and of ECG data [8], cybersecurity, where it is used for malware identification [9],

manufacturing, where it helps monitoring machines and prevent break downs [10],

and in the utility industry, where it supports the early identification of critical
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events such as appliance malfunctioning [11] and water leakage [12] [13]. In the

energy field, AD may be combined with energy load forecasting to improve accuracy

[14], or integrated as a component for detecting non nominal energy fluctuations

for enhancing decision making in energy transfer between microgrids [15]. Energy

consumption time series can be collected from home appliances and building systems

with complex periodic or quasi-periodic behavior, such as coolers, water heaters

and fridges, which present specific challenges when performing anomaly detection.

Machine learning and neural models trained on normal data may overfit with respect

to the length of the period. This phenomenon makes the model sensible even to small

variations of the cycle duration, which can happen during normal functioning [16].

As a consequence, the detector may emit a high number of false positive alerts when

such small variations occur and also may degrade its performances sensibly when

used to detect anomalies of an appliance of the same type but with a different cycle

duration.

The literature on AD in temporal data series still lacks a systematic comparison

of algorithms belonging to different families on quasi-periodic data sets. Therefore

the development of an AD application in such a scenario still has to confront with

design decisions such as the choice of the most effective algorithm, the minimum

duration of the time series to use for training, the minimum size of the signal pre-

diction/reconstruction window needed to identify the anomalous behavior, and the

portability of the chosen algorithm from one appliance to another one with “similar”

behavior. This paper tries to fill the gap in the literature about AD in quasi-periodic

time series by systematically comparing the performances of 12 algorithms repre-

sentative of different families of approaches. The experiments were performed on 3

distinct data sets regarding the fridges power consumption.

The aim of the experiments is to address the following questions:

• Q1 How do the selected algorithm compare in the AD task on quasi-periodic

time series under multiple performance metrics?

• Q2 For the algorithms that require training, what is the relationship between

the length of the training series and the performances?

• Q3 For the algorithms that exploit a window-based approach for the pre-

diction, what is the relationship between the length of the window and the

performances?

• Q4 What is the generalization capability of the methods? How does perfor-

mance degrade when a method trained on an appliance is tested on the time

series produced by a distinct appliance of the same type?

The essential findings can be summarized as follows:

• The classical ML algorithms Isolation Forest (ISOF), One-Class SVM (OC-

SVM), and Local Oulier Factor (LOF) outperform the best neural models

(GRU/LSTM autoencoder and multisteps methods)

• Two weeks of training data are sufficient for most methods, with the multisteps

approaches attaining a modest improvement if one month of data is used.

• The length of the prediction/reconstruction window has a different impact on

neural and non-neural methods.

• ISOF and OC SVM are less dependent on the training set with respect to the

neural models, which have a sensible performance decay when tested on an

appliance different from the one used for training.
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• The top result of all the experiments is attained by ISOF on the Fridge3 time

series, trained with a sub-sequence of length equal to one month and with

a window size of 2 × period: Precision = 0.947, Recall = 0.965, F1 score =

0.956.

The above mentioned findings can help understand better the requirements and

performances of AD algorithms on quasi-periodic data series so as to design more

effective household energy consumption applications, e.g., by equipping the mobile

apps that are nowadays bundled with smart plug products with functionalities for

consumption monitoring, energy saving recommendations and alerting of potential

appliance malfunctioning.

The rest of the article is organised as follows: Section Related work overviews

the state of the art in anomaly detection. Section Experimental settings describes

the experimental configuration, including the description of the dataset and of the

evaluated algorithms. Section Experimental results discusses the results of the per-

formed experiments. Section Qualitative analysis of results discusses qualitatively

a few examples of the predictions made by the reviewed methods. Finally, Section

Conclusions draws the conclusions and illustrates our future work.

Related work
Anomaly detection in temporal data series exploits data collected with a broad

spectrum of sensors in diverse fields, such as weather monitoring, natural resources

distribution and consumption (e.g., water and natural gas), network traffic surveil-

lance, and electrical load measurement [17] [18] [19] [20]. As an example, the work

in [19] discusses the use of residential home smart meters for data collection and

highlights how such series often exhibit anomalous behaviors. Raw data must be

pre-processed to get ready for further analysis. Besides the usual operations of data

cleaning and validation, a prominent task is data annotation, which associates data

points or intervals with the specifications of significant events, such as change points

and anomalies. For example, Rimor [21] is a time-series data annotator supporting

the labelling of data with anomaly tags, which can be used as ground truth for

training and evaluating predictive models.

