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Sentinel-2 estimation of CNC and LAI in rice cropping system through hybrid 
approach modelling
Marta Rossi a, Gabriele Candiani b, Francesco Nutini b, Marco Gianinetto b,c and Mirco Boschetti b

aRemote Sensing of Environmental Dynamics Laboratory Dipartimento Scienze dell’Ambiente e del Territorio, Universita Milano-Bicocca, 
Milano, Italy; bNational Research Council, Institute for Electromagnetic Sensing of the Environment (IREA), Milano, Italy; cDepartment of 
Architecture, Built Environment and Construction Engineering (DABC), Milano, Italy

ABSTRACT
Earth observation techniques represent a reliable and faster alternative to in-situ measure
ments by providing spatio-temporal information on crop status. In this framework, a study was 
conducted to assess the performance of hybrid approaches, either standard (HYB) or exploiting 
an active learning optimisation strategy (HYB-AL), to estimate leaf area index (LAI) and canopy 
nitrogen content (CNC) from Sentinel–2 (S2) data, in rice crops. To achieve this, the PROSAIL- 
PRO Radiative Transfer Model (RTM) was tested. Results demonstrate that a wide range of rice 
spectra, simulated according to realistic crop parameters, are reliable when appropriate field 
background conditions are considered. Simulations were used to train a Gaussian Process 
Regression (GPR) algorithm. Both cross-validation and validation results showed that HYB-AL 
approach resulted the best performing retrieval schema. LAI estimation achieved good per
formance (R2=0.86; RMSE=0.54) and resulted very promising for model application in opera
tional monitoring systems. CNC estimations showed moderate performance (R2=0.63; 
RMSE=0.89) due to a saturation behaviour limiting the retrieval accuracy for moderate/high 
CNC values, approximately above 4 [g m−2]. S2 maps of LAI and CNC provided spatio-temporal 
information in agreement with crop growth, nutritional status and agro-practices applied to 
the study area, resulting in an important contribution to precision farming applications.
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Introduction

In the pre-industrial period, worldwide production 
and consumption of food happened parallel to each 
other. Nowadays, the global megatrends (climate 
change, population growth, technological change) gra
dually caused the supply-demand balance to shift 
towards a not sufficient and unsustainable food pro
duction, with a potentially dramatic consequence for 
environmental and humanitarian aspects (Hank et al., 
2019). Considering this scenario, farmers are forced to 
increase yields while protecting their most important 
production factors: soil from degradation, water and 
air from pollution and atmosphere from emissions of 
greenhouse gases (FAO 2016).

Remote sensing (RS) is recognised as an essential 
source of data that can contribute to improve agricul
tural activities and farm management (Weiss et al., 
2020). In particular to support agro practices RS data 
can provide: (i) Continuous traits monitoring during 
all development plant stages related to crop develop
ment and growth (e.g. Leaf Area Index (LAI)); (ii) 
Information on photosynthetic efficiency and early 
crop stress detection (e.g. leaf chlorophyll content 
and canopy chlorophyll content); (iii) Indication of 
plant nutrition status to highlight nitrogen deficiency 

(e.g. leaf nitrogen content (LNC) and canopy nitrogen 
content (CNC)).

In developed and industrialised countries, geoin
formation products can be used to provide farmers 
with decision-supporting spatial information (crop 
traits maps), able to highlight within-field crop varia
bility, as a fundamental tool to support site-specific 
management (i.e. precision farming; Hank et al., 2019; 
Zarco-Tejada et al., 2014). Among the agro-practices 
supported by precision farming, Nitrogen (N) fertili
sations are fundamental, being nitrogen the most cri
tical macro-nutrient for vegetation growth and crop 
productivity. Due to its overall positive effect on crop 
production, the use of nitrogen fertilisers increased 
worldwide in the last decades. However, a general 
decreasing trend in nitrogen use efficiency is evident, 
particularly in Europe and North America. Overall, 
the nitrogen use efficiency in agriculture is estimated 
at 60%, with a negative effect on the sustainability of 
crop production from an economic and ecological 
point of view (Lassaletta et al., 2016). For this reason, 
fertilisation must be supported by rational approaches 
able to consider the real plant needs. That minimises 
both under-fertilisation, which can decrease crop 
yield, and over-fertilisation, leading to plant stress 
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(diseases or lodging) and environmental pollution 
(groundwater leaching or gas emission; Paleari et al., 
2019; Zhang et al., 2020).

In this context, sustainable agriculture and smart 
fertilisation strategy should be achieved by exploiting 
decision support systems based on spatial explicit infor
mation on crop nutritional status. The dilution curve 
approach provides a helpful theoretical framework to 
assess actual crop nitrogen needs by considering crop 
growth conditions (i.e. accumulated biomass or reached 
LAI values) and the corresponding Plant Nitrogen 
Uptake (PNU) with respect to a reference critical 
curve (Lemaire et al., 2021). Such approach allows the 
spatial and temporal assessment of actual plant nutri
tional condition (i.e. N deficiency or luxury consump
tion), required to estimate actual crop needs (i.e. 
indicator of fertilisation amount). In particular, the 
plant nutritional status can be estimated using LAI 
and PNU (or the organ specific part related to leaves, 
Canopy Nitrogen Content – CNC) retrieved by remote 
sensing data (Baret et al., 2007; Delloye et al., 2018).

Several methods to estimate LAI and CNC from 
spectral data were proposed in the literature. They can 
be grouped into the following main categories:

● Data-driven methods exploit the full spectral 
information, or data transformation (such as 
principal component analysis, derivative analysis, 
or vegetation indices computation), and ground 
data through parametric or non-parametric 
Machine Learning Regression Algorithms 
(MLRAs);

● Physically based methods, using a minimisation 
procedure or a hybrid approach, invert radiative 
transfer models (RTMs) to simulate plant spec
tral response according to crop parameters varia
bility and soil background properties.

The hybrid approach (HYB) is proposed in scientific 
literature as the state-of-art. It is an innovative solu
tion able to combine RTMs, able to generate 
a database of crop parameters and spectra for a wide 
range of conditions, with flexible and computationally 
efficient MLRAs, for an efficient solution to the inver
sion problem. For a detailed description of available 
methods, see Verrelst et al. (2019). These approaches 
have been already demonstrated to be efficient to 
estimate LAI from multispectral data, in different con
texts and cropping systems (M. Campos-Taberner 
et al., 2016b; Delloye et al., 2018).

Concerning plant nitrogen, the most popular 
approaches are data-driven methods using parametric 
regressions and narrowband hyperspectral vegetation 
indices (Clevers & Gitelson, 2013; Fava et al., 2009; 
Hansen & Schjoerring, 2003; Schlemmer et al., 2013; 
Daniela Stroppiana et al., 2009), or more advanced 
approaches based on machine learning regression 

algorithms, such as Partial Least Squares 
Regression – PLSR (Hansen & Schjoerring, 2003; Liu 
et al., 2021; Wang et al., 2021). Recently, the new 
PROSPECT-PRO model (Féret et al., 2021) allowed 
researchers to assess the effect of protein content and 
carbon-based constituents on leaf spectra, providing 
a physically-based theoretical framework for crop 
nitrogen retrieval by means of modelling, overcoming 
the traditional empirical data-driven approaches. 
Once coupled with a canopy model (i.e. SAIL4, 
Verhoef, 1984), it is possible to assess the plant-level 
effect of nitrogen content on crop spectra. Through 
the inversion of such leaf-canopy radiative transfer 
model (PROSAIL-PRO), it is theoretically possible to 
estimate CNC on a fully physical base using a hybrid 
approach, as recently demonstrated with field data of 
wheat and corn (Berger et al., 2020a) and PRISMA 
satellite images (Tagliabue et al., 2022; Verrelst et al., 
2021a).

