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Abstract: This paper addresses and compares the modeling of typical EMI filters used in three-phase
power equipment obtained through two different approaches, namely, physical and behavioral.
Firstly, an innovative physical EMI filter modeling procedure is presented, which relies on an
analytical formulation in terms of chain-parameters matrices and allows for an easy evaluation of its
attenuation characteristics. The considered procedure builds an overall filter model by combining
simple components models, requiring the determination of only a limited number of parasitic
elements. Furthermore, the latter can be easily estimated without the need to build any prototype,
avoiding the costly trial-and-error design procedures currently applied in the industrial context.
Additionally, the considered physical model is tailored for high-power filters, built with thick wires,
while most of the physical models available in the literature are aimed at small-sized filters built
on printed circuit boards. The procedure is validated step by step, discussing the accuracy of each
component model and its impact on overall accuracy compared to the actual measurements of the
final assembled filter. Secondly, a behavioral modeling procedure is presented, which is based on
external measurements performed on the filter prototype and provides an equivalent circuit model.
Specifically, it extends to three-phase filters a circuit model previously developed for the single-phase
case. Lastly, a critical comparison between the proposed physical and behavioral models is presented,
highlighting the strengths and limitations of both and suggesting optimal uses for each.

Keywords: conducted emissions (CE); electromagnetic interference (EMI); EMI filters; behavioral
models; physical models; power converters

1. Introduction

The prediction of conducted emissions (CE) generated by electronic power converters
is of increasing interest for electromagnetic compatibility (EMC) specialists involved in
product development, as traditional trial-and-error approaches imply significant costs,
which could be greatly reduced by moving the design stage from laboratory activities to
virtual environments. In these regards, circuit and electromagnetic simulation tools are
promising for virtual prototyping, yet their fruitful use relies on the availability of suitable
models of all the components included in the system under consideration.

CE can be evaluated both in time and frequency domains, as discussed in [1] and [2], re-
spectively. However, both approaches exhibit advantages as well as limitations. Frequency
domain modeling techniques are the most widely used, as they are directly related to con-
cepts and prescriptions from EMC standards. Additionally, frequency-domain simulations
are usually much less time-consuming than time-domain methods. Frequency-domain
models are often behavioral models obtained by experimental measurements, and consist
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of impedances and sources as discussed in [3,4] for power electronics converters and re-
lated electrical equipment. Behavioral models are simple and accurate and are suitable
for the analysis of CE in complex systems by frequency-domain simulation, yet they are
not suitable to evaluate non-linear and/or time-variant systems, commonly observed in
electronic power converters.

Conversely, the simulation of non-linear and/or time-variant systems is easily achieved
by time-domain methods, at the expense of increased computational costs and model com-
plexity. This is due to the fact that non-linear and or time-varying elements require detailed
component-level circuit models, including parasitic elements [5], which can be inferred by
3D electromagnetic simulations [6] or impedance measurements [7]. A common example
of such systems is represented by electronic power converters, the design [8,9] and control
algorithms [10] of which often include modulation strategies purposefully designed to
affect their CE.

EMI filters are widely used to mitigate CE, either as an integral part of equipment or as
stand-alone products for complex systems [11]. For the latter case in particular, the design
and selection of the optimal EMI filter for a given application are two significant tasks
where the simulation of CE represents a great opportunity in industrial applications [12,13].
However, the requirements of filter modeling techniques for design or selection purposes
are largely different. Indeed, for EMI filter design, the model is required to be built upon
the knowledge of single filter components in order to obtain useful insights on how each
component affects the overall filter performance, hence enabling the virtual prototyping
of EMI filters. Unfortunately, the accuracy expected from this modeling approach is often
limited to over a few tens of MHz, so it is not the best option for filter selection, i.e., when
the main interest is to accurately evaluate which one among many filters is best suited to
a particular application. In this case, the higher accuracy granted by behavioral models
is required, at the expense of losing any insight on the relations between the overall filter
performance and its internal components.

As regards the information necessary to define circuit models, little can usually be
deduced from the technical data sheets of commercial products, which mostly provide
the inner topology (with ideal component values) and attenuation plots, obtained ex-
perimentally for the Common-Mode (CM) and Differential-Mode (DM) according to the
CISPR 17 standard [14]. Unfortunately, ideal values are of little help in predicting the filter
performance as, above a few tens of kHz, the non-ideal behavior of the components (par-
asitic resistances, capacitances, and inductances) and the interconnects play a significant
role [15,16]. Additionally, capacitive and inductive couplings may affect the performance
of components which are close to each other [15]. Basic circuit models can be improved by
adding parasitic elements, as discussed in [16] for the small construction of filters on printed
circuit boards (PCBs); however, this option can be difficult to apply to filters intended for
high-power converters whose geometry comprises some uncontrolled randomness (e.g.,
hand-made wired interconnects and windings). The model can be further improved, in
principle, by using full-wave electromagnetic simulations to refine parasitic components
values, as discussed in [17,18]. However, the limitations in the management of uncontrolled
geometries related to the use of wire conductors instead of PCBs still hold.