AD can be conducted in both univariate [22] and multivariate time series [23] [24]

[25]. In the case of multivariate time series, exploiting variable correlation may be

necessary for reducing the number of parameters needed to model the problem [26].

Examples of multivariate time series dimensionality reduction techniques are prin-

cipal components analysis [27] [26], canonical correlation analysis [28], and factor

modelling [29].

AD approaches can be classified in two main families [27]: non-regressive and re-

gressive. Non-regressive approaches rely on the fundamental statistical quantities

computed on the time series (e.g., mean and variance) and combine them with

fixed thresholds, but their effectiveness is limited [27]. The authors of [30] proposed

a statistical AD framework using the Dickey-Fuller test, the Fourier transform,

and the Pearson correlation coefficient to analyze periodic time series. Performance

evaluation on five NAB datasets [31] showed that the proposed approach performs

well on the NAB Jumps periodic data set and outperforms the models it was com-

pared to. Other types of non-regressive techniques are ML methods for time series
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analysis. In [32] the Local Outlier Factor (LOF) method was employed to identify

anomalous events in the marine domain and attained 83.4% precision. The Isolation

Forest (ISOF) algorithm has been applied to streaming data in [33], achieving an

AUC score of 0.98 in one of the test dataset. In [34] the One-Class Support Vec-

tor Machines (OC-SVM) has been implemented for the identification of network

anomalies, and for the test set, the outliers identified perfectly match the human

visual detection result.

Regressive approaches compute a model of the time series generation process.

In the case of AD, an autoregression model is used to forecast the variable of

interest from its past values. Autoregressive models include methods based on Au-

toregressive Moving Average (ARMA) [35] [36] [37] and on Neural Networks, such

as Autoencoders (AE) [38] [39] and Recurrent Neural Networks (RNNs) [40] [41].

Forecasting-based AD approaches are divided into single-step and multi-step meth-

ods depending on the number of predicted points. The former strategy is preferable

for short-term forecasting (i.e., minutes, hours, and days) and the latter for long-

term data series analysis.

In the electric load analysis domain, the work in [42] studies the problem of time

series forecasting for electric load measurements and shows that Long Short-Term

Memory (LSTM), a deep learning model, outperforms AutoRegressive Integrated

Moving Average (ARIMA), a statistical-based model, on three data sets obtained

from the Open Power System Data on electric load in Great Britain, Poland, and

Italy [18]. [43] shows the importance of an Fast Fourier Transform (FFT) based pe-

riodicity pre-processor to extract the period in smart grids time series. [44] proposes

the use of Variational Autoencoders (VAE) for the unsupervised anomaly detection

in solar energy generation time series and the results show that the trained model is

able to detect anomalous patterns by using the probabilistic reconstruction metrics

as anomaly scores. [45] surveys several Artificial Intelligence methods for anomaly

detection in buildings’ energy consumption, identifying several factors (e.g., occu-

pancy and outdoor temperatures) that influence time series behavior.

In the specific field of periodic data series analysis, [46] employs a periodicity pre-

processor to find the time series period and segment the data into windows. Then

it exploits a combination of an RNN and a CNN to detect anomalies achieving an

F1 score near 0.9 on all the test datasets. [43] also uses a periodicity pre-processor,

based on the Fourier transform, and maps multiple periods onto a single cycle to

identify deviations across subsequent periods. [44] uses Bi-LSTM to detect anoma-

lies and proposes the use of attention maps to explain the results. [47] encodes

periodic time series using letters as a data size reduction technique. The classifi-

cation process led to robust results with a global accuracy that ranged between

80% and 90%. These works show the advantages of pre-processing to exploit the

data periodicity and of dimensionality reduction techniques and discuss results in-

terpretability.

