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A B S T R A C T

When dealing with timber structures, the characteristic strength and stiffness of the material are made highly
variable and uncertain by the unavoidable, yet hardly predictable, presence of knots and other defects. In
this work, we apply the sparse grids stochastic collocation method to perform uncertainty quantification for
structural engineering in the scenario described above. Sparse grids have been developed by the mathematical
community in the last decades, and their theoretical background has been rigorously and extensively studied.
The document proposes a brief practice-oriented introduction with minimal theoretical background, provides
detailed instructions for the use of the off-the-shelf Sparse Grid Matlab kit (freely available online and
straightforward to use) and discusses two preliminary examples inspired from timber engineering problems
that highlight how sparse grids exhibit superior performances compared to the plain Monte Carlo method.
1. Introduction

Timber is one of the oldest building materials. Used since the prehis-
tory, wood has been employed in all ages and by all civilizations, often
with peculiar technologies [1]. Between the Nineteenth and Twen-
tieth centuries other materials (like cast iron, steel, aluminium, and
concrete) became largely available, deeply impacting word economic
development and sustaining human expansion [2]. In recent years,
climate change emerged as a new, urgent problem and construction
and related industries (in particular, concrete and steel ones) are the
ones with greatest environmental impact [3,4]. In this context, timber
and wood-based structural elements are experiencing a new springtime.
Indeed, despite several aspects like durability, moisture sensitivity and
fire resistance need ad-hoc treatments [5–7], wood presents extremely
high strength vs weight ratio, low heat conductivity [8] and it is a
renewable resource (if forests and production processes are properly
managed) [9]. Furthermore, photosynthesis traps a significant amount
of carbon dioxide (≈ 50% of dry wood is constituted by carbon) that
remains within wood for its whole life [10]. As a consequence, it rep-
resents the best candidate for replacing materials with more significant
environmental impact.

However, the main problem that needs to be addressed is the
huge variability and uncertainty in the mechanical properties of wood,
consequence of the natural growth and sawing of logs: [8] specifies that
the strength of wood specimens can change by an order of magnitude,
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even within the same wood species. In particular, knots – resulting from
the insertion of branches in the stem – often coincide with the point
where cracks start, therefore representing the weak point of structural
elements [11]. Such a situation does not allow for an economically con-
venient exploitation of the material, and several strategies have been
developed to limit the negative influence of defects on the performance
of the structural element. The oldest is represented by grading, which
consists in different procedures and technologies aiming at sorting sawn
timber (and boards used for the manufacturing of glued laminated tim-
ber beams and cross laminated timber plates) in classes with assigned
characteristic strength [8, Article B5]. Nowadays, novel technologies
– like laser scanners [12] and X-ray computer tomography [13] –
allow for the detection of grain direction and wood density, which
have been employed for the reconstruction of knot geometry and the
estimation of the mechanical properties of the wood [14,15]. However,
the evaluation of mechanical behavior of wood is characterized by high
levels of uncertainty, despite the continuous development of analysis
and manufacturing technologies: a quantitative assessment of how the
uncertainty on the mechanical behavior of wood translates to uncer-
tainty on the structural behavior of timber construction can be done
by means of Uncertainty Quantification (UQ) techniques.
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UQ techniques applied to timber and other building materials, such
as masonry and reinforced concrete, as well as other problems of inter-
est to practitioners [16,17] have been object of preliminary investiga-
tions in the recent engineering literature by a multitude of approaches
ranging from standard sampling methods as in [18,19] to more ad-
vanced methods such as Latin hypercube sampling [20], Stochastic
Galerkin [21,22], the method of moment equations [23], Gaussian
Processes [24] and machine learning [25,26]. However, UQ approaches
as discussed in the engineering literature are usually targeted at spe-
cific engineering problems. Furthermore, they often propose imprecise
treatments of the mathematical aspects of the problem (like, e.g., error
estimates and convergence rates), typically preventing the immediate
comparison with other available methods and, ultimately, the choice
of the most performing one. On the contrary, mathematicians have
been developing the above-mentioned and several other methods as
general-purpose tools, providing also detailed theoretical results; in
particular, see e.g., [27,28] for a general introduction to stochastic
Galerkin, [29–32] for the method of moment equations, and [33] for
Gaussian Processes. Unfortunately, such methods are often complex to
be implemented and might not be available as ready-to-use software,
discouraging practitioners from their use.

The present contribution deals with the numerical discretization of
the equilibrium equations under uncertainty for a timber-like planar
body: more precisely, we assume that its elasticity modulus depends
on a set of parameters modeling the random location and shape of
knots under the simplistic assumptions of heterogeneous and isotropic
material. As a result, the displacement vector depends on both the
space variable and the set of parameters. The equations – along the
space variable – are discretized following the isogeometric analysis
(IGA) principles, specifically the IGA collocation that combines high-
performance with easy implementation, thanks to the possibility of
directly using the strong formulation of the problem. The parametric
dependence is treated using the stochastic collocation method based
on Smolyak sparse grids, an efficient UQ technique proposed and
deeply analyzed by the mathematical community during the latest
decades [34,35] and implemented in several packages like e.g., the
Sparse Grid Matlab kit [36]. The sparse grids methodology is most
effective when the problem at hand depends on a moderate number
of uncertain parameters (say up to 20/30 parameters, although appli-
cations to problems with hundreds of random variables are available in
the literature [37,38]), and the outputs of the model depend smoothly
on the input parameters.

The main contributions of the present work are: (i) the superiority of
the stochastic collocation method with respect to the plain Monte Carlo
method is demonstrated by means of several numerical tests in the
continuum mechanics framework; (ii) algorithmic and implementation
details are provided to show its ease of use and possible application
to any structural engineering problem. Timber structure industry may
take advantage of the method in order to perform a more accurate and
reliable analysis of structural performance of timber elements as well as
to achieve a more efficient use of raw materials. Similarly, practitioners
can benefit from the presented tools during monitoring, restoration,
and maintenance of new or existing structures, where the randomness
of material properties often plays a central role.

