
ar
X

iv
:1

80
6.

06
60

4v
1 

 [
m

at
h.

A
P]

  1
8 

Ju
n 

20
18

Reducibility for a class of weakly dispersive linear operators

arising from the Degasperis Procesi equation

R. Feola∗∗, F. Giuliani†, M. Procesi†

∗∗ SISSA, Trieste, rfeola@sissa.it;
† RomaTre, Roma, procesi@mat.uniroma3.it, fgiuliani@mat.uniroma3.it∗

Abstract

We prove reducibility of a class of quasi-periodically forced linear equations of the form

∂tu− ∂x ◦ (1 + a(ωt,x))u+Q(ωt)u = 0 x ∈ T := R/2πZ,

where u = u(t, x), a is a small, C∞ function, Q is a pseudo differential operator of order −1, provided that ω ∈

R
ν satisfies appropriate non-resonance conditions. Such PDEs arise by linearizing the Degasperis-Procesi (DP)

equation at a small amplitude quasi-periodic function. Our work provides a first fundamental step in developing
a KAM theory for perturbations of the DP equation on the circle. Following [3], our approach is based on two
main points: first a reduction in orders based on an Egorov type theorem then a KAM diagonalization scheme.
In both steps the key difficulites arise from the asymptotically linear dispersion law. In view of the application
to the nonlinear context we prove sharp tame bounds on the diagonalizing change of variables. We remark that
the strategy and the techniques proposed are applicable for proving reducibility of more general classes of linear
pseudo differential first order operators.
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1 Introduction

The problem of reducibility and stability of Sobolev norms for quasi-periodically forced linear operators on the
circle is a classical one, and it has received new attention in the past few years. Informally speaking, given a linear
operator, say Xω : Hs(T,R) → Hs−µ(T,R) (where T := R/2πZ) depending on time in a quasi-periodic way,
we say that it is reducible if there exists a bounded change of variables depending quasi-periodically on time (say
mapping Hs → Hs for all times), which conjugates the linear PDE ∂tu = Xωu to the constant coefficient one

∂tv = Dωv, Dω := diagj∈Z{dj}, dj ∈ C.

The notion of reducibility has been first introduced for ODEs (see for instance [32], [21], [30], [1] and reference
therein). In the PDEs context this problem has been studied mostly in a perturbative regime, both on compact and
non-compact domains. The reducibility of linear operators entails relevant dynamical consequences such as the
control on the growth of Sobolev norms for the associated Cauchy problem.
The subject has been studied by many authors: we mention, among others, [12], [17], [20], [29], [7], [39]. For
more details we refer for instance to [5] (and reference therein).
A strong motivation for the development of reducibility theory comes from KAM theory for nonlinear PDEs.
Actually, reducibility is a key ingredient in the construction of quasi-periodic solutions via quadratic schemes, such
as Nash-Moser algorithms. Indeed, the main issue is to invert the linearized PDE at a quasi-periodic approximate
solution, see [16]. This reduces the problem to the study of a quasi-periodically forced linear PDE such as the ones
described above. We point out that in this context a sharp quantitative control on the reducing changes of variables
is fundamental. Regarding KAM theory for PDEs, we mention [33],[43],[35],[11] for equations on the circle,
[26],[23],[27],[42],[22] for PDEs on Tn. These works all deal with equations possessing bounded nonlinearities.
Regarding unbounded cases we mention [34], [36], [9] for semilinear PDEs and [3],[4],[25],[28],[10],[2] for the
quasilinear case.
The main issues in all these problems are related to the geometry/dimension of the domain, the dispersion of the
PDE and the number of derivatives appearing in the nonlinearities. In particular the dispersionless case, i.e. the
case of (asymptotically) equally spaced spectral gaps, often exhibits unstable behaviours and explosion of Sobolev
norms (see [37]). In this paper we discuss operators of this type, proving reducibility and stability for a class of
quasi-periodically forced first order linear operators on the circle. In view of possible applications to KAM theory
we chose to consider a class of linear operators related to the Degasperis-Procesi equation. However, both the
strategy and the techniques are general and, we believe, can be applied to wider classes of first order operators.

The Degasperis-Procesi (DP) equation

ut − uxxt + uxxx − 4ux − uuxxx − 3uxuxx + 4uux = 0. (1.1)

was singled out in [19] by applying a test of asymptotic integrability to a family of third order dispersive PDEs.
Later Degasperis-Holm-Hone [18] proved its complete integrability by providing a Lax pair and a bi-Hamiltonian
structure for this system.
Constantin and Lannes showed in [15] that the Degasperis-Procesi equation, as well as the Camassa-Holm equation,
can be regarded as a model for nonlinear shallow water dynamics and it captures stronger nonlinear effects than the
classical Korteweg de Vries equation: for example, it exhibits wave-breaking phenomena and it shows peakon-like
solutions. Unlike the Camassa-Holm equation, the DP system exhibits also shock waves.
Since its discovery, lots of works have been written on this equation, mostly on the construction of very special
exact solutions such as traveling waves and peaked solitons. We wish to stress that in general the existence of a
Lax pair, in the infinite dimensional context, does not directly imply the possibility to construct Birkhoff (or action-
angle) variables or even simpler structure, such as finite dimensional invariant tori (the so-called finite gap solutions
for KdV and NLS on the circle). For results on the spectral theory of the DP equation we refer to [13, 14],[31].
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In conclusion the problem of KAM theory for the DP equation is, at the best of our knowledge, still open. This is
one of the main motivations for proving this reducibility result. Before introducing our classes of operators let us
briefly describe the structure of the DP equation and in particular its linearized at a quasi-periodic function.

The equation (1.1) can be formulated as a Hamiltonian PDE ut = J ∇L2H(u), where ∇L2H is the L2-gradient
of the Hamiltonian

H(u) =

∫
u2

2
− u3

6
dx (1.2)

on the real phase space

H1
0 (T) :=

{
u ∈ H1(T,R) :

∫

T

u dx = 0
}

(1.3)

endowed with the non-degenerate symplectic form

Ω(u, v) :=

∫

T

(J−1u) v dx, ∀u, v ∈ H1
0 (T), J := (1− ∂xx)

−1(4− ∂xx)∂x. (1.4)

The Poisson bracket induced by Ω between two functions F,G : H1
0 (T) → R is

{F (u), G(u)} := Ω(XF , XG) =

∫

T

∇F (u)J∇G(u) dx, (1.5)

where XF and XG are the vector fields associated to the Hamiltonians F and G, respectively.

Let ν ∈ N∗ := N \ {0}, L > 0, γ ∈ (0, 1).
Consider ω ∈ O0 where

O0 :=

{
ω ∈ [L, 2L]ν : |ω · ℓ| ≥ 2γ

〈ℓ〉ν , ℓ ∈ Z
ν

}
, 〈ℓ〉 := max{|ℓ|, 1} (1.6)

and a quasi-periodic function u(t, x) with zero average in x, small-amplitude and frequency ω,

u(t, x) = εI(ωt, x), ε ≪ 1, (1.7)

where ϕ 7→ I(ϕ, x) belongs to C∞(Tν+1;R). Linearizing equation (1.1) at u one obtains

vt = Xω(ωt)v, Xω(ωt) = Xω(ωt, I) := J ◦ (1 + a(ωt, x)), a(ϕ, x) = a(I;ϕ, x) (1.8)

with a(ϕ, x) ∈ C∞(Tν+1;R) Lipschitz in ω and I. In particular one has

‖a‖Hs(Tν+1;R) ≤ ε‖I‖Hs(Tν+1;R) , ∀s.

Note that that J in (1.4) can be written as

J := ∂x + 3Λ∂x, Λ := (1− ∂xx)
−1, (1.9)

hence the operator Xω(ωt) in (1.8) has the form

Xω(ωt) = (1 + a(ωt, x))∂x + ax(ωt, x) + 3(1− ∂xx)
−1∂x ◦ (1 + a(ωt, x)) (1.10)

and it is a pseudo-differential operator of order one, moreover Xω(ωt) is a Hamiltonian vector field w.r.t. the DP
symplectic form (1.4).
In the paper [24], together with Montalto, we proved that transport operators of the form (1 + a(ωt, x))∂x, with
(ω, 1) ∈ R

ν+1 diophantine, are reducible by a change of variables which has very sharp tame estimates in terms of
the Sobolev norm of the function a. Here we prove the same result for the more general class (1.10). We have to
deal with two main issues:

• the operator (1.10) is not purely transport;
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• we wish to diagonalize with a change of variables which is symplectic w.r.t. (1.4).

As in [24], the main difficulties, which turn out to be particularly delicate in our context, consist in giving sharp
estimates of the change of variables; in order to do this, we need to introduce a number of technical tools, for
instance a quantitative version of Egorov’s theorem.

We prove the following reducibility result.

Theorem 1. Fix γ ∈ (0, 1), consider Xω(ωt) in (1.10) with ω ∈ O0 (see (1.6)), assume that ‖I‖Hs(Tν+1;R) ≤
1 for some s > 1 large enough and |ε| ≤ ε0(γ) (recall (1.7), (1.6)). Then there exists a Cantor set O∞ ⊆
O0 such that for all ω ∈ O∞ there exists a quasi-periodic in time family of bounded symplectic maps Ψ(ωt) :
Hs(T;R) → Hs(T;R), which reduces (1.8) to a diagonal constant coefficients operator with purely imaginary

spectrum. Moreover the Lebesgue measure of O0 \ O∞ goes to 0 as γ → 0.

From Theorem 1 we deduce the following dynamical consequence.

Corollary 2. Consider the Cauchy problem
{
∂tu = Xω(ωt)u,

u(0, x) = u0(x) ∈ Hs(T;R),
(1.11)

with s ≫ 1. If the Hypotheses of Theorem 1 are fulfilled then the solution of (1.11) exists, is unique, and satisfies

(
1− c(s)

)
‖u0‖Hs(T;R) ≤ ‖u(t, ·)‖Hs(T;R) ≤

(
1 + c(s)

)
‖u0‖Hs(T;R), (1.12)

for some 0 < c(s) ≪ 1 for any t ∈ R.

We remark that (1.12) means that the Sobolev norms of the solutions of (1.11) do not increase in time. This
is due to the quasi-periodic dependence on time of the perturbation. One could consider also problems with more
general time dependence. However one expects to give at best an upper bound on the growth of the norms (see [6]).

We shall deduce Theorem 1 from Theorem 1.4 below. We first need to introduce some notations.

Functional space. Passing to the Fourier representation

u(ϕ, x) =
∑

j∈Z

uj(ϕ) e
ijx =

∑

ℓ∈Zν ,j∈Z

uℓj e
i(ℓ·ϕ+jx), uj(ϕ) = u−j(ϕ), uℓj = u−ℓ,−j , (1.13)

we define the Sobolev space

Hs :=
{
u(ϕ, x) ∈ L2(Tν+1;R) : ‖u‖2s :=

∑

ℓ∈Zν ,j∈Z\{0}

|uℓj|2〈ℓ, j〉2s < ∞
}

(1.14)

where 〈ℓ, j〉 := max{1, |ℓ|, |j|}, |ℓ| := ∑ν
i=1|ℓi|. We denote by Bs(r) the ball of radius r centered at the origin of

Hs.

Pseudo differential operators. Following [10] and [38] we give the following Definitions.