The proliferation of time series analysis methods and of AD specific approaches

has spawned a stream of research focused on comparing the performance of alterna-

tive techniques. For example, the work in [42] compares the multi-step forecasting

performance of ARIMA and LSTM-based RNN models and shows that the LSTM

model outperforms the ARIMA model for multi-step electric load forecasting. Our
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preliminary work [48] compares CNN-powered and RNN-powered AD methods with

One-Class Support Vector Machines and Isolation Forest techniques on one quasi-

periodic data set, using standard metrics (precision, recall, F1 score). In this paper

we deepen the analysis assessing performances under multiple metrics, investigating

the impact of the training sub-sequence duration and of the analysis window size,

and contrasting the generalization capacity of the reviewed approaches.

Experimental settings
Data set

The experiments exploit a fridge energy consumption data set collected using smart

plugs. The energy consumption data have been collected in Greek residential house-

holds using the BlitzWolf BW-SHP2 smart plugs, which allow exporting the time

series through an API. The data collection system, the assessed algorithms and the

evaluation framework were all implemented in Python. The time series in the data

set record the active power consumption of three fridges for over 2 months, with 1

minute data resolution. The time series have been divided into sub-sequences for

training, validation, and testing of the methods. Table 1 summarizes the data split.

Total sequence Train sub-sequence Val sub-sequence Test sub-sequence
Start End Start End Start End Start End

Fridge1 15/01/20 23/03/20 21/01/20 20/02/20 21/02/20 23/02/20 24/02/20 23/03/20
Fridge2 21/01/20 23/03/20 21/01/20 20/02/20 21/02/20 23/02/20 24/02/20 23/03/20
Fridge3 21/01/20 23/03/20 21/01/20 20/02/20 21/02/20 23/02/20 24/02/20 23/03/20

Table 1 The dataset collection period and the train-val and test split

When working in normal conditions, the energy consumption curve of a fridge

displays a cyclic behavior alternating between a high consumption state (ON) and

a low consumption stage (OFF). Figure 1 shows an example of the consumption

data of one appliance.
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Figure 1 Example of the fridge energy consumption data series. The time series is formed by
subsequent ON-OFF cycles and is quasi-periodical.
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Figure 2 The power spectrum computed by the periodicity pre-processor (right) on the fridge
energy consumption time series (left). The period detected for an ON-OFF cycle is about 80
minutes for the analyzed data set.

Data set analysis

Periodicity analysis Normal fridge consumption shows a cyclic behavior. Periodic-

ity analysis aims at detecting the mean period corresponding to an ON-OFF cycle

and possibly to other longer patterns (e.g., seasonal effects). It is a preliminary step

before the application of AD and requires a non-anomalous sub-series, which can

be created by manually removing anomalies from the training sub-sequence. The

Fast Fourier Transform (FFT) is applied on the anomaly-free sub-sequence to map

the data into the frequency domain and the periodicity is defined as the inverse of

the frequency corresponding to the highest power in the FFT, as proposed in [30].

Table 2 summarizes the periodicity, expressed in minutes of the three data sets.

The periods range from 45 minutes to 1h 40 minutes. No seasonal affect is found

because the train set refers to only one month. Figure 2 shows the power spectrum

computed for one of the three appliances.

Fridge1 Fridge2 Fridge3

Period 100 80 45

Table 2 The periods determined for the energy consumption time series, expressed in minutes.

Ground Truth annotation For training and testing purposes, the energy consump-

tion time series have been annotated with ground truth (GT) metadata to specify

the points that deviate from normality. Three independent annotators have labeled

the data points, with a Boolean tag (normal/anomalous) and with a categorical

label denoting the type of the anomaly, with the interface shown in Figure 3.

Anomaly classes and their distribution The anomalies have been distinguished in

the following categories: Continuous OFF state, when the appliance is in the low

consumption state for a long time, Continuous ON state, when the appliance is

in the consumption state for an abnormally long time, Spike, when the appliance

has an abnormal consumption peak possibly preceded by a ramp and followed by

a decay period, Spike + Continuous, when the appliance has a consumption peak

followed by a prolonged ON state, Other, when the anomaly does not follow a well-

defined pattern. Figure 4 shows the distribution of the anomaly categories in the
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Figure 3 The interface of the GT anomaly annotator at work on the fridge time series. The user
can specify the anomalies and add meta-data to them. The user has annotated the currently
selected GT anomaly, shown in red, with the Continuous ON state label.