The rest of the paper is organized as follows. In Section 2 we
introduce the problem of interest, namely the elasticity equation for
timber-like beams, where the material variability is encoded in a set
a parameters; moreover, Section 2.2 details the numerical scheme
applied to discretize the model problem in the physical variable. Sec-
tion 3 is dedicated to the UQ methodology that we employ throughout
the work. In Section 4 a forward UQ analysis is performed on two
numerical experiments, namely, the expectation and the probability
density function of selected quantities of interest are computed and the
global sensitivity analysis is carried out. The conclusions are drawn in
2

Section 5.
2. Deterministic mechanical problem

2.1. Continuum mechanic PDEs

Let 𝐷 = [0, 𝐿] × [0,𝐻] ⊂ R2 denote a two-dimensional timber beam
with length 𝐿 > 0 and height 𝐻 > 0. Let C denote the fourth order
stiffness tensor, which is assumed to depend on the space variable
(𝑥, 𝑦) ∈ 𝐷 as well as on a set of 𝑁 parameters 𝒑 = (𝒑1,… ,𝒑𝑁 )
randomly varying in the hyperrectangle 𝛤 ∶= 𝛤1 ×⋯ × 𝛤𝑁 ⊂ R𝑁 , with
𝑛 = [𝑎𝑛, 𝑏𝑛] ⊂ R for all 𝑛 = 1,… , 𝑁 . In particular, C assumes the
ollowing form:

(𝑥, 𝑦,𝒑) =
⎡

⎢

⎢

⎣

𝐸(𝑥, 𝑦,𝒑) 0 0
0 𝐸(𝑥, 𝑦,𝒑) 0
0 0 𝐸(𝑥,𝑦,𝒑)

2

⎤

⎥

⎥

⎦

, (1)

where the (positive) parameter-dependent elasticity modulus 𝐸(𝑥, 𝑦,𝒑)
is modeled as

𝐸(𝑥, 𝑦,𝒑) = 𝐸0 𝛼(𝑥, 𝑦,𝒑). (2)

Specific information on the value assumed by 𝐸0 ∈ R+ as well as the
form of the function 𝛼(𝑥, 𝑦,𝒑) ∶ 𝐷 → R+ will be provided in Section 4.

Given a parameter-independent external load 𝒕 = (𝑡𝑥, 𝑡𝑦), we look for
he displacement 𝒖 = (𝑢𝑥, 𝑢𝑦)∶𝐷 × 𝛤 → R2 such that

⎧

⎪

⎨

⎪

⎩

div(C(𝑥, 𝑦,𝒑) ∶∇𝑠𝒖(𝑥, 𝑦,𝒑)) = 𝟎, (𝑥, 𝑦) ∈ 𝐷,
(C(𝑥, 𝑦,𝒑) ∶∇𝑠𝒖(𝑥, 𝑦,𝒑)) ⋅ 𝒏 = 𝒕(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛴𝑡,
𝒖(𝑥, 𝑦,𝒑) = 𝟎, (𝑥, 𝑦) ∈ 𝛴𝑠,

(3)

here {𝛴𝑡, 𝛴𝑠} is a partition of 𝜕𝐷 and ∇𝑠 denotes the symmetric
radient. The differential operators in (3) are intended with respect to
he physical variables 𝑥, 𝑦. Note that, in the present paper, the beam
aterial is assumed heterogeneous (since the stiffness tensor depends

n 𝑥, 𝑦) and isotropic. The latter assumption is not fulfilled in the
pecific case of timber beams. However, it simplifies the theoretical
nd numerical treatment of the problem addressed. The generaliza-
ion of the presented results to the anisotropic framework is worth
nvestigating and will be addressed in a future contribution.

.2. IGA discretization in the space variables

Using the notation on provided in Appendix A, we look for approx-
mations to 𝑢𝑥, 𝑢𝑦 of the form

𝑥(𝑥, 𝑦) ≈
𝑁𝑐𝑜𝑙𝑙
∑

𝑖=1

𝑀𝑐𝑜𝑙𝑙
∑

𝑗=1
(𝑢𝑥)𝑖,𝑗𝑅

𝑟,𝑞
𝑖,𝑗 (𝑥, 𝑦)

𝑢𝑦(𝑥, 𝑦) ≈
𝑁𝑐𝑜𝑙𝑙
∑

𝑖=1

𝑀𝑐𝑜𝑙𝑙
∑

𝑗=1
(𝑢𝑦)𝑖,𝑗𝑅

𝑟,𝑞
𝑖,𝑗 (𝑥, 𝑦)

here 𝑅𝑟,𝑞
𝑖,𝑗 (𝑥, 𝑦) are bi-variate B-splines, and we require them to be

trong solutions to Eq. (3).
The obtained equations are then collocated at the Greville abscissae

𝑥̂𝑖, 𝑦̂𝑗
)

(𝑖 = 1,… , 𝑁𝑐𝑜𝑙𝑙 −1, 𝑗 = 1,… ,𝑀𝑐𝑜𝑙𝑙 −1), which can be computed
s:

𝑥̂𝑖 =
𝑥𝑖+2 + 𝑥𝑖+3 +⋯ + 𝑥𝑖+𝑟

𝑟 − 1
, 𝑖 = 1,… , 𝑁𝑐𝑜𝑙𝑙 − 1,

𝑦̂𝑗 =
𝑦𝑗+2 + 𝑦𝑗+3 +⋯ + 𝑦𝑗+𝑞

𝑞 − 1
, 𝑗 = 1,… ,𝑀𝑐𝑜𝑙𝑙 − 1.

(4)

The resulting algebraic system of equations, consisting of 2
(

𝑁𝑐𝑜𝑙𝑙−
1)
(

𝑀𝑐𝑜𝑙𝑙 − 1
)

equations in the 2𝑁𝑐𝑜𝑙𝑙𝑀𝑐𝑜𝑙𝑙 unknowns (i.e., 𝑁𝑐𝑜𝑙𝑙 ×𝑀𝑐𝑜𝑙𝑙
unknowns for both 𝑢𝑥 and 𝑢𝑦), must be finally completed by 2𝑁𝑐𝑜𝑙𝑙 +
2𝑀𝑐𝑜𝑙𝑙 − 2 suitable boundary conditions to be imposed as additional

equations, as specified in [39].
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3. Sparse grids and Uncertainty Quantification

3.1. A surrogate-modeling approach to Uncertainty Quantification

As discussed in Section 2, the beam model depends on 𝑁 uncertain
parameters, collected in the vector 𝒑 ∈ 𝛤 . More precisely, we assume
that each component 𝑝𝑛 is a uniform random variable that can take
values in the range 𝛤𝑛 (we write 𝑝𝑛 ∼  (𝛤𝑛)); we further assume that
all random variables are independent, so that the probability density
function (pdf) of 𝒑 is simply the constant function 𝜌(𝒑) =

∏𝑁
𝑛=1

1
𝑏𝑛−𝑎𝑛

.
The choice of using uniformly distributed independent random vari-

ables has been made for the sake of simplicity. Notice that it is not that
restrictive. Indeed, in the general case when 𝑝𝑖 are non-independent
and/or non-uniform random variables, one could always introduce a
non-linear map 𝛩 such that 𝑧𝑖 = 𝛩

(

𝑝𝑖
)

with 𝑧𝑖 uniform random
variables, following the well-known theory of copulas, see [40].

Let us moreover denote by 𝑓 ∈ R the quantity of interest (QoI) or
output of the beam equation (which we will call hereafter Full-Order
Model, FOM), e.g., the displacement or the strain in a point of the beam.
𝑓 can then be seen as a 𝑁-variate function of the uncertain parameters,
𝑓 = 𝑓 (𝒑), 𝑓 ∶ 𝛤 → R (generalizations to vector-valued quantities of
interest, i.e., 𝑓 ∶ 𝛤 → R𝑃 , is straightforward; one such example is when
we consider the entire displacement field as QoI).