Definition 1.1. A linear operator A is called pseudo differential of order ≤ m if its action on any Hs(T) with

s ≥ m is given by

A
∑

j∈Z

uje
ijx =

∑

j∈Z

a(x, j)uje
ijx ,

where a(x, j), called the symbol of A, is the restriction to T×Z of a complex valued function a(x, ξ) which is C∞

smooth on T× R, 2π-periodic in x and satisfies

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−β , ∀ α, β ∈ N. (1.15)

We denote by A[·] = Op(a)[·] the pseudo operator with symbol a := a(x, j). We call OPSm the class of the

pseudo differential operator of order less or equal to m and OPS−∞ :=
⋂

m OPSm. We define the class Sm as

the set of symbols which satisfy (1.15).
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We will consider mainly operator acting on Hs(T) with a quasi-periodic time dependence. In the case of pseudo
differential operators this corresponds1 to consider symbols a(ϕ, x, ξ) with ϕ ∈ Tν . Clearly these operators can be
thought as acting on Hs(Tν+1).

Definition 1.2. Let a(ϕ, x, ξ) ∈ Sm and set A = Op(a) ∈ OPSm,

|A|m,s,α := max
0≤β≤α

sup
ξ∈R

‖∂β
ξ a(·, ·, ξ)‖s〈ξ〉−m+β . (1.16)

We will use also the notation |a|m,s,α := |A|m,s,α.

Note that the norm |·|m,s,α is non-decreasing in s and α. Moreover given a symbol a(ϕ, x) independent of ξ, the
norm of the associated multiplication operator Op(a) is just the Hs norm of the function a. If on the contrary the
symbol a(ξ) depends only on ξ, then the norm of the corresponding Fourier multipliers Op(a(ξ)) is just controlled
by a constant.

Linear operators. Let A : Tν → L(L2(T)), ϕ 7→ A(ϕ), be a ϕ-dependent family of linear operators acting on
L2(T). We consider A as an operator acting on Hs(Tν+1) by setting

(Au)(ϕ, x) = (A(ϕ)u(ϕ, ·))(x).

This action is represented in Fourier coordinates as

Au(ϕ, x) =
∑

j,j′∈Z

Aj′

j (ϕ)uj′ (ϕ) e
ijx =

∑

ℓ∈Zν ,j∈Z

∑

ℓ′∈Zν ,j′∈Z

Aj′

j (ℓ − ℓ′)uℓ′j′ e
i(ℓ·ϕ+jx). (1.17)

Note that for the pseudo differential operators defined above the norm (1.16) provides a quantitative control of the
action on Hs(Tν+1). Conversely, given a Töpliz in time operator A, namely such that its matrix coefficients (with
respect to the Fourier basis) satisfy

Aj′,l′

j,l = Aj′

j (l − l′) ∀j, j′ ∈ Z, l, l′ ∈ Z
ν , (1.18)

we can associate it a time dependent family of operators acting on Hs(T) by setting

A(ϕ)h =
∑

j,j′∈Z,ℓ∈Zν

Aj′

j (ℓ)hj′ e
ijxeiℓ·ϕ, ∀h ∈ Hs(T).

For m = 1, . . . , ν we define the operators ∂ϕmA(ϕ) as

(∂ϕmA(ϕ))u(ϕ, x) =
∑

ℓ∈Zν ,j∈Z

∑

ℓ′∈Zν ,j′∈Z

i(ℓ − ℓ′)Aj′

j (ℓ− ℓ′)uℓ′j′ e
i(ℓ·ϕ+jx), (1.19)

We say that A is a real operator if it maps real valued functions in real valued functions. For the matrix coefficients
this means that

Aj′

j (ℓ) = A−j′

−j (−ℓ).

Lipschitz norm. Fix ν ∈ N
∗ and let O be a compact subset of Rν . For a function u : O → E, where (E, ‖·‖E)

is a Banach space, we define the sup-norm and the lip-seminorm of u as

‖u‖supE := ‖u‖sup,OE := sup
ω∈O

‖u(ω)‖E, ‖u‖lipE := ‖u‖lip,OE := sup
ω1,ω2∈O,
ω1 6=ω2

‖u(ω1)− u(ω2)‖E
|ω1 − ω2|

. (1.20)

If E is finite dimensional, for any γ > 0 we introduce the weighted Lipschitz norm:

‖u‖γ,OE := ‖u‖sup,OE + γ‖u‖lip,OE . (1.21)

1since ω is diophantine we can replace the time variable with angles ϕ ∈ Tν . The time dependence is recovered by setting ϕ = ωt.
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If E is a scale of Banach spaces, say E = Hs, for γ > 0 we introduce the weighted Lipschitz norms

‖u‖γ,Os := ‖u‖sup,Os + γ‖u‖lip,Os−1 , ∀s ≥ [ν/2] + 3 (1.22)

where we denoted by [r] the integer part of r ∈ R. Similarly if A = Op(a(ω, ϕ, x, ξ)) ∈ OPSm is a family
of pseudo differential operators with symbols a(ω, ϕ, x, ξ) belonging to Sm and depending in a Lipschitz way on
some parameter ω ∈ O ⊂ Rν , we set

|A|γ,Om,s,α := sup
ω∈O

|A|m,s,α + γ sup
ω1,ω2∈O

|Op
(
a(ω1, ϕ, x, ξ)− a(ω2, ϕ, x, ξ)

)
|m,s−1,α

|ω1 − ω2|
. (1.23)

Hamiltonian linear operators. In the paper we shall deal with operators which are Hamiltonian according to the
following Definition.

Definition 1.3. We say that a linear map is symplectic if it preserves the 2-form Ω in (1.4); similarly we say that a

linear operator M is Hamiltonian if Mu is a linear hamltonian vector field w.r.t. Ω in (1.4). This means that each

J−1M is real symmetric. Similarly, we call a family of maps ϕ → A(ϕ) symplectic if for each fixed ϕ A(ϕ) is

symplectic, same for the Hamiltonians. We shall say that an operator of the form ω · ∂ϕ +M(ϕ) is Hamiltonian if

M(ϕ) is Hamiltonian.

Notation. We use the notation A ≤s B to denote A ≤ C(s)B where C(s) is a constant depending on some real
number s.

For ω ∈ O0 (see (1.6)) we consider (in order to keep the parallel with (1.10)) a quasi-periodic function εI ∈
C∞(Tν+1,R) such that, by possibly rescaling ε,

‖I‖γ,O0

s0+µ ≤ 1 , s0 := [ν/2] + 3 (1.24)

for some µ > 0 sufficiently large. We consider classes of linear Hamiltonian operators of the form

Lω = Lω(I) = ω · ∂ϕ − J ◦ (1 + a(ϕ, x)) +Q(ϕ), (1.25)

where a = a(ϕ, x) = a(I;ϕ, x) ∈ C∞(Tν+1,R) and

Q := Op(q)[·], q = q(I;ϕ, x, ξ) = q(ϕ, x, ξ) ∈ S−1. (1.26)

is Hamiltonian. We assume that a, q depend on the small quasi-periodic function εI ∈ C∞(Tν+1,R) (with I as in
(1.24)), as well as on ω ∈ O0 in a Lipschitz way and, for all s ≥ s0 we require that (recall (1.23))

‖a‖γ,O0
s + |q|γ,O0

−1,s,α ≤s ε‖I‖γ,O0

s+σ0
, (1.27)

for some σ0 > 0. If I1, I2 ∈ C∞(Tν+1,R) satisfy (1.24) we assume

‖∆12a‖p + |∆12q|−1,s,α ≤p ε‖I1 − I2‖p+σ0 , (1.28)

for any p ≤ s0 + µ− σ0 (µ > σ0), where we set ∆12a := a(I1;ϕ, x)− a(I2;ϕ, x) and similarly for ∆12q.

With this formulation our purpose is to diagonalize (in both space and time) the linear operator (1.25) with
changes of variables Hs(Tν+1) → Hs(Tν+1). Since Lω is Töpliz in time (see (1.18)), it turns out that these
transformations can be seen as a family of quasi-periodically time dependent maps acting on Hs(T).

Theorem 1 is a consequence of the following result.

Theorem 1.4 (Reducibility). Let γ ∈ (0, 1) and consider Lω in (1.25) with ω ∈ O0 satisfying (1.26)-(1.27) with

εγ−5/2 ≪ 1. Then there exists a sequence

dj = dj(I) := mj
4 + j2

1 + j2
+ rj , j ∈ Z \ {0} , rj ∈ R , rj = −r−j (1.29)

6



with m = m(ω, I), rj = rj(ω, I) well defined and Lipschitz for ω ∈ O0 with |m− 1|γ,O0, supj〈j〉 |rj |γ
3/2,O0 ≤

Cε , such that the following holds:

(i) for ω in the set O∞ = O∞(I) := Ω1 ∩ Ω2, where (τ ≥ 2ν + 6 )

Ω1 = Ω1(I) := {ω ∈ O0 : |ω · ℓ−mj| ≥ 2γ〈ℓ〉−τ , ∀j ∈ Z \ {0}, ℓ ∈ Z
ν} (1.30)

Ω2 = Ω2(I) := {ω ∈ O0 : |ω · ℓ+ dj − dk| ≥ 2γ3/2〈ℓ〉−τ , ∀j, k ∈ Z \ {0}, ℓ ∈ Z
ν , (j, k, ℓ) 6= (j, j, 0)},

(1.31)

there exists a linear, symplectic, bounded transformation Φ: O∞ ×Hs → Hs with bounded inverse Φ−1 such that

for all ω ∈ O∞

ΦLωΦ
−1 = ω · ∂ϕ −Dω, Dω := diagj 6=0(idj) ; (1.32)

(ii) the following tame estimates hold

‖Φ±1h‖γ3/2,O∞

s ≤s ‖h‖s + εγ−5/2‖I‖γ,O0

s+σ ‖h‖s0 ∀s ≥ s0 (1.33)

|O0 \ O∞| ≤ C γ Lν−1 , (1.34)

for some constants σ,C > 0 depending on τ, ν;

(iii) the map Φ is Töpliz in time and via (1.18) induces a bounded transformation of the phase space Hs(T;R)
depending quasi-periodically on time.

Let us briefly discuss how to deduce Theorem 1 from Theorem 1.4. Consider the equation

∂tu = Xω(ωt)u (1.35)

with Xω(ωt) in (1.10). The operator associated to (1.35) acting on quasi-periodic function is Lω = ω ·∂ϕ −Xω(ϕ)
which has the form (1.25) with Q(ϕ) = 0.

Under the action of the transformation v = Φ(ωt)u of the phase space Hs(T;R) depending quasi-periodically
on time the equation (1.35) is transformed into the linear equation

∂tv = Dωv, Dω = Φ(ωt)Xω(ωt)Φ
−1(ωt) + Φ(ωt)∂tΦ

−1(ωt). (1.36)

The operator associated to (1.36) is ΦLωΦ
−1 given in (1.32).

Let us makes some comments on the statement of our main result.

• If we consider a C∞ Hamiltonian perturbation of the DP equation, say adding to the Hamiltonian (1.2)
a term like

∫
T
f(u) dx, where the density f ∈ C∞(R,R), then the operator obtained by linearizing at a

quasi-periodic function has the same form of the operator Lω in (1.25).

• Along the reducibility procedure in order to deal with small divisor problems, we use that ω belongs to the
intersection of the sets (1.30), (1.31). We point out that the diophantine constants appearing in the first order
Melnikov conditions (1.30) and the second order ones (1.31) consist of different powers of a small constant
γ. This fact is crucial in view of the measure estimates of the sets (1.30) and (1.31), in particular for the proof
of Lemma 5.3.
Different scalings in γ for non-resonance conditions are typical in problems with (asymptotically) linear
dispersion such as the Klein-Gordon equation, see [41], [8].

As said above, the linear operator Lω depends on a smooth function I in a Lipschitz way. This dependence is
preserved by the reducibility procedure, in the following sense.

