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H I G H L I G H T S  

• A stochastic model for the optimal operation of virtual power plants is developed. 
• The scenario tree contains both market and renewable generation scenarios. 
• An ad-hoc decomposition method drastically reduces the computational time. 
• Despite optimal solution, PV generation is partially curtailed. 
• Cogeneration plant can effectively participate in more markets.  
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A B S T R A C T   

As more uncontrollable renewable energy sources are present in the power generation portfolio, the need of more 
detailed and reliable tools for the optimal operation of energy systems has increased in the last years. This work 
presents a multi-stage stochastic Mixed Integer Linear Program with binary recourse for optimizing the day- 
ahead unit commitment of power plants and virtual power plants operating in the day-ahead and ancillary 
services markets. Scenarios reproduce the uncertainty of the ancillary services market requests, and production 
of photovoltaic panels. A novel decomposition algorithm is proposed to tackle the challenging multistage sto
chastic program. The methodology is tested on three types of large power plants: a natural gas-fired combined 
cycle, a combined heat and power combined cycle with thermal storage, and a virtual power plant integrating a 
combined cycle with battery and photovoltaic fields. Compared to the typical deterministic unit commitment 
approach, the proposed stochastic optimization approach allows to increase the revenues of the conventional 
power plant up to 13.58% and, for the combined heat and power and virtual power plant case, it allows finding a 
feasible and efficient operational scheduling.   

1. Introduction 

Due to the continuous increase in electricity demand and the rapid 
spread of intermittent renewable sources, the management and control 
of the electric grid has become increasingly complex and difficult. 
Furthermore, the progressive shift towards intermittent renewable 
sources has increased the relevance of the ancillary service markets [1], 
capacity markets [2], and spinning reserve [3] in terms of energy flows 
and revenues for the power plant. For example, according to [4] in 2019 

(pre-covid), the majority of the Italian combined cycles reached only 
2850 equivalent hours on average (very low value, denoting that most of 
the time the power plant was not operating or operating at low loads) 
and obtained 85 % of the total revenues from the ancillary service 
market (called “Mercato dei Servizi di Dispacciamento” (MSD)). Indeed, 
Italy is the EU country with one of the largest share of intermittent re
newables with a total installed capacity of about 35 GW (generating 15 
% of the electricity peak demand) which relegates many fossil-fired 
power plants to the grid balancing markets. 

For this reason, today the short-term operational optimization of 
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Nomenclature 

Abbreviations 
ACF Autocorrelation Function 
ASM Ancillary Services Market 
BESS Battery Energy Storage System 
BM Balancing Market 
CC Combined Cycle 
CCHP Combined Cooling Heat and Power 
CHP Combined Heat and Power 
COE Cost of Electricity 
DAM Day Ahead Market 
DOF Degree Of Freedom 
EBGL Electricity Balancing Guideline 
EVPI Expected Value of Perfect Information 
GTCC Gas Turbine Combined Cycle 
IDM Intra Day Market 
LDC Load Duration Curve 
MES Multi Energy System 
MILP Mixed Integer Linear Programming 
MSD Mercato dei Servizi di Dispacciamento 
NG Natural Gas 
O&M Operation & Maintenance 
OF Objective Function 
OPEX Operational Expenditure 
PACF Partial Autocorrelation Function 
PV Photovoltaic 
RO Robust Optimization 
SMILP Stochastic Mixed Integer Linear Programming 
SO Stochastic Optimization 
SOC State of Charge 
SOGL System Operation Guideline 
TESS Thermal Energy Storage Systems 
TSO Transmission System Operator 
UC Unit Commitment 
VPP Virtual Power Plant 
VSS Value of the Stochastic Solution 

Sets 
T Set of timestep 
T ASMi Subset of timesteps belonging to the i-th session of ASM 
S c Set of scenarios 
G Set of the types of energy associated to demands, 

generation and/or storage units: {EE, Heat} 
M Set of conventional generation units 
E l Subset of electricity generation units,E l ⊆ M 

M 2D Subset of 2 degrees of freedom units,M 2D ⊆ M 

E S Set of energy storage units 
V m Set of vertices of the performance maps for 2DoF machines 

Binary variables 
zDAM

sc,t , zASM
sc,t Binary var. denoting the participation to the DAM/ASM 

in scenario sc ∈ S c at time t ∈ T , ∈ [0; 1]
zcc

sc,t Binary var. indicating whether at least one dispatchable 
generation unit m ∈ M is on in scenario sc ∈ S c at time 
t ∈ T , ∈ [0; 1]

zm,sc,t Binary on/off variable of dispatchable unit m ∈ M in 
scenario sc ∈ S c at time t ∈ T , ∈ [0; 1] (1 if unit is on, 0 if 
unit is off) 

δSU
sc,t Binary variable associated to the start-up revenue in 

scenario sc ∈ S c at time t ∈ T , ∈ [0;1] (1 if the start-up 
revenue is obtained, 0 otherwise) 

δPen
sc,t Binary variable associated to the start-up penalty in 

scenario sc ∈ S c at time t ∈ T , ∈ [0;1] (1 when the unit 

starts-up and the penalty is assigned, 0 otherwise) 
δon

m,sc,t Binary start-up variable of the machine m ∈ M in scenario 
sc ∈ S c at time t ∈ T , ∈ [0; 1] (1 if unit m starts up at time 
t, 0 otherwise) 

δoff
m,sc,t Binary shut-down variable of the machine m ∈ M in 

scenario sc ∈ S c at time t ∈ T , ∈ [0; 1] (1 if unit m shuts 
down at time t, 0 otherwise) 

Continuous variables 
Inm,sc,t Average fuel power input [MW] consumed by the machine 

m ∈ M in scenario sc ∈ S c at time t ∈ T , ∈ R+

ωm,v,sc,t Weight associated to vertex v ∈ V m of the performance 
map of machine m ∈ M 2D in scenario sc ∈ S c at time 
t ∈ T , ∈ [0,1]

Outm,g,sc,t Average power output [MW] produced by the machine 
m ∈ M of output g ∈ G in scenario sc ∈ S c at time t ∈ T , 
∈ R+

OutDAM
sc,t Average power [MW] offered on the DAM in scenario sc ∈

S c at time t ∈ T , ∈ R+

OutASM
sc,t Average power [MW] offered on the ASM in scenario sc ∈

S c at time t ∈ T , ∈ R+

SOCes,sc,t State of charge [MWh] of the energy storage technology 
es ∈ E S in scenario sc ∈ S c at the end timestep t ∈ T , ∈
R+

spnet
es,sc,t Average net power exchange [MW] of the energy storage 

technology es ∈ E S in scenario sc ∈ S c at time t ∈ T , ∈
R+

spch
es,sc,t Average charge power [MW] of the energy storage 

technology es ∈ E S in scenario sc ∈ S c at time t ∈ T , ∈
R+

spdisch
es,sc,t Average discharge power [MW] of the energy storage 

technology es ∈ E S in scenario sc ∈ S c at time t ∈ T , 
∈ R+

Parameters 
ΦOpex

sc Total operational costs for scenario sc [€] 
cNG Natural gas cost [€/MWh] 
cSU Start-up revenue of the GTCC [€/start-up] 
cTP

es Throughput O&M cost of the energy storage es [€/MWh] 
cO&M

m Operation and maintenance cost of the dispatchable 
generator m [€/MWh] 

cstart− up
m Start-up costs of the dispatchable generator m [€/start-up] 

DemandHeat
t 24-h profile of district heating demand [MW] 

dt Timestep duration [hours] 
DTmin

m Minimum down-time of unit m 
ki

sc′ ,sc′′ Scenario linking parameter equal to 1 if scenarios sc′ and 
sc′′ share the same node of the scenario tree in the i-th ASM 
session. 

ki
m,g Linear coefficient of operational map for 1 DOF 

dispatchable unit m of output power g ∈ G 
Vm,v,In Vertex v of the convex polygon operational for 2 DOF 

dispatchable unit m of the input [MW] 
Vm,v,g Vertex v of the convex polygon operational for 2 DOF 

dispatchable unit m of output power g ∈ G [MW] 
PASM

sc,t 24-h profile of the maximum accepted quantity in the ASM 
for scenario sc [MW] 

psc Probability of the scenario sc 
PUNt 24 h-profile of the electricity price in the Day-Ahead 

Market [€/MWh] 
PVsc,t 24 h-profile of the maximum PV generation in scenario sc 

[MW] 
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dispatchable power plants (fossil-fired power plants, hydroelectric 
power plants with reservoir, intermittent renewable-based power plants 
with energy storages, and aggregated units like virtual power plants) 
should be performed taking into account not only the day-ahead market 
but also all the grid balancing markets. The short-term approaches 
available in literature for power plants operating in the electricity 
markets can be classified into two main categories:  

1. Approaches which optimize the plant scheduling (on/off and loads 
for each hour/quarter of hour) directly considering the forecasted 
electricity prices. This type of approach is suitable for price takers 
power plants (i.e., the bid of the power plant does not influence or 
has a little influence on the market clearing price) operating in the 
electricity markets with clearing prices (i.e., if the bid is accepted, 
the power plant receives the market clearing price and not the bid 
price, as it occurs in most European Day Ahead Markets). In this case, 
the power plant scheduling can be optimized using the forecasts of 
clearing prices of the electricity market while the bid price (to offer 
to the day ahead market) can be determined looking at the variable 
operating costs of the power plant (the bid must cover the variable 
operating costs in order to have a positive marginal revenue).  

2. Approaches which optimize the bidding curve of the power plant to 
be offered to the electricity markets. These approaches are typically 
used for power plants which are not price takers (i.e., being large or 
strategic units, their offer influences the final clearing price) or are 
able to exercise market power for pay-as-bid electricity markets (the 
electricity generated is paid to the power plant at the price originally 
offered in the bid, as in most European Ancillary Service Markets due 
to particular security conditions of the electric power system, such 
as, for example, congestions or voltage regulation needs). In order to 
maximize the revenues for the power plant, the optimization 
approach needs to take into account the plant operational cost (i.e., 
the plant scheduling) as well as the statistical correlation between 
bid price and accepted quantity (energy) and /or the effects of the 
power plant bid on the market. 

In the following sub-sections, the most relevant literature review 
related to the two approaches is presented, together with the motiva
tion, contribution and structure of the work. 

1.1. Relevant literature 

The scheduling problem related to the first category of approaches 
abovementioned can be accurately formulated as a Mixed Inter Linear 
Program (MILP), including all the main technical constraints of the 
power plant such as ramping limitations, start-up/shut-down time, 
minimum up-time, start-up trajectories, start-up costs, operating modes 
changes [5]. Such MILP-based approach has been extended for the short- 
term scheduling optimization of Combined Heat-and-Power (CHP) 
power plants using the convex-hull representation of the operating map 
(see the works by Lahdelma and Hakonen [6,7]), or the piecewise linear 
1-D and 2-D approximation of the operating maps [8]. The linearity of 
the formulation allows taking into account of the major uncertain data 
(e.g., electricity price, heating demand for CHP units) in a computa
tionally efficient way with the robust optimization (RO) theory [9] and 
stochastic programming [10]. Indeed, thanks to the linearity of the 

problem and the duality theory, it is possible to reformulate the robust 
optimization problem into a large-scale MILP [11] or decompose the 
large scale stochastic program into smaller problems (using, e.g., 
Lagrangian decomposition or Benders decomposition). Moreover, the 
computational effectiveness of today’s MILP solvers allows extending 
the problem to multiple dispatchable power plants aggregated within a 
virtual power plant [12 13], microgrid [14] or multi-energy system 
[15]. Already several approaches have addressed the effect of the un
certainty of the heating demand and intermittent renewable production 
with robust and stochastic optimization (SO) techniques: examples are 
the affine adjustable robust optimization MILP model proposed in [16] 
to tackle the uncertainty of the heating/electricity demand and renew
able production, the adaptive robust approach proposed in [17], the 
two-stage stochastic program proposed in [18] for the energy and 
spinning-reserve optimization of microgrids and the stochastic program 
proposed in [19] to account for wind uncertainty on the optimal 
scheduling of a multi-energy system featuring wind generators, CHP 
units, a large heat pump and thermal storage. 

On the other hand, very limited attention has been paid to the 
extension of these scheduling approaches (without bidding curve opti
mization) to co-optimize the participation to different electricity mar
kets. Indeed, to the best of our knowledge, the main works are those by 
Al-Lawati et al. [20], Zhang et al. [21] and Jordehi et al. [22]. [20] 
proposed two sequential two-stage stochastic programs to optimize the 
scheduling of a price taker power plant participating in sequential 
markets (day-ahead, intraday, reserve, and balancing markets). [21] 
consider a robust approach to consider exogenous uncertainties associ
ated with prices and wind production of a Virtual Power Plant (VPP), as 
well as endogenous uncertainties (which are decision-dependent) of 
real-time reserve requests. [22] proposed a scenario-based risk-adverse 
two-state stochastic program to take into account the uncertainty of pool 
prices in the optimal operation of a VPP participating in futures markets, 
pool markets and contracts with withdrawal penalty. 