In this context, the objective of this study is to test 
an hybrid approach (HYB) to estimate LAI and CNC 
in rice cropping systems from Sentinel-2 data. This 
goal is achieved through the following steps:

● Evaluation of the PROSAIL-PRO model to repro
duce rice spectra, in relation to different back
ground conditions by comparing model 
simulations with field spectra;

● Development of hybrid models for Sentinel −2, 
exploiting field data from a controlled experi
ment, by testing (i) a standard approach based 
on a Look-Up-Table (LUT) generated from the 
RTM forward simulation, and (ii) optimisation 
procedures through Active Learning (AL) to 
select the most significative spectra in the LUT;

● Assessment of LAI and CNC maps, generated by 
the best retrieval model using Sentinel-2 and 
ground data, acquired in real farming conditions, 
for precision farming activities.

Materials

Overall study workflow

Figure 1 provides a schematic representation of the 
methodological study phases.

In Phase #1, the potentiality of the PROSAIL-PRO 
model to simulate paddy rice spectra, according to 
crop parameters variability and considering the back
ground influence, was assessed. Data from controlled 
field experiments were used, including spectroradio
metric and crop traits measurements acquired along 
the crop season.

In Phase #2, hybrid models were developed to retrieve 
the biophysical parameters from Sentinel-2 spectral con
figuration. An AL procedure was also used to optimise 
the spectra selection from the simulated database. The 
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results were validated using independent datasets to eval
uate the model exportability in real operational 
conditions.

In Phase #3, multitemporal maps of LAI and CNC 
were generated from Sentinel-2 data, on the study area 
(North of Italy rice district). This phase aimed to 
assess the added value of produced data in providing 
spatial and temporal agronomic information on crop 
growth and status. The assessment of traits’ maps 
capability in highlighting within-field variability 
investigation was based on available information on 
(i) ground data collected in different farms for 
a district-level analysis and (ii) prescription maps 
used for variable-rate nitrogen fertilisation for a field 
level analysis. Trait maps were analysed in terms of 
spatial and temporal information provided for rice 
crop monitoring and discussed as a contribution in 
precision farming applications.

Study area and crop significance

Rice is cultivated worldwide and represents a key 
crop to provide food security in many countries. 
In Europe, rice is cultivated along the 
Mediterranean area, and Italy contributes to 
almost 50% of total European production (Agri- 

food Data Portal, 2019). Figure 2a shows the rice 
district in North of Italy, an area of more than 
210000 ha between Lombardia and Piemonte. The 
locations of field experiments (red dot) and of the 
Lomellina area (red box), used for mapping 
demonstration, are depicted Figure 2b.

In this intensively cultivated area, a test of 
precision farming fertilisation supported by satel
lite information and ground measurements was 
conducted in 2018 (SATURNO project). The 
selected fields were split into two halves and man
aged with Variable Rate Technology (VRT) and 
traditional uniform (Standard) fertilisation. 
Management Unit Zone (MUZ) were identified 
by statistical segmentation of vegetation index 
maps derived from Sentinel-2 images acquired 
few days before fertilisation. The specific fertilisa
tion dose for VRT treatments were defined 
according to crop conditions assessed in field 
with a smart scouting approach within the identi
fied MUZ. Details on the experimental fields, 
ground measurements and precision farming fer
tilisation are described in Nutini et al. (2021). 
Figure 2c shows one of the monitored field 
where both VRT fertilisation (red) and standard 
fertilisation (pink) were tested.

Figure 1. Methodological steps of the study.

EUROPEAN JOURNAL OF REMOTE SENSING 3



Datasets exploited in the study

This study exploited two datasets available from 
previous research: (i) ground measurements col
lected in 2004 and 2006 on a plot level experiment 
and (ii) ground measurements and ancillary infor
mation collected in 2018 for several fields on 
a wide area for real farming condition monitoring.

Plot-level experimental dataset
Controlled plot-level experiments were conducted in 
2004 and 2006 (red dot in Figure 2a). Full resolution 
FieldSpec® spectra, plant traits measurements and crop 
parameters were collected for different rice varieties in 
different phenological stages during the crop season 

and managed with different fertilisation conditions (5 
and 4 fertilisation levels in 2004 and 2006, respec
tively). Crop parameters included LAI, plant nitrogen 
concentration (PNC), leaf mass area (LMA), SPAD 
unit and biomass (Table 1). These experiments were 
conducted using two different rice sowing techniques: 
traditional broadcast sowing in flooded conditions 
(2004) and modern drill sowing in dry soil (2006). 
During the field campaigns, several reflectance spectra 
of paddy soil in different conditions (dry, humid and 
flooded) were measured with FieldSpec®. Besides the 
effect on crop growth, the collected data assessed the 
influence of different background conditions on crop 
spectral measurements during crop growth. The lit
erature indicated this aspect as very important for 

Figure 2. Panel a: North of Italy rice district covering more than 210000 ha of cultivated land (light green). The red circle points at 
the field experiments (Opera: latitude 45°23’, longitude 9°11’). Panel b: study area indicating test farms (green polygons) and 
monitored fields (Orange polygons). Panel c: field where it was compared variable rate technology (dark red) and standard 
fertilisation (pink).
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RTM simulation (Adeluyi et al., 2021; M. Campos- 
Taberner et al., 2016a). A detailed description of 
experimental conditions and protocol for ground 
and proximal sensing measurements are described in 
(Stroppiana et al., 2009). Table 1 summarises the 
experimental field data used to assess the PROSAIL- 
PRO RTM simulation and set up the hybrid retrieval 
model.

Real farming condition dataset
A dataset of field measurements acquired in real farm
ing conditions was collected in 2018, in the framework 
of the SATURNO project (Nutini et al., 2021). On-site 
data were measured in three selected farms (see, 
Figure 2b) during five field campaigns (14 June, 
4 July, 11 July, 23 July, 2 August). Two fields were 
selected in each farm and for each field, ground data 
were measured in six Elementary Sampling Units 
(ESUs) with the size of 5 m x 5 m. The location of 
the ESUs was selected according to vegetation patterns 
identified, before each campaign measurements, using 
vegetation index map generated with the most recent 
cloud-free Sentinel-2 image (see below for the descrip
tion of the satellite data).

For each ESU, LAI and Nmass were estimated using 
the smartphone apps PocketLAI (Confalonieri et al., 

2013) and PocketN (Paleari et al., 2019) as the average 
of five measurements (four at the vertices and one at the 
centre of each ESU). In two campaigns (14 June and 
11 July), destructive plant samples (20 plants) and plant 
density measurements were also performed to estimate 
above-ground biomass needed to calculate PNU. 
Overall, 180 samples were available for LAI and 
Nmass (3 farms x 2 fields x 6 ESUs x 5 dates). Seventy- 
two samples were instead available for PNU (3 farms 
x 2 fields x 6 ESUs x 2 dates). Digital fertilisation 
prescription maps were also available to analyse the 
spatio-temporal consistency of CNC estimates pro
duced by Sentinel 2 data with observed crop dynamics 
(see below for the description of the satellite data). 
Table 2 summarises the objectives of the study phases.