Lemma 1.5 (Parameter dependence). Consider I1, I2 ∈ C∞(Tν+1,R) satisfying (1.24). Under the assumptions

of Theorem 1.4 the following holds: for ω ∈ O∞(I1) ∩ O∞(I2) there is σ > 0 such that

|∆12m| ≤ ε‖I1 − I2‖s0+σ, sup
j
〈j〉|∆12rj | ≤ εγ−1‖I1 − I2‖s0+σ. (1.37)
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The above quantitative lemma is important in view of application to KAM for nonlinear PDEs. Moreover it
easily implies an approximate reducibility result, which in turns implies a control of Sobolev norms for long but
finite times for all the operators Lω(I) with I in a small ball.

Theorem 1.6 (Almost reducibility). Under the hypotheses of Theorem 1.4, consider I1, I2 ∈ C∞(Tν+1,R) and

assume that Lω(I1), Lω(I2) as in (1.25) satisfy (1.27)-(1.28). Assume moreover that (1.24) holds for I1, I2 and

sup
ω∈O0

‖I1 − I2‖s0+µ ≤ CρN−(τ+1) (1.38)

for N sufficiently large, 0 ≤ ρ < γ3/2/2. Then the following holds. For any ω ∈ O∞(I1) there exists a linear,

symplectic, bounded transformation ΦN with bounded inverse Φ−1
N such that

ΦNLω(I2)Φ
−1
N = ω · ∂ϕ −D(N)

ω +R(N), D(N)
ω := D(N)

ω (I2) := diagj 6=0(i d
(N)
j (I2)) . (1.39)

Here d
(N)
j (I2) has the form (1.29) for some m(N) = m(N)(I2) and r

(N)
j = r

(N)
j (I2) satisfying the bounds

|m(N)(I2)−m(I1)|+ 〈j〉|r(N)
j (I2)− rj(I1)| ≤ εC‖I1 − I2‖s0+µ + CεN−κ (1.40)

for some κ > τ and C > 0.

The remainder R(N) = J ◦ a(N) + Q(N) with a(N) ∈ C∞(Tν+1;R), Q(N) Töpliz in time, bounded on Hs,

Q(N)(ϕ) : Hs(Tν) → Hs+1(T), satisfying

‖a(N)‖γ,O∞(I1)
s ≤ εCN−κ‖I2‖γ,O0

s+µ , ‖Q(N)v‖s ≤ εCN−κ(‖v‖s + ‖I2‖s+µ‖v‖s0), ∀ v ∈ Hs. (1.41)

The maps ΦN ,Φ−1
N satisfy bounds like (1.33).

Remark 1.7. In order to prove the above theorem the main point is to show the inclusion O∞(I1) ⊂ Ω
(N)
1 ∩Ω

(N)
2 ,

where

Ω
(N)
1 = Ω

(N)
1 (I2) := {ω ∈ O0 : |ω · ℓ−m(N) j| ≥ 2(γ − ρ)

〈ℓ〉τ , ∀j ∈ Z \ {0}, |ℓ| ≤ N}, (1.42)

Ω
(N)
2 = Ω

(N)
2 (I2) := {ω ∈ O0 : |ω · ℓ+ d

(N)
j − d

(N)
k | ≥ 2(γ3/2 − ρ)

〈ℓ〉τ , ∀j, k ∈ Z \ {0}, |ℓ| ≤ N}. (1.43)

One can deduce the following dynamical consequence.

Corollary 1.8. Under the Hypotheses of Theorem 1.6 consider the Cauchy problem

{
∂tu = J ◦ (1 + a(I;ϕ, x))u −Q(I;ϕ)u,

u(0, x) = u0(x) ∈ Hs(T;R), s ≫ 1.
(1.44)

Consider I1 as in Theorem 1.6 and ω ∈ O∞(I1) (which is given in Theorem 1.4). Then for any I in the ball (1.38),
(1.44) admits a unique solution which satisfies

sup
t∈[−TN ,TN ]

‖u(t, ·)‖Hs(T;R) ≤
(
1 + c(s)

)
‖u0‖Hs(T;R), (1.45)

for some 0 < c(s) ≪ 1 and some TN ≥ ε−1Nκ. Finally, if I = I1 the bound (1.45) holds for all times.

1.1 Strategy of the proof

In [3] Baldi-Berti-Montalto developed a strategy for the reducibility of a quasi-periodically forced linear opera-
tors, as a fundamental step in constructing quasi-periodic solutions for non-linear PDEs, via a Nash-Moser/ KAM
scheme. Indeed, the main point in the Nash-Moser scheme is to obtain tame estimates on high Sobolev norms
of the inverse of the linearized operator at a sequence of quasi-periodic approximate solutions. Given a diagonal
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operator, its inverse can be bounded in any Sobolev norm by giving lower bounds on the eigenvalues. Therefore, if
an operator is reducible, the estimates on the inverse follow from corresponding tame bounds on the diagonalizing
changes of variables, see for instance (1.33). Note that in order to use (1.33) in a Nash-Moser scheme, the crucial
point is that the s-Sobolev norm of Φ is controlled by the (s + σ)-Sobolev norm I where σ is fixed or at least
σ = σ(s) with σ < s.

The main idea in the reducibility procedure of [3] is to perform two steps.
The first step consists in applying a quasi-periodically depending on time change of coordinates which conjugates
Lω to an operatorL+

ω which is the sum of a diagonal unbounded part and a bounded, possibly smoothing, remainder.
This is called the regularization procedure and, in fact, reduces the reducibility issue to a semilinear case.
The second step consists in performing a KAM-like scheme which completes the diagonalization of L+

ω .

Step one. The operator Lω differs from the transport operator considered in [24] by a regularizing pseudo differ-
ential operator. Then, in order to make the coefficient of the leading order constant one can apply a map

Tβu(ϕ, x) = u(ϕ, x+ β(ϕ, x)). (1.46)

If we choose β correctly, this map conjugates Lω to constant coefficients plus a bounded remainder. Such a map
however is clearly not symplectic. In order to find the symplectic equivalent of this transformation we study the
flow of the hyperbolic PDE 




∂τΨ
τ (u) = (J ◦ b)Ψτ (u), b :=

β

1 + τβx

Ψ0u = u,

(1.47)

which is generated by the Hamiltonian

S(τ, ϕ, u) =

∫
b(τ, ϕ, x)u2dx.

By construction if the flow of (1.47) is well defined then it is symplectic.
First, in Proposition 3.1 we show that Ψτ is the composition of

Aτu := (1 + τβx)u(ϕ, x+ τβ(ϕ, x))

with a pseudo differential operator O plus a remainder. O is one smoothing in the x variable, while the remainder
is ρ-smoothing in the x variable for some very large ρ.

Remark 1.9. We point out that the strategy used in Proposition 3.1 for constructing of the symplectic version of the

torus diffeomorphism is applicable for more general symplectic structure, provided that J is pseudo differential.

Next, we study how the map Ψτ conjugatesLω ; this is the content of Proposition 3.5. Egorov’s theorem ensures
that the main order of the conjugated operator ΨτLω(Ψ

τ )−1 is

a+(ϕ, x) := −(ω · ∂ϕβ̃)(ϕ, x+ β(ϕ, x)) + (1 + a(ϕ, x+ β(ϕ, x)))(1 + β̃x(ϕ, x+ β(ϕ, x))) − 1

where x + β̃(ϕ, x) is the inverse of the diffeomorphism of the torus x 7→ x + β(ϕ, x). The function β is chosen
as the solution of a quasi-periodic transport equation a+(ϕ, x) = const. This equation has been treated in [24] and
the Corollary 3.6 in [24] gives the right β with estimates.
The map Ψτ is the flow of a hyperbolic PDE, hence the Egorov theorem guarantees that ΨτLω(Ψ

τ )−1 is again a
pseudo differential operator, whose leading order is constant. The fact that Ψτ is symplectic also ensures that the
zero order terms vanish and the non-constant coefficients terms are one smoothing in the x- variables.
In order to have sufficiently good bounds on the symbol of the transformed operator, we provide a quantitative
version of the Egorov theorem (see Theorem 3.4 in Section 3). As before, the idea is to express such operator as
a pseudo-differential term (whose symbol we can be bounded in a very precise way) plus a remainder which is
ρ-smoothing in the x variable for some very large ρ.
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The Egorov theorem regards the conjugation of a pseudo differential operator P0 = Op(p0) ∈ OPSm by the flow
of a linear pseudo differential vector field Xu = Op(χ)u of order d with d ∈ (0, 1]. It is well known that the
transformed operator P (τ) = Op(p(τ)) ∈ OPSm satisfies the Heisenberg equation

∂τP = [X, P ] (1.48)

(see (3.50)) and that the symbol p(τ) satisfies ∂τp = {p, χ}M , where {·, ·}M are the Moyal brackets. The proof
consists in making the ansatz that the new symbol p can be written as sum of decreasing symbols p =

∑
i≤m pi (see

(3.51)) and solving the Heisenberg equation order by order. This gives a set of triangular ODEs for the symbols pi
(see (3.52)). The r.h.s of (1.48) is of order m + d − 1, hence if d < 1 the leading order symbol pm(τ) = p0. The
remaining terms are easily computable by iteration. A detailed discussion of the case d = 1/2 can be found in [10]
and [2].
If d = 1 then the equation for pm is a Hamilton equation with Hamiltonian χ, hence pm(τ) is given by p0 trans-
ported by the flow of the Hamiltonian χ (see (3.56)). Consequently the symbols pi, i < m, are given by ODE of
the same kind but with forcing terms. We need to control the norms |pi|i,s,α with the norm |p0|m,s+σ1,α+σ2 with
σ1 + σ2 < s. This requires some careful analysis (see Lemma 3.3).

Before stating the main regularization theorem let us briefly describe our class of remainders i.e. operators
which are sufficiently smoothing in the x-variable that they can be ignored in the pseudo-differential reduction, and
are diagonalized in the KAM scheme. We call such remainders Lρ,p (for some ρ ≥ 3, p ≥ s0). Roughly speaking
we require that an operatorR in Lρ,p is tame as a bounded operator on Hs and ρ-regularizing in space; moreover its
derivatives in ϕ of order b ≤ ρ− 2 are tame and (ρ− b)-regularizing in space. This definition is made quantitative
by introducing constants Mγ

R(s, b), see Definition 2.8 in Section 2.
The most important features of this class are that it is closed for conjugation by maps Tβ as in (1.46) and that any
R in Lρ,p is modulo-tame and hence can be diagonalized by a KAM procedure.

Theorem 1.10 (Regularization). Let ρ ≥ 3 and consider Lω in (1.25). There exist µ1 ≥ µ2 > 0 such that, if

condition (1.24) is satisfied with µ = µ1 then the following holds for all p ≤ s0 + µ1 − µ2.

There exists a constant m(ω) which depend in a Lipschitz way w.r.t. ω ∈ O0, satisfying

|m− 1|γ,O0 ≤ Cε, (1.49)

such that for allω in the set Ω1(I) (see (1.30)) there exists a real bounded linear operatorΦ1 = Φ1(ω) : Ω1×Hs →
Hs such that

L+
ω := Φ1LωΦ

−1
1 = ω · ∂ϕ −mJ +R. (1.50)

The constant m depends on I and for ω ∈ Ω1(I1) ∩ Ω1(I2) one has

|∆12m| ≤ ε‖I1 − I2‖s0+µ1 , (1.51)

where ∆12m := m(I1) − m(I2). The remainder in (1.50) has the form R = Op(r) + R̂ where r ∈ S−1, R̂
belongs to Lρ,p (see Def. 2.8) and

|r|γ,Ω1

−1,s,α +M
γ

R̂
(s, b) ≤s,α εγ−1‖I‖γ,O0

s+µ1
, 0 ≤ b ≤ ρ− 2,

|∆12r|−1,p,α +M∆12R(p, b) ≤p,α εγ−1‖I1 − I2‖s0+µ1 0 ≤ b ≤ ρ− 3.
(1.52)

Moreover if u = u(ω) depends on ω ∈ Ω1 in a Lipschitz way then

‖Φ±1
1 u‖γ,Ω1

s ≤s ‖u‖γ,Ω1
s + εγ−1‖I‖γ,O0

s+µ1
‖u‖γ,Ω1

s0 . (1.53)

Finally Φ1, Φ−1
1 are symplectic (according to Def. 1.3).