Number of anomalies: 91

Continuous ON state - 7.69%
Spike + Continuous - 92.31%

Anomaly type distribution - Fridge1
Number of anomalies: 147

Continuous OFF state - 0.68%
Continuous ON state - 93.88%
Spike + Continuous - 4.76%
other - 0.68%

Anomaly type distribution - Fridge2
Number of anomalies: 39

Continuous OFF state - 2.56%
Spike - 94.87%
other - 2.56%

Anomaly type distribution - Fridge3

Figure 4 The anomaly type distribution on the three fridge energy consumption data series.

data set of the three fridges. The plots highlight the different anomalous behavior of

the appliances. Fridge2 is mainly subject to continuous ON cycles. Fridge 1 shows

a similar pattern, but the prolonged ON states are preceded by an abrupt increase

in the consumption. Fridge3 is subject to a more detectable anomalous behavior

because almost 95% of the anomalies are of spike type, which are easier to detect

also visually.

GT anomaly duration distribution Figure 5 shows the GT anomaly duration dis-

tribution on the data series of the three fridges. The distributions of Fridge1 and

Fridge2 are centered close the time series period, which suggests the presence of

anomalies shorter than an ON-OFF cycle. The distribution of Fridge3 is centered

around values higher than the mean ON-OFF cycle duration, which is typical of

the transient behavior caused by high consumption spikes.

Compared algorithms

Algorithm list and definitions

The algorithm selection considered the most common methods used in the reviewed

studies and their nature (statistical, regressive, neural) so as to achieve a balanced

representation of the different approaches.
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Anomaly duration distribution - Fridge1
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Anomaly duration distribution - Fridge2
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Figure 5 The anomaly duration distribution on the fridge energy consumption data sets. The
distributions of Fridge1 and Fridge2 are centered close the time series period, which suggests the
presence of anomalies shorter than an ON-OFF cycle whereas the distribution of Fridge3 is
centered around values higher than the mean ON-OFF cycle duration.

1 Basic Statistics is an extension of the method presented in [30] for peri-

odic series. The first step analyzes the anomaly-free training data series to

determine the periodicity. Then, the anomaly-free train set is divided into

non-overlapping windows of the same size as the period and the Pearson

product-moment correlation coefficient is computed on all the pairs of con-

tiguous windows to check whether the time series is periodic within the two

windows. If it is periodic, the ratio Rstd =
|Stdcurrent−Stdprevious|

Stdprevious
is computed.

An anomaly occurs if Rstd exceeds a threshold τ , defined as follows. Rstd is

calculated for each window pairs in the train set and the maximum value

(Rmax) allowed in a non-anomalous time series is found. Then the threshold

τ is determined on the validation set by performing a grid search. Given a set

of possible thresholds τα = Rmax(1 + α), with α ranging from 0 to 10 with

step 0.1, the threshold τ is defined as the value corresponding to the best F1

score obtained by applying the anomaly definition rule on the validation set.

Finally, the same rule is applied to the test set using the computed threshold

value.

2 AutoRegressive (AR) [49] is an autoregression model exploiting past data

to predict current data. The prediction model is defined as:

yt = c+

p∑
i=1

ϕiyt−i + εt (1)
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where c, ϕi are the model parameters and εt is a white noise term. Anomalies

are computed from the prediction error by thresholding.

3 AutoRegressive Integrated Moving Average (ARIMA) [42, 49] is a

model exploiting past data, differencing of the original time series and a linear

combination of white noise terms. A model ARIMA(p, d, q) is defined as:

y′t = c+

p∑
i=1

ϕiy
′
t−i +

q∑
j=1

θjεt−j + εt (2)

where y′t is the differenced time series, εt is a white noise term and c, ϕi, θj

are the model parameters. Anomalous points are defined as in AR.

4 Local Outlier Factor (LOF) [50] is a clustering algorithm based on the

identification of the nearest neighbors and of local outliers.

5 One-Class SVM (OC SVM) [51] is the use of support vector machine

(SVM) for novelty detection.

6 Isolation Forest (ISOF) [52] is an ensemble method that creates different

binary trees for isolating anomalous data points.

7 Gated Recurrent Unit (GRU) [53] is a class of Recurrent Neural Network

(RNNs) that exploit update gate and reset gate to decide what information

should be passed to the output.

8 Gated Recurrent Unit multisteps (GRU-MS) is based on GRU and is

used to predict multiple consecutive data points in the future.