On-site CNC measures to validate the model retrie
val were available only for 2006. Thus, PNU data from 
the 2004 and 2018 experiments were also used. It is 
worth mentioning that while CNC and PNU refer to 
different quantities of nitrogen (CNC is the nitrogen 
accumulated in the leaves only and PNU is the total 
nitrogen uptake stored in all the plant organs), in the 
first development stages, when stems are not fully 
developed and grains are not yet present, CNC and 
PNU are comparable. Thus PNU is a good proxy for 
CNC in early phenological stages.

Table 1. Summary of plot-level experimental field data.

Year Rice Variety (CV)
Sowing 

Technique
Sowing 

Date Experimental Design

Fertilisation 
Level (urea) 
[kg ha−1]2

Sampled 
Parameters 

3, 4
#Sampling 

Dates
Total Cardinality of Spectra – 

par Matches

2004 Gladio 
(Indica type) 
Volano 
(Japonica type)

Broadcast in 
flooded 
conditions

24/05 Completely randomised 
block design with 
four replicates

N0: 00 + 00 
N1: 40 + 40 
N2: 80 + 80 
N3: 40 + 00 
N4: 00 + 80

Biomass 
[g m−2] 
Nmass 
[%] 
LAI [m2 

m−2]

6 48

2006 Gladio 
(Indica type) 
and Selenio 
(Japonica type)

Row sowing 
in dry 
condition

16/05 split-block design with 
three replicates 1

N0: 00 + 00 
N1: 0 + 80 

N2: 40 + 40 
N3: 80 + 80

Biomass 
[g m−2] 
Nmass 
[%] 
LAI [m2 

m−2] 
SPAD [-] 
LMA 
[g cm−2]

7 87 for RTM model simulation 
52 for retrieval model 
assessment 5

1) Four plots were not sown in order to acquire measurements of background reflectance during the season and according to agro-practices 
2) Top dressing fertilisations at tillering (code 20–25 of the BBCH rice scale, Lancashire et al., 1991) and panicle initiation (BBCH code 30–34) 
3) Measurements: FS → all plots, crop parameters → cultivars, 4 replicates, 2 fert. levels, 8 plots, 6 meas. dates, 48 tot measurements. 
4) Measurements: FS → all plots, crop parameters → 2 cultivars, 3 replicates, 3 fert. levels, 18 plots, 5 meas. dates, 90 tot measurements. 
5) After data screening: 16 cases of incomplete parameter’s values related to LAI or SPAD, 15 cases of anomalous LAI data as compared to same cultivar/ 

treatment and in relation with crop temporal development and a missing spectral reflectance for DOY 205, Selenio cultivar, treatment 1 (205_S1). This 
determined a final database of 87 and 52 samples (only vegetative phase) useful for RTM simulation analysis and retrieval model validation respectively.

Table 2. Summary of the objectives of the study phases and exploited data set (n.a. = not available).

Study 
Phase Scope Activity

Ground Meas. (#)
Ancillary 

information
2004 2006 2018 2018

#1 Simulation of rice spectra Model parameterisation and field spectral data 
comparison

(48) (87) n.a. n.a.

#2 Development of the hybrid model RTM model set up - (52) - n.a
LAI validation (48) (52) (180) n.a
CNC validation n.a (52) n.a n.a

#3 Map generation and assessment of 
information content

Spatio-temporal analysis of the maps of estimated 
LAI and CNC

n.a. n.a. n.a. 6 fields
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Satellite images
Nine Sentinel-2 level-2A images were available for the 
crop season (1 June, 16 June, 21 June, 26 June, 1 July, 
6 July, 26 July, 31 July, 5 August), and they were 
downloaded with the Sen2r application (Ranghetti 
et al., 2020). Sen2cor Scene Classification Map layer 
was used to mask clouds and shadow. The whole time 
series was used to perform mapping demonstrations 
and assess the contribution of Earth Observation in 
precision farming activities. Moreover, five Sentinel-2 
scenes out of nine were imaged during ground mea
surements. They were used to assess the hybrid model 
performance with independent data.

Investigated crop traits
The following parameters were investigated for the 
calibration and validation of the hybrid model:

● Leaf area index: LAI [m2 m−2] was available as 
field indirect measurements using LAI2000 Licor 
Plant Analyser for 2004 (48 samples) and 2006 
(52 samples). For 2018, LAI was available 
through the smartphone app PocketLAI (180 
samples);

● Canopy nitrogen content: CNC [gm� 2] was com
puted for 2006 (52 samples) as follows:

CNC ¼ LAI �Nmass � LMA � 100 (1) 

where Nmass [%], LAI [m2. m−2], LMA [g cm−2]. and 
100 to convert units to [g m−2].

Methods

Phase #1: Simulation of rice spectra

The PROSAIL-PRO model has been widely used to 
obtain plant biochemical and structural variables in 
the agricultural context (Berger et al., 2018). It com
bines the PROSPECT leaf model (Jacquemoud & 
Baret, 1990) and the 4SAIL canopy model (Verhoef, 
1984). Specifically, the PROSPECT model requires 
a small number of biophysical and biochemical input 
parameters and calculates the radiative interactions at 
leaf level producing continuous leaf reflectance and 
transmittance spectra in the 400–2,500 nm optical 
domain.

The most recent version, called PROSPECT-PRO, 
introduced specific absorption coefficients to differ
entiate between carbon-based (CBC) and protein- 
based (CP) leaf constituents (Féret et al., 2021). On 
the other hand, 4SAIL requires as input the leaf reflec
tance and transmittance, canopy density information 
(i.e. LAI), leaf orientation (average leaf angle – ALA), 
background spectral properties and the illumination 
and viewing angles.

Model parameterisation
PROSAIL-PRO simulations were performed with 
MATLAB routines implemented to couple 
PROSPECT-PRO with 4SAIL. Simulated spectra 
were compared to ground spectral measurements 
according to measured crop parameters and back
ground conditions.

The input parameters of PROSAIL-PRO are listed 
in Table 3. These data include the crop parameters 
acquired during field measurements. Missing data 
were replaced with average literature values reported 
for rice (see, Table 3 legend for details).

Table 3. PROSAIL-PRO model parameters used for 
rice simulation and LUT generation. Values are from: 
measured (M) or estimated (E) ground data and lit
erature (L). For LUT generation, Probability Density 
Function (PDF) and value ranges (min-max) are 
reported. Legend: 1 Manuel Manuel Campos- 
Taberner et al. (2016); 2 Boschetti et al. (2006); 3 
Danner et al. (2019); 4 Katja Berger et al. (2018); 5 
HYB PDF is the Probability Density Function for the 
parameter’s simulation; 6 min and max values in case 
of Uniform PDF, μ and σ values in case of Normal 
PDF; 7 S1 = Dry soil condition, S2 = Humid soi 
condition, S3 = Flooded soil condition (see, Figure 3).