As far as the second category abovementioned is concerned (opti
mization of the bidding curve), several approaches have been proposed 
to take into account the different sequential electricity markets. For 
example, Mashhour and Moghaddas [23] addresses the bidding problem 
faced by a virtual power plant (VPP) in a joint market of energy and 
spinning reserve service with a non-equilibrium model based on the 
deterministic price-based unit commitment. The related nonlinear 
mixed-integer programming is solved with a genetic algorithm. Luo et al 
[24] proposed a stochastic bidding model to optimize the offers in the 
energy market and a model predictive control dispatch model to opti
mize the real-time operation. Liu et al. [25] proposed a hybrid sto
chastic/robust optimization model to minimize the expected net cost of 
microgrids. The uncertain intermittent renewables and day-ahead 
market prices are modelled via scenarios, while a robust optimization 
is used to limit the unbalanced power in the real-time market. Fu et al. 
[26] proposed a chance-constrained two-stage stochastic formulation to 
derive the bidding strategy for micro VPP to participate in the distri
bution level energy-reserve pool managed by a distribution system 
operator. 

1.2. Motivation and contribution 

As previously mentioned, the uncertain nature of the parameters 

RDlim
m,g Ramp-down limit under nominal operating condition of 

the machine m for output power g ∈ G [MW/dt] 
RUlim

m,g Ramp-up limit under nominal operating condition of the 
machine m for output power g ∈ G [MW/dt] 

SDlim
m,g Downward ramping limit during shutdown phase of the 

machine m for output power g ∈ G [MW/dt] 

SUlim
m,g Upward ramping limit during start-up phase of the 

machine m for output power g ∈ G [MW/dt] 
revASM

sc,t 24 h-profile of the electricity price in the Ancillary-Services 
Market for scenario sc [€/MWh] 

sizeplant Size of GTCC [MW] 
UTmin

m Minimum up-time of unit m  
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involved in the problem require the adoption of optimization ap
proaches able to take this into account. In particular, the random 
behavior of both the non-dispatchable generation sources and the 
quantities accepted in the ASM would require a stochastic (scenario- 
based) approach. However, in some markets (like the Italian one) mul
tiple ASM bidding session takes place during the day, and the influence 
of the decisions on each stage is propagated into the following ones. 
Therefore, multiple decision stages must be considered in the model, 
leading to the need of formulating a multi-stage stochastic program 
model. In addition, an ad-hoc methodology for the generation of the 
scenario tree must be designed, with the aim of creating the most 
representative set of scenarios onto which the power plant will operate. 

This motivates the contributions of this work, that are the following:  

1. An ad-hoc scenario generation approach based on historical data 
where each scenario is characterized by expected ASM accepted 
quantities and maximum available intermittent renewable genera
tion profiles (solar photovoltaic), 

2. A stochastic model to optimize the day-ahead scheduling of con
ventional dispatchable power plants, CHP power plants and virtual 
power plants (aggregating dispatchable units with intermittent 
renewable sources and energy storages) which participate to Day- 
Ahead Market (DAM) with clearing price and the Ancillary Ser
vices Markets (ASM) where the pay as bid rule is adopted in accor
dance with the Italian “Mercato dei Servizi di Dispacciamento” rules,  

3. A novel temporal decomposition algorithm to solve the multistage 
stochastic model within limited computational times. 

Compared to previous works based on two-stage stochastic models 
(see ref. [19;21]), the proposed approach reproduces the sequential 
sessions of the markets (DAM and ASM sessions, neglecting the Intraday 
market) in an accurate way using a multi-stage stochastic program 
model. This allows to take into account the conditional dependence of 
the decision variables and uncertain parameters among the different 
stages. This aspect cannot be considered with two-stage approaches, 
resulting in a far from optimal solution or even incompatible to the TSO 
needs. 

Although the model here proposed is developed taking into consid
eration the specific rules of the Italian electricity market, it is necessary 
to point out that the approach described below has general validity and 
it can be applied in any liberalized market. For example, European 
countries are now characterized by a completely integrated DAM, while 
ASM rules integration are still in progress. Although not yet completed, 
significant progress has been made at European level to obtain a univ
ocal definition of the ancillary services and their characterization from a 
technical point of view. In particular, two guidelines have been pub
lished by ENTSO-e in 2017 which are of interest for market integration: 
the Electricity Balancing Guideline (EBGL) [27] and the System Oper
ation Guideline (SOGL) [28] which define the basis for a common 
definition of ancillary services and for the exchange of ancillary services 
between transmission system operators (TSOs). 

Finally, the model is applied considering the Italian ASM and DAM 
and data collected for a real combined cycle power plant. Tests are 
repeated considering a combined cycle power plant, a CHP power plant 
with thermal energy storage and a VPP integrating a combined cycle 
with a battery and solar photovoltaics (PV) fields. 

1.3. Paper structure 

The paper is organized as follows:  

1. the Italian Electricity Market is described in Section 2, showing the 
different market sessions happening throughout the day and in the 
day-ahead;  

2. the most important aspects of the operational problem to solve are 
shown in Section 3, where the Problem Statement is presented;  

3. the proposed methodology developed to tackle the operational 
problem is shown in detail in Section 4. Here the approach used for 
the scenario tree generation, the mathematical formulation 
describing the model and the decomposition algorithm are 
presented;  

4. the different test cases are presented in Section 5, showing the plant 
characteristics and most important parameters;  

5. Results related to each case study are shown in Section 6, showing 
the operational and economical metrics related to the optimal solu
tion found, and comparing the outcome of the decomposition algo
rithm with respect to the one of the complete model;  

6. Finally, conclusion remarks are discussed in Section 7. 

2. Italian electricity market 

The Italian DAM and ASM are characterized by seven main sessions:  

• DAM (day ahead market session), occurring on the day ahead (D-1), 
in which the power plant bids 24 energy quantities (MWhel), one per 
each hour of the day. If accepted by the TSO, the resulting profile 
represents the amount of energy the power plant is committed to 
provide during its operation in the following day. This market is 
integrated into the European DAM and it is solved by the European 
Power Exchanges adopting the EUPHEMIA algorithm [29]. 

• In the MSD, the Italian TSO (Terna S.p.A.) acts as a central coun
terparty and accepted offers are remunerated at the price offered 
(pay-as-bid). The MSD consists of a scheduling substage (ex-ante 
MSD) and Balancing Market (MB). The ex-ante MSD and MB take 
place in multiple sessions, as provided in the dispatching rules. The 
ex-ante MSD consists of six scheduling substages: MSD1, MSD2, 
MSD3, MSD4, MSD5 and MSD6. Before the September 2021, these 
six ASM sessions occur every-four hours of the operating day D. After 
September 2021, the distribution in the day of these 6 MSD sessions 
has been modified (while still maintaining a structure based on 6 
sessions) to harmonize and integrate the Italian Intraday Market with 
the XBID platform [30].  

• In this paper, the authors adopt the original structure of the ASM 
because the market data in the pre-covid pandemic period are used 
and processed. Therefore, for consistency with the input data, this 
paper refers to the structure of the MSD prior to the reform at the end 
of 2021. In any case, this modification has no impact on the proposed 
algorithm. In each ASM session the operator is invited to update the 
quantities offered for ancillary service purposes for the remaining 
hours of the day. The amount bid are the maximum quantities that 
the operator is willing to sell to the TSO for providing ancillary 
services. In light of these ASM sessions (and, for VPP with PV fields, 
also considering accurate intraday PV forecasts [31]), the power 
plant can adapt the amount of energy offered as the uncertain pa
rameters unveil during day D. 

As a consequence, from the point of view of the power plant oper
ator, there are seven decision stages: 

• S0 (stage 0): after receiving the day-ahead forecasts of RES produc
tion and DAM clearing prices, the operational decisions related to the 
DAM committed quantities are taken and fixed,  

• S1-S6 (stages 1–6): these are the decision stages related to the ASM 
and are taken after S0. With the exception of S1 (happening in D-1 
since it refers to the ASM quantities offered from 00:00 am to 4:00 
am), decision stages S2 to S6 happen all in sequence during day D. As 
it can be seen in Fig. 1, right after the end of one session ASM1, the 
TSO communicates the accepted quantities for the next four hours to 
the plant operator (midnight to 4:00 am). During this time, the 
operator has the chance to update the ASM offer for the remaining 
hours of the day. Before the end of ASM2 (4:00 am), decision of stage 
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S2 must be sent to the TSO for updating the bid referred to the current 
session. 

The participation of both markets for the maximization of the reve
nues must consider an optimal balance between the quantities offered in 
both. In fact, while the quantities offered in the DAM are always 
remunerated (if bid with a price lower than the clearing one), there is no 
guarantee that the energy bids in the ASM will be called by the TSO 
(quantities are paid only if the power plant is asked to provide ancillary 
services). Therefore, a feasible power plant scheduling ensuring an 
optimal combination of DAM and ASM quantities must be carefully 
evaluated by considering the uncertainty related to the acceptance of 
these last ones and the expected prices. 

3. Problem statement 

Given the abovementioned description, in this work the general 
operation planning problem can be stated as follows: 

Given:  

• The set of available generation and storage units included in the VPP 
with their size/capacity, linearized performance curves/maps and 
technical operational limits (ramping, rate, minimum up time etc.),  

• The historical data of the offers made by the power plant (in terms of 
prices and quantities) and accepted in the ASM in each hour of the 
day,  

• The historical data of the PV production forecast and errors 
compared to the actual PV production profile,  

• The day-ahead hourly forecast of PV production (relevant for VPP 
design including PV panels) for each scenario, PVsc,t,  

• The expected electricity selling price profile for both on the Ancillary 
Services Market (revASM

sc,t ) and Day Ahead Market (PUNt) for the next 
day,  

• Day ahead forecast of the heat demand (relevant only for CHP 
plants), DemandHeat

t . 

Determine:  

• The day-ahead commitment decisions: on/off statuses of the units 
(commitment decisions), zm,sc,t, and their electricity and heating 
loads for each hour of the following day, Outm,g,sc,t, 

• The real-time corrections of commitment decisions: possible cor
rections of loads and possible corrections of on/off status (only for 
quick-start units),  

• The Battery charge/discharge profile, spnet
es,sc,t ,  

• The 24-hour electricity power profiles to be submitted in the DAM 
(OutDAM

sc,t ) and all the ASM sessions (OutASM
sc,t ) which maximizes the 

expected profit of the VPP considering the uncertainty affecting the 
accepted quantities in the ASM and the uncertainty (error) of PV 
production forecasts. 

Subject to the following constraints:  

• Dispatchable generation units’ operational constrains (ramping 
limits, minimum up-/down-time, performance curve/map),  

• Storage operational constraints,  
• Maximum PV generation,  
• Electricity and heating (just for CHP case) energy balances,  
• Start-up and reserve constraints. 

It is worth noting that among the power plant revenues, we also 
consider the so-called “start-up revenues”. Introduced in the Italian 
electricity market in 2011, they aim to compensate each unprogrammed 
start-up the operator must perform for providing ancillary services to the 
power system following a request from the TSO. This revenue is assigned 
to all the thermoelectric power plants that have to deviate from the 
programmed schedule by switching on the plant so to sell on the ASM 
[32]. 

4. Methodology 

The decision process previously described and shown in Fig. 1 is 
characterized by the presence of multiple possible choices of ASM and 
DAM quantities. The search of an optimal solution able to maximize the 
revenues must consider the uncertain behavior of the ASM accepted 
quantities in the different session of the day, as well as the PV forecasting 
error (for the VPP case). Therefore, in this work we tackle the problem 
with a multi-period multi-stage stochastic program featuring 7 stages (S0 
to S6 as mentioned in the previous section), each one characterized by 4 
time periods of one hour. In the model, exogenous uncertain factors are 
considered (they are independent from the problem decisions), and they 
are taken into account by defining multiple scenarios for each problem 
stage. Thus, a scenario tree is generated indicating the dependence be
tween the different stages. 