9 Long Short-Term Memory (LSTM) [54] is another class of RNNs exploit-

ing a cell with an input gate, an output gate and a forget gate. Both GRU

and LSTM are designed to take advantage of the past context of the data and

to avoid the gradient vanishing problem of RNNs.

10 Long Short-Term Memory multisteps (LSTM-MS) is based on LSTM

and is used to forecast several consecutive data points.

11 GRU-Autoencoder (GRU-AE) [55] is a hybrid model using an autoen-

coder and a GRU network.

12 LSTM-Autoencoder (LSTM-AE) [56] is another hybrid model coupling

an autoencoder and an LSTM network.

Training procedure and parameter settings

The hyperparameters of the ISOF, OC SVM, LOF, and ARIMA models are set with

Bayesian search employing the hold-out set method. For each configuration, the cho-

sen hyperparameters are used to fit the model and the performances are evaluated

on the validation set. LOF, OC SVM and ISOF are assessed using the maximum

F1-score whereas the ARIMA models using the mean squared error (MSE) on pre-

dictions. The hyperparameters yielding the maximum F1 or the lowest MSE are

selected.

ARIMA is trained on anomaly-free data to learn normal patterns as done in [57].

ISOF, LOF and OC SVM work on spatial data and thus the univariate time series

is projected onto a space Rn with n ≥ 1 [22, 58]. A window of size n is used to

extract from the time series N − n + 1 vectors of length n of consecutive points,
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where N is the length of the time series. Then, the spatial algorithms are trained

on the projected vectors. At test time, the test set is projected onto Rn and the

score of each projected vector is computed. The anomaly score of a point in the

time series is defined as the average of all the anomaly scores of the vectors that

contain the point. For all the neural models, training is performed on anomaly-free

data.

Table 3 summarizes the relevant features and parameters of the compared meth-

ods.

Algorithm Configuration parameters
Basic Statistics Pearson product-momentum correlation coefficient minimum value (0.2)
AR p order in [25, 305]
ARIMA p order in [25, 305], d = 1, q = 0
LOF number of neighbours in [1, 300]
OC SVM gamma in [0.001, 0.9726], tol in [10−10, 0.1], nu in [0.001, 0.5]
ISOF number of trees in [20, 200], max samples in [150, 400]

GRU

2 GRU layers both with 32 units.

Training: 500 epochs with patience = 30 and batch size = 64.

LSTM

2 LSTM layers both with 32 units.

Training: 500 epochs with patience = 30 and batch size = 64.

GRU-MS

2 GRU layers with 64 and 32 units, and 10 units for the output layer.

Training: 500 epochs with patience = 30 a batch size = 64.

LSTM-MS

2 LSTM layers with 64 and 32 units, and 10 units for the output layer.

Training: 500 epochs with patience = 30 and batch size = 64.

GRU-AE

2 GRU layers with 128 and 64 units.

Training: 500 epochs with patience = 30 and batch size = 64.

LSTM-AE

2 LSTM layers with 128 and 64 units.

Training: 500 epochs with patience = 30 and batch size = 64.
Table 3 Relevant configuration parameters of the compared methods.

Anomaly definition, GT matching, and performance metrics

Anomaly definition strategies. An anomaly definition strategy specifies how the

output of the anomaly detector and the data points of the time series are compared

in order to identify whether a point is anomalous. AD algorithms adopt different

strategies to identify abnormal points:

• Confidence: an anomaly score is directly provided as output by the model.

• Absolute and Squared Error [59]: the anomaly score is defined as the absolute

or squared error between the input and the predicted/reconstructed value.

• Likelihood [41]: each point in the time series is predicted/reconstructed l times

and associated with multiple error values. The probability distribution of the

errors made by predicting on normal data is used to compute the likelihood of

normal behavior on the test data, which is used to derive an anomaly score.

• Mahalanobis [60]: each point in the time series is predicted/reconstructed l

times. For each point, the anomaly score is calculated as the square of the

Mahalanobis distance between the error vector and the Gaussian distribution

fitted from the error vectors computed during validation.

• Windows strategy [61]: a score vector of dimension l is associated with each

point. Each element si of the score vector is the mean absolute or mean

squared error of the i-th predicted/reconstructed window that contains the

point.