Step two. We apply a KAM algorithm which diagonalizes L+
ω . As in the first step, an important point is to imple-

ment such algorithm by requiring only a smallness condition on a low norm of the remainder of the regularization
procedure. Hence in order to achieve estimates on high Sobolev norms for the changes of variables it is not suf-
ficient that the non- diagonal terms are bounded. To this purpose, following [2], we work in the class of modulo
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tame operators (see Def. (2.6)), more precisely we need that R in (1.50) is modulo tame and one smoothing in the
x-variable together with its derivatives in times up to some sufficiently large order, this follows from our definition
of Lρ,p and properties of pseudo-differential operators, see Lemma A.4. Our strategy is mostly parallel to [2], hence
we give only a sketch of the proof for completeness.

Theorem 1.11. (Diagonalization) Fix S > s0. Assume that ω 7→ I(ω) is a Lipschitz function defined on O0,

satisfying (1.24) with µ ≥ µ1 where µ1 := µ1(ν) is given in Theorem 1.10. Then there exists δ0 ∈ (0, 1), N0 > 0,

C0 > 0, such that, if

NC0
0 εγ− 5

2 ≤ δ0, (1.54)

then the following holds.

(i) (Eigenvalues). For all ω ∈ O0 there exists a sequence

dj(ω) := dj(ω, I(ω)) := m(ω) j
4 + j2

1 + j2
+ rj(ω), j 6= 0, (1.55)

with m in (1.49). Furthermore, for all j 6= 0

sup
j
〈j〉|rj |γ

3
2 ,O0 < Cε, rj = −r−j (1.56)

for some C > 0. All the eigenvalues idj are purely imaginary.

(ii) (Conjugacy). For all ω in the set O∞ := Ω1(I) ∩ Ω2(I) (see (1.30), (1.31)) there is a real, bounded, invert-

ible, linear operator Φ2(ω) : H
s → Hs, with bounded inverse Φ−1

2 (ω), that conjugates L+
ω in (1.50) to constant

coefficients, namely

L∞(ω) := Φ2(ω) ◦ L+
ω ◦ Φ−1

2 (ω) = ω · ∂ϕ +D(ω), D(ω) := diagj 6=0{idj(ω)}. (1.57)

The transformations Φ2,Φ
−1
2 are symplectic, tame and they satisfy for s0 ≤ s ≤ S

‖(Φ±1
2 − I)h‖γ3/2,O∞

s ≤s

(
εγ−3/2 + εγ−5/2‖I‖γ,O0

s+µ

)
‖h‖γ3/2,O∞

s0 + εγ−3/2‖h‖γ3/2,O∞

s . (1.58)

with h = h(ω). Moreover, for ω ∈ O∞(I1) ∩ O∞(I2) we have the following bound for some σ > 0:

sup
j
〈j〉|∆12rj | ≤ εγ−1‖I1 − I2‖s0+σ. (1.59)

It remains to prove measure estimates for the Cantor set O∞ = Ω1 ∩Ω2. In Section 5 we prove the following.

Theorem 1.12 (Measure estimates). Let O∞ be the set of parameters in (1.30)-(1.31). For some constant C > 0
one has that

|O0 \ O∞| ≤ CγLν−1. (1.60)

We discuss the key ideas to prove the above result. Recalling (1.30)-(1.31) we may write

O0 \ O∞ =
⋃

ℓ∈Zν ,j,k∈Z\{0}

(
Rℓjk ∪Qℓj

)
(1.61)

where
Rℓjk := {ω ∈ O0 : |ω · ℓ+ dj − dk| < 2 γ3/2 〈ℓ〉−τ},
Qℓj := {ω ∈ O0 : |ω · ℓ+mj| < 2γ〈ℓ〉−τ}

(1.62)

where dj are given in (1.55). Since, by (1.6) and γ > γ3/2, Rℓjk = ∅ for j = k, in the sequel we assume that
j 6= k.
The strategy of the proof of Theorem 1.12 is the following.

(i) Since the union in (1.61) runs over infinite numbers of indices ℓ, j, k, we first need some relation between them
which is given in Lemma 5.1. Note that, since the dispersion law j 7→ j(1 + j2)−1(4 + j2) is asymptotically
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linear, for fixed ℓ there are infinitely many non-empty bad sets Rℓjk to be considered. It is well known that if the
dispersion law grows as jd, d > 1 as j → ∞ then, thanks to good separation properties of the linear frequencies,
there are only a finite number of sets to be considered for any fixed ℓ ∈ Z

ν . This is the key difficulty to deal with.

(ii) We provide the estimates of each “bad” set in (1.62) when ℓ ∈ Zν , j, k ∈ Z \ {0}. This is done in Lemma 5.2.

(iii) We deal with the problem of the summability in j, k. We show (in Lemma 5.3) that, if |k|, |j| ≫ |ℓ|, then the
sets Rℓ,j,k are included in sets of type Qℓ,j−k, which depends only on the difference j−k and so are finite for fixed
ℓ.

2 Functional Setting

In this Section we introduce some notations, definitions and technical tools which will be used along the paper. In
particular we introduce rigorously the spaces and the classes of operators on which we work.

We refer to the Appendix A in [24] for technical lemmata on the tameness properties of the Lipschitz and
Sobolev norms in (1.14),(1.22).

Linear Tame operators.

Definition 2.1 (σ-Tame operators). Given σ ≥ 0 we say that a linear operator A is σ-tame w.r.t. a non-decreasing

sequence {MA(σ, s)}Ss=s0 (with possibly S = +∞) if:

‖Au‖s ≤ MA(σ, s)‖u‖s0+σ +MA(σ, s0)‖u‖s+σ u ∈ Hs, (2.1)

for any s0 ≤ s ≤ S. We call MA(σ, s) a TAME CONSTANT for the operator A. When the index σ is not relevant

we write MA(σ, s) = MA(s).

Definition 2.2 (Lip-σ-Tame operators). Let σ ≥ 0 and A = A(ω) be a linear operator defined for ω ∈ O ⊂ Rν .

Let us define

∆ω,ω′A :=
A(ω)−A(ω′)

|ω − ω′| , ω, ω′ ∈ O. (2.2)

Then A is Lip-σ-tame w.r.t. a non-decreasing sequence {MA(σ, s)}Ss=s0 if the following estimate holds

sup
ω∈O

‖Au‖s, γ sup
ω 6=ω′

‖(∆ω,ω′A)‖s−1 ≤s M
γ
A(σ, s)‖u‖s0+σ +M

γ
A(σ, s)‖u‖s+σ, u ∈ Hs, (2.3)

We call M
γ
A(σ, s) a LIP-TAME CONSTANT of the operator A. When the index σ is not relevant we write

M
γ
A(σ, s) = M

γ
A(s).

Modulo-tame operators and majorant norms. The modulo-tame operators are introduced in Section 2.2 of
[10]. Note that we are interested only in the Lipschitz variation of the operators respect to the parameters of the
problem whereas in [10] the authors need to control also higher order derivatives.

Definition 2.3. Let u ∈ Hs, s ≥ 0, we define the majorant function u(ϕ, x) :=
∑

ℓ∈Zν ,j∈Z
|uℓj|ei(ℓ·ϕ+jx). Note

that ‖u‖s = ‖u‖s.

Definition 2.4 (Majorant operator). Let A ∈ L(Hs) and recall its matrix representation (1.17). We define the

majorant matrix A as the matrix with entries

(A)j
′

j (ℓ) := |(A)j
′

j (ℓ)| j, j′ ∈ Z, ℓ ∈ Z
ν .

We consider the majorant operatorial norms

‖M‖L(Hs) := sup
‖u‖s≤1

‖Mu‖s. (2.4)
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We have a partial ordering relation in the set of the infinite dimensional matrices, i.e. if

M � N ⇔ |M j′

j (ℓ)| ≤ |N j′

j (ℓ)| ∀j, j′, ℓ ⇒ ‖M‖L(Hs) ≤ ‖N‖L(Hs) , ‖Mu‖s ≤ ‖M u‖s ≤ ‖N u‖s. (2.5)

Since we are working on a majorant norm we have the continuity of the projections on monomial subspace, in
particular we define the following functor acting on the matrices

ΠKM :=

{
M j′

j (ℓ) if |ℓ| ≤ K,

0 otherwise
Π⊥

K := I−ΠK .

Finally we define for b0 ∈ N

(〈∂ϕ〉b0M)j
′

j (ℓ) = 〈ℓ〉b0M j′

j (ℓ). (2.6)

If A = A(ω) is an operator depending on a parameter ω, we control the Lipschitz variation, see formula 2.2. In the
sequel let 1 > γ > γ3/2 > 0 be fixed constants.

Definition 2.5 (Lip-σ-modulo tame). Let σ ≥ 0. A linear operator A := A(ω), ω ∈ O ⊂ Rν , is Lip-σ-modulo-

tame w.r.t. an increasing sequence {M♯,γ3/2

A (s)}Ss=s0 if the majorant operators A,∆ω,ω′A are Lip-σ-tame w.r.t.

these constants, i.e. they satisfy the following weighted tame estimates: for σ ≥ 0, for all s ≥ s0 and for any

u ∈ Hs,

sup
ω∈O

‖Au‖s, sup
ω 6=ω′∈O

γ3/2‖∆ω,ω′Au‖s ≤ M
♯,γ3/2

A (σ, s0)‖u‖s+σ +M
♯,γ3/2

A (σ, s)‖u‖s0+σ (2.7)

where the functions s 7→ M
♯,γ3/2

A (σ, s) ≥ 0 are non-decreasing in s. The constant M
♯,γ3/2

A (σ, s) is called

the MODULO-TAME CONSTANT of the operator A. When the index σ is not relevant we write M
♯,γ3/2

A (σ, s) =

M
♯,γ3/2

A (s).

Definition 2.6. We say that A is Lip-−1-modulo tame if 〈Dx〉1/2A〈Dx〉1/2 is Lip-0-modulo tame. We denote

M
♯,γ3/2

A (s) := M
♯,γ3/2

〈Dx〉1/2A〈Dx〉1/2
(0, s), M

♯,γ3/2

A (s, a) := M
♯,γ3/2

〈∂ϕ〉a〈Dx〉1/2A〈Dx〉1/2
(0, s), a ≥ 0. (2.8)

In the following we shall systematically use −1 modulo-tame operators. We refer the reader to Appendix A.1
for the properties of Tame and Modulo-tame operators.

Pseudo differential operators properties. We now collect some classical results about pseudo differential oper-
ators introduced in Def. 1.1 adapted to our setting.