In this setup, we are interested in ‘‘quantifying the uncertainties’’ of
the QoI due to the variability of 𝒑; to this end, we would like to compute
statistical indices for 𝑓 (𝒑) such as its expected value and variance

E[𝑓 ] = ∫𝛤
𝑓 (𝒑)𝜌(𝒑)𝑑𝒑, (5)

V[𝑓 ] = ∫𝛤
(𝑓 (𝒑) − E[𝑓 ])2𝜌(𝒑)𝑑𝒑 = E[𝑓 2] − E[𝑓 ]2,

as well as higher order indices (such as kurtosis and skewness), and
ideally its pdf. This task is usually called UQ.

A successful approach to perform UQ is to build a so-called sur-
rogate model for the QoI, following an offline/online paradigm. More
precisely, in a preliminary offline phase, a number of beam problems is
solved, for certain judiciously selected combinations of values of 𝒑, and
the corresponding values of 𝑓 (𝒑) stored; a so-called surrogate model
is then constructed out of these values (by e.g., interpolation or least-
squares regression). During the subsequent online phase, quantities
such as those in Eq. (5) are efficiently computed by evaluating the
surrogate model (a cheap operation that essentially involves evaluat-
ing a polynomial expression) instead of repeatedly solving the beam
problem. In the following, we construct a so-called sparse grids surrogate
model, but many other methods for building surrogate models are
available in literature (e.g., Polynomial Chaos, Reduced Basis, Gaussian
Processes, Radial Basis Functions, Neural Networks, just to name a few
— we refer e.g., to [41] for an overview). In the context of timber
engineering, surrogate models have also been employed in [42].

3.2. Mathematical description of sparse grids

In this section, we quickly cover the basics of sparse grids, following
closely the recent work [36], to which we refer the reader for more
details.

The sparse grid surrogate model, which in the following will be
denoted by 𝑓 (𝒑), can be informally described as an approximation of
𝑓 (𝒑), obtained as a linear combination of several ‘‘small’’ tensor inter-
polants of 𝑓 over 𝛤 , denoted 𝑓𝑚(𝒊)(𝒑) below, each formed by a limited
number of points. The underlying idea is the so-called sparsification
principle, i.e., the intuition that while none of these interpolants will be
very accurate since they are all based on a few points, by carefully com-
bining many of them one can recover an overall good surrogate model.
This comes at a much lower cost than what would be needed if one
were to build naively a tensor interpolant by covering the parameters
space 𝛤 with a tensorial Cartesian grid obtained by considering, say,
3

𝑀 values for each parameter. Indeed, such an approach would involve
a number of grid points exponential in the probabilistic dimension of
the problems (𝑀𝑁 ), i.e., it would be affected by the so-called curse of
dimensionality, which makes the tensor product technique unfeasible,
even for even moderately small 𝑁 .

More precisely, the sparse grids surrogate model is expressed by
means of the so-called combination technique formula

𝑓 (𝒑) ≈ 𝑆𝑓 (𝒑) =
∑

𝒊∈
𝑐𝒊𝑓𝑚(𝒊)(𝒑), 𝑐𝒊 =

∑

𝒋∈{0,1}𝑁
𝒊+𝒋∈

(−1)|𝒋|, (6)

where:

• 𝒊 ∈ N𝑁
+ is a multi-index, i.e., a vector of 𝑁 positive integer

numbers; a tensor interpolant 𝑓𝑚(𝒊)(𝒑) will be associated to each
𝒊 in the set  (more on this later), and each entry 𝑖𝑘 of 𝒊 denotes
the level of approximation of 𝑓𝑚(𝒊)(𝒑) along each parameter 𝑝𝑘, 𝑘 =
1,… , 𝑁 ;

• 𝑚(⋅) is an increasing function (‘‘level-to-knots function’’), such as
𝑚(𝑘) = 𝑘 or 𝑚(𝑘) = 2𝑘;

• 𝑚(𝒊) is the vector obtained applying 𝑚(⋅) to each component of 𝒊,
i.e., 𝑚(𝒊) = [𝑚(𝑖1), 𝑚(𝑖2),…];

• 𝑓𝑚(𝒊)(𝒑) is a tensor interpolant, built over a Cartesian grid on 𝛤
with 𝑚(𝑖1) × 𝑚(𝑖2) × … points; more details on the construction
and evaluation of 𝑓𝑚(𝒊)(𝒑) are reported in Appendix B.

• 𝑐𝒊 are the so-called combination technique coefficients. Note that
some 𝑐𝒊 might be null, in which case 𝑓𝑚(𝒊)(𝒑) is not part of the
final approximation;

•  is a multi-index set,  ⊂ N𝑁
+ , that specifies which tensor

interpolants are candidates to enter in the sparse grid construc-
tion. It should be chosen according to the sparsification principle
mentioned above, and in particular, it should refrain from con-
taining indices 𝒊 whose entries are all large numbers (the cost of
building the associated interpolant 𝑓𝑚(𝒊)(𝒑) would be too large).
Instead, whenever one entry (or a few entries) of 𝒊 is large, the
others should be kept as small as possible. Moreover, for technical
reasons it is required that  is downward-closed, i.e., if 𝒊 ∈  then
all is ‘‘precedent’’ neighbors are also in .1

he set of points where 𝑓 (𝒑) is evaluated (i.e., the union of all the
oints needed to assemble each 𝑓𝑚(𝒑)(𝒑)) is called sparse grid, and will

be denoted by . Its cardinality will be denoted by 𝐺.
Eq. (6) becomes operative the moment we specify the three basic

‘‘ingredients’’ of the sparse grid construction, namely, the set , the
unction 𝑚(⋅) and the knots used to construct each tensor interpolant
𝑚(𝒊)(𝒑). A lot of literature deals with criteria and algorithms to opti-
ally choose these three components. In Section 4 we detail the choices
e have adopted in this work. For examples of sparse grids in 𝑁 = 2
imensions we refer to Figs. 1(a) and 1(b).

.3. Sparse grids for UQ

In this section, we provide an overview on how sparse grids can
e used for UQ of a quantity of interest 𝑓 . In our work, we have used
he implementation of sparse grids provided in the Sparse Grids Matlab
it (version 23-5 "Robert", see [36]), which can be used essentially ‘‘off-

he-shelf’’ and renders these operations rather straightforward (this can
e appreciated also by taking a look at the flow-chart depicted in Fig. 2
nd Listings reported in Section 4).

1 Upon denoting with 𝒆𝑘 the 𝑘th versor of N𝑁 , i.e., the vector with all zeros
expect the 𝑘th component, that is equal to 1,  is downward-closed if:

𝒊 ∈  ⇒ 𝒊 − 𝒆𝑘 ∈ ,∀𝑘 = 1,… , 𝑁 s.t. 𝑖𝑘 > 1.
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Fig. 1. Examples of sparse grids of level 𝑤 = 3 (Fig. 1(a)) and level 𝑤 = 5 (Fig. 1(b))
in 𝑁 = 2 dimensions. We have used Clenshaw–Curtis points (8), function 𝑚(⋅) as in (9)
and the multi-index set 𝐼 as in (10).