As it can be seen in Fig. 2, the scenario tree is characterized by a 
limited number of nodes per each level. Each level represents the deci
sion stage, and each node represent a possible four-hour scenario 
featuring both the uncertain parameters and the decision variables. At 
each level, every node is linked to a “parent” node (related to the pre
vious decision stage) and to a number of “children” nodes (linked to the 
next stage) equal to the number of branches. Each “children” node will 
inherit the same parameters and decisions of those past timesteps 
belonging to the “parent” node, while retaining an independent solution 
with respect to the other nodes of the same level. For example, by 
considering Fig. 2, each node of the tree’s second level (Stage 1) feature 
three different “children” nodes (three tree branches per node) in the 
next stage. Thus, the resulting eight-hour scenarios defined for the first 
two ASM stages are nine (Stage 2). The first three (“ASM2 a, a-b-c”) will 
feature the same 4-hour uncertain parameters profiles related to the first 
stage “parent” node (“ASM1 a”), as well as the decision variables. The 
same can be said for the children nodes of “ASM1 b” and “ASM1 c”. 

Fig. 1. Scheme of the different market sessions and key decision points of the power plant operator (before September 2021).  
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While ASM decision stages are dependent to the previous one, the 
DAM decisions are taken once-for-all in the day-ahead. Hence, every 
scenario (for each node from S1 to S6) will feature the same DAM de
cision. In other words, once decided the 24-hour DAM profile at Stage 0, 
every ASM decision will be made by considering the already committed 
DAM quantities for those hours relative to the considered ASM session. 

The already mentioned description is schematically presented in 
Fig. 3. As it can be seen, in the day ahead (Stage 0) the decisions for the 
quantities bid in the DAM are made (OutDAM

t , ∀t ∊ [1; 24]). Under the 
assumption that the power plant participates to the market as a price 
taker and full acceptance of DAM quantities by the TSO, these are fixed 
for day D, providing a boundary condition for the next ASM sessions. 
Every four hours, a ASM bidding profile is submitted to the TSO, 
deciding the plant operational scheduling consequently. With the 
example of session ASM1, and by referring to both Fig. 2 and Fig. 3, 

given t the timesteps of the day belonging to considered market session 
(t ∊ [1; 4]) and sc the scenario linked to a particular tree node (for this 
case “a”, “b” and “c”), OutASM1

˝a˝,t (sc=“a”) refers to the ASM bidding 
quantity at time t relative to node “ASM1 a” in the scenario tree. The 
decisions made in this session, together with the already committed 
quantities in the DAM for the same timesteps of the day, define the 
operation of the dispatchable units (namely the fuel input InASM1

m,˝a˝,t and 
the convex combination weights ωASM1

m,v,˝a˝,t (if CHP) of unit m) and the 

storage net power exchange spnet,ASM1
es,˝a˝,t and state-of-charge SOCASM1

es,˝a˝,t (if 
present). 

The methodology proposed in this work for tackling the described 
problem consists in mainly-three steps: (1) designing the tools for the 
creation of the scenario tree needed (definition of conditional proba
bility distributions, scenario generation and reduction); (2) creating a 

Fig. 2. Multi-period multi-stage scenarios tree.  

Fig. 3. Scheme of the optimization variables associated with each stage of the multistage multiperiod stochastic program.  
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multi-period multi-stage stochastic problem able to carefully describe 
the market dynamics by including the different DAM and ASM sessions, 
as well as start-up revenues; (3) developing custom solution approaches 
for improving the computational time while obtaining a close-to- 
optimal solution. 

4.1. Scenario tree generation 

The scenario tree of the multi-period multi-stage stochastic integer 
program have been defined using a scenario generation and reduction 
algorithm based on a conditional probability distribution derived from 
historical data. In this way, all the scenarios and the dependency be
tween the decision variables of nodes with common roots are described. 

In this study, the uncertain data profiles are the accepted maximum 
quantity in the ASM and the hourly day-ahead PV generation forecast 
(for those plants comprising such energy source). Two different pro
cedures were developed, one to generate scenarios for the maximum 
accepted quantity in the ASM (used for conventional power plants 
without PV) and another one to generate scenarios of both ASM and PV 
production (for VPP). 

In this section, a general description of the procedures developed to 
generate the scenario trees is provided, whereas the results of the 
analysis will be presented in Section 5. 

4.1.1. Scenarios for conventional power plants without PV 
The construction of the scenarios tree can be summarized in the 

following steps:  

1 Data acquisition from DAM and ASM databases,  
2 Data cleaning to remove outliers and compromised data,  
3 Feature selection to identify the factors influencing the ASM 

maximum accepted quantities,  
4 Construction of the matrices describing the conditional probability 

distributions,  
5 Scenario tree generation and reduction. 

After having collected the data, a feature engineering operation was 
performed. This refers to the analysis of data aimed at extracting fea
tures that enables the model to better predict the targeted variables. For 
this reason, a time series analysis has been performed on the parameters 
that most likely could affect the accepted ASM offers (e.g., electricity 
demand and PV production). To perform this analysis, all the non- 
stationary features (trends, seasonality, etc.) have been removed by 
means of the classical additive decomposition [33] to allow the inves
tigation the correlation that could have been useful in the construction 
of the conditional-probability matrices. 

From the collected data resulted that important lag features were 
present in the time series, and that the average amount of the electricity 
sold in a session of the ASM was strongly dependent on the average 
amount sold in the previous sessions. For this reason, the conditional 
probability distributions were built considering this correlation. Each 
probability distribution describes the probability that a four-hour profile 
bid characterized by a specific average value is accepted. The evaluation 
of such probability distributions follows these steps:  

1 All the four-hour bids per each day of the available past data are 
collected and divided according to the different market sessions,  

2 For each four-hour profile, the average value is calculated, and a 
discretization step is set,  

3 For every set of values belonging to a certain ASM session, subsets 
are created by filtering on the basis of previous average ASM session 
value (e.g. subset of all the values whose preceding session value lies 
in a certain range),  

4 For every subset, it is counted how many times the average accepted 
quantities belong to the different discrete ranges,  

5 By dividing by the number of elements in the subset, the discrete 
probability distribution is found, which is conditional to the value of 
the average ASM quantity of the previous session. 

The construction of the scenario tree comes from the adoption of a 
roulette-wheel approach featuring the already mentioned conditional 
probability distributions, and the use of k-medoids clustering algorithm. 
The generation of the tree is characterized by the following steps:  

1 An initial condition on the average value of the last ASM session of 
the previous day is given as starting point (needed for the conditional 
probability distributions),  

2 For each node of the considered tree level, 10′000 extractions are 
made from the conditional probability distribution, given the ASM 
value of the parent node. These ones are average ASM values used for 
the creation of the four-hour profiles relative to the considered 
nodes,  

3 To reduce the number branches of each node (thus reducing the size 
of the scenario tree), k-medoids is applied for the identification of the 
k most representative profiles among those ones generated. In this 
way, the tree reduction is achieved by lowering the number of 
branches in each node from 104 to k,  

4 Steps 2 and 3 are repeated for every node of every level, sequentially. 

It is worth noting that the generated scenarios in each node of the 
tree (ASM session) are four-hour profiles featuring 4 elements equal to 
the extracted ASM average value. By appending the values of each node 
(following the node dependency described by scenario tree) the overall 
24-hour ASM scenario are obtained. Each scenario, associated to a 
certain probability of realization, represents the maximum amount of 
electricity that the TSO is expected to buy. Finally, the prices associated 
to each discrete range of ASM bid quantities (expressed in €/MWhel) are 
calculated as the average of the recorded accepted prices belonging to 
that specific range. 

4.1.2. Scenarios for VPP with PV 
For the Virtual Power Plant scenario generation, a different clus

tering method has been applied as the uncertainty coming from the PV 
production had to be considered. For the PV, an accurate forecast of the 
available energy has been evaluated by means of a physical hybrid 
artificial neural network developed by Ogliari et al. [31] that used the 
Clear Sky Irradiance and historical data to derive the power output 
profile from the PV power plant. For this reason, a conditional- 
probability matrix has been built to relate the Clear Sky Irradiance 
and the prediction errors (defined as the deviation between the forecast 
and the real data) related to one and two steps ahead, with the PV output 
power. 

To bind the two sources of uncertainty into a single scenario, the 
following procedure has been adopted:  

1 An initial condition on the average value of the last ASM session of 
the previous day is given (initial condition for PV generation is zero 
since at midnight),  

2 For each node of the considered level of the tree, 10′000 extractions 
from the ASM and PV generation probability distributions are made. 
Each extraction consists in the generation of two four-hour ASM and 
PV generation profiles, 

3 The two four-element vectors of each extraction are normalized ac
cording to their maximum and put together to for eight-element 
vectors,  

4 Scenario tree reduction is applied on each node of the current level to 
reduce the number of branches. As before, this is done by using the k- 
medoids clustering algorithm reducing each children node in the 
following level of the tree from 10′000 to k,  

5 The resulting k representative vectors of each parent node are de- 
normalized, separated and stored, 
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6 The steps 2 to 5 are repeated for the nodes of the next levels, 
sequentially. 

While the ASM scenarios in each node are generated by extracting 
the average ASM value, four PV generation extractions are made so to 
get a four-element variable PV generation profile. Again, by appending 
the vectors belonging to each node according to the dependencies of the 
scenario tree, all the 24-hour scenarios are created for both the PV 
generation and ASM quantities. A summary of the steps performed for 
the ASM-PV scenario generation has been reported in Fig. 4. 

4.1.3. Scenario tree analysis and features 
One of the most critical issues about solving multistage stochastic 

programs is to find a reliable representation of the uncertain parameters 
by means of a scenario tree. Ideally, an infinite (very large) number of 
scenarios is needed to cover all the possible parameters realizations and 
thus have a complete knowledge of the uncertain parameters. However, 
this would make the problem computationally intractable. For this 
reason, a limited number of scenarios is generated based on a scenario- 
tree whose structure (number of branches per node) is decided a-priori 
(Fig. 2). In theory, this structure is the one that make the scenario tree 
“stable” [34], namely the one that provides the smallest number of 
scenarios such that the problem optimal solution does not change by 
considering any other larger tree. 

To discover the minimum number of scenarios that makes the tree 
stable, it is required to solve the multi-stage problem to optimality over 
many different tree structures, requiring a very long time (even weeks) 
given the computational complexity of the problem (see Section 5 for 
computational time of this work). For this reason, it has been decided to 
exploit two particular features of the dataset as metric to evaluate the 
reliability of the scenario tree in terms of contained information: the 
probability of having no accepted quantity in the ASM (null scenarios) 
and the yearly Load Duration Curves (LDC) of the generated scenarios. 
Therefore, following the procedure mentioned in 4.1.1, different sce
nario trees were generated, differing by the number of node branches. 
The results of the calculations performed to generate the scenario tree 

that is provided as input to the optimization problem ae reported in 
Section 5. 

4.2. Multi-stage stochastic MILP model 

The multistage stochastic model is formulated using a scenario-based 
formulation [10], where all the operational variables and constraints are 
indexed for every timestep of every possible scenario. Each scenario 
features a fixed profile of PV forecast (PVsc,t) and maximum expected 
accepted quantities in the ASM (PASM

sc,t ). Non-anticipativity constraints 
are then added (see Section 4.2.8) to link variables of the different 
scenarios so to be consistent with the dependencies of the nodes 
belonging to adjacent levels of the scenario tree. 

The decision variables of the problem are the following:  

• On/off status zm,sc,t of every dispatchable unit m (e.g., GTCC) at any 
time t of every scenario sc, as well as the start-up and shut-down 
flaggers (δon

m,sc,t and δoff
m,sc,t respectively) defining the first moment 

when the units have been turned on or off, for each timestep 
belonging to stage S1 to S6; 

• Average fuel consumption power Inm,sc,t, average electricity genera
tion power Outm,EE,sc,t, average heat generation power Outm,Heat,sc,t 

and convex combination variables ωm,v,sc,t (if CHP), for each timestep 
t belonging to stage S1 to S6;  

• Storages average charge power spch
es,sc,t , discharge power spdisch

es,sc,t , net 
power exchange spnet

es,sc,t, and state-of-charge SOCes,sc,t of storage unit 
es for each timestep t belonging to stage S1 to S6;  

• Total average power quantities OutDAM
sc,t and OutASM

sc,t bid by the power 
plant in the DAM and ASM respectively. Decisions on the 24 quan
tities to bid in the DAM are taken at stage S0, while decisions on the 
quantities to bid in each session of the ASM are made from stage S1 to 
stage S6;  

• Binary variables zDAM
sc,t and zASM

sc,t for monitoring the bidding status of 
the power plant (if bidding on DAM and/or ASM), so to assess if 

Fig. 4. Clustering schematic for VPP – a) Step1: Generation of the 10.000 sample vectors; b) Normalization of the vectors with respect to PVmax and ASMs, max; c) K- 
medoids clustering of the sample; d) Medoids; e) Extraction of the next step. 
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minimum requirement needed to get the start-up revenue are 
attained (variables of each timestep belonging to stage S1 to S6). 