Despite their limitations in terms of accuracy, this family of physical models can be
fruitfully used during the filter design phase, as they can provide useful insights about
how acting on single components alters the overall filter performance. A number of EMI
filter design procedures are indeed available in the literature, which usually start from the
analysis of the CE propagation path and, on this basis, suggest a possible filter topology
and some components nominal values to meet CE requirements. As an example, in [19], the
design of two different filter topologies for a SiC inverter is discussed. Similarly, in [20], two
different, complementary filter design approaches for automotive converters are presented,
while in [21], the principles of EMI filter design in avionic vehicular systems are analyzed
based on a detailed model of CM and DM noise paths. Additionally, in [22], an optimal
filter design method based on matching the considered converter source impedance is
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presented. The filter models used in these works, however, are not explicitly validated,
as only final results based on experimental tests are reported. Additionally, as for most
EMI filter models available in the literature, the aforementioned works address small-sized
filters constructed on PCBs, whose geometry and parasitic effects are well controlled. A
further step toward virtual prototyping is presented in [23], where a simulation-based filter
design method is presented, providing good results despite using simple circuit models.
However, in this case too, the used filter models are not explicitly validated, and only final
results based on experimental tests are reported.

In summary, the physical modeling procedures available in the literature exhibit
three main drawbacks. First, most contributions are intended to provide an accurate
representation of an existing filter, which is achieved by augmenting the ideal circuit with
a number of parasitic elements. However, since this approach relies on the availability
of an already constructed filter, it is not suitable for virtual prototyping. Second, most
of the literature contributions are targeted to small PCBs with controlled geometry and
are not trivially scalable to high-power, three-phase filters, which are physically large and
constructed by thick wires, thus characterized by inherent randomness. Third, physical
models available in the literature are not explicitly validated step by step, so they do not
evaluate the accuracy of each component model and its impact on the overall accuracy
after integration in the final filter.

Regarding behavioral models, typical applications in the literature are time-domain
circuit simulations that include time-varying and/or nonlinear components [24]. The recent
contribution of [25] provides a robust, industrial solution for EMI filter modeling by a
black-box modeling approach based on an external S-parameters characterization [26].
Specifically, the measured S-parameters are approximated by a rational function by means
of the Vector Fitting algorithm [27–29] and passivity enforcement routines [30,31], and an
equivalent circuit representation is built to make the model compatible with frequency-
and time-domain SPICE simulations [32]. However, the modeling procedure discussed
in [25] is developed for devices with four terminals, such as single-phase EMI filters, and
has not been applied to a three-phase filter yet.

In order to overcome the aforementioned limitations of physical and behavioral mod-
eling techniques, in this paper, two cutting-edge industrial procedures ascribed to physical
and behavioral modeling approaches are introduced. The physical modeling approach
relies on the inspection of the considered filter structure and of its components and builds
an overall filter model by combining simple components models. This modeling approach
lends itself to the virtual prototyping of the EMI filter, and is discussed in detail here,
providing three main contributions with respect to the current state of the art:

(a) The filter model relies on an analytical formulation in terms of chain-parameter matri-
ces, which allows us to easily evaluate its attenuation characteristics. Furthermore,
the model is designed to effectively predict filter behavior by including only a limited
number of parasitic elements that can be easily estimated before any prototype is
actually constructed (unlike previously discussed literature contributions).

(b) The filter model is tailored for high-power filters, built with thick wires, while most
physical model available in the literature are targeted toward small filters built on PCBs.

(c) The physical model is validated step by step, discussing the accuracy of each com-
ponent model and its impact on the overall filter model accuracy, and compared to
measurements after the filter assembly.

Successively, a behavioral modeling methodology is applied to the filter prototype after
production, which relies only on external measurements to determine an equivalent filter
model. The considered behavioral modeling technique relies on a cutting-edge procedure
available in the literature for single-phase filters only, which is here extended to correctly
model three-phase filters.

Lastly, a comprehensive comparison between physical and behavioral approaches for
virtual prototyping and the accurate modeling of EMI filters is presented, along with a
detailed discussion of their applicability, accuracy, and best use.
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This paper is structured as follows: Section 2 presents the considered filter design, and
the available components on which to build the physical model. Section 3 discusses the
considered physical EMI filter modeling procedure, while the considered behavioral EMI
modeling procedure is presented in Section 4. Section 5 presents an extensive comparison
of the two methods, highlighting their respective strengths and limitations, and, lastly, final
conclusions and future research perspectives are reported in Section 6.

2. EMI Filter Example

With the aim of illustrating both a physical and behavioral modeling procedure, let
us consider, with no loss of generality, a typical one-stage three-phase EMI filter, the block
scheme of which is shown in Figure 1. As common practice for EMI filters required to
withstand significant functional currents, the filter is built with single-core cables (and not
on a PCB), enclosed in a metal box, and the CMC is wound using the same cables.
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Figure 1. Block scheme of the considered example of EMI filter.