Leaf and canopy parameters. The new PROSAIL- 
PRO estimates LMA as the sum of proteins (Cp) and 
carbon-based constituents (CBC) that includes cellu
lose, lignin, hemicellulose, and starch (Féret et al., 
2021). For model simulation, Cp was calculated from 
leaf nitrogen content using the protein-to-nitrogen 
conversion factor of 4.43, as shown in the following 
equations: 

Narea g cm� 2� �
¼ LMA � Nmass � 10� 2 (2) 

Cp g cm� 2� �
¼ Narea � 4:43 (3) 

CBC g cm� 2� �
¼ LMA � Cp � 10� 2 (4) 

The structure parameter (N) was calculated using the 
following equation (Danner et al., 2019): 

N ¼
1

LMA � 0:9þ 0:025
1

LMA � 0:1
(5) 

The leaf equivalent water thickness parameter 
(EWT or Cw) was tied to the dry matter content 
following the equation proposed by Manuel Campos- 
Taberner et al. (2016). 

Cw cm½ � ¼ Cm � CwREL � 1 � CwRELð Þ
� 1 (6) 

According to Baret et al. (2007), green leaves have 
a relative water content (CwREL) varies within 
a relatively small range. We considered CwREL ¼

0:7 as mean value of the reported ones (min = 0.6 
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max = 0.8) by Manuel Campos-Taberner et al. 
(2016).

For the 2006 dataset, SPAD chlorophyll readings 
were converted to physical values of leaf chlorophyll 
content, according to Equation 8 (Manuel Campos- 
Taberner et al., 2016): 

Chl μgcm� 2� �
¼ 0:021752 � SPAD2:1129 (7) 

LAI values were set according to available LAI200 mea
surements (see “investigated crop traits”). ALA values for 
the two considered varieties and phenological stages were 
derived from LAI2000 mean tilt angle estimates of the 
2006 dataset (Boschetti et al., 2006). In contrast, for the 
2004 dataset was used an average value from literature.

Background reflectance. The reflectance spectra of 
dry, humid and flooded paddy soil, collected on-site 
during 2004 and 2006 campaigns, were post-processed 
to smooth atmospheric disturbances registered in 
three spectral regions (1,350–1,425 [nm]; 1,800– 
1,975 [nm]; 2,350–2,500 [nm]). Spectra were interpo
lated using a spline smoothing fitting with 60 degrees 
of freedom SplineSmoothGapfilling in the Field 
Spectroscopy CC package (Wutzler, Migliavacca, and 
Julitta 2016; Figure 3).

Viewing geometry parameters. The Sun Zenith Angle 
(SZA) was computed as follows: 

SZA �½ � ¼ 90� � Elevation (9) 

Table 3. PROSAIL-PRO model parameters used for rice simulation and LUT generation. Values are from: measured (M) or estimated 
(E) ground data and literature (L). For LUT generation, Probability Density Function (PDF) and value ranges (min-max) are reported. 
Legend: 1 Manuel Manuel Campos-Taberner et al. (2016); 2 Boschetti et al. (2006); 3 Danner et al. (2019); 4 Katja Berger et al. 
(2018); 5 HYB PDF is the Probability Density Function for the parameter’s simulation; 6 min and max values in case of Uniform PDF, 
μ and σ values in case of Normal PDF; 7 S1 = Dry soil condition, S2 = Humid soi condition, S3 = Flooded soil condition (see, 
Figure 3).

Type Parameter Units 2004 Dataset 2006 Dataset PDF and Range 5

Leaf Properties N [-] 1.7 (L)1 1.18–3.52 (E)3 Normal 
μ : 1.5 σ: 0.3

Cab [µg cm−2] 55 (L)1 4.27–49.67 (E)1 Normal 
μ : 40 σ: 15

Cw/EWT [cm] 0.024 (L)1 0.004–0.016 (E)1 Normal 
μ : 0.01 σ: 0.004

Ccar orCcXð Þ [µg cm−2] 10.5 (E)4 10.5 (E)4 Normal 
μ : 10.5 σ: 1

Cp [g cm−2] 3*10� 4 � 10� 3 (E)1 8*10� 5–9*10� 4 (M) Normal 
μ : 4*10� 4 σ: 10� 4

CBC [g cm−2] 5*10� 3–6*10� 3 (E)1 10� 3–6*10� 3 (M) Normal 
μ : 0.004 σ: 0.001

Canopy Properties LAI [m2 m−2] 0.01–4.29 (M) 0.22–5.56 (M) Normal 
μ : 3 σ: 1.5

LIDF a [-] 70 (L)2 64–70 (M) Normal μ : 60 σ: 20
Hotspot [m m−1] 0.3 (E)1 0.055 (L)4 Normal μ : 0.2 σ: 0.2

Background ρsoil [-] S1, S2, S3 (M)7 S1, S2, S3 (M)7 Uniform min: S1 max: S3
Solar-Target-Sensor Geometry OZA [°] 0 (M) 0 (M) 0

SZA [°] 27.83–32.38 (E) 27.85–45.06 (E) Uniform 
min: 25 
max: 45

rAA [°] 0 (M) 0 (M) 0
skyl [-] 0.22–0.24 (E) 0.22–0.24 (E) -

Figure 3. Measured background spectra given as input to the PROSAIL-PRO model for 2004 and 2006 datasets. Soil legend: 
S1 = Dry soil condition, S2 = Humid soi condition, S3 = Flooded soil condition.
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where the Elevation values were obtained from the 
NOAA Solar Calculator (NOAA, Global Positioning 
Laboratory, n.d.), by providing location coordinates, 
date and time of the measurements.

The skyl parameter describes the ratio of diffuse to 
total incident radiation. It was calculated for an aver
age mid-latitude atmosphere using the following for
mula (Danner et al., 2019): 

skyl �½ � ¼ 0:847 � 1:61� sin 90 � SZAð Þ�
π

180

� �

þ 1:04 � sin2 90 � SZAð Þ�
π

180

� �2
(10) 

Phase #2: Development of the hybrid model

Hybrid methods for biophysical variables retrieval use 
machine learning regression algorithms (MLRAs) 
trained with spectra simulated by physically-based 
radiative transfer models (RTMs). Since RTMs simu
late spectra from a wide range of leaf and canopy 
parameters, the MLRA training is more generalised 
compared to those carried out using only measured 
data. The input parameters used in this study (see, 
Table 3) were randomly sampled from probability 
density functions with ranges set according to:

● Realistic ranges of crop biophysical variables 
measured during the experimental field cam
paign of 2006;

● Reference data from literature (Manuel Campos- 
Taberner et al., 2016);

● Range of different backgrounds (dry/wet soil and 
flooded).

All the 1-nm spectra generated by running the 
PROSAIL-PRO model in the direct mode were 
resampled to the Sentinel-2 spectral configuration. 
Band #2, corresponding to blue spectral range 458– 
523 [nm], was excluded as residual atmospheric 
attenuation may lead to bad retrieval results, as sug
gested by ESA SENTINEL2 Toolbox ATBD (Weiss & 
Baret, 2016) and confirmed by recent works (Adeluyi 
et al., 2021; Delloye et al., 2018; Upreti et al., 2019).

Finally, LAI, CNC and corresponding Sentinel- 
2-like spectra were organised in a Look Up Table 
(LUT) of 2,000 records. This cardinality is a trade-off 
between training computational cost and characterisa
tion of different crop conditions (Verrelst et al., 2020).