It is important to note that the proposed MILP model uses as vari
ables the average power consumed or generated by the units in each 
time step (e,g, Outm,g,sc,t as MW). Therefore, the energy quantities related 
to the average power at each time interval are obtained by multiplying 
the variable by the timestep duration dt. In case of hourly timestep 
duration (as for this study), then the numerical values related to the 
average power and energy are exactly the same. On the other hand, the 
ramping limits of the units must be evaluated considering the average 
power and not the instantaneous power generated at the end of each 
time step. 

The operational problem aims at defining the unit commitment (UC) 
and economic dispatch of the power plant by minimizing the total ex
pected operational costs: 

OF = min

(
∑

sc∈S c

psc⋅ΦOpex
sc

)

(1) 

Where: 

ΦOpex
sc =

∑

t∈T

[

cSU ⋅
(
δPensc,t

− δSUsc,t
)
− PUNt⋅OutDAMsc,t ⋅dt − revASMsc,t ⋅OutASMsc,t ⋅dt+

∑

m∈M

(
cNG⋅Inm,sc,t⋅dt

+ cO&M
m ⋅Outm,EE,sc,t⋅dt + cstart− up

m ⋅δonm,sc,t
)
+
∑

es∈E S

cTPes ⋅spdisches,sc,t⋅dt

]

(2) 

The total operational costs ΦOpex
sc associated to each scenario sc are 

given by the sum of four main components: 

-
∑

t∈T [cSU⋅
(
δPen

sc,t − δSU
sc,t

)
− PUNt ⋅OutDAM

sc,t ⋅dt − revASM
sc,t ⋅OutASM

sc,t ⋅dt] repre

sents the revenues coming from the start-up credit and from selling in 
the DAM and ASM (“negative costs”),  

- 
∑

t∈T [
∑

m∈M

(
cNG⋅Inm,sc,t⋅dt + cO&M

m ⋅Outm,EE,sc,t⋅dt + cstart− up
m ⋅δon

m,sc,t

)]
is 

the sum of the costs related to natural gas consumption, operation 
and maintenance (O&M), and start-up,  

- 
∑

t∈T [
∑

es∈E S cTP
es ⋅spdisch

es,sc,t⋅dt] the throughput-based storage O&M cost. 

The main constraints to which the model is subjected are defined for 
each scenario and they can be summarized as follows:  

• Power balance constraints: the overall power (electricity, heat) 
generated by the dispatchable and non-dispatchable units, and the 
power discharged by the storage, must always be equal to the power 
charging the storage and the quantities exported to the different 
electricity markets (just for the Electricity balance), or delivered to 
the thermal user (just for the Heat balance),  

• Maximum expected ASM quantities the TSO is willing to purchase: the 
power plant is free to choose the amount of electricity to bid in the 
ASM up to a limit defined by the current scenario at any time of the 
day,  

• Performance curve of dispatchable generators (units with one degree of 
freedom) [35], 

• Performance maps of CHP dispatchable generators (units with two de
grees of freedom, thus electricity and heat generation are controlled 
independently) [36]  

• Ramping limits: each dispatchable generation unit must respect the 
ramping limits in the different operational phases [37] (in this work 
the ramping limits of the units are evaluated considering the average 
power and not the instantaneous power generated at the end of each 
time step), 

• Operational logic constraints: the different operational binary vari
ables (on–off, status, start-up and shut-down flagger) must be linked 
together to define the conditions under which a start-up or shut- 
down occurs, as well as whether or not the minimum up-/down- 
time are respected [38],  

• Storage dynamic constraints: for each storage unit, the operational 
behaviour describing the charge and discharge power, as well as the 
evolution in time of the state-of-charge [39], 

• Start-up revenue constraints: logic constraints that model the condi
tions under which the start-up revenue is awarded (see 4.2.7),  

• Reserve constraints: at any time, the power plant must be able to 
ramp-up/-down of at least ± 6 % of the installed power to provide 
replacement reserve to the power system, 

• Non-anticipativity constraints: constraints that ensure that the de
cisions, taken at a specific stage, depend only on the information 
revealed up to that stage, not on the data that will be realized in the 
future [10]. These are also needed to link the variables in each sce
nario to the different nodes/levels of the scenario tree. 

4.2.1. Power balances and reserve 
The maximum amount of electricity that the power plant operator is 

willing to bid in the ASM is equal to the maximum value that is expected 
to be awarded by the TSO in each considered scenario: 

OutASMsc,t ≤ PASM
sc,t ∀sc ∈ S c, ∀t ∈ T (3) 

In addition, the plant is required by the TSO to be able to increase its 
power output by the 6 % at any time (also known as “tertiary reserve” in 
the Italian electricity framework or replacement reserve): 
∑

m∈E l

Outm,EE,sc,t ≤ 0.94⋅sizeplant ∀sc ∈ S c,∀t ∈ T (4) 

In case a CHP plant is considered, the sum of the heating power 
generated by the Gas Turbine Combined Cycle (GTCC) units and the 
discharge of the Thermal Energy Storage systems must always meet the 
user demand: 
∑

m∈M 2D

Outm,Heat,sc,t + spnetTES,sc,t = DemandHeatt ∀sc ∈ S c, ∀t ∈ T (5) 

Finally, the electricity balance for each timestep of the considered 
horizon links the power plant production with the quantities aimed to be 
sold on the DAM and ASM. Please note that the PV generation (OutPV

sc,t, 
always lower or equal to the maximum generation available PVsc,t) and 
storage net outputs (spnet

BESS,sc,t) are present only for the Virtual Power 
Plant case. 

OutASMsc,t + OutDAMsc,t =
∑

m∈E l

Outm,EE,sc,t + OutPVsc,t + spnetBESS,sc,t ∀sc ∈ S c,

∀t ∈ T

(6)  

4.2.2. Dispatchable generators operational curve 
The performance curve linking fuel consumption and electricity 

generation for dispatchable units characterized by one single degree of 
freedom can be linearized (see Fig. 5), taking the following expression: 

Outm,EE,sc,t = k1
m,EE⋅Inm,sc,t + k2

m,EE⋅zm,sc,t ∀m ∈ M , ∀sc ∈ S c,∀t ∈ T

(7) 

At any time, if the unit in online, the fuel consumption must always 
be bounded by the minimum and maximum operational limits: 

Inm,sc,t ≥ zm,sc,t⋅Inminm ∀m ∈ M , ∀sc ∈ S c,∀t ∈ T (8)  

Inm,sc,t ≤ zm,sc,t⋅Inmaxm ∀m ∈ M ,∀sc ∈ S c, ∀t ∈ T (9)  
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4.2.3. CHP dispatchable generators operational map 
CHP units are characterized by the generation of both electricity and 

heating. The operational map is modelled as a convex polygon with 
multiple vertexes (Fig. 6 represents the operational map used in one of 
the case studies of this work). Each vertex is characterized by a unique 
value of input fuel consumption, electricity, and heat generation effi
ciency. Therefore, each operating point in terms of fuel input and energy 
outputs can be expressed as the convex combination of the map’s 
vertexes: 

Inm,sc,t =
∑

v∈V m

Vm,v,In⋅ωm,v,sc,t ∀m ∈ M 2D,∀sc ∈ S c,∀t ∈ T (10)  

Outm,g,sc,t =
∑

v∈V m

Vm,v,g⋅ωm,v,sc,t ∀m ∈ M 2D, ∀g ∈ G ,∀sc ∈ S c,∀t ∈ T

(11) 

with Vm,v,In and Vm,v,g the values of the input fuel and energy output g 
related to the map’s vertex v. 

Then, at each time, the following constraint links the on/off status of 
the unit with the weights defining the operating point at time t of sce
nario sc: 

∑

v∈V m

ωm,v,sc,t = zm,sc,t ∀m ∈ M 2D, ∀sc ∈ S c, ∀t ∈ T (12) 

Please note that Eq. (10)-(12) can be used for those cases where the 
operational map of the CHP unit can be approximated with a low error 
to a convex polygon (as for the case study considered in this work, see 
Section 5). For those cases where the CHP units are characterized by a 
non-convex performance maps, other formulations are present in liter
ature able to convert them into convex regions (e.g., as proposed 
[7;40]). 

4.2.4. Ramping limits 
The constraints defining the upwards/downwards ramping limits 

during the start-up/shut-down phase and under nominal operation are 
here presented. These are defined for every output of the generation 
units: 

Outm,g,sc,t − Outm,g,sc,t− 1 ≤ zm,sc,t− 1⋅RUlim
m,g +

(
1 − zm,sc,t− 1

)
⋅SUlim

m,g

∀m ∈ M ,∀g ∈ G ,∀sc ∈ S c,∀t ∈ T
(13)  

Outm,g,sc,t − Outm,g,sc,t− 1 ≥ − zm,sc,t⋅RDlim
m,g −

(
1 − zm,sc,t

)
⋅SDlim

m,g

∀m ∈ M , ∀g ∈ G , ∀sc ∈ S c, ∀t ∈ T
(14) 

With RUlim
m,g and RDlim

m,g defining the ramp-up and ramp-down limits of 
average power in each time step when in operation, SUlim

m,g the upward 
limit during the start-up phase of average power in each time step and 
SDlim

m,g the downward limit at shut-down. 

4.2.5. Operational logic constraints 
Logic constraints are needed to link the different binary variables of 

the dispatchable units and they are needed to define the conditions 
under which a certain event happens. The following constraints are 
needed to define whether the unit m starts up or shuts down at t. 

δonm,sc,t − δoffm,sc,t = zm,sc,t − zm,sc,t− 1 ∀m ∈ M ,∀sc ∈ S c, ∀t ∈ T (15) 

Then, in every t the unit can only start up or shut down: 

δonm,sc,t + δoffm,sc,t ≤ 1∀m ∈ M , ∀sc ∈ S c,∀t ∈ T (16) 

Whenever the unit m starts up or shuts down, the minimum up and 
down time durations must be guaranteed for the following timesteps. 
These conditions are enforced by the following expressions: 

Fig. 5. Dispatchable generators characteristic curve.  

Fig. 6. Operating map of the CHP generator (CHP combined cycle).  
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∑t

t− UTmin
m +1

δonm,sc,t ≤ zm,sc,t ∀m ∈ M ,∀sc ∈ S c,∀t ∈ [UTmin
m ,T ] (17)  

∑t

t− DTmin
m +1

δoffm,sc,t ≤ 1 − zm,sc,t ∀m ∈ M ,∀sc ∈ S c,∀t ∈ [DTmin
m ,T ] (18) 

Finally, in presence of two units of the same size (e.g. U1 and U2), 
priority constraints are introduced to break operational symmetries 
(unit 2 can only switch one if unit one is already operating): 

δonU2,sc,t ≤ zU1,sc,t ∀sc ∈ S c,∀t ∈ T (19)  

4.2.6. Storage operational constraints 
From a modelling point of view, thermal energy storage and batteries 

are approached adopting the same strategy. For both the technologies, 
the effective capacity available for operations has been considered, 
therefore a constraint on the minimum state of charge (SOC) is not 
necessary. In other words, in our model the condition with null SOC 
corresponds to the real case in which the charge level is equal to the 
minimum value allowed for a safe storage operation. 