The filter prototype includes a capacitor assembly, realized with three, star-connected,
2200 nF capacitors (C1), the star-center of which is connected to the metallic filter enclosure
by means of a 100 nF capacitor (C2). The filter also includes a CM choke (CMC), realized by
single-core cables wound twice around a ferrite core. Sample 2200 nF and 100 nF capacitors,
and one sample ferrite core selected for the realization of the CMC are reported in Figure 2.
Lastly, two three-phase interconnections, which will be realized by common electrical
single-core, PVC-insulated cables, link the CMC to the filter external terminals.
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Figure 2. (a) 2200 nF and (b) 100 nF capacitor samples, and (c) ferrite core sample used for the
realization of the considered three-phase EMI filter prototype.

3. Physical Modeling Procedure for Three-Phase EMI Filters

The physical modeling approach is based on the knowledge of: (a) the filter structure,
including circuit topology and known or estimated geometrical properties (cable lengths
and position, etc.), and (b) the frequency response of each component included in the filter.
Since typical EMI filters are realized by different components or groups of (e.g., assembly of
capacitors between phases and/or to ground, common mode chokes, etc.), it is convenient
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to represent each of those in terms of its chain-parameter matrix, so that the overall filter
chain-parameter matrix can be simply obtained by the product of the matrices representing
each section. This approach introduces some level of approximation, as its underlying as-
sumption is that no coupling between filter sections is present. However, it will be shown that
it is still possible to obtain an acceptable level of accuracy for virtual prototyping purposes.

In the following, we will consider, with no loss of generality, the components appearing
in the EMI filter prototype depicted in Figure 1, namely, capacitors assemblies, CMCs,
and cable interconnections. Other possible (non-standard) occurrences may be treated
analogously. Successively, we will show the results of the combination of each of the
obtained models in the overall EMI filter model and compare the results with measurements
performed on a filter prototype.

3.1. Capacitor Assembly Model

The first step for the characterization of the capacitor assembly is the characterization
of at least one sample of each capacitor included in the assembly by an impedance analyzer
(IA) or vector network analyzer (VNA) in order to determine the real frequency response
of the specific components used. This, in turn, allows us to determine the real capacitance
(C), equivalent series resistance (ESR), and equivalent series inductance (ESL) for each kind
of capacitor used, obtained as average values over a broad frequency range. In particular,
the value of C is obtained from the slope of the impedance frequency response up to a
decade below the capacitor resonance frequency, the value of the ESL is obtained from
the slope of the impedance frequency response from a decade higher than the resonance
frequency, and the value of the ESR is obtained as an average value around the resonance
frequency. Experience suggests that, for frequencies no higher than 100 MHz, this simple
capacitor model is sufficient to obtain a reasonable level of accuracy. Nevertheless, the
characterization procedure is necessary for each capacitor, as data provided in datasheets
proved not to be reliable enough at frequencies higher than a few MHz.

With reference to the EMI filter depicted in Figure 1, one sample of each capacitor
value has been tested by IA, as depicted in Figure 3. The resulting C, ESR, and ESL
parameters are reported for each component, in Table 1. This step is particularly relevant
since the rated capacitance is not always representative of the real one due to standard
production tolerances (e.g., C1 is very close to its rated capacitance, while C2 is roughly 4%
smaller), and ESR and ESL values are difficult to estimate reliably without directly testing
the capacitor.
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Table 1. Capacitors parameters.

Rated C [nF] Measured C [nF] ESR [mΩ] ESL [nH]

C1 2200 2208 40.42 33.89
C2 100 96.11 85.12 17.78

While the ESR/ESL model is sufficient to approximate the frequency response of a
single capacitor, it is not sufficient to accurately describe the overall capacitor assembly. It
is well known from the literature that component leads introduce parasitic inductances, the
effect of which is not negligible in the frequency range of interest. Indeed, considering the
capacitor assembly included in the considered EMI filter, it is necessary to consider that
its physical realization will be inside a metal box, close to one of its sides, and inclusive of
non-negligible leads, with a length of several centimeters, and a distant of a few centimeters
between each other and the metal box. In this situation, the lead realizing the connection to
ground will exhibit a non-negligible inductance. Additionally, the three leads connecting
the capacitor assembly to the filter external terminals will act as a three-phase mutual
inductor. In both cases, the per-length inductances of the components leads are calculated
by approximating the said leads as straight conductors floating above a ground plane,
which significantly simplifies the mathematics of the problem with minimal impact on
accuracy (note also that a more detailed model would require to measure a real sample).
The resulting circuit model is reported in Figure 4. Formulas for the evaluation of per-length
inductance parameters are available in [33].
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With the aim of selecting a representation which can later be used to assess the model
accuracy with respect to real measurements, it is convenient to represent the capacitor
assembly by an impedance or admittance matrix, which can be easily characterized by
three-port measurements. For reference, the entries of the impedance matrix ZC obtained
from the considered capacitor assembly model are reported in Figure 5, where, due to
reciprocity, only the mutual terms above the main diagonal are reported.