The LUT was used to train a Gaussian Process 
Regression (GPR) algorithm, one of the most promis
ing kernel-based ML methods for vegetation proper
ties retrieval, with the advantage of providing 
uncertainty estimates on the predictions (Verrelst 
et al., 2020). As proposed in other works (Verrelst 
et al., 2020), 5% Gaussian noise was added to all the 
input parameters before model training to generalise 

the model and prevent overfitting issues. This stan
dard configuration of the hybrid model is referred to 
as HYB in the following sections.

The Active learning (AL) approach was also tested 
to reduce the size of the LUT by optimally selecting 
samples from the larger data pool. This optimisation 
procedure is proposed in the literature to improve 
model performance through an intelligent sampling 
of training data which compares results with available 
ground truth data. According to the state-of-the-art 
literature, this approach provided promising results 
(Berger et al., 2021; Verrelst et al., 2020).

Following the approach proposed in Verrelst et al. 
(2020),we used the Kernel Ridge Regression (KRR) 
algorithm to select an optimal subset of the training 
data. Thus, 1% of the simulated spectra (20 samples) 
were randomly selected and used as the initial train
ing. At each iteration, a new spectrum was added to 
the previous set, according to heuristics based on 
diversity or uncertainty criteria, and a new model is 
trained: if the new sample improves the model valida
tion statistics, it is kept in the training pool, otherwise 
it is rejected. In this study, five different diversity and 
uncertainty criteria where tested: Euclidean distance- 
based diversity (EBD), angle-based diversity (ABD) 
cluster-based diversity (CBD), variance-based pool of 
regressors (PAL), and residual regression AL (RSAL). 
This process was iterated to test the contribution of all 
the simulated spectral signatures, leading to a reduced 
LUT used to train the GPR model. This configuration 
of hybrid model exploiting an optimised LUT is 
referred as HYB-AL in the following.

Training performance of HYB and HYB-AL meth
ods were assessed through a cross-validation proce
dure with a random partitioning of observations in 10 
subsets (k-fold strategy). The best models were then 
validated against independent dataset from both con
trolled field experiment and real farm conditions. In 
particular, LAI estimations were validated exploiting 
ground measurements from 2004, 2006 and 2018 data
set. CNC estimations were validated against 2006 data 
and compared to PNU data for 2004 and 2018 dataset 
(see, Table 2). Both HYB and HYB-AL model training 
were performed using the Automated Radiative 
Transfer Models Operator (ARTMO) toolbox for 
MATLAB (Verrelst et al., 2011).

Phase #3: Map generation and assessment of 
information content

The hybrid models identified in phase #2 were 
applied to the Sentinel-2 time series. Maps of 
LAI and CNC were generated with the ARTMO 
toolbox and evaluated with QGIS. According to 
the ancillary information available at district level 
for several fields from different farms, temporal 
trends of LAI maps were discussed. In particular, 
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LAI temporal profiles for the analysed farm were 
investigated in relation to cultivated varieties and 
sowing dates. CNC maps, considered an important 
input for fertilisation managed with VRT technol
ogies, were investigated by extracting their tem
poral profiles from sample areas in a field for 
which different fertilisation management were per
formed according to defined prescription maps.

Results

Phase #1: Simulation of rice spectra

Figure 4 provides an example of seasonal rice spectral 
dynamics for the crop sown in flooded conditions 
(2004) and cultivated with dry sowing practice 
(2006). Overall, the simulated spectra with PROSAIL- 
PRO (blue lines) agree with the field measurements 
(orange lines). The influence of soil conditions on crop 
reflectance is mostly evident at early stage of rice 
development in field data, as supposed, and it is well 
reproduced by RTM simulation when specific back
ground is used.

Figure 5 reports the Mean Absolute Error 
(MAE) graphs between the simulated spectra and 

field measurements for all the samples available in 
2004 (48) and 2006 (87). This analysis was per
formed to assess the influence of different soil 
conditions when are used as simulation input 
(S1 = Dry soil; S2 = Humid soil; S3 = Flooded 
soil). When using only dry soil spectra (S1) as 
background for all simulation across the season, 
the data from 2004 (broadcast sowing in flooded 
conditions) and 2006 (modern drill sowing in dry 
soil condition) showed a mean absolute error 
(MAE) greater than 20% and 10%, respectively. 
Differently, the MAE was between 5% and 10% 
when using only humid (S2) or flooded (S3) back
grounds for both years. Furthermore, the MAE 
dropped to less than 5% when using in simulation 
different backgrounds for the different dates/data
set according to the reported actual field condi
tions. The results showed how soil conditions 
substantially affect the simulated spectra, mainly 
in the early stage of rice development. Thus, they 
significantly impact the retrieval of crop para
meters across season and space in hybrid 
approaches. Hence, the inclusion of different soil 
backgrounds is a prerequisite to simulate realistic 
crop reflectance spectra in phase #2.

Figure 4. Examples of dynamics of measured field spectra (Orange) and simulated spectra (blue) for 2004 (upper graph) and 
experimental dataset (lower graph). LAI values, Days After Sowing (DAS) and Development Stage (DVS) are reported to describe 
plant growth. Legend: TrS = Transplantation Stage; TiS = Tillering Stage; SE = Stem Elongation; PI = Panicle Initiation; 
HS = Heading Stage; FS = Flowering Stage; DS = Dough Stage; MS = Mature Stage.
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Phase #2: Retrieval of crop parameters from 
Hybrid model

Cross-validation results
Table 4 and Figure 6 summarise the cross- 
validation results for the standard hybrid model 

(HYB) and the hybrid model with active learning 
optimisation (HYB-AL). Among the active learn
ing methods tested, cluster-based diversity and 
Euclidean distance-based diversity were the most 
accurate. In particular:

Figure 5. Mean Absolute Error (MAE) of PROSAIL-PRO simulations for the 2004 dataset (left panels) and 2006 (right panels) using 
different background spectra. Legend: S1 = Dry soil condition; S2 = Humid soil condition; S3 = Flooded soil condition; M = ”Match”, 
meaning real soil spectrum as observed in the field. MAE error lines 5% (green), 10% (yellow) and 15% (red) are highlighted.
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● for LAI, estimates and measures were well corre
lated on the whole range of values for both HYB 
(R2 = 0.78) and HYB-AL (R2 = 0.71). For HYB- 
AL, cluster-based diversity provided an opti
mised training set of 305 spectra that achieved 
the best performance among the tested AL 
algorithms;

● for CNC, estimates had a low correlation on the 
whole range of values measured in the field. For 
HYB-AL, Euclidean distance-based diversity pro
vided the best results with an optimised training 
set of 153 spectra. In this case, the model with 
active learning improved the results obtained by 
the standard hybrid (R2 = 0.37 for HYB and 0.45 
for HYB-AL) showing also a reduced saturation 
in the estimates (slope = 0.37 for HYB and 0.46 
for HYB-AL).

Validation with field data
Figure 7 reports the scatter plots of estimates vs mea
sured data, while Table 5 summarise the accuracy 
metrics of LAI and CNC estimates. The validation 

against field data shows that LAI estimates were always 
well correlated with measured values, whereas CNC 
estimates had the same saturation issue above 4 
[g m−2] already observed for cross-validation. The 
best results for LAI estimation were achieved for the 
real farming condition (2018 dataset; R2 = 0.86) using 
both HYB and HYB-AL approaches on actual 
Sentinel-2 data.