Fig. 2. Flow-chart of the algorithm. The dashed blue arrays indicate that the values of
the QoI on the sparse grid points are needed for (i) using the sparse quadrature rule
(7); (ii) plotting the QoI; (iii) evaluating the surrogate at new (i.e., non-grid) points;
(iv) computing the Sobol indices.

Expected value. The univariate interpolation points used as basic
blocks of the sparse grid construction are always associated with
quadrature weights. For example, the weights corresponding to
Clenshaw–Curtis points (used in our numerical experiments, see
Section 4) can be computed by the Fast Fourier transform [43].
Recalling that expected values are just weighted integrals over 𝛤
(cf. Eq. (5)), a sparse grid quadrature [𝑓 ] can be derived (mim-
icking the steps that would lead to Eq. (6)), which in practice
simply amounts to taking weighted sums of the evaluations of
𝑓 over the sparse grid points 𝒒 ∈ . The weights 𝛼𝒒 depend
on the quadrature weights of the interpolation points and the
combination technique coefficients 𝑐𝒊 (see [36] for details):

E[𝑓 ] = ∫𝛤
𝑓 (𝒑)𝜌(𝒑)𝑑𝒑 ≈

∑

𝒒∈
𝛼𝒒𝑓 (𝒒) = [𝑓 ]. (7)

See Listing 2 for software calls.
4

Fig. 3. Traction model. The external load is 𝒕 = (1 kN∕m, 0)𝑇 , homogeneous Neumann
boundary conditions are imposed at the right and top part of the boundary, whereas
the horizontal (vertical, respectively) displacement is imposed zero at the left (bottom,
respectively) part of the boundary.

Variance and higher order indices. Simply employ the fact already
recalled in Eq. (5) that V[𝑓 ] = E[𝑓 2] − E[𝑓 ]2, and approxi-
mate both terms by sparse grids quadrature as explained above.
Similar formulas exist for higher moments such as skewness
(connected to E[𝑓 3]) and kurtosis (connected to E[𝑓 4]).

Global sensitivity analysis by Sobol indices. Sobol indices [44,45]
are quantities that assess the contribution of each uncertain
parameter to the total variance of a quantity of interest; the
underlying mathematical machinery is a decomposition of the
variance of 𝑓 similar to the ANOVA decomposition. In particu-
lar, the principal Sobol index 𝑆𝑃

𝑖 quantifies the impact of each
uncertain parameter 𝑝𝑖 alone, whereas the total Sobol index 𝑆𝑇

𝑖
quantifies the impact of each uncertain parameter alone and in
mixed effect with any other uncertain parameter. Principal and
Sobol indices can be obtained by post-processing the sparse grid
surrogate model 𝑓 (𝒑), see [46] for details. See Listing 6 for
implementation details.

Probability density function. An approximation of the pdf of 𝑓 can
be obtained by generating sufficiently many samples of the
uncertain parameters 𝒑𝑖 according to their pdf, evaluating 𝑓
for each of them, and then resorting to binning algorithms to
generate histograms of such values, or using functions such
as kernel density estimates [47]. This process is significantly
accelerated by replacing the values 𝑓 (𝒑𝑖) with their approximate
counterparts 𝑓 (𝒑𝑖), [48]. To this end we remark that evaluat-
ing 𝑓 (𝒑𝑖) is essentially real-time (one only needs to evaluate a
few polynomial interpolants), whereas evaluating 𝑓 (𝒑𝑖) requires
solving a PDE (beam problem). See Listing 5 for implementation
details.

4. Numerical experiments

All numerical tests deal with the traction problem (see Fig. 3),
namely we take the external load 𝒕 = (103 kN∕m, 0)𝑇 and impose the
homogeneous Dirichlet boundary conditions on 𝛴𝑠 = [0, 𝐿]×{0}∪{0}×
[0,𝐻] and homogeneous Neumann boundary conditions on 𝜕𝐷 ⧵ 𝛴𝑠.

We now detail the choices adopted for the sparse grid construction
illustrated in Section 3.2.

• As knots, we use the Clenshaw–Curtis points, which are well
suited for uncertain parameters with uniform pdf.2 A set of 𝐾
points in [−1, 1] can be computed as follows:

𝑥(𝑗)𝐾 = cos
(

(𝑗 − 1)𝜋
𝐾 − 1

)

, 1 ≤ 𝑗 ≤ 𝐾, (8)

and then if needed linearly transformed to any generic interval
[𝑎, 𝑏].

2 Note that equispaced points are in general not a good choice, due to the
well-known Runge’s phenomenon.
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• As function 𝑚(⋅), we use the following

𝑚(𝑘) =

{

1, 𝑘 = 1,
2𝑘−1 + 1, 𝑘 > 1

(9)

which yields the doubling of the number of interpolation points,
when moving from the interpolation level 𝑘 to 𝑘+1. Note that this
choice is particularly useful since it renders tensor interpolants
built with Clenshaw–Curtis points nested, i.e., the set of points
needed to build 𝑓𝑚(𝒋)(𝒑) is contained in the set needed to build
𝑓𝑚(𝒊)(𝒑) if the multi-indices 𝒊 = (𝑖1,… , 𝑖𝑁 ) and 𝒋 = (𝑗1,… , 𝑗𝑁 )
fulfill 𝑗𝑘 ≤ 𝑖𝑘 for all 𝑘 = 1,… , 𝑁 . This property is clearly beneficial
if one wants to refine a sparse grid already computed by adding
further computations.

• As set  we use the classical choice

 =

{

𝒊 ∈ N𝑁 ∶
𝑁
∑

𝑛=1
𝑖𝑛 ≤ 𝑤

}

. (10)

Note that, the larger 𝑤, the more points in the sparse grid. It
is easy to see that it enforces a basic version of the sparsifica-
tion principle; more sophisticated choices, such as anisotropic
sets or adaptive algorithms for the selection of  are discussed,
e.g., in [49–51] and [52,53], respectively.

Together, these three choices generate a sparse grid, which is com-
monly named in the literature as Smolyak grid.

In the following, we discuss two numerical examples with load and
boundary conditions as in Fig. 3.

• In Section 4.1 we use three uncertain parameters to model the
presence of one knot inside the unit square domain. The elasticity
modulus fulfills the simplified assumption of being 𝑦-independent.
We consider in this example two QoIs, namely (i) the entire
displacement field and (ii) the horizontal displacement at the
bottom-right corner of the domain. The outcomes are: (i) the
numerical study of the approximation error of the first QoI; (ii)
the construction of the surrogate for the second QoI, and the
numerical study of its accuracy; (iii) pdf and Sobol indices of the
second QoI.

• In Section 4.2 we consider a rectangular domain and use seven
uncertain parameters to model the presence of two knots. In
contrast to Section 4.1, here the elasticity modulus varies along
both the horizontal and the vertical directions. Differently from
before, in this example we consider only one QoI, i.e., the hor-
izontal displacement at the bottom-right corner of the domain,
and we compare two surrogates computed by means of Smolyak
sparse grids and a-posteriori adaptive sparse grids, i.e., different
strategies to compute the set .