Starting from its impedance matrix, the capacitor assembly can be easily represented as
a six-port element, characterized by its chain-parameter matrix ΦC, as depicted in Figure 6.
The determination of the entries of the chain-parameter matrix ΦC is straightforward, and
results in

ΦC =

[
I3 03

−ZC
−1 I3

]
, (1)

where I3 represents the 3 × 3 identity matrix, while 03 represents the 3 × 3 three zero matrix.
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3.2. Common-Mode Choke and Interconnections Model

The first step for the definition of the CMC model is the characterization of the
ferrite core complex permeability. This can be performed experimentally, which requires a
non-trivial setup, or, alternatively, it is possible to rely on manufacturers’ data provided
by datasheets. However, the suitability of the latter option for modeling purposes is
questionable, as the characteristics of ferrite cores may be quite inconsistent among different
samples, and manufacturers commonly declare a 20% to 30% tolerance on the magnetic
permeability reported in datasheet. As a consequence, real measurements on a sample
ferrite core are to be preferred whenever possible.

For reference, the measured magnetic permeability of the considered core, shown in
Figure 2c, is reported in Figure 7.
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part (-Im).

It is worth noting that the complex behavior of the magnetic permeability over the
frequency range of interest does not allow us to realize a simple circuit model (i.e., suitable
to be included in SPICE simulations) of the CMC. As a consequence, unless complicated
circuit synthesis techniques are employed, the physical model is limited to frequency-
domain analysis and cannot be easily adapted to time-domain analysis. Indeed, while
on the one side it is possible to determine an equivalent circuit representing the CMC
frequency response accurately [34], this would basically be a behavioral model. In fact,
most of the components appearing in the model would not have any physical meaning,
but they would just fit the CMC frequency response. Also, it is not possible to determine
the parameters of such a model without realizing a CMC prototype and characterizing it.

Once the complex, frequency-dependent magnetic permeability data regarding the
selected core are available, a reasonably simple CMC model suitable for an industrial
modeling procedure can be obtained considering:

• Core permeability and geometrical dimensions
• Number of turns of each winding (equal for each phase)
• Wire thickness, distance between wire turns and core, and distance between turns of

the same winding

The considered CMC circuit model is reported in Figure 8a. It consists of a three-phase
mutual inductor with parasitic capacitances, described by its self-inductance Ls, equal
for all windings, its mutual inductances Lm, assumed equal for all winding pairs, and its
parasitic capacitance C, also assumed equal for all windings. The CMC physical dimensions
relevant to the evaluation of its parameters are highlighted in Figure 8b.
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The expressions of the self-inductance Ls and of the mutual inductances Lm are ob-
tained assuming the flux paths to develop completely in the ferrite core or in air, so that
two inductances can be determined, namely:

Lmag = N2µ0µr
S
p

(2)

Lleak = N2µ0
γ(dext − din + 2w)dmax

dw(N − 1)
. (3)

Lmag is defined as the inductance related to the flux path developed exclusively in
the ferrite core, and is a function of the winding turn number N, the vacuum magnetic
permeability µ0, the ferrite core complex relative magnetic permeability µr, the core cross-
section S, and the ferrite core mean perimeter p. The leakage inductance Lleak is defined as
the inductance related to the flux in the air gap between the winding and the ferrite core.

It is a function of the winding turn number N, the vacuum magnetic permeability
µ0, the ferrite core geometric dimension dext (external diameter), din (internal diameter),
and thickness w, the maximum distance between the winding and the ferrite core dmax, the
winding wire thickness dw, and the corrective coefficient γ. The latter is set, by empirical
experience, between two and three for ferrite cores. All of these parameters are known or
can be easily estimated even before realizing a single CMC prototype.

On the basis of the inductances Lmag and Lleak, the entries of the CMC inductance
matrix are obtained assuming that the flux concatenating winding pairs is developed
exclusively in the ferrite core, while the flux concatenating single windings develops both
in the ferrite core and in air, separately. Consequently, the CMC self and mutual inductances
are obtained as

Ls = Lmag + Lleak, (4)

Lm = Lmag. (5)

The CMC inductance matrix is hence defined as

LCMC =

 Ls Lm Lm
Lm Ls Lm
Lm Lm Ls

. (6)

The parasitic capacitance is probably the least intuitive parameter to evaluate. Indeed,
it would be intuitively stated that the parasitic capacitance value is proportional to the
winding turn number. However, it has been proved that its value is mostly related to the
geometrical dimensions of the single turns of a winding and is scarcely related to the total
number of turns in the winding. Details on how to estimate this parameter are found
in [35,36]. Considering the values of the geometrical parameters reported in Table 2 (all
readily available, except from the wire-to-core distance which is to be estimated), it is easy
to determine the considered CMC inductance matrix LCMC and parasitic capacitance C.

Table 2. Common-mode choke parameters.