Active Learning optimisation improve LAI estima
tion in particular for 2018 data set, RRMSE decreases 
from 27.8% to 19.6%. Regarding CNC estimates HYB- 
AL led to better results especially when estimates are 
compared to measured values lower than 4 [gm� 2], in 
this range RRMSE decreases from 50% to 45%.

Phase #3: Map generation and assessment of 
information content

Map generation
LAI maps of the study area (Figure 8) were generated 
using the HYB-AL model and Sentinel-2 time series, 
acquired from rice emergence to heading stage (June- 
August 2018). Maps were analysed to evaluate their 
temporal accordance with typical rice growth in the 

Table 4. Cross-validation of LAI and CNC estimates.

Parameter Method (Sample Number) Mean Observed Value MAEcv RMSEcv RRMSEcv NRMSEcv R2
cv

Leaf Area Index (LAI) HYB (2,000) 3.05 0.47 0.63 20.84 8.68 0.78
HYB-AL (305) 3.01 0.48 0.63 21.10 9.69 0.71

Canopy Nitrogen Content (CNC) HYB (2000) 2.77 1.04 1.41 50.88 11.89 0.37
HYB-AL (150) 2.8 0.99 1.36 48.77 14.36 0.45

Figure 6. Correlation of LAI (upper panels) and CNC (lower panels) in cross-validation. Left panels: results of the HYB model using 
all the 2,000 records of the LUT. Right panels: results of the HYB-AL with optimised LUT for LAI (305 samples) and CNC (153 
samples).
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study area. Figure 8 shows LAI maps in four key dates 
of rice development for the entire study area (left 
panels – a1, b1, c1 and d1) and a details to better 
visualise LAI variability at field level (right panels – 
a2, b2, c2 and d2). Red, Orange and yellow dots, in the 
left panels, highlight selected fields for which LAI 
temporal profiles analysis was performed (Figure 9); 
yellow, red and orange polygons, in the right panels, 
show the extent and position of the selected fields for 
two neighboring farms. These maps provide a broad 
overview of the changes occurring in different rice 
cropping systems due to multiple factors related to 
specific farm agro-practices such as cultivated rice 
varieties, sowing dates, water management and soil 
characteristics and fertility. At the beginning of June 
(Figure 9a), paddy fields had an almost null LAI value 
corresponding to crop emergence; slightly higher 
values (LAI about 1 [m2 m−2]) can be found for early 
sowed fields that were already at the beginning of 
tillering, this condition can be appreciate in 
Figure 8-a2 (see yellow polygon). Between the end of 
June and the beginning of July (Figure 8c), LAI values 
in most of the maps quickly increase to 4 [m2 m−2] due 

to the stem elongation phase. July maps (Figure 8c) 
show mainly dark green areas and some brighter spots 
corresponding to late-sowed fields that has a delay in 
crop development. The two zooms of Figure 8 (panels 
b2 and c2) clearly highlight LAI difference between an 
early (yellow polygon) and a late (red polygon) sowed 
field. Finally, all paddies reached their maximum LAI 
(about 5–6 [m2 m−2] by the end of the vegetative phase 
(booting to flowering) at the beginning of August 
(Figure 8d).

Assessment of information content
Figure 10 shows the average LAI temporal profiles for 
the fields highlighted in Figure 8. Yellow and red 
profiles show LAI trends that, according to farmer 
communication, had very late and early sowing, 
respectively. Orange profiles show LAI values 
extracted from the six monitored fields (see, 
Figure 2a). These fields were cultivated with the same 
cultivar (Selenio) and had identical management in 
terms of sowing date and fertilisation period. 
Consequently, resulted in a similar crop development, 
as confirmed by comparable LAI temporal series. 

Table 5. Validation of LAI and CNC estimates with field data.

Parameter Dataset, Year (Sample Number) Method Mean Observed Value MAE RMSE RRMSE NRMSE R2

Leaf Area Index (LAI) Plot level experimental dataset, 2004 (48) HYB 1.35 0.8 1.05 78.2 24.7 0.72
HYB-AL 0.84 1.01 74.8 23.7 0.74

Plot level experimental dataset, 2006 (52) HYB 2.04 0.73 0.91 44.4 17 0.74
HYB-AL 0.63 0.76 37.6 14.4 0.74

Real farming condition dataset, 2018 (180) HYB 2.78 0.62 0.77 27.8 13.8 0.86
HYB-AL 0.44 0.54 19.6 9.7 0.86

Canopy Nitrogen Content (CNC) Plot level experimental dataset, 2006 (52) HYB 2.28 1.02 1.4 61.5 20.1 0.60
HYB-AL 0.89 1.26 55.4 18.09 0.63

Figure 7. Validation of LAI and CNC estimates with independent field data.
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Nevertheless, some remarkable differences are visible 
due to soil fertility differences, especially at the begin
ning of the season. The graph also shows:

● LAI time series of an early-sowed rice (yellow 
points) with an anticipated anomalous crop 

growth (LAI above 2 [m2 m−2] at the beginning 
of June), followed by a slow increase of LAI;

● LAI time series of a late-sowed rice (red 
points) which starts growing at the beginning 
of July and reaches LAI levels of other vari
eties in few weeks.

Figure 8. Sentinel-2 LAI maps retrieved at district level in four dates (left panels) and details for some fields (right panel). Zoom 
area is highlighted by red box drawn in a1 panel. The considered dates are: 1 June 2018 (a), June 21st (b), 7 July 2018 (c) and 
5 August 2018 (d). Dots highlight the locations of the LAI temporal profiles shown in Figure 10. Six locations are from the field 
monitored in the SATURNO project (Orange). Two locations are from fields with late (yellow) and early (red) sowing dates as 
reported by the farmer. Color polygons highligth position and extent of selected fields in the zoom area (rigth polygons).
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Both temporal behaviours are coherent with the rice 
varieties usually cultivated in this district. Early sow
ing is performed with slow-growing rice varieties with 
a long life cycle whereas late sowing is performed with 
modern and fast-growing varieties (SATURNO End- 
Users personal communication).

Figure 9 also indicates that the LAI time series can 
identify fields with similar management strategy but 
different crop growth. These kind of information can 
be helpful to identify growing anomalies and to sup
port management strategies, when provided during 
the season.

CNC maps were also compared to actual prescrip
tion maps generated for VRT fertilisation application 
(Figure 10). The reliability and value-added informa
tion provided by CNC maps was assessed by perform
ing a field-level analysis to investigate within-field 
variability.

Figure 10a shows the prescription map used to 
fertilise the field with VRT on July 17th. 
Specifically, the upper part of the field was mana
ged with three target doses of urea (140, 175 and 
220 [kg ha−1] according to crop conditions identi
fied in the field (see Material section). The lower 

part of the field was managed with a standard 
homogeneous fertilisation dose (175 [kg ha−1]; 
Nutini et al., 2021).

Figure 10b shows the CNC map for July 6th 

generated with the Sentinel-2 image acquired 
before fertilisation and the location of 5 investi
gated sample areas. Three samples were selected in 
the upper half of the field with VRT fertilisation: 
one with a high CNC estimate inside the VRT low 
target dose (red triangle), one with a medium 
CNC estimate inside the VRT medium target 
dose (blue triangle), and one with a low CNC 
estimate inside the VRT high target dose (green 
triangle). Two additional samples were selected in 
the lower half of the field with standard fertilisa
tion: one with a high CNC (red circle) estimate 
and one with a low CNC estimate (green circle).