4.1. One-knot example

In the first numerical example, we take 𝐿 = 𝐻 = 1 m and choose
the stochastic elasticity modulus (2) depending on the uncertain vector
𝒑 = (𝑝1, 𝑝2, 𝑝3) with length 𝑁 = 3. More in details, we take 𝐸0 = 104MPa
and

𝛼(𝑥, 𝑦,𝒑) = 𝑝1 − 𝛾 exp

(

−
(𝑥 − 𝑝2)2

2𝑝23

)

, (11)

ith 𝑝1 ∼  (0.5, 1.5), 𝑝2 ∼  (0.25, 0.75), 𝑝3 ∼  (0.1, 0.2) and 𝛾 = 0.4.
Note that 𝛼(⋅,𝒑)∶𝐷 → R+ varies in the horizontal direction 𝑥, while

t is constant in the vertical direction 𝑦. Therefore, the displacement
long the vertical direction 𝑢𝑦 is zero. This choice of 𝛼 aims at modeling
he presence of one knot along the beam. Following this interpretation,
2 represents the (variable) center of the knot and 𝑝3 represents its
variable) width; finally, 𝑝1𝐸0 is the (variable) nominal value of the
oung modulus away from the knot. Note that the ranges of 𝑝2 and

are chosen so that the knot is well-contained inside the beam. We
5

3 4
efer to Fig. 4(a), depicting a set of ten samples of 𝐸 plotted versus
he horizontal variable 𝑥 ∈ [0, 1], and Fig. 4(b), Fig. 4(c), where two
amples of 𝐸 are plotted versus (𝑥, 𝑦) ∈ 𝐷. The IGA approximation of
he corresponding solutions of problem (3) are shown in Fig. 4(e) and
ig. 4(f). For this numerical experiment, the IGA parameters are set to
= 𝑞 = 4 and 𝑁𝑐𝑜𝑙𝑙 = 𝑀𝑐𝑜𝑙𝑙 = 32, leading to a negligible error in the

pace variables.
With the above-mentioned choices, the sparse grid of level 𝑤 can

e generated by running the very simple Matlab code in Listing 1.

.1.1. QoI 1: Displacement field
The expected value of the solution 𝒖 or a QoI of 𝒖 can be computed

y running the Matlab code in Listing 2. To this end, first the values of
(or 𝑓 (𝒖)) at all points of the sparse grid are computed (line 5), and

hen their weighted sum is calculated (line 6), cf Eq. (7). The brevity
nd simplicity of these listings testify how little extra work is needed
o interface the beam solver to the UQ software, and thus how easy it
s to perform a UQ analysis.

% number of parameters
N=3;
% knots for p1, p2 and p3
knots_p1=@(n) knots_CC(n,0.5,1.5,’prob’);
knots_p2=@(n) knots_CC(n,0.25,0.75,’prob’);
knots_p3=@(n) knots_CC(n,0.1,0.2,’prob’);
knots = {knots_p1,knots_p2,knots_p3};
% functions m and t
[lev2knots,idxset]=define_functions_for_rule(’SM’,N)
% level
w = 1;
% sparse grid
S = create_sparse_grid(N,w,knots,lev2knots,idxset,[]);
% creates the "uniqued" list of points
Sr = reduce_sparse_grid(S)

Listing 1: Matlab code to create the Smolyak sparse grid.

% wrap the beam IGA solver into an @−function
f = @(y) solve_PDE(y);
% or further have the solver just return the QoI
% f = @(y) QoI(y);
f_values = evaluate_on_sparse_grids(f,Sr);
Eu = quadrature_on_sparse_grid(f_values,Sr);
%Eu = quadrature_on_sparse_grid(@(y)f(y),S,Sr);

Listing 2: Matlab code to compute the surrogate for the QoI.

In particular, we are interested in assessing the quality of the ap-
proximation of the expected value of the horizontal displacement field,
i.e., of E[𝑢𝑥], which we approximately obtained employing the Smolyak
sparse grid of level 𝑤 = 7 (see Fig. 4(d)). Coarser approximations of
the expectation of the same quantity are then computed by Smolyak
sparse grids of lower levels 𝑤 = 1,… , 5. Their relative error with respect
to the reference solution, measured in the 𝐿2(𝐷)-norm, is plotted in
ig. 5: the horizontal axis reports the cardinality of the employed
parse grid. For the sake of comparison, three instances of convergence
f the Monte Carlo method are also depicted. When the sparse grid
ethod is employed we observe an algebraic decay of the error with

stimated slope −1.8, as opposed to the usual Monte Carlo decay rate
1∕2 (i.e., the inverse of the square root of the number of Monte Carlo
amples). We underline the effectiveness of the sparse grid approach,
hich delivers more accurate results with many less sample points than

he plain Monte Carlo method.

% define range of the parameters
aa = [0.5, 0.25, 0.1];
bb = [1.5, 0.75, 0.2];
domain = [aa; bb];
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Fig. 4. 4(a) Ten samples of 𝐸(𝑥, 𝑦̄,𝒑), for fixed 𝑦̄; 4(d) Reference solution for E[𝑢𝑥] (Smolyak sparse grid surrogate of level 𝑤 = 7); 4(b), 4(c) Plot of two samples of 𝐸(𝑥, 𝑦,𝒑) as
in (11) for 𝒑 = (5567, 0.62277, 0.12425) and 𝒑 = (14052, 0.39997, 0.11967), respectively; 4(e), 4(f) Plot of the two corresponding solutions 𝑢𝑥(𝑥, 𝑦,𝒑) (3) (𝒑 = (5567, 0.62277, 0.12425) and
𝒑 = (14052, 0.39997, 0.11967), respectively) computed via IGA (Section 2.2).
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Fig. 5. Error convergence of the expected value of the horizontal displacement field
in the 𝐿2(𝐷)-norm. The quantities are plotted versus the number of PDE solves (the
cardinality 𝐺 of the sparse grid for the Collocation method, the number of samples for
the Monte Carlo method).

plot_sparse_grids_interpolant(S, Sr, domain, f_values,
’with_f_values’);

isting 3: Matlab code to plot the sparse grid surrogate 𝑓 .

.1.2. QoI 2: Horizontal displacement at the bottom-right corner
Let us now consider the real-valued QoI being the evaluation of the

orizontal displacement at the bottom-right corner of the beam, namely
(𝒑) = 𝑢𝑥(1, 0,𝒑). The surrogate of the QoI can be easily computed (see
isting 2) and plotted: see Listing 3 and Fig. 6(a), where level 𝑤 = 3 is
6

(

able 1
ardinality 𝐺 of the employed sparse grids of increasing level 𝑤.
𝑤 1 2 3 4 5

𝐺 7 25 69 177 441

onsidered. In Fig. 6(b) we display a section of the three-dimensional
lot in Fig. 6(a) obtained for the fixed value 𝑝2 = 0.25. The plot shows
hat the variability of the QoI with respect to the parameters 𝑝2 and 𝑝3
s very limited. This observation will be confirmed later on, by means
f the Sobol indices.