Parameter Value Parameter Value

Core Thickness 25.5 mm Turns number 2
Core external diameter 63 mm Wire-to-core distance 0.7 mm
Core internal diameter 37.5 mm Wire thickness 1.6 mm

γ 2.5

Hence, it is straightforward to evaluate the chain-parameter matrix ΦCMC representing
the CMC as

ΦCMC =

[
I3 −

(
I3 − ω2CLCMC

)−1 jωLCMC
03 I3

]
. (7)
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This, however, can hardly be related with CMC measurements, as high-power CMCs
are usually not mounted PCBs, but wound with single-core wires which extend to the
filter terminals. Similar to capacitors assemblies leads, it is hence necessary to include wire
interconnections in the CMC model.

Wire interconnections are approximated as three straight, bare, parallel wires with
separation d, diameter dw, running above ground at height h with length L. The chain-
parameter matrix of such a multiconductor transmission line (MTL) section is easily com-
puted [33]. For the CMC under consideration, two interconnections are to be considered.
The parameters necessary to evaluate their chain-parameter matrices ΦTL1 and ΦTL2, esti-
mated on the basis of the ferrite core and filter metal enclosure sizes, are reported in Table 3.
The resulting CMC circuit model including wire interconnections modeled as MTLs is
reported in Figure 9. Considering the cascaded connection of the two wire interconnections
and the CMC, it is now possible to determine the CMC model by multiplying the relative
chain-parameters matrices, namely,

ΦCMC+TL = ΦTL2ΦCMCΦTL1, (8)

from which the CMC attenuation characteristics can be evaluated.

Table 3. Cable interconnections parameters.

Interconnection 1 Interconnection 2

Length 10 cm 5 cm
Separation 1.5 cm 1.5 cm

Wire diameter 1.6 mm 1.6 mm
Distance from ground 9 cm 9 cm
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Figure 9. Considered common-mode choke circuit model, including wire interconnections modeled
as multiconductor transmission lines.

As the CMC CM and DM attenuations are usually its most relevant performance
indexes, which can also be easily measured on real samples, the CM and DM attenuations
obtained from the CMC model are evaluated. This is performed considering the circuits
reported in Figure 10, which correspond to the CISPR-17 test setups for the measurement
of the symmetrical (DM) and asymmetrical (CM) attenuation of an EMI filter.
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Figure 10. CISPR-17 test setups equivalent circuit: (a) symmetrical (DM), and (b) asymmetrical
(CM) attenuation.

Let us consider the standard testing condition, where RS = RL = 50 Ω, define the four
minors of the CMC chain-parameters matrix as

ΦCMC+TL =

[
ΦCMC+TL 11 ΦCMC+TL 12
ΦCMC+TL 21 ΦCMC+TL 22

]
, (9)

and consider the DM attenuation between phases 1 and 2 ADM 12, corresponding to the
circuit reported in Figure 10a. The other two possible DM attenuations can be treated
analogously.

By definition, the attenuation is obtained as

ADM 12 =
VDM 12 re f

VDM 12
, (10)

where VDM 12 is the voltage across the load resistance RL between terminals 1 and 2 obtained
from the circuit in Figure 10a, and VDM 12 ref is the same voltage obtained in the absence
of the filter, which, under the condition RS = RL = 50 Ω, is equal to VS/2. By tedious yet
simple calculus, it is easy to prove that the voltages V1, V2, and V3 in the circuit reported in
Figure 10a can be obtained as V1

V2
V3

 = VS

(
1

Rs
H1ΦCMC+TL 11 +

1
Rs

2 H1ΦCMC+TL 12H1 + ΦCMC+TL 21 +
1

Rs
ΦCMC+TL 22H1

)−1 1
Rs

K1, (11)

where

H1 =

−1 1 0
1 −1 0
0 0 0

, K1 =

−1
1
0

. (12)

Once voltages V1, V2, and V3 are known from (11), VDM 12 is obtained as

VDM 12 = V1 − V2 (13)

and ADM 12 is easily evaluated from (10). The other DM attenuations ADM 23 and ADM 31
are similarly obtained from equations similar to (11)–(13), with the exception that H1 and
K1 should be substituted with

H2 =

0 0 0
0 −1 1
0 1 −1

, K2 =

 0
−1
1

 (14)

for the evaluation of ADM 23, and with

H3 =

−1 0 1
0 0 0
1 0 −1

, K3 =

 1
0
−1

 (15)
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for the evaluation of ADM 31.
Consider now the CM attenuation ACM, corresponding to the circuit reported in

Figure 10b. By definition, the attenuation is obtained as

ACM =
VCM re f

VCM
(16)

where VCM is the voltage across the load resistance RL, and VCM ref is the same voltage
obtained in the absence of the filter, which, under the condition RS = RL = 50 Ω, is equal to
VS/2. By tedious yet simple calculus, it is easy to prove that the voltage VCM in the circuit
reported in Figure 10b can be obtained as

VCM = −RS11×3

[
VS

(
RS

213ΦCMC+TL 2113 − RS13ΦCMC+TL 22 − RSΦCMC+TL 1113 + ΦCMC+TL 12

)−1
]

13×1, (17)

where 1N×M denotes a N × M all-ones matrix. The resulting CMC CM and DM attenuation
is reported, in magnitude and angle, in Figure 11.
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3.3. Complete EMI Filter Model