Given the above-mentioned assumptions, upper bounds on the 
maximum charge and discharge power, as well as the maximum storage 
capacity, are defined: 

spdisches,sc,t ≤ Pdisch
es ∀es ∈ E S ,∀sc ∈ S c,∀t ∈ T (20)  

spches,sc,t ≤ Pch
es ∀es ∈ E S ,∀sc ∈ S c,∀t ∈ T (21)  

SOCes,sc,t ≤ SOCmax
es ∀es ∈ E S ,∀sc ∈ S c, ∀t ∈ T (22) 

Then the net power flow from/to the storage is described by the real 
variable spnet

es,sc,t, which takes into account the charge and discharge 
efficiencies: 

spnetes,sc,t = spdisches,sc,t⋅ηdisches −
spches,sc,t
ηches

∀es ∈ E S ,∀sc ∈ S c,∀t ∈ T (23) 

The state-of-charge evolution in time is then defined by the following 
constraint, which describes the SOC of the storage at the end of t by 
taking into account the self-discharge of the unit by means of ηSD

es : 

SOCes,sc,t = SOCes,sc,t− 1⋅ηSDes +(spches,sc,t − spdisches,sc,t)⋅dt ∀es ∈ E S , ∀sc

∈ S c, ∀t ∈ T

(24)  

4.2.7. Start-up revenues 
In the Italian ASM, start-up revenues can be awarded if and only if the 

power plant is turned on (by switching on at least one dispatchable 
generation unit) specifically to provide ancillary services (its schedule in 
the DAM does not foresee any start up during the day, but the power 
plant is asked to operate in the ASM from a shutdown status). These 
conditions can be translated into two logical propositions, as shown 
below in Eq. (25): 

⋁
m
δonm,sc,t ∧ ¬zDAMsc,t ∧ ¬zccsc,t− 1 ⇔ δSUsc,t ∀m ∈ M ,∀sc ∈ S c,∀t ∈ T (25) 

with δon
m,sc,t considered as “true” in case the unit m is switched-on at 

timestep t of scenario sc, zDAM
sc,t associated to whether the entire power 

plant is selling electricity in the DAM, zcc
sc,t− 1 the variable defining if at 

least one dispatchable unit is online at t-1 of sc, and δSU
sc,t associated to the 

start-up revenue award. 
An additional condition must be considered to avoid excessive 

remuneration in the model: no credit is paid if the plant is selling in the 
DAM at t and it was selling in the ASM at t-1. In fact, if the operational 
schedule is set to export a committed DAM quantity at t, a start-up is 
already programmed to happen. However, given Eq. (25), the condition 

for awarding the start-up revenue in case of being called by the TSO for 
providing ancillary service at t-1 (thus anticipating of one hour the 
already programmed start-up) is respected. Nevertheless, the current 
regulation does not allow any remuneration for the anticipation of an 
already programmed start-up, and thus this must be corrected. By 
introducing δPenalty

sc,t , which, when active, introduces a penalty cost in the 
objective function equal to the absolute value of the start-up revenue, 
the actual awarded revenue in the objective function is equal to 

cSU⋅
(
δPen

sc,t − δSU
sc,t

)
. As a result, the logical proposition describing the con

dition under which δPenalty
sc,t is active is the following: 

zASMsc,t− 1 ∧ zDAMsc,t ⇒δPenaltysc,t ∀sc ∈ S c,∀t ∈ T (26) 

Eq. (25) and (26) can be translated into mathematical constraints by 
means of the rules of Disjunctive Programming [41]. Therefore, Eq. (25) 
translates to: 

zDAMsc,t + zccsc,t− 1 − δonm,sc,t + δSUsc,t ≥ 0 ∀m ∈ M ,∀sc ∈ S c,∀t ∈ T (27)  

δSUsc,t + zccsc,t− 1 ≤ 1 ∀sc ∈ S c,∀t ∈ T (28)  

∑

m∈M

δonm,sc,t ≥ δSUsc,t ∀sc ∈ S c, ∀t ∈ T (29)  

δSUsc,t + zDAMsc,t ≤ 1 ∀sc ∈ S c, ∀t ∈ T (30) 

While Eq. (26) translates to: 

δPensc,t ≥ zASMsc,t− 1 + zDAMsc,t − 1 ∀sc ∈ S c, ∀t ∈ T (31) 

Then, the binary variable zcc
sc,t is equal to 1 if at least one plant’s CCGT 

is on-line, 0 if they are all shut-down. 

zccsc,t ≥ zm,sc,t ∀sc ∈ S c, ∀t ∈ T (32)  

zccsc,t ≤
∑

m∈M

zm,sc,t ∀sc ∈ S c, ∀t ∈ T (33) 

Finally, the relationships between the power plant’s quantities bid in 
the DAM and ASM, and the relative binary variables indicating if the 
plant is willing to operate in these markets, are here presented: 

OutDAMsc,t ≥ zDAMsc,t ⋅Outmin
plant

∀sc ∈ S c, ∀t ∈ T (34)  

OutDAMsc,t ≤ zDAMsc,t ⋅sizeplant ∀sc ∈ S c,∀t ∈ T (35)  

OutASMsc,t ≥ zASMsc,t ⋅Outminplant ∀sc ∈ S c,∀t ∈ T (36)  

OutASMsc,t ≤ zASMsc,t ⋅sizeplant ∀sc ∈ S c, ∀t ∈ T (37) 

with Outmin
plant is the minimum power that the plant can export to the 

grid (1 MW), and sizeplant the plant’s total dispatchable installed power. 
These constraints also define the bounds of the maximum and minimum 
quantities that can be bid in the DAM and ASM. 

4.2.8. Non-anticipativity constraints 
Non-anticipativity constraints are necessary for every scenario-based 

stochastic programming model. They are used to ensure that the de
cisions taken at a specific stage depend only on the information revealed 
up to that stage, not on the data that will be realized in the future. They 
are the only constraints that link variables belonging to different sce
narios and without them the problem would degenerate into a multitude 
of parallel deterministic problems with no share of information. In 
modelling terms, their addition makes relatively easy the formulation of 
the stochastic model starting from the scenario tree structure. 

As it can be seen in Fig. 7 (left), which shows an extract of the sce
nario tree presented in Fig. 2, each level of the tree can have multiple 
nodes, each one inheriting the decisions and parameters of the “parent” 
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nodes. The resulting four scenarios for ASM sessions 1 and 2 will be all 
influenced by the DAM decisions, while scenarios 1 and 2, as well as 3 
and 4, share the same uncertain parameters and decisions concerning 
the timesteps of ASM1 (according to node parenthood). By considering a 
scenario-based model where all the variables are indexed for each sce
nario, the dependence with the parent nodes shown in the scenario tree 
is enforced by the following non-anticipativity constraints (schemati
cally presented by the rounded rectangles in Fig. 7 (right)): 

zDAMsc′ ,t = zDAMsc′′,t ⋅kisc′ ,sc′′ ∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi ,∀i ∈ ASM (38)  

zASMsc′ ,t = zASMsc′′,t ⋅k
i
sc′ ,sc′′ ∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi ,∀i ∈ ASM (39)  

zm,sc′ ,t = zm,sc′′,t⋅kisc′ ,sc′′ ∀m ∈ M ,∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi , ∀i ∈ ASM

(40)  

OutASMsc′ ,t = OutASMsc′′,t ⋅k
i
sc′ ,sc′′ ∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi , ∀i ∈ ASM (41)  

SOCes,sc′ ,t = SOCes,sc′′,t⋅kisc′ ,sc′′ ∀es ∈ E S , ∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi ,

∀i ∈ ASM
(42)  

spches,sc′ ,t = spches,sc′′,t⋅k
i
sc′ ,sc′′ ∀es ∈ E S ,∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi ,

∀i ∈ ASM
(43)  

spdisches,sc′ ,t = spdisches,sc′′,t⋅k
i
sc′ ,sc′′ ∀es ∈ E S , ∀sc′, sc′′ ∈ Sc, ∀t ∈ T ASMi ,

∀i ∈ ASM
(44) 

With ASM the set of the number of ASM sessions (one to six), T ASMi 

the subset of timesteps belonging to the i-th ASM session and ki
sc′ ,sc′′ a 

parameter equal to one if scenarios sc′ and sc′′ share the same parent 
node in the scenario tree for the considered i-th ASM session, zero 
otherwise. 

Finally, as already mentioned before, DAM decisions are taken once- 
for-all in the day ahead, and therefore are equally considered in each 
scenario as same for every scenario: 

OutDAMsc′ ,t = OutDAMsc′′,t ∀sc′, sc′′ ∈ Sc, ∀t ∈ T (45)  

4.3. Clustering-based sequential two-stage decomposition 

As the number of decision variables increase, both because of the 
higher complexity of the power plant layout (e.g., multiple controllable 
units) and/or the additional number of uncertain parameters to deal 
with, the problem becomes harder to solve from a computational point 
of view. Also, the number of considered scenarios play a major role in 
the solution complexity. As a result, the computational time could reach 

values unsuitable for practical use. In fact, since the DAM bidding profile 
must be submitted to the TSO in the day ahead, the plant operator 
cannot accept the use of a tool requiring more than 24 h to run. 

To improve the computational time, while providing a close-to- 
optimal solution, in this work we propose a novel decomposition 
method based on the idea of the Shrinking Horizon approach (as in 
[42;43]). The main idea behind the method is to solve the entire prob
lem as a sequence of two-stage stochastic programming models, by 
exploiting the fact that the DAM decision is taken once-for-all in the day- 
ahead. For each two-stage problem, the scenarios are obtained by means 
of a clustering algorithm choosing the most representative ones from the 
scenario tree. The clustering method used is a modified k-medoids which 
takes not only vectors as input, but also weights associated to them. In 
this way, being the vectors the possible scenarios and the weights their 
probabilities of realization, the clusters’ medoids represents the most 
representative profiles from a probability standpoint. 

By considering a scenario tree composed by 7 levels and n branches 
per node (for a total of m = n6), the proposed approach follows these 
steps:  

1 Evaluation of k representative 24-hour ASM and PV (if present) 
scenarios, with k ≥ n, from all the m scenarios of the tree,  

2 Calculation of the optimal DAM solution by running a two-stage 
stochastic model based on the k scenarios. The DAM profile is 
saved and fixed for all the timesteps of the following iterations, 

3 For each node of the second level of the tree (Stage 1), n represen
tative scenarios from those belonging to its children nodes are 
evaluated. The resulting two-stage reduced tree will therefore 
feature n2 scenarios,  

4 Calculation of the optimal operational scheduling per each scenario, 
by considering fixed the DAM profile in each timestep as the one 
computed in Step 2. The solution related to the timesteps of ASM1 is 
saved and fixed for those scenarios featuring the same parent node in 
the next level (stage),  

5 Steps 3 and 4 are repeated for the remaining levels (stages) of the 
tree. Therefore, given j the level of the tree, each two-stage model 
will feature nj scenarios. For level 7 (Stage 6) the same original m 
scenarios are considered. 

The decomposition algorithm is presented in Fig. 8. On the left, 
clustering is used to get the k most representative scenarios among all 
the ones in the scenario tree. Then, the optimal scheduling is obtained, 
and the DAM solution is saved. The following iteration of the algorithm 
can be seen in Fig. 8 (right). The DAM rectangle is red, indicating that 
the solution for such quantities has been fixed. All the scenarios 
featuring the same ASM1 profiles (namely all those ones described by 
the nodes with common root in level 1/Stage 2) are clustered, resulting 
in n2 scenarios. Optimal scheduling is computed, and ASM1 quantities 
are saved and fixed for those scenarios linked to the same parent nodes 

Fig. 7. Non-anticipativity constraints representation and link between a node-based and scenario-based model. The rounded rectangles (in the right image) represent 
the non anticipativity constraint forcing variables of different scenario to be equal each other for the considered timesteps. 
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in the tree, in every next iteration. As a result, as the algorithm advances, 
the number of possible scenarios increases while the timesteps related to 
decision variables are reduced (since everything else is fixed). Please 
note that the reason why n is equal to the number of branches in the 
scenario tree is to avoid a mismatch between the number of represen
tative scenarios in Stage 5 and the fixed number of Stage 6 (last stage). 

The overall benefit of adopting such methodology lies on solving 
multiple two-stage stochastic problem, whose complexity is lower than 
the original multi-stage one. In particular, the combinatorial complexity 
of the models once the DAM profile is fixed reduces, further improving 
the overall run time. However, there are two downsides: (1) the final 
solution coming from this approach can be suboptimal and (2) fixing the 
DAM profile may lead to a condition of infeasibility for the following 
iterations. In fact, by considering representative scenarios instead of the 
full space of parameters, the degree of detail is decreased. As a result, the 
DAM decisions based on a limited number of scenarios may lead, once 
the uncertain parameters are revealed in the following iterations, to the 
impossibility to find an operational schedule able to provide the 
committed quantities to the market. This issue is present only when non- 
dispatchable energy sources (e.g. PV) are part of the VPP. In fact, given 
the fixed DAM profile, as new scenarios reveal, there might be the case 
where the sum of the PV generation and the total installed dispatchable 
power is not sufficient to cover the DAM quantities. 

To mitigate this issue, the model can change its DAM commitments 
in the different iteration of the algorithm by lowering them. This change 
is penalized by associating a virtual cost characterized by a value three 
order of magnitude higher than the highest operational cost. In this way, 
the only reason why the DAM profile is changed is for feasibility reason, 
thus bringing little to no influence in the decision process and low 
impact on the computational time. 

The flowchart shown in Fig. 9 represents all the different steps in the 
sequential decomposition approach presented. In case the DAM profile 
was updated in one of the iterations, such profile is saved. Then, the 
decomposition algorithm is launched a second time, skipping the first 
iteration, and fixing the updated DAM profile. In this way, the ASM 
quantities are evaluated in each session and under feasible boundary 
conditions. 

5. Test cases 

In this work, three different case studies have been considered to test 
the abovementioned methodology: a “reference case” with two 120 
MWel Gas Turbine Combine Cycles (GTCC) units, a second case where 
the same units operate in CHP mode to serve a local user with the 
support of a Thermal Energy Storage System (TESS), and a “VPP case” 
where the two GTCCs operate in synergy with a PV field and a Battery 
Energy Storage System (BESS). 