A threshold τ is then applied to the calculated score(s) for classifying the point

as normal or anomalous. Table 4 shows the anomaly definition strategies of the

compared methods.
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Anomaly detection criteria and thresholds. The criteria are the ones adopted in

order to identify an anomaly. They are strongly related to the nature of the used

algorithm. The anomaly identification criteria used by the compared methods are

classified in:

• Prediction error : prediction models identify anomalies based on the difference

between the predicted value and the observed one. Anomalies are identified

based on the residuals between the input and the generated data: the higher

the difference, the higher the likelihood of an anomaly.

• Reconstruction error : this criterion applies to all the models that aim at gen-

erating an output as close as possible to the input, such as the autoencoder-

based models. As for the prediction models, the larger the residual, the higher

the probability of an anomaly.

• Dissimilarity : dissimilarity models classify anomalous points by comparing

them with the features or with the distribution of normal points or by match-

ing them with the clusters computed from the normal time series.

Table 4 summarizes the detection criteria used by the different algorithms.

Algorithm Anomaly detection criterion Anomaly definition strategy
Basic Statistics Dissimilarity Confidence
AR Prediction error Absolute Error
ARIMA Prediction error Absolute Error
LOF Dissimilarity Confidence
OC SVM Dissimilarity Confidence
ISOF Dissimilarity Confidence
GRU Prediction error Absolute Error
LSTM Prediction error Absolute Error
GRU-MS Prediction error Likelihood
LSTM-MS Prediction error Likelihood
GRU-AE Reconstruction error Windows strategy
LSTM-AE Reconstruction error Windows strategy

Table 4 Anomaly detection criteria and definition strategies adopted for each algorithm.

GT matching. To evaluate the predictions as true positives (TP), false positives

(FP), false negatives (FN), and true negatives (TN), a Point to Point matching

strategy has been adopted: each anomalous point is compared only to the corre-

sponding one in the input data series using the GT label.

Performance metrics The evaluation adopts the most widely used machine learn-

ing metrics, precision, recall, and F1 score, defined as follow:

precision =
TP

TP + FP
, recall =

TP

TP + FN
, F1score = 2∗ precision ∗ recall

precision+ recall
(3)

Experimental results
In this section we summarize the responses to the four questions introduced in the

Introduction. For space reasons we condense the results of the 144 (12 methods

× 3 training periods × 4 window sizes) experiments on 3 data sets and discuss

only the essential findings. The complete list of results is published at the address:

https://github.com/herrera-sergio/AD-periodic-TS.

https://github.com/herrera-sergio/AD-periodic-TS
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Figure 6 Comparison of the performances of all the algorithms on all the appliances and across all
the training duration periods and window sizes. The methods are ordered in descending order of
the median values of the F1 score.

Q1: comparative performances

Figure 6 shows the comparison of the methods over all the data sets and across

all the training duration values and sizes of the sliding window. The ISOF method

consistently achieves the best F1 score, followed by OC SVM and LOF. The AE

and MS neural methods have comparable performances. The multi-step approaches

exhibit a more consistent behavior yielding smaller values of the standard deviation

and the GRU-AE method performs slightly worse than the other approaches. The

neural methods that predict only one point in the future (LSTM and GRU) have low

performance and a rather inconsistent behavior. This is expected due to the high

sampling frequency, which makes one step prediction ineffective to detect anomalies.

Of the remaining non-neural methods, ARIMA and Basic Statistic are positioned

at the low end of the performance range.

The top result on all the experiments is attained by ISOF on the Fridge3 time

series, trained with a sub-sequence of length equal to one month and with a window

size of 2 × period: Precision = 0.947, Recall = 0.965, F1 score = 0.956.

A special case is that of AR. The training of the method converges only for the

shortest duration of the training sub-sequence (a half period). However, the trained

model delivers on average a good F1 score. It can be observed that AR grossly fails

in the accuracy of the predicted values but nonetheless the error of the points that

belong to a normal sub-sequence is very different from the error of the points that

lie within an anomalous sub-sequence, which results in good AD performances.

Figure 7 shows the performance break down by appliance. As expected all meth-

ods, but ARIMA and Basic Statistics, perform better on the Fridge3 data set, which

contains more recognizable anomalies mostly of a single type (≈ 95% of type spike).