Figure 11 shows the temporal trend of CNC 
estimated from Sentinel-2 images on the locations 
highlighted in Figure 10. Interestingly, after the 
VRT fertilisation, which provided different urea 
doses according to the plant status, the differences 
in CNC estimates decreased. This effect is parti
cularly evident for the medium CNC samples 

Figure 9. Average LAI temporal profiles for the ground monitored fields (Orange) and fields with late (yellow) and early (red) 
sowing dates.

Figure 10. Panel a) prescription map from SATURNO project for the VRT fertilisation (17 July). Panel b) CNC map estimated for 
6 July 2018. Coloured triangles/circles represent the selected samples for different CNC values. In the VRT managed zone: high CNC 
(red triangle), medium CNC (blue triangle) and low CNC (green triangle). In the homogeneous management zone: high CNC (red 
circle) and low CNC (green circle).
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which received a standard dose of fertiliser (175 
[kg ha−1]) compared to the high CNC samples 
that received a 25% reduced dose (140 [kg 
ha−1]). For the medium CNC sample, after fertili
sation, the CNC increased from 3.3 [g m−2] up to 
4.25 [g m−2] (estimated from the image of 
27 July). Despite the reduced fertilisation, the 
high CNC sample kept growing, and its CNC 
increased from 4.2 [g m−2] to 4.35 [g m−2] 
(Figure 11a). A significant improvement was also 
recorded for the low CNC sample that received 
25% more fertiliser (220 [kg ha−1].). In this case, 
after fertilisation, its CNC passed from ~3 [g m−2] 
to ~4 [g m−2].

As shown in Figure 11b, the CNC level of the 
three samples included in the VRT part of the 
field were comparable (~4.5 [g m−2]) at the end 
of the investigated period (5 August). On the 
contrary, differences in rice crop development 
were still present in the homogeneously managed 
half of the field, after the fertilisation (Figure 11c). 
The provision of standard dose (175 [kgha� 1]) to 
the lower half of field resulted in a significant 
difference at the end of the investigation: high 
CNC sample reached 5 [g m−2], whereas the low 
CNC sample stopped at 4.2 [g m−2]. This beha
viour reflects a non-optimised N management, 
which in the end will affect the yield, as confirmed 
by the study of Francesco (Nutini et al., 2021).

Discussion

Simulation of rice spectra

The generation of a large set of realistic spectra linked 
to leaf and canopy parameters is a prerequisite for the 
hybrid retrieval approach, and this study support the 
use of PROSAIL-PRO as a reliable and accurate model 
to simulate rice spectra over the whole season and in 
different environmental conditions. From the com
parison of measured and simulated spectra, a MAE 
value lower than 5% was obtained along the full spec
tral range for both 2004 and 2006 datasets, when 
information on the existing background (i.e. specific 
soil spectra according to actual conditions) were 
exploited. Conversely, higher differences between 
measured and simulated spectra were obtained (up 
to 20% of MAE) when using only a single background 
spectra. Results are very satisfying considering the 
different conditions in the two experiments: different 
varieties, phenological stage, fertilisation level and 
sowing type (flooded or dry soil). Thus, tests con
firmed that the reflectance of the background repre
sents a significant component of the overall rice 
spectral signature and a correct characterisation of 
soil conditions, as input to the PROSAIL-PRO 
model, is mandatory in order to obtain realistic simu
lations. These findings are in agreement with the study 
of M. Campos-Taberner et al. (2016a), conducted in 
the Mediterranean area, where best LAI estimations 

Figure 11. Panel a) Temporal series of CNC estimates from Sentinel-2 images for the five locations highlighted in Figure 11. Panels 
b) and c) Detail of the values before fertilisation (6 July) and after fertilisation (23 July, 31 July and 5 August).
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were obtained when a spectral library of underlying 
soil background composed by flooded and dry soils 
was considered as input to the model, whereas high 
errors were found during the initial plants’ develop
ment stages when considering only a flooded or a dry 
background.

Performance of the hybrid model and contribution 
of the active learning

Given LAI and CNC’s importance in assessing rice 
crop nutritional status, this study evaluated the 
added value of hybrid approaches either with or with
out an active learning optimisation strategy in plant 
traits retrieval.

Regarding LAI, cross-validation on simulated spec
tra showed good estimates when using the standard 
HYB approach (R2

cv = 0.78; RMSEcv = 0.63) which 
slightly decreased using HYB-AL although resulting 
still accurate (R2

cv = 0.71; RMSEcv = 0.63). The robust
ness and exportability of the retrieval models were 
further confirmed by quantitative validation using 
independent datasets. Considering HYB model, we 
obtained good results with an overestimation for the 
2004 dataset (R2 = 0.72; RMSE = 1.05) and a slight 
underestimation for 2006 (R2 = 0.74; RMSE = 0.91) 
and 2018 (R2 = 0.86; RMSE = 0.77) datasets. Using 
a hybrid approach, applied to Sentinel-2 data in the 
Mediterranean environment, Campos-Taberner et al. 
(2017) obtained similar performances for rice 
(R2 = 0.95; RMSE = 0.69), which showed some over
estimation. On the contrary, significative underesti
mation of LAI and worst performances were recently 
reported in the study of Adeluyi et al. (2021) 
(R2 = 0.82; RMSE = 1.65). When HYB-AL model is 
adopted, differences between estimates and ground 
measurements are reduced with the majority of retrie
vals falling close to the 1:1 line. RRMSE values are 
reduced by 4 to 8% for all the three considered data 
set (see, Table 5). It is interesting to notice that the 
retrieval for the 2018 dataset provided the best results 
(R2 = 0.86; RMSE = 0.54). Compared to similar study, 
the HYB-AL schema achieved better results than those 
reported in Pipia et al. (2021), (R2 = 0.63; MAE = 0.58; 
RMSE = 0.73), where a GPR model with AL optimisa
tion was applied to S2 data for greenLAI estimation for 
multiple crops. Considering that 2018 dataset was 
taken in real farm conditions results are very promis
ing for applications in operational monitoring 
systems.

Regarding CNC, retrieval models with both 
approaches show moderate performance in cross- 
validation with slightly better results achieved by 
active learning (HYB-AL: R2

cv = 0.45; RMSEcv = 1.36) 
with respect to standard approach (HYB: R2

cv = 0.37; 
RMSEcv = 1.41). Both CNC models showed 

a saturation behaviour that limits the retrieval accu
racy for moderate/high CNC values approximately 
above 4 [g m−2]. However, we can observed how active 
learning, by selecting the most significative training 
from the initial LUT, contribute to reduce such effect 
(slope = 0.37 for HYB and 0.46 for HYB-AL). This 
result is confirmed by validation with ground data, 
where HYB-AL shows slightly better performance 
(R2 = 0.63; RMSE = 0.89) than traditional HYB 
(R2 = 0.60; RMSE = 1.02) approach reducing RRMSE 
of about 5% when all values range is considered (0–7 
[g m−2]). The improvement is even more evident for 
low CNC values, below 3–4 [g m−2], with most retrie
vals falling close to the 1:1 line (see, Figure 7). This 
finding is very encouraging for estimating rice nutri
tional status with satellite Earth Observation. In fact, 
CNC is a critical information between tillering and 
stem elongation phases, when the first and second 
topdressing fertilisation applications are conducted: 
in this phenological period, the crop CNC values are 
in general in the range 2–4 [g m−2] (Stroppiana et al., 
2009). Therefore, the developed model is promising to 
provide useful information for precision farming 
management.