The first case study resembles the Marghera Azotati power plant, 
located near Venice, in the North of Italy. Since not publicly available, 
the part-load performance maps/curves of the two 1 + 1 GTCC units 
comes from literature [35]. 

Operational parameters (e.g., ramping limits) were taken by the 
datasheet of the GTCC with the closest size on the market. Moreover, all 
the historical ASM bids (both in prices and accepted quantities) of the 
Marghera Azotati power plant were downloaded respectively from 
[44,45]. In this way, the conditional probability distributions were 
evaluated for the creation of the scenario tree, following what shown in 
4.1. The reason why this power plant was considered as case study is 
because reliable estimates of the operational parameters were available, 
and because the power plant operates almost always in the ASM. 
Therefore, the data used for the creation of the ASM scenarios are little 
to non-dependent on the interaction of the plant with other markets. In 
addition, by recreating the same boundary conditions, it is possible to 
assess whether the optimal solution coming from the proposed 

Fig. 8. Decomposition algorithm – Left: Step 1; Right: Step 2.  

Fig. 9. DAM adjustment block diagram.  
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methodology is in line with the current operational practice considered 
by the operator. 

As mentioned in Section 4.1.1, a feature engineering operation has 
been performed on the collected data to quantify the influence that some 
parameters (e.g., electricity demand and PV production) could have on 
the predicted accepted offers in the ASM. After having removed all the 
sources of non-stationarity (i.e., trends, seasonality, etc.), the correlation 
between the residuals of the investigated time series has been evaluated 
using the Pearson’s coefficient. 

Since correlations between the energy demand in the day ahead 
market and the accepted offers in the Ancillary Service Market were not 
present (absolute value of the Pearson coefficient lower than 0.3) as well 
as the correlation with the overall production from PV power plants in 
the same geographic area of the investigated power plant, another 
analysis on the correlations between the lags of the accepted offers time 
series has been performed by means of the partial autocorrelation 
function (PACF) (Figs. 10 and 11). 

For the VPP scenario generation, a conditional-probability matrix 
has been built to relate the Clear Sky Irradiance and the prediction errors 
(defined as the deviation between the forecast and the real data) related 
to one and two steps ahead, with the PV output power. The PACF for the 
PV production has been calculated showing correlation between the 
values with no lag and with lag 1 and 2.Table 1 and 2. 

Lastly, the minimum number of scenarios that makes the tree stable 
has been found using the probability of having no accepted quantity in 
the ASM as metric to evaluate the stability of the scenario tree. As it can 
be seen in Table 3, for a number of branches per node equal to 4 (thus, 

given 6 tree level, an overall number of scenarios equal to 4096), the 
probability of null scenarios is 40.29 %, close to the original value in the 
dataset of 40.8 %. Moreover, by increasing the size of the tree, no sig
nificant differences are noted from the point of view of this metric. 

The other metric affecting the scenario generation was the condi
tional probability discretization step. Different ones were considered 
and its effect on the yearly Load Duration Curve (LDC) and scenario tree 
null-scenario probability was investigated. Despite the insignificant ef
fect of choosing different discretization steps on the overall null-scenario 
probability, different values of this metric produce relevant effect on the 
LDC. As it possible to see from Fig. 12 right, a discretization step of 40 
MW better approximate the original LDC over the three years of avail
able data with respect to a discretization step of 10 MW. For this reason, 
a 40 MW step was chosen during the evaluation of all ASM conditional 
probability distributions. Even if this result may appear counterintuitive 
(since it is expected that a thinner discretization should better capture 
the probability distribution), the reason is related to the number of 
available data in the dataset: considering a discretization step of 10 MW, 
the number of ranges in which the offers are discretized increases as 
well, and so the number of available data becomes insufficient to derive 
significant statistical information (since small occurrences are consid
ered as noise). 

Following the considerations presented in 4.1.3, the numbers of 
scenarios considered to perform the simulation was equal to 729. The 
adoption of such number comes from the trade-off in evaluating the 
stability of such tree in terms of the probability of having zero-offer 
scenarios, accuracy of parameters representation and expected compu
tational complexity with respect to the available computing power. The 
final structure of the scenario-tree is shown in Fig. 2. 

While the ASM bidding prices are scenario dependent, the price 
profile for the DAM quantities is defined as the clearing price profile. In 
such case, given the predictable nature of the clearing price values, the 
operator is assumed to be a price taker, hence being able to have all his 
DAM quantities accepted. The DAM price profile assumed for all the 
three case studies can be seen in Fig. 13 (we assume that the zonal price 
is approximate by the PUN, the national uniforme price that characterize 
the Italian DAM). This profile was obtained by considering the DAM 
clearing price for the years 2017–2019, normalizing each day by its 
maximum value, applying k-means clustering (k = 12) and taking the 
representative period of the larger cluster. In this way, the selected 
profile is the one whose shape is the most representative across multiple 
years. Then, the normalized profile is scaled so to have an average value 
of 60 €/MWh. Therefore, the resulting profile has a minimum and 

Fig. 10. ASM sold electricity partial autocorrelation.  

Fig. 11. PV production partial autocorrelation showing the correlation be
tween the values with no lag and with lag 1 and 2. 

Table 1 
Pearson correlation coefficient.  

Electricity demand vs Accepted Offers ASM  0.1075 
Accepted Offers ASM vs PV production  − 0.1410  

Table 2 
Partial autocorrelation function.  

ASM partial autocorrelation function 0.7943  

Table 3 
Null-scenarios probabilities for different trees.  

# Scenarios Clustering time 
[s] 

Null-scenarios 
probability 

Non-null scenarios 
probability 

2^6 ¼ 64 449  60.82 %  39.18 % 
3^6 ¼ 729 2581  46.07 %  53.93 % 
4^6 ¼ 4096 8523  40.29 %  59.71 % 
5^6 ¼ 15625 19,709  40.04 %  59.96 % 
6^6 ¼ 46656 54,827  40.17 %  59.83 %  
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maximum values of PUN equal to 46.97 and 75.32 €/MWh respectively. 
A summary of all the parameters used in the different case studies 

can be found in Table 4. 

5.1. Case 1 – GTCC (Reference case) 

The reference configuration investigated resembles the Marghera 
Azotati’s power plant. It consists of two 120 MWel natural gas fired 
CCGTs, for a total installed power of 240 MWel. Given the size, the single 
CCGT was assumed to be an AE64.3A® [46]. Each unit operates inde
pendently from the other, and the overall electricity generated by the 
plant can either be exported to the grid by selling it in either the DAM or 
ASM (Fig. 14). 

5.2. Case 2 – CHP 

The second case study considers the same couple of GTCC as for the 
previous case, although in CHP mode, with a total electrical and heating 
installed power of 119.9 MWel and 52.3 MWth respectively. In addition, 
the power plant is also equipped with a TESS and must meet the heating 
demand of a district heating network. The CHP unit is assumed to export 
heat by steam extraction and condensation from the turbine. As a 
consequence, the system has two degrees of freedom (the amount of fuel 
burned into the gas turbine and the opening position of the steam 
extraction valve from the turbine). The operating map of the units can be 
seen in Fig. 6, while the values of the vertexes are shown in Table 4. The 
operational map was evaluated by means of Thermoflex® [47 48] and 

then linearized, obtaining a mean square error of about 1 %. 
The TESS has a nominal capacity of 70 MWhth and its main purpose is 

to operate in support of the CHP units by peak shaving and load shifting. 
From a technological standpoint, it is a hot water tank heating up by 
means of the heat provided by the two CHP units. The TESS is assumed 
to have no loss during the charging phase, by considering it located 
nearby the power plant. In addition, it is also assumed that the delivery 
temperature of the TESS is always high enough (e.g. 80 ◦C) so to have a 
suitable temperature at the final user (e.g. new generation buildings 
with floor heating at 30 ◦C water temperature). Given the small size and 
the daily operational purposes (each charge discharge cycle happens 
within 24 h), the thermal losses at the wall are neglected. The overall 
plant layout can be seen in Fig. 15. 

The power plant can export electricity to the grid and it is design to 
serve a local thermal user. The generated heat is assumed to be sent to a 
district heating network of a medium-sized city located in the North of 
Italy. The 24-hour profile (Fig. 16) has been measured from the network 
and scaled for confidentiality reasons. In contrast with the uncertain 
nature of the ASM accepted quantities, the heating demand profile 
forecast is here considered highly reliable, given its good predictability 
(the district heating network operator can predict the heat demand 
profile with a relative error below 5 %). In addition, the profile shows 
the winter day featuring the peak heating demand (peak at 70.43 MWhth 
at hour 9, 578.52 MWhth the total energy integral). 

5.3. Case 3 – VPP 

The last case study considers a possible VPP design based on the one 
presented in Case 1 (see Fig. 17). The two-GTCC power plant is equipped 
with a 100 MWhel BESS and paired with a 100 MWel PV field located in 
the surrounding area. The resulting aggregated power plant gives the 
possibility for each dispatchable, non-dispatch and storage units to bid 
in both the DAM and ASM. The optimal operation of such case study is 
considered for understanding the economic potential and the compu
tational tractability. In fact, the increased number of variables and the 
presence of an additional uncertain parameter (PV generation), makes 
the problem harder to solve. 

The battery was sized to store the peak PV generation, and also to 
support the GTCC for load shifting. A C-rate equal to 0.5 was considered 
so to provide a total discharge time of 2 hours. 

6. Results and discussion 

In this last part, the results of the simulations are presented. The 
model has been built in Pyomo (v5.7) [50,51] which is a Python-based, 
open-source optimization modelling framework with a diverse set of 
optimization capabilities. The resulting Stochastic MILP problem has 

Fig. 12. Maximum accepted offers on ASM duration curves – Left: Discretization step = 10; Right: Discretization step = 40.  

Fig. 13. DAM price profile considered for each case study.  
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been solved by means of Gurobi Optimizer (v9.1.1) [52]. All the opti
mization runs have been performed on a workstation with a 2.2 GHz 6- 
core Intel Core i7 processor and 16 GB of RAM. 

Before presenting the results, useful metrics are hereby shown for 
better understanding the advantage and usefulness of adopting a sto
chastic optimization approach. Two parameters are now introduced to 
quantify the value of the stochastic solution [53]: the EVPI (Expected 
Value of Perfect Information) and the VSS (Value of Stochastic Solution). 

The EVPI represents the quantity that a decision maker is willing to 

Fig. 14. Case 1 Plant layout.  

Table 4 
Techno-economic parameters.  

Market Parameter 

Natural gas cost 30 €/MWh 
DAM price range 47–75 €/MWh 
ASM price range 98–116 €/MWh 
Start-up revenue 65′160 € 

Combined Cycle (electrical power generation) 

Min/max nominal power 60–120 MW 
Performance curve parameters k1

m,EE = 0.629 [MWhel/MWhNG,LHV ],  
k2

m,EE = − 17.058[MWhel]

Nominal efficiency 55 % 
Ramp up/down limit 117 MW/h 
Ramp-up limit at start-up 62 MW/h 
O&M cost 2 €/MWh 
Start-up cost 19′000 € 

CHP Combined Cycle (Map vertexes referred to Fig. 6) 

Vertex 1 2 3 4 

Fuel consumption [MWNG,LHV] 122.5  122.5  217.9  217.9 
Electricity generation [MWel] and efficiency [%] 63.7 | 52 %  53.9 | 44 %  113.3 | 52 %  119.9 | 55 % 
Heating generation [MWth] and efficiency [%] 0.0 | 0 %  36.8 | 30 %  52.3 | 24 %  0.0 | 0 % 

Battery Energy Storage Systems 

Nominal capacity 100 MWhel 

Nominal charge/ discharge power 50 MW (C-rate = 0.5) 
Charge/discharge efficiency 97 % 
Self-discharge 0.05 %/h 

Thermal Energy Storage System 

Nominal capacity 70 MWhth 

PV field 

Nominal installed power 100 MW 
Efficiency (NOCT) 15.80 % [49]  

Fig. 15. Case 2 plant layout.  

Fig. 16. Case 2 heat demand of the district heating network.  
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pay to obtain perfect information about the future and it is calculated as 
the difference between the objective function optimal value of the sto
chastic model and the one of the same model without non-anticipativity 
constraints. 

The VSS is a parameter that quantifies the advantage of using a 
stochastic programming approach with respect to a deterministic one. It 
is defined as the difference between the objective function optimal value 
of the stochastic model and a deterministic model considering averaged 
values. In case the optimal solution of the deterministic model with 
averaged uncertain parameters turns out to be unfeasible on any of the 
initial scenarios, the VSS cannot be evaluated. This is a clear sign that the 
problem can only be tackled by considering the uncertain nature of the 
parameters. 