Composition of pseudo differential operators. One of the fundamental properties of pseudo differential oper-
ators is the following: given two pseudo differential operators Op(a) ∈ OPSm and Op(b) ∈ OPSm′

, for some
m,m′ ∈ R, the composition Op(a) ◦Op(b) is a pseudo differential operator of order m+m′. In particular

Op(a) ◦Op(b) = Op(a#b), (2.9)

where the symbol of the composition is given by

(a#b)(x, ξ) =
∑

j∈Z

a(x, ξ + j)b̂j(ξ)e
ijx =

∑

k,j∈Z

âk−j(ξ + j)b̂j(ξ)e
ikx. (2.10)

Here the ·̂ denotes the Fourier transform of the symbols a(x, ξ) and b(x, ξ) in the variable x. The symbol a#b has
the following asymptotic expansion: for any N ≥ 1 one can write

(a#b)(x, ξ) =

N−1∑

n=0

1

n!in
∂n
ξ a(x, ξ)∂

n
x b(x, ξ) + rN (x, ξ), rN ∈ Sm+m′−N ,

rN (x, ξ) =
1

(N − 1)!iN

∫ 1

0

(1 − τ)N
∑

j∈Z

(∂N
ξ a)(x, ξ + τj)∂̂N

x b(j, ξ)eijxdτ.

(2.11)
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Definition 2.7. Let N ∈ N, 0 ≤ k ≤ N , a ∈ Sm and b ∈ Sm′

, we define (see (2.11))

a#kb :=
1

k!ik
(∂k

ξ a)(∂
k
xb), a#<Nb :=

N−1∑

k=0

a#kb, a#≥Nb := rN . (2.12)

Adjoint operator. Let A := Op(a) ∈ OPSm. Then its L2-adjoint A∗ is a pseudo differential operator such that

A∗ = Op(a∗), a∗(x, ξ) =
∑

j∈Z

âj(ξ − j)eijx. (2.13)

Parameter family of pseudo differential operators. We shall deal also with pseudo differential operators de-
pending on parameters ϕ ∈ Tν :

(Au)(ϕ, x) =
∑

j∈Z

a(ϕ, x, j)uje
ijx, a(ϕ, x, j) ∈ Sm.

The symbol a(ϕ, x, ξ) is C∞ smooth also in the variable ϕ. We still denote A := A(ϕ) = Op(a(ϕ, ·)) = Op(a).
For the symbols of the composition operator with Op(b(ϕ, x, ξ)) and the L2-adjoint we have the following formulas

(a#b)(ϕ, x, ξ) =
∑

j∈Z

a(ϕ, x, ξ + j)b̂(ϕ, j, ξ) eijx =
∑

j,j′∈Z,
ℓ,ℓ′∈Z

ν

â(ℓ− ℓ′, j′ − j, ξ + j)b̂(ℓ′, j, ξ) ei(ℓ·ϕ+jx),

a∗(ϕ, x, ξ) =
∑

j∈Z

â(ϕ, j, ξ − j) eijx =
∑

ℓ∈Zν ,j∈Z

â(ℓ, j, ξ − j) ei(ℓ·ϕ+jx).

(2.14)

Classes of Smoothing Remainders. The KAM scheme performed in Section 4 is based on an abstract reducibility
algorithm which works in the space of modulo-tame operators. In order to control the majorant norm (2.4) of the
remainder of the regularization procedure it is useful to introduce a class of linear “tame” smoothing operators.

Definition 2.8. Fix s0 ≥ (ν + 1)/2 and p, S ∈ N with s0 ≤ p < S with possibly S = +∞. Fix ρ ∈ N, with

ρ ≥ 3 and consider any subset O of Rν . We denote by Lρ,p = Lρ,p(O) = Lρ,p(O) the set of the linear operators

A = A(ω) : Hs(Tν+1) → Hs(Tν+1), ω ∈ O with the following properties:

• the operator A is Lipschitz in ω,

• the operators ∂~bϕA, [∂~bϕA, ∂x], for all ~b = (b1, . . . , bν) ∈ Nν with 0 ≤ |~b| ≤ ρ− 2 have the following properties,

for any s0 ≤ s ≤ S, with possibly S = +∞:

(i) for any m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− |~b| one has that the operator 〈Dx〉m1∂~bϕA〈Dx〉m2 is

Lip-0-tame according to Def. 2.2 and we set

M
γ

∂~bϕA
(−ρ+ |~b|, s) := sup

m1+m2=ρ−|~b|
m1,m2≥0

M
γ

〈Dx〉m1∂~bϕA〈Dx〉m2
(0, s); (2.15)

(ii) for any m1,m2 ∈ R, m1,m2 ≥ 0 and m1 + m2 = ρ − |~b| − 1 one has that 〈Dx〉m1 [∂~bϕA, ∂x]〈Dx〉m2 is

Lip-0-tame according to Def. 2.2 and we set

M
γ

[∂~bϕA,∂x]
(−ρ+ |~b|+ 1, s) := sup

m1+m2=ρ−|~b|−1
m1,m2≥0

M
γ

〈Dx〉m1 [∂~bϕA,∂x]〈Dx〉m2
(0, s). (2.16)

We define for 0 ≤ b ≤ ρ− 2

M
γ
A(s, b) := max

0≤|~b|≤b

max

(
M

γ

∂~bϕA
(−ρ+ |~b|, s),Mγ

∂~bϕ[A,∂x]
(−ρ+ |~b|+ 1, s)

)
. (2.17)
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Assume now that the set O and the operator A depend on i = i(ω), and are well defined for ω ∈ O0 ⊆ Ωε for all i
satisfying (1.24). We consider i1 = i1(ω), i2 = i2(ω) and for ω ∈ O(i1) ∩ O(i2) we define

∆12A := A(i1)−A(i2). (2.18)

We require the following:

• The operators ∂~bϕ∆12A, [∂~bϕ∆12A, ∂x], for 0 ≤ |~b| ≤ ρ− 3, have the following properties, for any s0 ≤ s ≤ S,

with possibly S = +∞:

(iii) for any m1,m2 ∈ R, m1,m2 ≥ 0 and m1 + m2 = ρ − |~b| − 1 one has that 〈Dx〉m1∂~bϕ∆12A〈Dx〉m2 is

bounded on Hp into itself. More precisely there is a positive constant N∂~bϕ∆12A
(−ρ+ |~b|+ 1, p) such that,

for any h ∈ Hp, we have

sup
m1+m2=ρ−|~b|−1

m1,m2≥0

‖〈Dx〉m1∂
~b
ϕ∆12A〈Dx〉m2h‖p ≤ N∂~bϕ∆12A

(−ρ+ |~b|+ 1, p)‖h‖p; (2.19)

(iv) for any m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ − |~b| − 2 one has that 〈Dx〉m1 [∂~bϕ∆12A, ∂x]〈Dx〉m2

is bounded on Hp into itself. More precisely there is a positive constant N[∂~bϕ∆12A,∂x]
(−ρ+ |~b|+ 2, p) such

that for any h ∈ Hp one has

sup
m1+m2=ρ−|~b|−2

m1,m2≥0

‖〈Dx〉m1 [∂
~b
ϕ∆12A, ∂x]〈Dx〉m2h‖p ≤ N[∂~bϕ∆12A,∂x]

(−ρ+ |~b|+ 2, p)‖h‖p. (2.20)

We define for 0 ≤ b ≤ ρ− 3

M∆12A(p, b) := max
0≤|~b|≤b

max
(
N∂~bϕ∆12A

(−ρ+ |~b|+ 1, p),N∂~bϕ[∆12A,∂x]
(−ρ+ |~b|+ 2, p)

)
. (2.21)

By construction one has that M
γ
A(s, b1) ≤ M

γ
A(s, b2) if b1 ≤ b2 ≤ ρ− 2 and M∆12A(p, b1) ≤ M∆12A(p, b2)

if b1 ≤ b2 ≤ ρ− 3.

For the properties of the classes of operators we introduced above, we refer to Appendix B.1.

3 Regularization procedure

The aim of this section is to prove Theorem 1.10.

3.1 Flow of hyperbolic Pseudo differential PDEs

First we analyze the structure of the flow map that we use to conjugate the operator (1.25) to a diagonal operator
plus a smoothing term.

We study the flow Ψτ of the vector field generated by the Hamiltonian

S(τ, ϕ, u) =
1

2

∫
b(τ, ϕ, x)u2dx b(τ, ϕ, x) :=

β(ϕ, x)

1 + τβx(ϕ, x)
(3.1)

and β is some smooth function. We first need to show that Ψτ is well defined as map on Hs (see Proposition 3.1).
Then we study the structure of ΨτLω(Ψ

τ )−1, see Proposition 3.5.
The flow associated to the Hamiltonian (3.1) is given by

∂τΨ
τ (u) = (J ◦ b)Ψτ (u), Ψ0u = u, (3.2)
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where b(τ, ϕ, x) is defined in (3.1) with β ∈ C∞(Tν+1) to be determined.
In the following proposition we prove that the flow of (3.2) Ψτ = Cτ ◦ Aτ , where Aτ is the operator

Aτh(ϕ, x) := (1 + τβx(ϕ, x))h(ϕ, x + τβ(ϕ, x)), ϕ ∈ T
ν , x ∈ T,

(Aτ )−1h(ϕ, y) := (1 + β̃y(τ, ϕ, y))h(ϕ, y + β̃(τ, ϕ, y)), ϕ ∈ T
ν , y ∈ T,

(3.3)

where β̃(τ ;x, ξ) is such that

x 7→ y = x+ τβ(ϕ, x) ⇔ y 7→ x = y + β̃(τ, ϕ, x), τ ∈ [0, 1],

and Cτ is the sum of a pseudo differential operator of order −1 with a smoothing remainder belonging to the class
Lρ,p for any ρ ∈ N, ρ ≥ 3, s0 ≤ p ≤ p0(ρ) provided that β satisfies an appropriate ρ-smallness condition (see
(3.6)).

First we define

Λ := (1− ∂xx)
−1, X := ∂x ◦ b b :=

β

1 + τβx
. (3.4)

We remark that the torus diffeomorphism Aτ satisfies

∂τAτ = XAτ , A0 = I. (3.5)

We refer to the Appendix B.2 for some properties of the operator Aτ in (3.3).

Proposition 3.1. Let O ⊆ R
ν be a compact set. Fix ρ ≥ 3, S > s0 large enough and consider a function

β := β(ω, I(ω)) ∈ C∞(Tν+1), Lipschitz in ω ∈ O and in the variable I. There exist σ1 = σ1(ρ) > 0 σ1 ≥ σ̃ =
σ̃(ρ) > 0 and 1 > δ = δ(ρ,S) > 0 such that if

‖β‖γ,Os0+σ1
≤ δ, (3.6)

then, for any ϕ ∈ Tν , the equation (3.2) has a unique solution Ψτ (ϕ) in the space

C0([0, 1];Hs
x) ∩ C1([0, 1];Hs−1

x ), ∀s0 ≤ s ≤ S.

Moreover, for any s0 ≤ p ≤ s0 + σ1 − σ̃, one has Ψτ = Aτ ◦ Cτ where Aτ is defined in (3.3) and

Cτ = Θτ +Rτ (ϕ), Θτ := Op(1 + ϑ(τ, ϕ, x, ξ)) (3.7)

with (recall (1.16)), for any s ≥ s0,

|ϑ|γ,O−1,s,α ≤s,α,ρ ‖β‖γ,Os+σ1
, |∆12ϑ|−1,p,α≤p,α,ρ ‖∆12β‖p+σ1 . (3.8)

and Rτ (ϕ) ∈ Lρ,p(O) (see Def. 2.8) with, for s0 ≤ s ≤ S,

M
γ
Rτ (s, b) ≤s,α,ρ ‖β‖γ,Os+σ1

, 0 ≤ b ≤ ρ− 2, M∆12Rτ (p, b) ≤p,ρ ‖∆12β‖p+σ1 , 0 ≤ b ≤ ρ− 3. (3.9)

Proof. Let us reformulate the problem (3.2) as Ψτ = Aτ ◦ Cτ where Cτ := (Aτ )−1 ◦ Ψτ satisfies the following
system

∂τC
τu = LτCτu, C0u = u, (3.10)

where Lτ = Op(l(τ, ϕ, x, ξ)) is a pseudo differential operator of order −1 of the form

Lτ := Aτ
(
3Λ∂x ◦ b(τ)

)
(Aτ )−1 = −

(
I− ΛR

)−1

◦ Λ ◦ g(τ, ϕ, x) ◦ ∂x ◦ β̃(ϕ, x) (3.11)

where (recall (3.4))

g(τ, ϕ, x) := 3(1 + β̃2
x(ϕ, x)), R := Op(f0(ϕ, x) + f1(ϕ)iξ),

f0(ϕ, x) := β̃2
x + 2β̃x − (1 + β̃2

x)

2
∂xx

(
1

(1 + β̃x)2

)
, f1(ϕ, x) := −3

2
(1 + β̃x)

2 ∂x

(
1

(1 + β̃x)2

)
.