On the Fridge1 and Fridge2 data sets the performances follow the same ranking as in

Figure 6, with the same top-4 methods (ISOF, AR, OC SVM and LOF) and almost

equivalent performances of the MS and AE methods. On the Fridge3 data set the
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methods that predict one step in the future (LSTM and GRU) work better. This

analysis highlights that the performances of the models are affected by the consid-

ered appliance. Indeed, in Fridge1 the performances are more subject to variations,

while in Fridge3 are more consistent. Moreover, ARIMA and Basic Statistics show

low performances independently on the complexity of the dataset, which suggests

their inadequacy for this kind of problem.

The results are in line with those of the work of Kharitonov et al.[10] in which the

authors compare the performances of alternative techniques to detect failures using

manufacturing machine logs and observed that k-nearest neighbors (KNN) and

LOF performed better, while autoencoders could not be considered for deployment

in a real-case scenario. Similarly, Elmrabit et al.[62] found that classical machine

learning techniques outperformed deep learning for the AD task in cybersecurity

datasets.
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Figure 7 Break down of the performance of all the algorithms by appliance. The methods are
ordered by descending median value of the F1 score.

Q2: Training sub-sequence duration

Figure 8 shows the variation of the F1 metrics for the 10 methods that could be

trained with all the three sub-sequences (2 weeks, 3 weeks, one month). The results

show that the 2 weeks training period is sufficient for most of the methods. Only

the multisteps (MS) methods attain a very slight average performance improvement

if the training period length extends to 1 month. The results on the time series of

Fridge1 and Fridge2 show a similar trend. All the detailed results can be found in

the mentioned project repository.
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Figure 8 Variation of the F1 score with the duration of the training sub-sequence. The AR and
ARIMA method did not complete the training with all the periods.

Q3: Window length

Figure 9 shows the variation of the F1 metrics with the sliding window size (half

a period, one period, two and three periods), limited to the 9 methods that could

be trained completely. The results show a difference in the pattern between neural

and non-neural methods.

With ISOF and OC SVM the F1 score decreases when the window size increases.

With a value greater than half a period the methods progressively loose effectiveness:

the variance increases and the F1 score decreases. This is likely the effect of the worse

trade-off between the noise and the context knowledge enclosed in the window.

The AE methods deliver the best F1 score when the window size equals twice

the duration of the period. A similar trend is also displayed by MS methods, with

LSTM-MS showing a slight monotonic increase up to the three periods. The one

step neural methods GRU and LSTM are rather insensitive to the window size, but
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Figure 9 Variation of the F1 score with the size (in periods) of the sliding window. The AR and
ARIMA method did not complete the training with all the periods.

their performance is at the lower end of the range. The LOF approach exhibit the

same trend as the AE and MS neural methods.

The value at the (2 × period) point of the neural methods shows that such a

duration gives sufficient context for encoding the periodic features of the time series

well and that going beyond that size is either counterproductive or yields a modest

benefit. In the AE methods, the negative effect of the window size extension may

be also due to the dimensionality reduction to a latent space operated by the neural

architecture, which may become less effective when the dimension of the original

space gets too large.

The results on the time series of Fridge2 and Fridge3 show a similar trend. All

the detailed results can be found in the mentioned project repository.

Q4: Generalization

The generalization experiments assess the top-5 methods (ISOF, OC SVM, LOF

LSTM-AE and GRU-AE) on a dataset different from the one on which the methods

have been originally trained. Each method is tested in two variants: the original



Zangrando et al. Page 16 of 22

version trained on the first appliance and a version in which the threshold value is

fine-tuned on the validation data series of the target appliance.

Figure 10 contrasts the F1 scores obtained by the baseline version of the algorithm,

i.e., the one trained and tested on the same dataset, the F1 scores achieved by fine

tuning the threshold on the validation set of the target appliance, and the F1 scores

obtained without any fine tuning. The top performing method (ISOF) is also the one

that generalizes best, even without fine tuning the threshold. In general, ISOF and

OC SVM are less dependent on the training set with respect to the neural models,

which have a sensible performance decay when tested on a different appliance. The

degradation is more sensible when the test appliances is Fridge3, which has almost

all anomalies of type spike, which are absent in Fridge1 and Fridge2.
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Figure 10 Comparison of the generalization performance of the top-5 methods. The orange bar
represents the baseline F1 score (i.e., training and testing done on the same dataset), the blue bar
denotes the F1 score achieved by fine tuning the threshold on the validation set of the target
appliance, and the green bar shows the performances obtained using the trained algorithm without
fine tuning.