The economic analysis of the plant operation is done by considering 
the expected plant Cost of Electricity (COE) and the revenues coming 
from the start-ups, and by selling electricity in the DAM and ASM:  

RevenueMGP =
∑

t∈T

[
PUNt⋅OutDAMt

]
(48)  

RevenueMSD =
∑

sc∈S c

psc⋅

{
∑

t∈T

[
revASMsc,t ⋅OutASMsc,t

]
}

(49)  

Revenuestart− up =
∑

sc∈S c

psc⋅

{
∑

t∈T

[
cSU ⋅

(
δPensc,t − δSUsc,t

) ]
}

(50) 

Finally, for each case the power plant scheduling is presented, both 
in terms of expected ASM and DAM bidding profiles. Among all the 
different scenarios, the most representative are shown to present the 
scheduling of the different generation and storage units of the plant. The 
average ASM bidding curve and maximum expected ASM awarded 
quantities shown in the figures are calculated as follows: 

Fig. 17. Case 3 plant layout.  

Fig. 18. Case 1 DAM and expected ASM bidding profiles. Left: cNG = 30€/MWh; Rigth: cNG = 22€/MWh.  

COE =
∑

sc∈S c

psc⋅
{∑

t∈T

∑
m∈M cNGInm,sc,tdt + cO&M

m Outm,EE,sc,tdt + cstart− up
m ⋅δonm,sc,t

∑
t∈T

∑
m∈M Outm,EE,sc,tdt

}

(47)   
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E(ScenarioASM [t]) =
∑

sc∈S c

PASM
sc,t ⋅psc (51)  

E(OutASM[t]) =
∑

sc∈S c

OutASMsc,t ⋅psc (52)  

6.1. Combined cycle case study 

In this case, the power plant is composed by two gas turbine com
bined cycles. Fig. 18 (left and right) shows the hourly profiles of the 
expected values related to the ASM and the bidding profile of the DAM 
for two natural gas prices (30 €/MWh left, 22 €/MWh on the right). In 
particular, the dashed black line represents the average profile coming 
from all the ASM scenarios, thus depicting the expected maximum ASM 
awarded quantities. Given the exact same set of scenarios, by changing 
the NG price the operational strategy completely shifts from selling just 
on one market to the other. This can be understood by looking at the 

DAM clearing price profile in Fig. 13 and the values in Table 5. The COE 
for the case with NG price at 30 €/MWhNG ranges, among all different 
scenarios, between 66.46 and 141.39 €/MWhel. Since the DAM price is 
always below 75.32 €/MWhel, the plant results non profitable for most of 
the hours of the day if bidding in this market. On the contrary, the ASM 
price ranges between 97.52 and 115.83 €/MWhel, with an average value 
of 103.33 €/MWhel across all considered scenarios. Given the COE and 
ASM prices, it can be seen that bidding on this market is the preferred 
choice, especially considering the possibility to get the start-up revenue. 
This clearly explains why in Fig. 18 (left) the optimal solution features 
bids only on the ASM from 4:00 am (thus aiming at getting the start-up 
revenue). 

An example of the daily operation for one of the considered scenarios 
can be seen in Fig. 19. Again, it can be noted that the power plant 
schedule to operate just one of the two GTCCs by bidding just in the 
ASM. The dashed blue line in Fig. 19 (left) represents the maximum 
expected ASM awarded quantities for this scenario. The dashed black 

Table 5 
Case 1 economic analysis.  

NG cost 
[€/MWh] 

Bid quantities [MWh] COE [€/MWh] Cost [€] Revenue [€] 

DAM E(ASM) min mean max OPEX DAM ASM Start-up Total 

30 0 344.64  66.46  103.61  141.39 29,842 0 35,502 61,046 99,608 
22 5414.40 0  42.27  42.27  42.27 228,841 324,864 0 0 324,864  

Fig. 19. Case 1 scenario 485, cNG = 30€/MWh. Left: Plant production; Right: Electric scheduling.  

Fig. 20. Case 2 – Left: Expected Scheduling cNG = 30€/MWh; Right: Expected Scheduling cNG = 22€/MWh.  
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line is the actual power plant electricity output, which reaches a peak 
value of 120 MWh, equal to the maximum production of one GTCC in 
one hour. 

It is important to note that the optimal solution obtained for a NG 
price of 30 €/MWhNG are similar to most of the operational scheduling 
and bidding strategy of the Marghera Azotati power plant (which is the 
real plant from which the ASM historical data and operational param
eters where taken) for year 2018. Such year featured an average DAM 
price of 61.31 €/MWh [54] and a NG price of 26.42 €/MWh [55], values 
similar to the values considered in this scenario. In fact, according to the 
publicly available data related to the Italian electricity market in 2018 
[4], the power plant participated to the DAM for only 25 days in the 
year. On the contrary, it participated in the ASM 242 days. 

When considering a different scenario with a lower NG final pur
chasing price (22 €/MWhNG), the bidding strategy completely changes. 
By looking at Fig. 18 (right), it can be seen that the plant schedules to 
run with the two GTCCs at full load for all day offering all the generated 
energy in the DAM. By operating in this way, the COE is equal to 42.27 
€/MWhel at any time, thus being always profitable (the minimum 
clearing price is 46.97 €/MWhel). The reason why no quantities are bid 
in the ASM is the following: bidding on the DAM is a safe choice, since all 
the quantities offered will be remunerated at the clearing price, while 
the ASM profits are subject to the scenarios’ probability (thus 
uncertain). 

Given the results described above, it must be highlighted that the 
different operational decisions obtained by considering the two fuel 
costs appear to be mainly influenced by the plant net marginal operating 
profit (difference between electricity selling prices and specific opera
tional cost to generate electricity, here defined as COE) and not by the 
energy and fuel prices alone. In fact, the optimal solution considers 
bidding in the DAM when the marginal operating profit on this market is 
positive (case with NG cost of 22 €/MWhNG). On the contrary, with a 
high fuel price (30 €/MWhNG), the net operating profit of the DAM is 
negative in most hours while positive on the ASM, thus explaining why 
no bids are made on the DAM. 

6.2. CHP with thermal storage and district heating 

The main characteristic of this plant is that it must run all day long to 
serve the heat demand linked to the district heating. The optimal solu
tions show that it participates in the DAM and ASM for both NG prices 
(Fig. 20). 

By considering a NG price of 30 €/MWhNG the COE ranges between 
57.89 and 60.06 €/MWhel, with an average value across the scenarios of 
59.34 €/MWhel. With these values the plant is profitable just in some 
part of the day (e.g. in the morning and the evening). However, as can be 
seen in Fig. 20 (left), the power plant sells electricity in the DAM for 
every hour of the day, despite operating at loss (particularly in the first 4 
h of the day). ASM bids tends to be maximized, since they are the main 
source of profit. Then, by looking at Fig. 21 (right), which depicts the 
operation of the GTCCs in one of the considered scenarios, it can be seen 
that the two GTCCs operate at full load for many hours of the day. This 
behavior is seen in most of the scenarios. When operating at full load, the 
fraction of the generated electricity that is sold to the ASM generates 
profit, while in some cases the fraction sold on the DAM generate loss. 
However, operating at full load has a higher efficiency and therefore a 
lower COE. As a consequence, losses are lower with respect to adopting a 
strategy based on minimizing the DAM quantities when the clearing 
price is lower than the COE. 

When switching to a NG price of 22 €/MWhNG, the COE ranges be
tween 42.69 and 43.16 €/MWhel, with an average value across the 
scenarios of 42.98 €/MWhel. With these numbers, the power plant is 
always profitable in both markets. By looking at Fig. 20 (right), the 
bidding strategy is more oriented on selling energy in the DAM with 
respect to the ASM. This can be noted in Table 6, where the 22 €/MWhNG 
case features a + 31.7 % of DAM and a − 38.6 % ASM quantities with 
respect to the other case. As for the previous case, offering more energy 
in the DAM is linked to the safer nature of such market with respect to 
the uncertain ASM one. 

By considering the 485th scenario of the 30 €/MWhNG case as 
example, an insight on the CHP unit and storage operation is shown if 
Fig. 22 and Fig. 23. In Fig. 22 (left) it can be seen the heat balance of the 
system, with the district heating demand in dashed black line. At first, it 
can be noted that the heat output of both GTCC never gets to the 

Fig. 21. Case 2 scenario 485, cNG = 30€/MWh – Left: power plant electricity export; Right: power plant electricity scheduling.  

Table 6 
Case 2 economic analysis.  

[€/MWh] 
NG cost 

Quantity sold [MWh] COE [€/MWh] Cost [€] Revenue [€] 

DAM E(ASM) min mean max OPEX DAM ASM Start-up Total 

30  3627.28  389.91  57.89  59.34  60.06 238,045 221,205 45,710 0 266,916 
22  4777.19  239.86  42.69  42.98  43.16 215,568 285,967 28,240 0 314,208  
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maximum allowed value. Instead, most of the time both units have a low 
thermal output. This can be explained by looking at the Fig. 22 (right), 
noting that most of the operational points are on the left side of the 
performance map, where operational points characterized by a high 
electricity efficiency (and thus low COE) are present. 

With reference to Fig. 22 (left) and Fig. 23, it is interesting to note 
how the TESS operates. The storage is used to meet the thermal demand 
in the first 4 h of the day, while it supports the GTCC both for serving the 
peak and the afternoon demand. By doing so, the GTCCs can operate 
with a lower heat output and higher efficiency. The TESS is charged in 
the morning and in the evening, to have enough energy for the two 
discharge phases. In particular, the charging phase happens when the 
DAM price is higher, thus avoiding losses due to the reduce efficiency 
(and higher COE). In general, it can be said that the TESS have a positive 
effect on the overall power plant performance. 

As for the previous case, also here decisions are taken on the basis of 
the plant net marginal operating profit rather than just the DAM, ASM 
and NG prices alone. In addition, this case study is a clear example where 

a mathematical tool is needed in order to evaluate the optimal decision 
of such complex plant. 

6.3. Virtual power plant 

In the VPP case, the power plant features the same GTCC as the 
reference case, with the addition of PV and a battery (BESS). 

By analyzing at first the case where a NG price of 30 €/MWhNG is 
considered, the power plant features a COE related to the dispatchable 
units between 70.63 and 141.39 €/MWh (Table 7), while the COE 
related to the PV field is basically null (having no variable O&M cost). 
Given the NG cost, participation in both the DAM and ASM is seen for 
this case. By referring to Fig. 24 (left) and Table 7, it can be seen that 
most of the quantities are offered in the ASM, while just a smaller 
fraction is bid in the DAM. This is similar to the results obtained for the 
first case study (featuring just two GTCCs) at the same NG cost. How
ever, the addition of the PV field and a BESS increases the net revenues 
from 69,765 € to 98,779 € (+41.6 %) thanks to the additional quantities 
sold in the DAM. 

With the aim of providing a more detailed description of the oper
ational decisions, the plant schedule is presented for Scenario 323 
(Fig. 25, upper-left and upper-right). At first, the DAM quantities are bid 
just for the sixth and seventh hour of the day. In particular, these 
quantities are supplied by the BESS and PV, with the BESS storing the 
electricity provided by the solar source. This behavior can be seen for all 
the 729 scenarios. 

Then, the BESS operation can be seen in Fig. 25 (bottom). By also 
looking at the other two upper figures, it can be noted how the BESS is 
also used for ancillary service purposes. This happens at hour 4:00 and 
20:00 when it discharges electricity to sell it in the ASM. In this way, low 
cost, renewable energy is sold to the grid at high selling prices (ASM) by 
shifting the PV production thanks to the BESS. In this scenario the BESS 
operation is characterized by 0.78 daily equivalent cycles (ratio between 
total charged electricity and total storage capacity), while across all 
other scenarios this value ranges between 2.84 and 0.62 with an average 
value of 0.91. 

Regarding the GTCCs, their only role is to generate electricity to sell 
on the ASM and to award the start-up revenue. This can be seen in 

Fig. 22. Case 2 scenario 485, cNG = 30€/MWh – Left: Heat balance; Right: CHPs operative points.  

Fig. 23. Case 2 scenario 485, cNG = 30€/MWh, storage opeartion.  

Table 7 
Case 3 economic analysis.  