(3.12)
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Analysis of Lτ . The following estimates hold

‖g‖γ,Os ≤s (1 + ‖β‖γ,Os+1‖β‖γ,Os0+1), ‖f0‖γ,Os + ‖f1‖γ,Os + |f0 + f1 iξ|γ,O1,s,α ≤s ‖β‖γ,Os+3,

‖∆12g‖p + ‖∆12f0‖p + ‖∆12f1‖p ≤p ‖∆12β‖p+3

(3.13)

By the fact that Lτ in (3.11) is one smoothing in space, the problem (3.10) is locally well-posed in Hs(Tx). By the
composition Lemma B.4 we have that I− ΛR = I− (Op(r) +R) with (see (3.13))

|r|γ,O−1,s,α ≤s,α,ρ ‖β‖γ,Os+σ0
, M

γ
R(s, b) ≤s,ρ ‖β‖γ,Os+σ0

, 0 ≤ b ≤ ρ− 2, (3.14)

|∆12r|−1,p,α ≤p,α,ρ ‖β‖p+σ0 M∆12R(p, b) ≤p,ρ ‖β‖p+σ0 , 0 ≤ b ≤ ρ− 3 (3.15)

for some σ0 > 0. By Lemma B.8, Lemma B.4 and (3.14) we have that (I−ΛR)−1 = I+Op(r̃)+R̃, Λ◦g◦∂x◦β̃ =
Op(d) + Qρ with bounds on the symbols and the tame constants similar to (3.14), (3.15) with possibly larger σ0.
Then

Lτ =(I + Op(r̃) + R̃) ◦ (Op(d) +Qρ)
Lemma B.4

= Op(l) +Rρ

where
|l|γ,O−1,s,α ≤s,α,ρ ‖β‖γ,Os+σ̃1

, |∆12l|−1,p,α ≤p,ρ ‖∆12β‖p+σ̃1 . (3.16)

M
γ
Rρ

(s, b) ≤s,ρ ‖β‖γ,Os+σ̃1
, 0 ≤ b ≤ ρ− 2, M∆12Rρ(p, b) ≤p,ρ ‖∆12β‖p+σ̃1 , 0 ≤ b ≤ ρ− 3, (3.17)

for some constant σ̃1 = σ̃1(ρ). Note that in principle we get a slightly different constant in each inequality, we are
just taking the biggest of them for simplicity.

Approximate solution of (3.10). Now we look for an approximate solution Θτ = Op(1 + ϑ(τ, ϕ, x, ξ)) for the
system (3.10). In order to do that we look for a symbol ϑ =

∑ρ−1
k=1 ϑ−k(τ, ϕ, x, ξ) such that

∂τϑ = l + l#ϑ+ S−ρ, ϑ(0, ϕ, x, ξ) = 0.

We solve it recursively as follows:
{
∂τϑ−1 = l,

ϑ−1(0, ϕ, x, ξ) = 0,

{
∂τϑ−k = r−k, 1 < k ≤ ρ− 1

ϑ−k(0, ϕ, x, ξ) = 0,
(3.18)

where

r−k :=

k−1∑

j=1

l#k−1−jϑ−j ∈ S−k. (3.19)

Hence we have

ϑ−1(τ) =

∫ τ

0

l(s) ds, ϑ−k(τ) =

∫ τ

0

r−k(s) ds. (3.20)

By recursion we have that

|ϑ−k|γ,O−k,s,α ≤s,α,k ‖β‖γ,Os+k+σ̃1
(‖β‖γ,Os0+k+σ̃1

)k−1, 1 ≤ k ≤ ρ− 1, (3.21)

|∆12ϑ−k|−k,p,α ≤p,α,k ‖β‖k−1
p+k+σ̃1

‖∆12β‖p+k+σ̃1 , (3.22)

and so we get (3.8). We write Cτ = Θτ +Rτ , where Rτ is an operator which satisfies the equation

∂τR
τ = LτRτ +Qτ , with R0 = 0, (3.23)

where

Qτ := Op(q(τ)) +RρΘ
τ , q(τ) :=

ρ−1∑

k=1

l#≥ρ−1−kθ−k ∈ S−ρ (3.24)
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and by Lemma B.2
M

γ
Op(q)(s, b) ≤s,ρ ‖β‖γ,Os+σ̃2

‖β‖γ,Os0+σ̃2
(3.25)

with σ̃2 := σ̃2(ρ) > σ̃1. By Lemma B.3, the operator Qτ belongs to Lρ,p(O) and we have the following bounds

M
γ
Qτ (s, b) ≤ ‖β‖γ,Os+σ̃2

, M∆12Qτ (p, b) ≤ ‖∆12β‖p+σ̃2 . (3.26)

Note that these bounds hold uniformly for τ ∈ [0, 1]. Now we have to prove that Rτ is belongs to the class Lρ,p

(see Def. 2.8). By this fact we will deduce that Cτ and its derivatives are tame on Hs(Tν+1).

Estimates for the remainder Rτ . We prove the bounds (3.9), i.e. we show that Rτ belongs to Lρ,p(O) in Def. 2.8
for τ ∈ [0, 1]. We use the integral formulation for the problem (3.23), namely

Rτ =

∫ τ

0

(LtRt +Qt) dt. (3.27)

We start by showing that Rτ satisfies item (i) of Definition 2.8 with ~b = 0. Let m1,m2 ∈ R, m1,m2 ≥ 0 and
m1 +m2 = ρ. We check that the operator 〈Dx〉m1Rτ 〈Dx〉m2 is Lip-0-tame according to Definition 2.2. We have

〈Dx〉m1Rτ 〈Dx〉m2 =

∫ τ

0

〈Dx〉m1Lt〈Dx〉−m1〈Dx〉m1Rt〈Dx〉m2dt+

∫ τ

0

〈Dx〉m1Qt〈Dx〉m2dt. (3.28)

By (3.26) we have, for s0 ≤ s ≤ S, that

‖
∫ τ

0

〈Dx〉m1Qt〈Dx〉m2u dt‖γ,Os ≤s ‖β‖γ,Os+σ̃2
‖u‖s0 + ‖β‖γ,Os0+σ̃2

‖u‖s, (3.29)

for τ ∈ [0, 1], u ∈ Hs. Moreover, by recalling the definition of Lt in (3.16), by using the fact that Rρ in (3.17) is
in the class Lρ,p and using the estimates (3.16) on the symbol l we claim that

‖
∫ τ

0

〈Dx〉m1Lt〈Dx〉−m1 u dt‖γ,Os ≤s,ρ ‖β‖γ,Os+σ̃1
‖u‖s0 + ‖β‖γ,Os0+σ̃1

‖u‖s. (3.30)

Indeed the bound for Op(l) are trivial. In order to treat the remainder Rρ we note that

〈Dx〉m1Rρ〈Dx〉−m1 = 〈Dx〉m1Rρ〈Dx〉ρ−m1〈Dx〉−ρ

and 〈Dx〉m1Rρ〈Dx〉ρ−m1 is Lip-0-tame, since Rρ ∈ Lρ,p, moreover 〈Dx〉−ρ ∈ Lρ,p. Then by Lemma A.1 our
claim follows. By using bounds (3.29) and (3.30) with s = s0 one obtains

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,Os0 ≤ρ ‖β‖γ,Os0+σ̃1
sup

τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,Os0 + ‖β‖s0+σ̃2‖u‖s0 , (3.31)

hence, by (3.26) and for δ in (3.6) small enough, one gets

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,Os0 ≤s,ρ ‖β‖γ,Os0+σ̃2
‖u‖s0 , (3.32)

for any u ∈ Hs. Now for any s0 ≤ s ≤ S, by (3.29), (3.30), the smallness of β in (3.6) and estimate (3.32), we
have

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,Os ≤s,ρ ‖β‖γ,Os0+σ̃2
‖u‖s + ‖β‖γ,Os+σ̃2

‖u‖s0 .

This means that
sup

τ∈[0,1]

M
γ
Rτ (−ρ, s) ≤s,ρ ‖β‖γ,Os+σ̃2

. (3.33)

For ~b ∈ Nν with |~b| = b ≤ ρ − 2, we consider the operator ∂~bϕR
τ and we show that 〈Dx〉m1∂b

ϕm
Rτ 〈Dx〉m2 is

Lip-0-tame for any m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− b. We prove that

M
γ

〈Dx〉m1∂~bϕRτ 〈Dx〉m2
(0, s) ≤s,ρ ‖β‖γ,Os+σ̃3

, m1 +m2 = ρ− b, (3.34)
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for some σ̃3 := σ̃3(ρ) ≥ σ̃2 > 0, by induction on 0 ≤ b ≤ ρ− 1. For b = 0 the bound follows by (3.33). Assume
now that (3.34) holds for any b̃ such that 0 ≤ b̃ < b ≤ ρ− 2. We show (3.34) for b = b̃+ 1. By (3.27) we have

〈Dx〉m1∂
~b
ϕR

τ 〈Dx〉m2 =
∑

~b1+~b2=~b

C(| ~b1|, | ~b2|)
∫ τ

0

〈Dx〉m1(∂
~b1
ϕ Lt)∂

~b2
ϕ (Rt)〈Dx〉m2dt

+

∫ τ

0

〈Dx〉m1(∂
~b
ϕQ

t)〈Dx〉m2dt.

(3.35)

By (3.26) we know that, for any t ∈ [0, 1], the operator 〈Dx〉m1(∂~bϕQ
t)〈Dx〉m2 is Lip-0-tame. We write

〈Dx〉m1(∂
~b1
ϕ Lt)∂

~b2
ϕ (Rt)〈Dx〉m2 = 〈Dx〉m1(∂

~b1
ϕ Lt)〈Dx〉−m1−| ~b1|〈Dx〉m1+| ~b1|∂

~b2
ϕ (Rt)〈Dx〉m2 . (3.36)

We study the case | ~b2| ≤ b − 1. By the inductive hypothesis we have that 〈Dx〉m1+| ~b1|∂ ~b2
ϕ (Rt)〈Dx〉m2 is Lip-0-

tame since m1 + | ~b1| +m2 = ρ − | ~b2|, hence the bound (3.34) holds for b = | ~b2|. By reasoning as for the proof
of the bound (3.30) we have

‖〈Dx〉m1(∂
~b1
ϕ Lt)〈Dx〉−m1−| ~b1|u‖γ,Os ≤s,ρ ‖β‖γ,Os+σ̃3

‖u‖s0 + ‖β‖γ,Os0+σ̃3
‖u‖s, (3.37)

for u ∈ Hs, s0 ≤ s ≤ S. By (3.37), the inductive hypothesis on ∂ ~b2
ϕ Rτ and (3.26) we get

M
γ

〈Dx〉m1 (∂
~b1
ϕ Lt)∂

~b2
ϕ (Rt)〈Dx〉m2

(0, s) ≤s,ρ ‖β‖γ,Os+σ̃3
. (3.38)

Note also that By Lemma A.6, bounds (3.17) and (3.16) we have that (3.37) holds for b1 = 0. Hence

sup
τ∈[0,1]

‖〈Dx〉m1∂
~b
ϕR

τ 〈Dx〉m2u‖γ,Os

(3.37)
≤s,ρ ‖β‖γ,Os+σ̃3

sup
τ∈[0,1]

‖〈Dx〉m1∂
~b
ϕR

τ 〈Dx〉m2u‖γ,Os0

+ ‖β‖γ,Os0+σ̃3
sup

τ∈[0,1]

‖〈Dx〉m1∂
~b
ϕR

τ 〈Dx〉m2u‖γ,Os

+ ‖β‖γ,Os+σ̃3
‖u‖s0 + ‖β‖γ,Os0+σ̃3

‖u‖s.