Results achieved in this study are anyway satisfying 
if considering that estimates are obtained from multi
spectral satellite images through an transferable and 
data-independent approach. Similar or more accurate 
estimates of N in rice crops, also at leaf level, can be 
achieved when using data driven approach and/or 
hyperspectral ground or aerial data. Stroppiana et al. 
(2009) obtained good correlation between narrow 
bands optimised vegetation index, from field spectro
radiometric data, and ground nitrogen concentration 
measurements (R2 = 0.65). Inoue et al. (2012) esti
mates CNC with hyperspectral aerial data exploiting 
both vegetation indices and machine learning 
approaches (Partial Least-Squares Regression) obtain
ing very promising results with potentially operational 
transferability (R2 = 0.9; RMSE = 0.8).

Colorado et al. (2020) recently demonstrated the 
utility of multispectral UAV images for leaf nitrogen 
estimates as an alternative approach to traditional field 
measurements: different results in terms of accuracy 
were obtained depending on the tested specific 
machine learning algorithm (R2 = 0.57 for Support 
Vector Machine; R2 = 0.92 for multi-variable linear 
regression; R2 = 0.97 for Neural Network).

Anyway, the source of under estimation for med
ium/high values needs to be further investigated, also 
considering that the direct estimation of CNC from 
RTM is a quite new approach in remote sensing and, 
to date, it was mainly performed with hyperspectral 
data (Berger et al., 2020b; Candiani et al., 2022; 
Tagliabue et al., 2022; Verrelst et al., 2021b).

As an example, Tagliabue et al. (2022) used 
a similar HYB-AL GPR model to predict CNC for 
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multi crops, comprising rice, from PRISMA hyper
spectral images obtaining very good results with no 
saturation effect (CNC: R2 = 0.79; NRMSE = 23.7%). 
Indeed, hyperspectral sensors with multiple and nar
row bands in the short-wave infrared region, where 
plant nitrogen compound shows their optical absorp
tion features (Berger et al 2020a), are considered the 
most appropriate for the estimation of CNC. The 
availability of large spectroscopic data streams from 
the already available PRISMA (Loizzo et al., 2019) and 
HISUI sensors (Matsunaga et al., 2020), together with 
the forthcoming EnMAP (Guanter et al., 2015), SBG 
(Thompson et al., 2020) and CHIME (Rast et al., 2019) 
satellite missions, could be the key for the aforemen
tioned investigation.

Maps generated information content

The application of the HYB-AL GPR model to 
Sentinel-2 images made it possible to produce useful 
information on the crop status to highlight spatio- 
temporal differences at both district and field level. 
Beside the good quantitative performances of LAI 
estimates, as obtained by comparison with field data 
in the model validation step, the LAI maps generated 
from June to August resulted reliable EO-derived pro
ducts for crop monitoring. The identified spatio- 
temporal patterns are in agreement with the expected 
physical process of cultivated rice variety, with LAI 
estimates increasing in time from 0 to 6 [m2 m−2], 
coherently with previous studies (M. Campos- 
Taberner et al., 2016b). Analysing results for the 
whole study area (see, Figure 8), makes it clear how 
those maps provide a visual overview of the differences 
related to rice cultivars, sowing dates, water manage
ment, or soil quality, occurring in the rice cropping 
systems. LAI estimates are a valuable information that 
can be useful to identifies different cultivated varieties, 
agropractices and occurrence of phenological stages 
(Boschetti et al., 2018). Moreover, these geo- 
information at decametric scale can be 
a fundamental input for crop modelling devoted to 
estimate yield changes at field level (Gilardelli et al., 
2019).

The generated maps are also very promising as 
a value-added information to support crop manage
ment. CNC maps highlighted within-field spatial var
iation of crop nutritional status, coherently with the 
heterogeneity observed in the field and in agreement 
with pre and post fertilisation conditions. The com
parison of CNC estimates in areas where different 
fertilisation techniques were applied (i.e. the VR and 
the standard), highlighted how the obtained maps are 
able to describe crop conditions and response to nitro
gen management. The analysis of CNC temporal 
trends in VRT-managed zone demonstrated how 
a smart management system, able to provide higher 

dose (220 [kgha� 1]) in critical areas characterised by 
low CNC values, produced the positive effect to 
recover rice crop condition. Moreover, lower doses 
of fertiliser, applied to those zones with high CNC 
values (before fertilisation application), allowed to 
save up to 20% on N application while ensuring 
proper crop growth, as showed in Figure 11. 
Conversely, CNC trends in homogeneously managed 
zone showed how low and high pre-fertilisation CNC 
conditions are maintained during time, highlighting 
a suboptimal crop management performance with 
potential economically and ecologically drawbacks.

Conclusions

In this study, an experimental activity was conducted 
to estimate rice crop LAI and CNC parameters from 
S2 data, testing HYB and HYB-AL approaches based 
on RTM simulations as input for GPR MLRA. The 
final goal is the achievement of an operational and 
accurate monitoring framework able to support opti
mised crop production, as well as preserving the envir
onment. This study assessed not only the performance 
of biophysical parameter retrieval but also the capacity 
of the radiative transfer model to reproduce rice spec
tra according to different background conditions, 
quantifying the effect of a wrong parameterisation on 
the simulated spectra.

The performed test showed that rice spectra, simu
lated using the PROSAIL-PRO model, were in agree
ment with measured data when a representative 
database of background reflectance is provided as 
input (overall reflectance MAE lower than 5%).

From our findings, LAI estimates from hybrid 
retrieval approach, and in particular adopting the 
active learning technique, resulted always robust and 
can be considered with operational quality, even 
though a saturation effect on CNC retrieval is evident 
for CNC values greater than 4 [g m−2]. This observa
tion needs further investigations to improve model 
performance, also adopting different active learning 
scheme and exploit necessary new ground data, 
although such limitation should not represent 
a problem for prototyping application of fertilisation 
agro-practices in rice, which are usually performed 
during phenological stages with low CNC values. 
The detected CNC within-field variability is in fact 
the foreseen information requested by user commu
nity for a quantitative support of sustainable 
fertilisation.

LAI and CNC maps generated from Sentinel-2 
images through HYB-AL provided crop monitoring 
information at both district and farm level, exploiting 
the high spatial and temporal resolution of such sen
sor. The analysis clearly shows the positive effect of the 
VRT fertilisation according to developed prescription 
map: plants presenting different nutritional status 
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before the fertilisation application achieved a final 
homogeneous N plant content which is the scope of 
precision farming applications, devoted to obtain opti
mised yield by reducing input.

From these findings, it can be stated that such 
digital geo-products obtained from spaceborne ima
ging multispectral data represent a promising contri
bution to support crop monitoring and fertilisation 
management purposes. In conclusion, the proposed 
method demonstrated the feasibility of a direct esti
mation of rice biophysical variables from S2 products, 
as a contribution for precision farming applications.
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