We now want to investigate the convergence of the sparse grid
urrogate model, not only in the computation of the expected value,
ust like we did for the previous QoI, but also in point-wise prediction.
herefore, we generate 𝑀 = 2000 new samples {𝒑(𝑖) = (𝑝(𝑖)1 , 𝑝(𝑖)2 , 𝑝(𝑖)3 ), 𝑖 =
,… ,𝑀} of 𝒑. For each of the new sample values, we compute the FOM
olution and compare it with the evaluations of the Smolyak sparse grid
urrogate 𝑓 (see Listing 4). The relative error in the maximum norm
s the given by
‖

‖

‖

‖

‖

𝑓 − 𝑓
𝑓

‖

‖

‖

‖

‖∞
= max

𝑖=1,…,𝑀

|

|

|

|

|

𝑓 (𝒑(𝑖)) − 𝑓 (𝒑(𝑖))
𝑓 (𝒑(𝑖))

|

|

|

|

|

(12)

nd is displayed in Fig. 7(b). For both the expected value and the
oint-wise prediction, an algebraic decay of the error is observed (with
stimated rates of −2.7 and −2.5, respectively). Figs. 8(a) and 8(b)
epict the scatterplot of the reference QoI (𝑥-axis) and its surrogate (𝑦-
xis) of level 𝑤 = 2 and 𝑤 = 3, respectively, evaluated at the first 150
ample points 𝒑(𝑖) out of the 2000 samples just computed. As the level of
he sparse grid increases, the blue dots tend to align along the bisector
red) line, reflecting better approximation properties of the surrogate.
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Fig. 6. 6(a) Three-dimensional plot of the surrogate QoI computed on the sparse grid
with level 𝑤 = 3; 6(b) Plot of the surrogate QoI versus 𝑝1 , 𝑝3 and for fixed 𝑝2 = 0.25.

Fig. 9 then graphically verifies the convergence of the pdf obtained
by sampling the sparse grid surrogates 𝑓 , for increasing levels 𝑤 =
1, 2, 3 (see Listing 5, where the built-in Matlab code ksdensity is
used). For the level 𝑤 = 3 we observe very good agreement between the
reference curve and the surrogate one. Note that the alternative would
be to compute the IGA solution collocated at all the 𝑀 = 2000 samples
{𝒑(𝑖)}, entailing a considerably larger computational effort.

We note that the computational cost required to construct the sparse
grid surrogate 𝑓 is given by 𝐶 × 𝐺, 𝐺 being the cardinality of the
sparse grid and 𝐶 being the cost to solve one beam problem. Table 1
reports the size of all the sparse grids employed in the convergence
plots, in correspondence with their level 𝑤. Instead, the computational
cost required to compute the pdf is negligible.

% generate new samples of parameter values
p1 = rand(M,1)+0.5;
p2 = rand(M,1)*0.5 + 0.25;
p3 = rand(M,1)*0.1 + 0.1;
p = [p1, p2, p3];
% point_on_grid = evaluations of QoI on the points of

Sr
point_surr = interpolate_on_sparse_grid(S,Sr,

point_on_grid,p’);

isting 4: Matlab code to evaluate the surrogate at new parameter
alues.

% surrogate pdf for w=3 (use analogous code for w=1,2)
pdf = ksdensity(point_surr,’Support’,’positive’);

isting 5: Matlab code to compute the pdf obtained by sampling the
parse grid surrogate of the f.
7

t

ig. 7. 7(a) Relative error on the expectation of the QoI 𝑓 = 𝑢(1, 0, ⋅) plotted versus
ncreasing cardinality 𝐺 of sparse grids. For the sake of comparison, the Monte Carlo
rror is also depicted; 7(b) Maximum norm of the relative error on the QoI 𝑓 = 𝑢(1, 0, ⋅)
lotted versus increasing cardinality 𝐺 of sparse grids.

[Sob_princ,Sob_tot] =
compute_sobol_indices_from_sparse_grid(S, Sr,
f_values,domain,’legendre’);

isting 6: Matlab code to compute principal and total Sobol indices.

To conclude the UQ analysis, we compute the principal and total
obol indices {𝑆𝑃

𝑖 , 𝑖 = 1, 2, 3}, {𝑆𝑇
𝑖 , 𝑖 = 1, 2, 3} (see Section 3.3). They

re computed according to Listing 6, the result being

𝑃 = [0.9818, 0.0000, 0.0088],

𝑆𝑇 = [0.9912, 0.0001, 0.0182].

hey confirm that the variability of the second parameter 𝑝2 does not
ffect the surrogate value, as previously observed by means of Fig. 6,
nd, moreover, they hint that the third parameter plays a negligible
ole as well.

As a conclusion of the analysis carried out, we can state that thanks
o the sparse grid machinery, a small computational effort was enough
o carry out a UQ analysis that allows us to draw these conclusions on
he timber model at hand: (i) the parameter playing the most important
ole in the model is 𝑝1; (ii) small variability of the QoI is caused by 𝑝3;
iii) 𝑝2 affects the QoI in a negligible way. These results are as expected,
ince 𝑝2 and 𝑝3 have local effects on the solution to the PDE (3), whereas
he considered QoI is affected by global quantities, only.
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4.2. Two-knots example

Let us take 𝐿 = 10 m and 𝐻 = 1 m, and choose

𝛼(𝑥, 𝑦,𝒑) = 𝑝1 − 𝛾1 exp

(

−
(𝑥 − 𝑥̄)2

2𝑝22

)

exp

(

−
(𝑦 − 𝑦̄)2

2𝑝24

)

− 𝛾2 exp

(

−
(𝑥 − 𝑥̄ − 𝑝6)2

2𝑝23

)

exp

(

−
(𝑦 − 𝑦̄ − 𝑝7)2

2𝑝25

)

, (13)

with parameter 𝒑 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7) whose entries are 𝑝1 ∼
 (0.5, 1.5), 𝑝2, 𝑝3 ∼  (0.3, 1), 𝑝4, 𝑝5 ∼  (0.03, 0.1), 𝑝6 ∼  (1, 8) and
7 ∼  (−0.5, 0.5), and with fixed values 𝛾1 = 𝛾2 = 0.4. In particular, in
his second example, we aim to model the presence of two knots along
he timber beam: one with fixed coordinates (𝑥̄, 𝑦̄) and the second at
andom distance from the first one with coordinates (𝑥̄+ 𝑝6, 𝑦̄+ 𝑝7); the
alue of 𝐸0 is again 𝐸0 = 104 MPa. As in the first example, 𝑝1 - when
ultiplied by 𝐸0 - controls the nominal value of the Young modulus

way from the knot. The remaining parameters model the width of the
wo knots along the horizontal (𝑝2, 𝑝3) and vertical (𝑝4, 𝑝5) directions.
ig. 10 depicts four samples of 𝐸(𝑥, 𝑦,𝒑) = 𝐸0𝛼(𝑥, 𝑦,𝒑), with 𝛼(𝑥, 𝑦,𝒑) as
n (13) (left column) and the first component of the corresponding IGA
olution (right column). We underline that in the considered setting
he second knot can be placed (i) close to the top/bottom boundary
f the beam (first sample, showing the case of proximity to the top
oundary); (ii) well-contained in the beam and distant from the first
not (second sample); (iii) well contained in the beam but close to the
irst knot (third sample); (iv) close to the right boundary of the beam
fourth sample).