NG cost 
[€/MWh] 

Quantity sold [MWh] COE [€/MWh] Cost [€] Revenue [€] 

DAM E(ASM) min mean max OPEX DAM ASM Start-up Total 

30  108.47  433.13  70.63  115.39  141.39 36,840 6840 39,186 89,593 135,619 
22  5797.36  0.00  42.27  42.40  42.49 223,605 349,287 0.00 0.00 349,287  
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Fig. 25 (upper-left and upper-right) where the ASM quantities bid are 
generated by the first Combined Cycle, that switches on just for this 
purpose. This is in line with what seen in the first case study: given the 
GTCCs’ COE and market prices, the net marginal operating profit is 
positive just for the ASM. 

Profits from the ASM and the start-up revenue are the reasons behind 

the limited quantities bid in the DAM (despite the PV null specific 
operational cost would make it profitable at whichever hour of the day). 
By looking at the black dashed line in Fig. 24 (left), it can be noted how 
most of the ASM quantities are expected to be awarder after 8:00 (very 
common among the different scenarios). Since selling on both ASM and 
DAM is a condition that does not allow to get the start-up revenue (a 

Fig. 24. Case 3 – Left: Expected Scheduling cNG = 30€/MWh; Right: Expected Scheduling cNG = 22€/MWh.  

Fig. 25. Case 3 scenario 485, cNG = 30€/MWh, Upper left: power plant electricity export; Upper right: power plant electricity scheduling; Bottom: Storage operation.  
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GTCC must be switched on such that the VPP sells only in the ASM), 
DAM quantities are bid just for those hours where it is less likely to sell 
on the ASM. In this way the GTCCs are let free to switch on at any time 
after 8:00, generating power that the plant would only sell for ancillary 
services and getting the start-up revenue. 

Taking about the case with NG price of 22 €/MWhNG, the description 
is very similar to the one regarding the first case study featuring the 
same fuel cost. The COE related to the dispatchable units is always lower 
than the DAM clearing price, ranging between 42.27 and 42.49 €/MWh 
(Table 7). This makes convenient to sell all the available generation in 
this market (see Fig. 24, right). As a consequence, no start-up revenue is 
awarded since the two GTCCs run for 24 h, the BESS barely operates 
(among all considered scenarios the resulting number of daily equiva
lent cycles ranges between 0.01 and 1), and all the available PV gen
eration is directly sold in the DAM. 

Also in this case, the plant net marginal operating profit is the main 
driver in the decision process. Also in this case the advantage of using a 
stochastic optimization model to tackle the problem can be seen: given 
the complexity and the presence of two uncertain parameters, the 
optimal solution would have been extremely challenging to find with 
conventional approaches. 

6.4. Computational results and assessments. 

In Table 8 and Table 9, the main features of the models (i.e., vari
ables, constraints, etc.) and a summary of the solutions are reported. As 
it is possible to see, the performance of the models developed for the 
above-mentioned test cases are quite heterogeneous. 

In terms of EVPI, this value varies from up to 31 % of the overall 
objective function for the GTCC configuration, to nearly 50 % for the 

CHP and up to 30 % for the Virtual Power Plant. This means that for the 
problem investigated the value related to the uncertainty increased with 
the complexity of the power plant and the number of uncertain pa
rameters. In fact, the EVPI quantifies the expected objective function 
gain from having perfect information of the uncertain parameters. 
Therefore, the higher the EVPI, the higher the cost related to the 
uncertainty. 

Talking about the VSS, the CC case with a NG cost of 30 €/MWhNG 
and CHP cases (both with NG price of 22 and 30 €/MWhNG) were the 
only cases for that it could be evaluated. The decrease in the objective 
function (corresponding to an increase in revenues) obtained by solving 
the problem with a stochastic model instead of a deterministic one with 
average scenarios is just − 0.39 % for the CC case (NG cost 30 
€/MWhNG), and − 1.8 % and − 13.58 % for the CHP case with NG cost of 
22 and 30 €/MWhNG respectively. For all the other cases, the VSS was 
not computable since the solution found by the deterministic model with 
average scenarios was not feasible in some of the stochastic ones. For the 
CC case with 22 €/MWhNG, the infeasibility lies in the DAM and ASM 
decisions that force the CCs to shut down and subsequently start up in a 
time interval lower than the minimum allowed. For the VPP cases, the 
DAM decisions overcommit the plant generation in some stochastic 
scenarios (not enough PV generation). This can be explained by the fact 
that average scenarios cannot be representative of every stochastic one, 
thus resulting in over- or underestimation. 

The evaluation of the VSS also underline how it is impossible to 
decide a priori whether a deterministic approach with average scenarios 
should be used over a stochastic one. The analysis on the conditional 
distribution used for the creation of the ASM scenarios (that is the only 
thing in common among the three case studies) cannot provide any 
significant information, also given the fact that in half of the considered 
cases a deterministic approach produced an infeasible solution. Then, 
the decision about which approach to adopt cannot be taken just by 
looking at plant layout: results show that by changing only one 
parameter (fuel price) either a deterministic approach can result in an 
unfeasible solution (CC case with NG at 22 €/MWhNG), or the VSS can 
significantly change (from − 1.8 % to − 13.58 % for the CHP cases). The 
impossibility of defining a priori which approach to adopt is further 
underlined by the results about the VSS for the VPP cases: the assessment 
can only be done a posteriori, by testing the solution obtained with 

Table 8 
Model characteristics.  

Case Scenarios Binary 
variables 

Continuous 
variables 

Constraints Root  
Relaxation 

CC 3^6 = 729 192,456 139,968 948,489 − 1.26E+05 
CHP 3^6 = 729 122,472 384,912 1,030,921 − 9.90E+04 
VPP 3^6 = 729 192,456 227,448 1,105,977 − 1.90e + 05  

Table 9 
Solution outcomes.  

Case Computational Time 22 €/MWhNG 30 €/MWhNG 

Objective EVPI VSS Objective EVPI VSS 

CC 25 h − 9.60E+04 2.99E+04 n.c.** − 6.98E+04 9.06E+03 2.71E+02 
CHP 7.56 h − 9.84E+04 2.19E+04 1.76E+03 − 2.81E+04 1.39E+04 3.35E+03 
VPP* greater than3 d − 1.25E+05* 3.41E+04 n.c.** − 9.88E+04* 3.05E+04 n.c.** 

*: Best solution found after three days of run (optimality not proven, MIP gap = 26 %). 
**: VSS could not be computed (“not computable”) since the operational solution found by the deterministic model considering average scenarios is not feasible in 
some of the stochastic scenarios. 

Table 10 
Combined cycles case solution outcomes.    

22 €/MWhNG 30 €/MWhNG   

Complete model Decomposed model Complete model Decomposed model 

CC case Scenarios 729 729 729 729 
Computational Time 25 h 2.5 min 24 h 1 min 
Objective − 9.60E+04 − 9.60E+04 (+0.0 %) − 6.98E+04 − 6.95E+04 (+0.3 %) 

CHP case Scenarios 729 729 729 729 
Computational Time 7.5 h 4 min 7 h 18 min 
Objective − 9.84E+04 − 9.53E+04 (+3.2 %) − 2.81E+04 − 2.36E+04 (+15.9 %) 

VPP case Scenarios 729 729 729 729 
Computational Time greater than3 days 18 min greater than 3 days 13 min 
Objective − 1.25E+05* − 1.25E+05 (+0.3 %) − 9.88E+04* − 9.82E+04 (+0.6 %) 

*: Best solution found after three days of run (optimality not proven, MIP gap = 26 %). 
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average values over all the stochastic scenarios. These results show that 
to avoid any unfeasible operational schedule (which might result in 
substantial penalties), a stochastic approach is suggested when day- 
ahead decision are strongly influenced by uncertain parameters. 

Regarding the computational time needed to solve the three different 
case studies as a monolithic stochastic model, they are show in Table 9. 
The reference case with just two GTCC and the VPP case took more than 
24 h, making this methodology useless from a practical point of view. In 
particular, by referring to Table 8, for the VPP cases the complete model 
solved with Gurobi was not able to provide a solution with an MIP gap 
lower than 26 % after 3 days of computation. For this reason, the 
decomposition approach introduced in Section 4.3 was developed and 
applied to the mentioned cases. As it can be seen in Table 10, the 
reduction in computational time is significant, going from more than 24 
h to less than 3 min for the CC case, from about 7 h to less than 20 min 
for the CHP case, and from more than 3 days to less than 20 min for the 
VPP case. 

In reference with the case featuring the two CCs, the solution ob
tained by the complete model by applying the decomposition leads to 
the same objective function when NG cost is 22 €/MWhNG, while a 
minimal difference of + 0.3 % is present if a price of 30 €/MWhNG is 
considered. 

For the CHP case, the solutions found when using the decomposition 
are + 3.2 % and + 15.9 % higher (lower revenues) than the ones found 
in the complete model for a gas price of 22 and 30 €/MWhNG respec
tively. In particular, when the NG price is set to 30 €/MWhNG, the so
lution obtained by means of the decomposition features 243575€ of 
OPEX (+2.32 %) and total expected revenues of 267476€ (+0.21 %), 
with 232,836 € in the DAM (+5.26 %) and 34,639 € in the ASM (-24.22 
%). As it can be seen, the 15.9 % difference in revenues for the solution 
obtained with the decomposition comes mainly from the lower ASM 
quantities. The overall units’ scheduling is very similar among the two 
approaches, but the reduced set of scenarios considered in the first step 
of the decomposition (10 profiles evaluated with k-medoids) limits the 
information related to the potential revenues on the ASM. In addition, 
since the CHP units operate at a loss in some part of the day, the DAM 
quantities are maximized in the first stage decision (hence explaining 
the + 5.26 %), leaving less room to ASM offers in the subsequent deci
sion stages. 

For the VPP case, the decomposition provides solutions featuring a +
0.3 % and + 0.6 % increase for the 22 and 30 €/MWhNG cases respec
tively, being very close to the best one found in with complete model. 

In general, for those cases where operation is not constrained by an 
energy demand, the decomposition shows remarkable performance, 
with a great reduction in computational time, a small sensitivity with 

respect to the NG price and providing solutions very close to the optimal 
ones. For the CHP case, the solution found showed a higher degree of 
sub-optimality (30 €/MWhNG case). However, the significant reduction 
in computational time allows the user to consider this tool for the 
evaluation of a first, feasible and close-to-optimal solution that can be 
further refined with ad-hoc heuristics or used as solver warm start. 

Finally, Fig. 26 shows how the DAM profile changes iteration after 
iteration for the VPP case as the number of scenarios are added in the 
model. The dashed pink line is the DAM solution for the 729-scenario 
complete model. 

7. Conclusion and further developments 

In this work a methodology for the optimal operation of a power 
plant participating to both the DAM and ASM was developed. This 
consists in a multi-period multi-stage stochastic optimization model, an 
ad-hoc algorithm for the generation of ASM and PV scenarios, and a 
clustering-based sequential two-stage decomposition method. 

A complete statistical analysis of the electricity markets has been 
performed, looking for correlation between parameters. Then, condi
tional probability distributions were evaluated for generating the sce
narios needed by the stochastic model. This one is composed by seven 
decision stages, comprising all the different DAM and ASM sessions that 
the power plant must undergo while deciding its operational schedule. 
In addition, the conditions under which the start-up revenue is awarded 
was carefully modelled. 

The gain in revenues obtained by considering a multi-stage sto
chastic model over a deterministic one with average scenarios is up to 
13.58 %, but for other cases is limited to less than one percentage point. 
However, for half of the considered test instances (CC with NG at 22 
€/MWhNG and the two VPP cases) the solution obtained with a deter
ministic approach based on averaged values resulted infeasible with 
respect to the stochastic scenarios. This underlines how a stochastic 
approach must be considered over a deterministic one for the considered 
case studies. 

The computational time associated with solving the complete model 
directly with a commercial solver makes the proposed methodology 
unpractical. For this reason, a new decomposition algorithm was 
developed with the aim of reducing the run time still retaining a solution 
close to optimal. This algorithm is based on the concept of the shrinking 
horizon and solves a sequence of two-stage stochastic models whose 
scenarios are selected by means of k-medoids clustering. The decom
position leads to a significant reduction of time (the greatest going from 
more than 3 days to 13 min) while finding close-to-optimal solutions. In 
particular, for the CC and VPP cases the solution found with the 
decomposition was at most 0.6 % worse, while the CHP case showed a 
solution with revenues up to 15.9 % lower than the optimal solution. 
Nevertheless, the significant amount of time saved justifies the adoption 
of this decomposition approach. 

Finally, the results show that the proposed methodology is an 
effective tool for optimizing the scheduling of power plants and virtual 
power plants operating on the day ahead and ancillary service markets. 
Since the presented methodology can be easily adapted to other market 
frameworks, future development should focus on assessing its compu
tational tractability over those ones characterized by a higher number of 
sessions (e.g. every hour) and/or higher price volatility (e.g. considering 
DAM price scenarios). 
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