Once capacitor assemblies, CMC, and interconnection models are available in terms
of chain-parameters matrices, and considering the components connections depicted in
Figure 1, the overall EMI filter model can be obtained by simply cascading the correspond-
ing chain-parameters matrices, namely,

ΦFilter = ΦTL2ΦCMCΦTL1ΦC. (18)

A flowchart summarizing the proposed EMI filter physical modeling procedure is
reported in Figure 12.
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Similar to the CMC, the CM and DM attenuation obtained from the considered physical
EMI filter model is evaluated and reported, in magnitude and angle, in Figure 13.
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3.4. Experimental Verification

In order to verify the accuracy of the considered modeling procedure and to discuss
its limitations, the filter shown in Figure 1 was constructed, and its components were
characterized separately at first, and then as a whole. Firstly, the capacitor assembly
depicted in Figure 1 was realized, as shown in Figure 14a, where the correspondence
between circuit elements and real components is highlighted. Successively, the capacitor
assembly has been characterized as a three-port device by means of the setup depicted in
Figure 14b.
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Figure 14. Capacitor assembly physical realization (a), and characterization setup (b).

To highlight how the considered simple model can effectively represent capacitor
assemblies up to 100 MHz, the comparison between the impedance matrix entries obtained
from the considered model, shown in Figure 5, and the measured impedance matrix entries
are reported in Figure 15, from which it can be appreciated that the model accuracy is
excellent over the whole frequency range of interest.
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Figure 15. Comparison between the capacitor assembly impedance matrix entries: model prediction
(black) and measurement (green).

Secondly, the CMC shown in Figure 1 was constructed, as shown in Figure 16, where
the correspondence between circuit elements and real components is highlighted. The
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comparison between the CM and DM attenuation obtained from the CMC model, shown
in Figure 11, and their counterpart obtained from measurements of the CMC prototype
shown in Figure 16 are reported, in magnitude and angle, in Figure 17.
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Figure 16. Considered common-mode choke prototype.
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Figure 17. CMC CM and DM attenuation: comparison between model prediction and measurements,
in magnitude and angle.

It is possible to appreciate that the accuracy of the CM attenuation prediction, which is
usually the most relevant CMC performance index, is excellent up to 1 MHz, while at higher
frequencies the accuracy is progressively reduced. The accuracy of the DM attenuation
prediction is excellent up to 1 MHz, while, similar to the CM attenuation, it is progressively
reduced between 1 MHz and 100 MHz.

Such performance degradation can be ascribed to two reasons: Firstly, the decrease
in the accuracy of the CM attenuation prediction can be related to the reduced ferrite core
permeability. Indeed, comparing the attenuation in Figure 17 with the relative magnetic
permeability in Figure 7, it is possible to appreciate that the frequency region where the
model accuracy is poor (i.e., from 10 MHz to 100 MHz) corresponds to a frequency region
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where the magnetic material permeability is significantly reduced. As a consequence,
the hypotheses introduced on flux paths, based on the ferrite core magnetic permeability
being much larger than vacuum magnetic permeability, are no longer verified. Secondly,
considering DM attenuation predictions, the discrepancies appearing in Figure 17 are
mainly ascribed to constructive asymmetries in the real CMC shown in Figure 16, not
included in the model.

Lastly, the complete EMI filter shown in Figure 1 was assembled as shown in Figure 18.
The overall model accuracy is evaluated in terms of CM and DM attenuation, which
is calculated from the considered model, as shown in Figure 13, and compared with
measurements of the EMI filter prototype in Figure 19.
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It can be observed that the filter CM attenuation prediction exhibits good accuracy
up to 20 MHz, where the CMC model also exhibits good performance, and not very good
accuracy between 20 MHz and 100 MHz, where the CMC model performance was poor.
The filter DM attenuation prediction, on the other hand, exhibits quite a different behavior,
as it is characterized by a small and almost constant magnitude error from around 500 kHz
up to 80 MHz. Overall, the complete EMI filter model exhibits some limitations in terms
of accuracy, as it can be expected on the basis of the limited accuracy of the CMC model.
Nevertheless, it can be acceptable for virtual prototyping in industrial environments, as the
considered physical model is quite easy and fast to use and allows the estimation of the
performance of many different filter designs without the need for any prototypes.

4. Behavioral Modeling Procedure for Three-Phase EMI Filters

The behavioral modeling approach is based on external measurements only, which are
usually S-parameters matrices measured by a VNA [16]. The literature about behavioral
modeling techniques is indeed quite rich, and a comprehensive review lies outside the
purposes of this paper. With no loss of generality, we will consider a recently proposed
behavioral modeling technique [25], based on S-parameters characterization at the external
ports [26], originally developed for single-phase EMI filters and here extended to three-
phase filters. The considerations reported in the following apply to any other similar
behavioral modeling techniques.

In the following, we will briefly recall the concepts of the considered behavioral
modeling technique, and successively apply it to the three-phase EMI filter prototype
presented in Figure 18.