In this second example, we are dealing with a problem with a larger
umber of uncertain parameters, therefore we consider not only the
lassical Smolyak sparse grids used in the previous example, but also
he more effective a-posteriori adaptive sparse grids. In this version of
parse grids, multi-indices 𝒊 are added to the multi-index set  in Eq. (6)
n an iterative way, following a simple yet powerful procedure based
n an error-cost criterion (see e.g., [52,53] for details):

• a number of potential candidates 𝒋 is added to the sparse grid to
the multi-index set ;

• for each of them a profit indicator is computed (i.e., the ratio
between the change in the prediction of E[𝑓 ] due to having added
𝒋 to the sparse grid and the number of new FOM evaluations
requested by it);

• the candidate with the largest profit is selected and added to ,
and the set of candidates is updated accordingly.

This algorithm is usually very effective in quickly determining a good
set , although it is not entirely optimal in terms of cost since the
profits are evaluated only after having performed the corresponding
FOM evaluations (hence the name ‘‘a-posteriori adaptive’’), therefore
some computational cost is ‘‘wasted’’ to detect multi-indices with small
profit.

Returning to the computational example, let us consider the same
real-valued QoI as in the first example, namely, the evaluation of
the horizontal displacement at the bottom-right corner of the beam
𝑓 (𝒑) = 𝑢𝑥(10, 0,𝒑). The reference value E[𝑢𝑥(10, 0, ⋅)] is approximated
using an a-posteriori adaptive sparse grid with 30105 collocation points
(see Listing 7) and is compared with its approximation [𝑢𝑥(10, 0, ⋅)]
computed either using Smolyak sparse grids of increasing level 𝑤 =
1,… , 6 (red line in Fig. 11) or a-posteriori adaptive sparse grids with
increasing number of collocation points (magenta line in Fig. 11).
Table 2 reports the cardinality of the Smolyak sparse grids of increasing
level 𝑤.

Following the same lead as in the first example, we now want to
investigate the convergence of the sparse grid surrogate to the FOM.
Therefore, the QoI is computed by the FOM in 𝑀 = 5000 randomly
generated samples of 𝒑 (denoted as {𝒑(𝑖), 𝑖 = 1,… ,𝑀}). In contrast,
8

he a-posteriori adaptive and the Smolyak sparse grid surrogates are
Table 2
Cardinality 𝐺 of the employed Smolyak sparse grids of increasing level 𝑤.
𝑤 1 2 3 4 5

𝐺 15 113 589 2465 9017

evaluated at all points 𝒑(𝑖) and the largest relative error is computed
by Eq. (12). The decay of this approximation error as the sparse grids
construction cost increases is depicted in Fig. 12. Both Figs. 11 and
12 display improved rates of convergence of the a-posteriori adap-
tive sparse grids, when compared to the non-adaptive ones (i.e., the
Smolyak sparse grids).

Next, we graphically verify the convergence of the pdf obtained by
sampling the a-posteriori adaptive sparse grid surrogate, see Fig. 13: a
very good agreement between the exact and the surrogate pdfs can be
observed. Finally, the principal and total Sobol indices are computed:

𝑆𝑃 = [0.9914, 0.0000, 0.0040, 0.0001, 0.0001, 0.0002, 0.0002],

𝑆𝑇 = [0.9945, 0.0002, 0.0075, 0.0002, 0.0008, 0.0003, 0.0010].

As observed in the first example, the first parameter 𝑝1 is by far the
most important, in the sense that it essentially affects all the variability
of the selected QoI. The other parameters play a much smaller role, and
in particular the second 𝑝2 (horizontal width of the first knot) appears
to be negligible.

% number of parameters
N=7;
% knots for p1, p2, p3, p4, p5, p6 and p7
knots_Y0=@(n) knots_CC(n,0.5,1.5,’prob’); % c
knots_Y1=@(n) knots_CC(n,1,8,’prob’); % r
knots_Y2=@(n) knots_CC(n,−0.5,0.5,’prob’); % s
knots_Y3=@(n) knots_CC(n,0.3,1,’prob’); % sx1
knots_Y4=@(n) knots_CC(n,0.3,1,’prob’); % sx2
knots_Y5=@(n) knots_CC(n,0.03,0.1,’prob’); % sy1
knots_Y6=@(n) knots_CC(n,0.03,0.1,’prob’); % sy2
knots = {knots_Y0,knots_Y1,knots_Y2,knots_Y3,knots_Y4,

knots_Y5,knots_Y6};
lev2knots = @lev2knots_nested
% number of maximum collocation points
Max_Points = 30000;
controls.max_pts=Max_Points;
% QoI (to be implemented separately)
f = @(y) QoI(y);
adapt = adapt_sparse_grid(f,N,knots,lev2knots,[],

controls)

Listing 7: Matlab code to compute an adaptive sparse grid
approximation of the QoI.

5. Conclusions

In this paper, we used the Sparse Grid Matlab kit (freely available
online) for the UQ of the displacements in the field of continuum linear
mechanics. The considered problem has been discretized by means of
the IGA collocation (in the space variables), while the dependence
on random parameters has been treated by means of the stochastic
collocation method on both Smolyak and a-posteriori adaptive sparse
grids.

The use of the Sparse Grid Matlab kit presents several advantages.
First, it can be easily interfaced with any black-box solver for the
(deterministic) mechanical problem. Second, the numerical methods
implemented in the kit outperform standard UQ techniques, such as
the plain Monte Carlo method. Finally, it provides outputs that can be
readily interpreted and exploited in the engineering practice.

In this work, we treated linear-elastic, isotropic material. However,

due to the black-box nature of sparse grids, any non-linearity can be
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Fig. 8. Scatterplot of the reference QoI (𝑥-axis) and the surrogate QoI (𝑦-axis) of level
= 2 (Fig. 8(a)) and level 𝑤 = 3 (Fig. 8(b)) evaluated at the first 150 sample points

(𝑖). The bisector line is depicted in red.

Fig. 9. Approximations to the pdf of the considered 𝑓 for increasing levels of sparse
grids. The reference pdf is computed starting from evaluations of the FOM.

easily included, just replacing IGA collocation with a suitable numerical
implementation of non-linear Partial Differential Equations (PDEs).
Future work will include the analysis of more sophisticated and possibly
anisotropic and non-linear mechanical problems, where the variability
of grain direction is accounted for and modeled as a more complex
random field.
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Appendix A. Basics on B-splines

Let us introduce two knot vectors:

𝑋 = {𝑥1 = 0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑁𝑐𝑜𝑙𝑙+𝑟+1 = 𝐿}

𝑌 = {𝑦1 = 0 ≤ 𝑦1 ≤ ⋯ ≤ 𝑦𝑀𝑐𝑜𝑙𝑙+𝑞+1 = 𝐻}
(A.1)

where 𝑟 and 𝑞 are the degree of the B-splines and 𝑁𝑐𝑜𝑙𝑙 and 𝑀𝑐𝑜𝑙𝑙 are
the numbers of basis functions. Pairs (𝑥𝑖, 𝑦𝑗 ) ∈ 𝑋 × 𝑌 correspond to
coordinates of points in the 2D domain 𝐷. In particular, we take 𝑋, 𝑌 as
so-called open vectors, i.e., the first and last knots of 𝑋 (𝑌 , respectively)
have multiplicity 𝑟 + 1 (𝑞 + 1, respectively), and – for simplicity – we
choose uniformly equispaced 𝑋 and 𝑌 knots.