Qualitative analysis of results
To get a qualitative appreciation of the different behavior of the best models, Figure

11 directly compares the anomalies detected by ISOF, OC SVM and LSTM-AE with

the GT anomalies. The detected anomalies are highlighted with a color that depends

on the method and the GT anomalies are circled in red.

The plot on the left column show a situation in which all the three methods

are able to detect more or less the same anomalous data points. The detected

points match well the GT annotations. The plots on the right column show how the

methods react to a change of the duration of the ON-OFF cycle (an acceleration in

the displayed example, which may be caused by a different load of the fridge or by a

change in the set point of the thermostat). Only the ISOF method is robust to such
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an occurrence. The other methods instead signal many normal points as anomalous,

because they consider the entire cycle variation as an anomaly. Given that the time

series of the appliances are quasi-periodic, as shown in the power spectrum of Figure

2, the robustness with respect to small variations of the ON-OFF cycle is a very

relevant benefit of the ISOF method.

Figure 11 Qualitative analysis of the predictions of three methods on Fridge1: ISOF, LSTM-AE,
OC SVM. ISOF (top) is more robust to the variations of the duration of the cycles, while the
others show a weakness in the identification of the anomalous points, in fact, LSTM-AE (middle)
and OC SVM (bottom) label numerous normal points as anomalous.

Conclusions
In this paper we have discussed the results of the experimental comparison of 12

AD methods on three quasi-periodic data series collected with smart plugs con-

nected to three distinct fridges. The comparison has first assessed the prediction

performances, measured with the F1 score metrics, which confirmed that the non-

neural machine learning methods ISOF, OC SVM and LOF attain the best re-

sults, followed by the autoencoder-based and multi-step neural methods (GRU-AE,

GRU-MS, LSTM-AE, LSTM-MS). In particular, the ISOF method trained with a

sub-sequence of length equal to one month and with a window size of 2 × period

attained a very good result on a fridge data series containing mostly spike anomalies

(Precision = 0.947, Recall = 0.965, F1 score = 0.956).

Next we evaluated the impact of the duration of the sub-sequence used for training

the algorithms, which shows that the 2 weeks training period is sufficient for most of

the methods and that the AR and ARIMA algorithms did not complete the training

within reasonable time with time series of longer duration.
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The impact of the sliding window size was also investigated. Non-neural machine

learning algorithms require a shorter window (half of the period is enough), whereas

neural models deliver the best performance with a larger window size (two periods

in most cases).

Finally, the generalization ability of the top performing methods has been assessed

too. The best method (ISOF) is also the one that preserves its performances intact

when applied to a different appliance, even without fine-tuning the threshold on the

target appliance.

Future work will further pursue the investigation of AD algorithms on quasi-

periodic data series, focusing also on their runtime performance on hardware with

memory and processing constraints. The objective is designing a timely, accurate

and efficient system for dispatching mobile phone alerts about the potential mal-

functioning of home appliances to real-world users.
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LIST OF ABBREVIATIONS
AD: Anomaly Detection

AE: Autoencoders

AR: Autoregressive

ARIMA: Autoregressive Integrated Moving Average

ARMA: Autoregressive Moving Average

Bi-LSTM: Bidirectional Long Short-Term Memory

CNN: Convolutional Neural Network

ECG: Electrocardiography

FFT: Fast Fourier Transform

FN: False Negative

FP: False Positive

GRU: Gated Recurrent Unit

GRU-AE: Gated Recurrent Unit Autoencoder

GRU-MS: Gated Recurrent Unit multisteps

GT: Ground Truth

ISOF: Isolation Forest

KNN: K-Nearest Neighbors

LOF: Local Outlier Factor

LSTM: Long Short-Term Memory

LSTM-AE: Long Short-Term Memory Autoencoder

LSTM-MS: Long Short-Term Memory multisteps

MAE: Mean Absolute Error

MS: Multisteps

MSE: Mean Squared Error

NILM: Non Intrusive Load Monitoring

NN: Neural Networks

OC SVM: One-Class Support Vector Machine

RNNs: Recurrent Neural Networks

SE: Squared Error

SVM: Support Vector Machine

TN: True Negative

TP: True Positive

VAE: Variational Autoencoders
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