(3.39)

Hence using (3.39) for s = s0 and the smallness of β in (3.6) we get

sup
τ∈[0,1]

‖〈Dx〉m1∂
~b
ϕR

τ 〈Dx〉m2u‖γ,Os0 ≤s,ρ ‖β‖γ,Os0+σ̃3
‖u‖s0 . (3.40)

Then using again (3.40) one obtains the bound for any s0 ≤ s ≤ S

sup
τ∈[0,1]

M
γ
Rτ (−ρ+ b, s) := sup

τ∈[0,1]

sup
m1+m2=ρ−b
m1,m2≥0

|~b|≤b

M
γ

〈Dx〉m1∂~bϕRτ 〈Dx〉m2
(0, s) ≤s,ρ ‖β‖γ,Os+σ̃3

. (3.41)

The estimates for M[Rτ ,∂x](s) and M[∂~bϕRτ ,∂x]
(s) follow by the same arguments. We have obtained the estimate

for Mγ
Rτ (s, b) in (3.9). The estimate on the Lipschitz variation with respect to the variable i (3.9) follows by by

Leibnitz rule and by (3.9) for Rτ , (3.16), (3.26) as in the previous cases. We proved (3.9) with σ1 = σ̃3.

Corollary 3.2. Fix n ∈ N. There exists σ = σ(ρ) such that, if ‖β‖γ,Os0+σ ≤ 1, then the flow Ψτ (ϕ) of (3.2) satisfies

for s ∈ [s0,S],
sup

τ∈[0,1]

‖Ψτu‖γ,Os + sup
τ∈[0,1]

‖(Ψτ )∗u‖γ,Os ≤s

(
‖u‖s + ‖b‖γ,Os+σ‖u‖s0

)
, (3.42)

sup
τ∈[0,1]

‖(Ψτ − I)u‖γ,Os + sup
τ∈[0,1]

‖((Ψτ )∗ − I)u‖γ,Os ≤s

(
‖β‖γ,Os0+σ‖u‖s+1 + ‖β‖γ,Os+σ‖u‖s0+1

)
.
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For any |α| ≤ n, m1,m2 ∈ R such that m1 + m2 = |α|, for any s ≥ s0 there exist µ∗ = µ∗(|α|,m1,m2),

σ∗ = σ∗(|α|,m1,m2) and δ = δ(m1, s) such that if ‖β‖γ,Os0+µ∗
≤ δ, and ‖β‖γ,Op+σ∗

≤ 1 for p+ σ∗ ≤ s0 + µ∗, then

one has

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕΨ

τ (ϕ)〈Dx〉−m2u‖γ,Os ≤s,b,m1,m2 ‖u‖γ,Os + ‖β‖γ,Os+µ∗
‖u‖γ,Os0

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕ∆12Ψ

τ (ϕ)〈Dx〉−m2u‖p ≤p,b,m1,m2 ‖u‖p‖∆12β‖p+µ∗
, m1 +m2 = |α|+ 1.

Proof. The estimates on Ψτ follow by using Lemmata B.9, B.10 and the result of Proposition 3.1. In order to prove
the bounds (3.42) for the adjoint (Ψτ )∗ it is sufficient to reformulate Proposition 3.1 in terms of (Ψτ )∗.

3.2 Quantitative Egorov analysis

The system (3.2) is an Hyperbolic PDE, thus we shall use a version of Egorov Theorem to study how pseudo dif-
ferential operators change under the flow Ψτ . This is the content of Theorem 3.4 which provides precise estimates
for the transformed operators.

Notation. Consider an integer n ∈ N. To simplify the notation for now on we shall write, Σ∗
n the sum over

indexes k1, k2, k3 ∈ N such that k1 < n, k1 + k2 + k3 = n and k1 + k2 ≥ 1.

We need the following lemma.

Lemma 3.3. Let O be a subset of Rν . Let A be the operator defined for w ∈ Sm as

Aw = w(f(x), g(x)ξ), f(x) := x+ β(x), g(x) := (1 + βx(x))
−1 (3.43)

for some smooth function β such that ‖β‖γ,O2s0+2 < 1. Then A is bounded, namely Aw ∈ Sm and

|Aw|γ,Om,s,α ≤ |w|γ,Om,s,α +

∗∑

s

|w|γ,Om,k1,α+k2
‖β‖γ,Ok3+s0+2. (3.44)

for s ≥ 0. For s = s0 it is convenient to consider the rougher estimate |Aw|γ,Om,s0,α ≤ |w|γ,Om,s0,α+s0 .

Proof. It follows directly by Lemma A.8 in Appendix A.

Theorem 3.4 (Egorov). Fix ρ ≥ 3, p ≥ s0, m ∈ R with ρ + m > 0. Let w(x, ξ) ∈ Sm with w = w(ω, I(ω)),
Lipschitz in ω ∈ O ⊆ Rν and in the variable I. Let Aτ be the flow of the system (3.5). There exist σ1 := σ1(m, ρ)
and δ := δ(m, ρ) such that, if

‖β‖γ,Os0+σ1
< δ, (3.45)

then AτOp(w)(Aτ )−1 = Op(q(x, ξ))+R where q ∈ Sm and R ∈ Lρ,p(O). Moreover, one has that the following

estimates hold:

|q|γ,Om,s,α ≤m,s,α,ρ |w|γ,Om,s,α+σ1
+

∗∑

s

|w|γ,Om,k1,α+k2+σ1
‖β‖γ,Ok3+σ1

, (3.46)

|∆12q|m,p,α ≤m,p,α,ρ |w|m,p+1,α+σ1‖∆12β‖p+1 + |∆12w|m,p,α+σ1

+

∗∑

p+1

|w|m,k1,α+k2+σ1‖β‖k3+σ1‖∆12β‖s0+1 +

∗∑

p

|∆12w|m,k1,k2+α+σ1‖β‖k3+σ1 . (3.47)

Furthermore for any b ≤ ρ− 2 and s0 ≤ s ≤ S

M
γ
R(s, b) ≤s,m,ρ |w|γ,Om,s+ρ,σ1

+
∗∑

s+ρ

|w|γ,Om,k1,k2+σ1
‖β‖γ,Ok3+σ1

, (3.48)
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and for any b ≤ ρ− 3,

M∆12R(p, b) ≤m,p,ρ |w|m,p+ρ,σ1‖∆12β‖p+σ1 + |∆12w|m,s+ρ,σ1

+

∗∑

p+ρ

|w|m,k1,k2+σ1‖β‖k3+σ1‖∆12β‖s0+σ1 +

∗∑

p+ρ

|∆12w|m,k1,k2+σ1‖β‖k3+σ1 .
(3.49)

Proof. The operator P (τ) := AτOp(w)(Aτ )−1 satisfies the Heisenberg equation
{
∂τP (τ) = [X, P (τ)], X = ∂x ◦ b =: Op(χ),

P (0) = Op(w).
(3.50)

We construct an approximate solution of (3.50) by considering a pseudo differential operator Op(q) with

q =

m+ρ−1∑

k=0

qm−k(x, ξ) (3.51)

such that (see (3.50) and note that χ := b iξ + bx)
{
∂τ qm = {bξ, qm},
qm(0) = w

{
∂τ qm−k = {bξ, qm−k}+ rm−k

qm−k(0) = 0
k ≥ 1 (3.52)

where for k ≥ 1 (recall (A.27)), denoting by w = w(h, k) := k − h+ 1,

rm−k : =
1

i
{bx, qm−k+1} −

k−1∑

h=0

qm−h#wχ

= −1

i
∂ξqm−k+1 bxx −

k−1∑

h=0

1

iw(w)!
(∂w

ξqm−h)(∂
w
xχ) ∈ Sm−k .

By Lemma B.4, or directly by interpolation, one has

|rm−k|γ,Om−k,s,α ≤
k−1∑

h=0

|qm−h|γ,Om−h,s,α+w
+

k−1∑

h=0

|qm−h|γ,Om−h,s0,α+w
‖β‖γ,Os+w+2, (3.53)

|∆12rm−k|m−k,p,α ≤
k−1∑

h=0

|∆12qm−h|m−h,p,α+w +
k−1∑

h=0

|∆12qm−h|m−h,s0,α+w‖β‖p+w+2

+

k−1∑

h=0

|qm−h|m−h,p,α+w‖∆12β‖p+w+2.

(3.54)

Hence we can solve (3.52) iteratively. Let us denote by γτ0,τ (x, ξ) the solution of the characteristic system





d

ds
x(s) = −b(s, x(s))

d

ds
ξ(s) = bx(s, x(s))ξ(s)

(3.55)

with initial condition γτ0,τ0 = (x, ξ). Then the first equation in (3.52) has the solution

qm(τ, x, ξ) = w(γτ,0(x, ξ)) (3.56)

where

γτ,0(x, ξ) =
(
f(τ, x), ξg(τ, x)

)
, f(τ, x) := x+ τβ(x), g(τ, x) :=

1

1 + τβx(x)
. (3.57)
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Hence by Lemma 3.3 we have

|qm|γ,Om,s,α ≤s,α |w|γ,Om,s,α +
∗∑

s

|w|γ,Om,k1,α+k2
‖β‖γ,Ok3+s0+2. (3.58)

For any k ≥ 1, the solution of (3.52) is

qm−k(τ, x, ξ) =

∫ τ

0

rm−k(γ
0,tγτ,0(x, ξ)) dt. (3.59)

We observe that
γ0,tγτ,0(x, ξ) = (f̃ , g̃ ξ) (3.60)

with

f̃(t, τ, x) := x+ τβ(x) + β̃(t, x+ τβ(x)), g̃(t, τ, x) :=
1 + tβx(f̃(t, τ, x))

1 + τβx(x)
. (3.61)

Thus if Ãr := r(f̃ , g̃ ξ) we have (recall that τ ∈ [0, 1])

|qm−k|γ,Om−k,s,α ≤s,α |Ãrm−k|γ,Om−k,s,α, |qm−k|γ,Om−k,s0,α
≤α |Ãrm−k|γ,Om−k,s0,α

≤ |rm−k|γ,Om−k,s0,α+s0
(3.62)

and by Lemma 3.3 with A Ã

|qm−k|γ,Om−k,s,α ≤s,α |rm−k|γ,Om−k,s,α +

∗∑

s

|rm−k|γ,Om−k,k1,α+k2
‖β‖γ,Ok3+s0+2. (3.63)

We want to prove inductively, for k = 0, . . . ,m+ ρ,

|qm−k|γ,Om−k,s,α ≤s,α,ρ|w|γ,Om,s,α+2k +

∗∑

s

|w|γ,Om,k1,α+k2+k(s0+2)‖β‖
γ,O
k3+s0+2+k,

|qm−k|γ,Om−k,s0,α
≤α,ρ|w|γ,Om,s0,α+s0+k(s0+2).