Given the knot vector 𝑋, the uni-variate B-spline basis functions in
the 𝑥-variable are defined recursively as follows:

• for 𝑟 = 0:

𝑁0
𝑖 (𝑥) =

{

1, if 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1,
0, otherwise,

• for 𝑟 > 1:

𝑁𝑟
𝑖 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥−𝑥𝑖
𝑥𝑖+𝑟−𝑥𝑖

𝑁𝑖,𝑟−1(𝑥) +
𝑥𝑖+𝑟+1−𝑥

𝑥𝑖+𝑟+1−𝑥𝑖+1
𝑁𝑖+1,𝑟−1(𝑥),

if 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+𝑟+1,
0, otherwise,

ith the convention 0∕0 = 0. Given the knot vector 𝑌 , the uni-
ariate B-spline basis functions 𝑀𝑞

𝑗 (𝑦) are defined analogously. The
ensor product construction leads to bi-variate basis functions for the
D domain 𝐷, given by
𝑟,𝑞
𝑖,𝑗 (𝑥, 𝑦) = 𝑁𝑟

𝑖 (𝑥)𝑀
𝑞
𝑗 (𝑦)

or all 𝑖 = 1,… , 𝑁 , 𝑗 = 1,… ,𝑀 .
𝑐𝑜𝑙𝑙 𝑐𝑜𝑙𝑙
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Fig. 10. Plot of four samples of 𝐸(𝑥, 𝑦,𝒑) = 𝐸0𝛼(𝑥, 𝑦,𝒑), with 𝛼(𝑥, 𝑦,𝒑) as in (13) and of the corresponding horizontal displacement 𝑢𝑥(𝑥, 𝑦,𝒑) computed via the IGA method
(Section 2.2) for 𝒑 = (14134, 4.3976, 0.4340, 0.3323, 0.8566, 0.0414, 0.0789), 𝒑 = (11324, 6.6020, 0.1787, 0.3680, 0.4308, 0.0383, 0.0924), 𝒑 = (5.9754, 1.9932, 0.2577, 0.8764, 0.6428, 0.0649, 0.0972)
and 𝒑 = (1.4649, 7.7164,−0.3288, 0.3241, 0.8283, 0.0457, 0.0480) (from top to bottom).
Appendix B. Formulas for sparse grids

In this appendix, we report some auxiliary formulas for readers who
are interested in the details of how the tensor interpolant 𝑓𝑚(𝒊) in Eq. (6)
is obtained. To this end, let us recall that 𝒊 is a vector of 𝑁 positive
integers, and that 𝑚(⋅) is an increasing function. We then let:
10
• 𝑛,𝑚(𝑖𝑛) a set of 𝑚(𝑖𝑛) points in the range of the 𝑛th parameter 𝑝𝑛,
(for instance, the Clenshaw–Curtis points introduced in Eq. (8)),

𝑛,𝑚(𝑖𝑛) = {𝑝1𝑛,𝑚(𝑖𝑛), 𝑝
2
𝑛,𝑚(𝑖𝑛)

,… , 𝑝𝑚(𝑖𝑛)𝑛,𝑚(𝑖𝑛)
}

• 𝓁𝑘
𝑛,𝑚(𝑖𝑛)

be the Lagrange polynomial associated to the 𝑘th node of
 , i.e., a polynomial that has value 1 in 𝑝𝑘 and 0 in every
𝑛,𝑚(𝑖𝑛) 𝑛,𝑚(𝑖𝑛)
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Fig. 11. Error convergence of the sparse grid surrogates. As a comparison, three
instances of Monte Carlo errors are also reported. The lines are plotted versus the
number of PDE solves (the cardinality 𝐺 of the sparse grid the Collocation method,
the number of samples for the Monte Carlo method).

Fig. 12. Maximum norm of the relative error on the QoI 𝑓 = 𝑢𝑥(10, 0, ⋅) plotted versus
increasing cardinality of sparse grids.

Fig. 13. Approximation to the pdf of the considered 𝑓 corresponding to the surrogate
obtained by means of the a-posteriori adaptive sparse grid. The reference pdf is
computed starting from evaluations of the FOM.

other point of 𝑛,𝑚(𝑖𝑛). The explicit expression of 𝓁𝑘
𝑛,𝑚(𝑖𝑛)

(𝑝) reads:

𝓁𝑘
𝑛,𝑚(𝑖𝑛)

(𝑝) =
𝑚(𝑖𝑛)
∏

𝑗=1,𝑗≠𝑘

𝑝 − 𝑝𝑗𝑛,𝑚(𝑖𝑛)
𝑝𝑘𝑛,𝑚(𝑖𝑛) − 𝑝𝑗𝑛,𝑚(𝑖𝑛)

.

• 𝑚(𝒊) is the cartesian product of the univariate sets 𝑛,𝑚(𝑖𝑛), for
𝑛 = 1,… , 𝑁 , namely

𝑚(𝒊) =
𝑁
∏

𝑛,𝑚(𝑖𝑛).
11

𝑛=1
It contains 𝑚(𝑖1) × 𝑚(𝑖2) × ⋅𝑚(𝑖𝑁 ) points. Each of these points
corresponds a multi-index 𝒋, that is component-wise smaller than
𝑚(𝒊), i.e.,

𝑚(𝒊) = {𝒑𝒋 ∈ R𝑁 ∶ 𝑝𝑗𝑛 = 𝑥𝑗𝑛𝑛,𝑚(𝑖𝑛)with 𝑗𝑛 ≤ 𝑚(𝑖𝑛)}.

• To each 𝒑𝒋 we can associate the multi-variate Lagrange polyno-
mial given by

𝓁𝒋
𝑚(𝒊)(𝒑) =

𝑁
∏

𝑛=1
𝓁𝑗𝑛
𝑛,𝑚(𝑖𝑛)

(𝑝𝑛).

With these definitions in place, we can finally define the tensor inter-
polant 𝑓𝑚(𝒊) as

𝑓𝑚(𝒊)(𝒑) =
∑

𝒑𝒋∈𝑚(𝒊)

𝑓 (𝒑𝒋)𝓁
𝒋
𝑚(𝒊)(𝒑).

he sparse grid  (i.e., the union of the points required to assemble
ach 𝑓𝑚(𝒊) in Eq. (6)) can be obtained as

=
⋃

𝒊∈
𝑚(𝒊).
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