4.1. EMI Filter Characterization and Rational Approximation of Its Frequency Response

The EMI filter under analysis is characterized as a multiport network, the frequency
response of which is measured by a VNA [26]. On the basis of the measured EMI filter
frequency responses, a rational approximation of its S-parameter matrix S is obtained by
means of the VF algorithm [29,37], a well-known, robust iterative routine characterized by
high computational efficiency and accuracy. The VF algorithm is also easily modified to
include passivity enforcement techniques [30,31], necessary to obtain models suitable for
time-domain simulations. The VF and its derivations are the results of a vast research activ-
ity in macro-modeling techniques, a comprehensive summary of which can be found in [38].
By applying the procedure discussed in detail in [25], the desired rational approximation is
obtained as

S(s) =
n

∑
k=1

1
s − pk

Rk + D + sE (19)

where s = jw is the complex frequency, pk with k = 1,. . ., n is the set of n common poles, Rk
is the residue matrix associated to each pole, and D and E are matrices which enforce the
correct low-frequency asymptotic behavior.

4.2. Equivalent Circuit Synthesis

While the filter S-parameter matrix passive rational approximation (19) accurately
represents the considered EMI filter, it is not suitable to be included in circuit solvers such as
SPICE solvers. This limits its use in frequency-domain simulations and makes it impossible
to run time-domain simulations. To overcome these limitations, a number of options are
traditionally available, which are summarized in [38].

A more numerically efficient approach was proposed in [25], which is based on a
concept originally explored in [39], and successively extended in [32]. It relies on the use of
the poles and residues of the fitted S-parameter matrix to determine a circuit representation
based on a fictitious branch admittance matrix YSB, having the same poles and residues of
the fitted S-parameter matrix S. Once the frequency response of each branch is obtained, an
equivalent circuit can be readily synthesized by resistors, inductors, and capacitors and
translated into a SPICE netlist [40]. As discussed in [32,39], the fictitious branch admittance
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matrix YSB must be connected to the filter external ports by suitable controlled voltage
sources. The extension of this concept to three-phase devices is shown in Figure 20. The set
of controlled voltage sources in Figure 20 ensures that voltages and currents at the ports
of the matrix YSB are numerically equal to the incident and reflect power waves, hence
granting that the circuit reported in Figure 20 is a correct equivalent circuit. The set of
controlled voltage and current sources can also be easily included in a SPICE netlist.
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Figure 20. EMI filter SPICE-compatible equivalent circuit, directly obtained from the fitted scattering-
parameter matrix S.

4.3. Experimental Verification

The overall equivalent circuit can then be included in a frequency-domain SPICE
simulation (performed by LT SPICE [41]) realizing the setup presented in the CISPR 17
standard [14], as depicted in Figure 21, and the filter model attenuation can be evaluated.
Of course, while a frequency-domain simulation of the considered equivalent circuit is the
most efficient way to assess the model accuracy, the real model value lies in its suitability
to both time- and frequency-domain simulations, as discussed in [24,25].
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Figure 21. CISPR-17 test setups equivalent circuit: (a) symmetrical (DM), and (b) asymmetrical (CM)
attenuation. The multiport element encloses the equivalent circuit explicitly represented in Figure 20.

The CM and DM attenuation obtained from the aforementioned SPICE simulation is
reported in Figure 22, where it is compared with the real EMI filter measured attenuation. It
is possible to appreciate that the model accuracy is excellent over the whole frequency range
of interest, with predicted and measured curves being almost perfectly superimposed.
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5. Comparison of Physical and Behavioral Approaches for Virtual Prototyping and
Accurate Modeling of Three-Phase EMI Filters

The physical model presented in Section 3 is based on the knowledge of capacitors
frequency responses, CMC ferrite core magnetic permeability, and on an estimation of
the filter enclosure size and of the used wire gauges. Capacitors frequency response and
CMC ferrite core magnetic permeability can be measured or obtained from components
datasheets, even though the latter option seems scarcely reliable. The considered model
showed an overall acceptable accuracy for EMI filter virtual prototyping, as shown in
Figure 19. Nevertheless, the model exhibits a significant error in CM attenuation magnitude
between 20 MHz and 100 MHz, and a small yet no negligible error in DM attenuation
magnitude from 500 kHz to 80 MHz. The real EMI filter imbalance is not appreciated in the
model too, as the CMC model is symmetric by construction. While the CMC model can in
principle be formulated including possible asymmetries, this would require a level of detail
in its geometric parameters which would be hard to estimate without a reference protype.

By the analysis presented for capacitors assemblies and CMC models, it is possible
to appreciate that the physical model of capacitor assemblies provides excellent accuracy,
as shown in Figure 15, while the CMC model accuracy is limited over 10 MHz, as shown
in Figure 17. This can be ascribed to the hypothesis introduced in Section 3.2 for CMC
modeling, namely the flux path related to mutual inductances developing exclusively in
the ferromagnetic core. This is a reasonable approximation as long as the ferromagnetic
material relative magnetic permeability is large, yet, with reference to Figure 7, it can
be appreciated that the magnetic permeability over 10 MHz is indeed quite small. As a
consequence, at over 10 MHz the CMC fluxes are not confined by the ferromagnetic core,
which implies that the windings coupling is related to air flux paths. This is not foreseen in
the presented CMC model, as the modeling of such occurrence is quite difficult without
a reference prototype. For modeling purposes, 3D electromagnetic simulations can be
used to estimate the inductance in this condition, yet this option is not suitable for virtual
prototyping, as the information needed for 3D simulation is usually not available in the
absence of a real EMI filter prototype.

The considered physical model allows for a clear understanding of the relations
between single components and overall filter performance, as it enables the comparison of
many design variations with minimal effort and no need for any prototype. Additionally,
it is suitable for frequency-domain simulation; yet, it is not the best option, in its current
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form, for time-domain simulations. This is due to the complex, frequency-depending ferrite
magnetic permeability, which introduces complex, frequency-depending inductances to
the model. These inductances cannot be integrated in a SPICE model as they are, and
if time-domain simulations are required, it is necessary to determine a CMC equivalent
circuit. However, this seems to be of limited interest, as time-domain simulations are
usually used to assess the suitability of a specific filter for a given application, which is a
task usually better addressed by behavioral models.

Considering the use of the considered physical model in an industrial context, its
characteristics lend the model toward virtual prototyping. Due its limitations in accuracy
and compatibility with time-domain simulations, it is not an optimal choice for a model to
be distributed as additional material for commercial EMI filters to enable CE simulation
by final users. Additionally, the distribution of such a model would require the disclo-
sure of information on the filter internal structure, which is often considered proprietary
information by EMI filter manufacturers.

The behavioral model presented in Section 4, on the contrary, is based on the external
characterization of an EMI filter as a multiport electrical component. The considered model
showed an excellent accuracy over the whole frequency range of interest, as shown in
Figure 22. Being based on real measurements, the behavioral model can also correctly
represent the real EMI filter imbalance; yet, relying on external measurements only, it
does not allow any understanding of the relations between single components and overall
filter performance. The present behavioral model is suitable for both time- and frequency-
domain simulations, thanks to the specific formulation of the equivalent circuit presented
in Section 4.2.

Considering the use of the presented physical model in an industrial context, its
characteristics do not lend the model toward virtual prototyping, as it provides little help
in understanding the complex relations between each component and the overall filter
performance. On the other hand, the considered behavioral model allows the provision of
a reliable and accurate filter representation to potential customers, without disclosing any
information on the filter realization. As a consequence, it is an optimal choice for a model
to be distributed as additional material for commercial EMI filter to enable CE simulation
by the final user.

To conclude this section, a summary of the main aspects characterizing the considered
physical and behavioral model is reported in Table 4.

Table 4. Synthesis of the comparison between physical and behavioral EMI filter models.

Physical Model Behavioral Model

Required input
Capacitors frequency response and CMC

ferrite cores magnetic permeability, estimated
filter size

External measurement of the complete filter

Accuracy Good up to 10 MHz, limited from 10 MHz to
100 MHz

Good over the whole frequency range of
interest

Relation between single
components and filter

performance
Clear Unclear

Suitable for virtual
prototyping

Yes, allows fast comparison of many
filter designs with no need for prototypes

No, requires one prototype to be built for each
design of interest

Suitable for frequency-domain simulations Yes Yes

Suitable for time-domain
simulations

Yes, but requires a behavioral CMC model to
include the magnetic permeability frequency

dependency in the model.
Yes

Suitable as a commercial model No, requires to disclose details on the internal
filter structure, limited accuracy

Yes, no proprietary information on filter
realization is disclosed, high accuracy

6. Conclusions

This paper discussed and compared two common modeling approaches, namely,
physical and behavioral, used for EMI filters. For both cases, an innovative procedure
intended for application in the industrial context was discussed, considering a physical
EMI filter modeling procedure first, which provides an overall filter model on the basis of
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minimal information on the filter components and does not require any prototype. The
physical modeling approach is particularly suited for virtual prototyping, as it proved to
be acceptably accurate with minimal information and no need for prototypes to test. The
physical model was also verified step by step, highlighting the main underlying hypotheses
introduced in its formulation and their impact on the overall model accuracy.

Successively, a behavioral EMI filter modeling procedure was presented, and its ac-
curacy and applicability are discussed in detail. Lastly, an extensive comparison between
the two EMI filter modeling approaches was presented. From the present analysis, the
two considered modeling approaches appeared to be suitable for complementary use in
industrial application, where physical modeling is best suited for the product developing
and design phase, due its minimal computational effort and good accuracy, while the be-
havioral approach is best suited to verify which specific filter provides the best performance
in a given application.

Future research will address improved physical modeling to reduce the discrepancies
between measured and predicted CMC CM attenuation, and hence improve the overall filter
model performance, hybrid models combining both physical and behavioral approaches,
and non-linear effects in EMI filter attenuation.
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