(3.64)

For k = 0 this is proved in (3.58). Now assume that (3.64) holds, up to some k − 1 ≥ 0. We use (3.53) to bound
qm−k. First we give a bound for rm−k in terms of the norm of the symbol w. To shorten the formulas let us denote
t := s0 + 2.
By (3.53) and the inductive hypothesis (3.64) we get

|rm−k|γ,Om−k,s,α ≤s,α,ρ |w|γ,Om,s,α+2k +

∗∑

s

|w|γ,Om,k1,α+k2+kt‖β‖
γ,O
k3+t+k. (3.65)

Then by (3.63) and (3.65)

|qm−k|γ,Om−k,s,α ≤s,α,k

∗∑

s

( ∑

n1+n2+n3=k1+k

|w|γ,Om,n1,α+n2+kt+k2
‖β‖γ,On3+t+k

)
‖β‖γ,Ok3+t

+ |w|γ,Om,s,α+2k +

∗∑

s

|w|γ,Om,k1,α+k2+kt‖β‖
γ,O
k3+t+k +

∗∑

s

|w|γ,Om,k1,α+k2+2k‖β‖
γ,O
k3+t

≤s,α,k |w|γ,Om,s,α+2k +

∗∑

s

|w|γ,Om,k1,α+k2+kt‖β‖
γ,O
k3+t+k

that is the estimate (3.64). By (3.59) we have

∆12qm−k(τ, x, ξ) =

∫ τ

0

∆12

(
rm−k(γ

0,sγτ,0(x, ξ))
)
ds (3.66)
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and recalling (3.61)

|∆12qm−k|m−k,s,α ≤s,α|Ã(∂xrm−k) (∆12f̃)|m−k,s,α + |Ã(∂ξrm−k) (∆12g̃ ξ)|m−k,s,α

+ |Ã(∆12rm−k)|m−k,s,α.
(3.67)

The first two terms of the right hand side in (3.67) are bounded by (3.65) and Lemma A.1 in Appendix A of [24].
For the last summand we proceed by induction as above using (3.54). We obtain

|∆12qm−k|m−k,p,α ≤ |w|m,p+1,α+2k+1‖∆12β‖p+1

+
∗∑

p+1

|w|m,k1,α+k2+s0+1+kt‖β‖k3+s0+t+k‖∆12β‖s0+1

+ |w|m,s0+1,α+s0+1+kt‖∆12β‖s0+1 + |∆12w|m,p,α+2k

+

∗∑

p

|∆12w|m,k1,k2+α+kt‖β‖k3+s0+t+k.

(3.68)

Then we have (3.46) and (3.47). Now we have (recall (3.51))

P (τ) = Q +R, Q = Op(q) ∈ OPSm (3.69)

and by the construction of Q we get that
{
∂τR(τ) = [X, R] +M,

R(0) = 0
(3.70)

where

M = −Op
(
i{bx, q−ρ+1}+

m+ρ−1∑

k=0

qm−k#≥m−k+1+ρχ
)
∈ OPS−ρ. (3.71)

By Lemma B.2 we deduce that M ∈ Lρ,p and using (A.21) (recall also the Definition (2.7)) we have for all
s0 ≤ s ≤ S

M
γ
M(s, b) ≤s,ρ,m |w|γ,Om,s+ρ,σ1

+

∗∑

s+ρ

|w|γ,Om,k1,k2+σ1
‖β‖γ,Ok3+σ1

, b ≤ ρ− 2, (3.72)

M∆12M(p, b) ≤p |w|m,p+σ1,σ1‖∆12β‖p+σ1 + ‖∆12β‖s0+σ1

∗∑

p+ρ

|w|m,k1,k2+σ1‖β‖k3+σ1

+ |∆12w|m,p+σ1,σ1 +

∗∑

p+ρ

|∆12w|m,k1,k2+σ1‖β‖p+σ1 , b ≤ ρ− 3 (3.73)

for some σ1 > 0. If V (τ) := R(τ)Aτ then it solves ∂τV = XV +MAτ and so

V τ =

∫ τ

0

Aτ (As)−1MAs ds ⇒ R(τ) =

∫ τ

0

Aτ (As)−1MAs(Aτ )−1 ds. (3.74)

By Lemma B.12 Rτ ∈ Lρ,p for any τ ∈ [0, 1]. By (B.42) we have that, for any τ ∈ [0, 1], taking σ1 possibly larger
than before in order to fit the assumptions of Lemma B.12,

M
γ
Rτ (s, b) ≤s M

γ
M(s) + ‖β‖γ,Os+σ1

M
γ
M(s0). (3.75)

Then by Leibniz rule and Lemma B.11 we have by (3.73)

M∆12R(s, b) ≤s M
γ
M(p, b)‖∆12β‖p +M

γ
M(p, b)‖∆12β‖p‖β‖p+σ1

+M∆12M(p, b) +M∆12M(p, b)‖β‖p+σ1 .

We obtain (3.48) and (3.49) by using respectively (3.72) and (3.73).
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3.3 Conjugation of a class of first order operators

In this Section we prove an important abstract conjugation Lemma which is needed to prove Theorem 1.10. We
shall also recall a Moser-like theorem for first order linear operators (see Proposition 3.6) which has been proved in
[24].

A conjugation Lemma for a class of pseudo differential operators. The following proposition describes the
structure of an operator like Lω conjugated by the flow of a system like (3.2).

Proposition 3.5 (Conjugation). Let O be a subset of Rν . Fix ρ ≥ 3, α ∈ N, p ≥ s0 and consider a linear operator

L := ω · ∂ϕ − J ◦ (m+ a(ϕ, x)) +Q (3.76)

where m = m(ω) is a real constant, a = a(ω, I(ω)) ∈ C∞(Tν+1) is real valued, both are Lipschitz in ω ∈ O and

a is Lipschitz in the variable I. Moreover Q = Op(q(ϕ, x, ξ)) + Q̂ with Q̂ ∈ Lρ,p(O) and q = q(ω, I(ω)) ∈ S−1

satisfying

|q|γ,O−1,s,α ≤s,α k1 + k2‖p‖γ,Os+σ2
, (3.77)

|∆12q|−1,p,α ≤p,α k3 ‖∆12p‖p+σ2(1 + ‖p‖p+σ2). (3.78)

Here k1, k2, k3, σ2 > 0 are constants depending on q while p = p(ω, I(ω)) ∈ C∞(Tν+1), is Lipschitz in ω and in

the variable I .

There are σ3 = σ3(ρ) ≥ σ̃2 = σ̃2(ρ) > 0 and δ∗ := δ∗(ρ) ∈ (0, 1) such that, if

‖β‖γ,Os0+σ3
+ ‖a‖γ,Os0+σ3

+ k2‖p‖γ,Os0+σ3
+ k1 +M

γ

Q̂
(s0, b) ≤ δ∗ , (3.79)

the following holds for p ≤ s0 + σ3 − σ̃2. Consider Ψ := Ψ1 the flow at time one of the system (3.2), where b is

defined in (3.4). Then we have

L+ := ΨLΨ−1 = ω · ∂ϕ − J ◦ (m+ a+(ϕ, x)) +Q+ (3.80)

m+ a+(ϕ, x) := −(ω · ∂ϕβ̃)(ϕ, x + β(ϕ, x)) + (m+ a(ϕ, x+ β(ϕ, x)))(1 + β̃x(ϕ, x+ β(ϕ, x))) (3.81)

with β̃ the function such that x + β̃(ϕ, x) is the inverse of the diffeomorphism of the torus x 7→ x + β(ϕ, x). The

operator Q+ := Op(q+(ϕ, x, ξ)) + Q̂+, with

|q+|γ,O−1,s,α ≤s,α,ρ k1 + k2‖p‖γ,Os+σ3
+ ‖β‖γ,Os+σ3

+ ‖a‖γ,Os+σ3
,

|∆12q+|−1,p,α ≤p,α,ρ k3(‖∆12p‖p+σ3 + ‖∆12p‖p+σ3‖p‖p+σ3) + ‖∆12β‖p+σ3 + ‖∆12a‖p+σ3

(3.82)

and Q̂+ ∈ Lρ,p(O) with, for s0 ≤ s ≤ S,

M
γ

Q̂+
(s, b) ≤s,ρ M

γ

Q̂
(s, b) + ‖β‖γ,Os+σ3

+ k1 + k2‖p‖γ,Os+σ3
+ ‖a‖γ,Os+σ3

, b ≤ ρ− 2, (3.83)

M∆12Q̂+
(p, b) ≤p,ρ M∆12Q̂

(p, b) + k3‖∆12p‖p+σ3(1 + ‖p‖p+σ3) + ‖∆12β‖p+σ3 + ‖∆12a‖p+σ3 (3.84)

for any b ≤ ρ− 3.

Proof. Let Ψτ be the flow in (3.2). We can write Ψτ := Aτ ◦ (Θτ +Rτ), where Aτ is defined in (3.3), and Θτ , Rτ

given by Prop. 3.1 in (3.7). We define the map W τ := Aτ ◦Θτ . We claim that setting R̂τ = (Θτ )−1Rτ we have

Sτ := W τL0(W τ )−1 −ΨτL0(Ψτ )−1 = AτΘτ [L0, R̂τ ](I + R̂τ )−1(Θτ )−1(Aτ )−1 ∈ Lρ,p ,

and supτ∈[0,1]M
γ
Sτ (s, b), supτ∈[0,1]M∆12Sτ (s, b) satisfy bounds (3.83) and (3.84). We first study the conjugation

of L0 by W τ . In order to prove our claim we just have to note that R̂τ ∈ Lρ+1,p by Lemma B.3, moreover, by
formula (B.11) , [ω · ∂ϕ, R̂τ ] = ω · ∂ϕR̂τ and [∂x, R̂

τ ] ∈ Lρ,p. This means that [L0, R̂τ ] ∈ Lρ,p, so that our claim
follows by Lemmata B.1, B.3, B.8 and B.12 .
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Conjugation by Θτ . By Lemma B.8 we have (Θτ )−1 := I−Op(ϑ̃) + Rρ, with

|ϑ̃|γ,O−1,s,α ≤s,α,ρ ‖β‖γ,Os+d0
, M

γ
Rρ
(s, b) ≤s,ρ ‖β‖γ,Os+d0

, b ≤ 0 ≤ ρ− 2,

|∆12ϑ̃|−1,p,α ≤p,α ‖∆12β‖p+d0 , M∆12Rρ(p, b) ≤p,ρ ‖∆12β‖p+d0 0 ≤ b ≤ ρ− 3,
(3.85)

for s0 ≤ s ≤ S and for some d0 = d0(ρ). Throughout the proof we shall denote by di an increasing sequence of
constants, depending on ρ, which keeps track of the loss of derivatives in our procedure. Moreover we shall omit
writing the constraints s0 ≤ s ≤ S, 0 ≤ b ≤ ρ − 2, 0 ≤ b ≤ ρ − 3 when we write the bounds for the operators
belonging to Lρ,p.

We wish to compute

ΘτB(Θτ )−1 = B + [Op(ϑ), B]Op(1− ϑ̃) + [Op(ϑ), B]Rρ

for B = ω · ∂ϕ, J ◦ (m+ a),Op(q), Q̂.
Let us start by studying the commutator [Op(ϑ), B], our purpose is to write it as a pseudo differential term plus a
remainder in Lρ,p. We have (recalling the Definition 2.7 and formula (A.29))

[Op(ϑ), ω · ∂ϕ] = −Op(ω · ∂ϕϑ) (3.86)

[Op(ϑ), J ◦ (m+ a)] = Op
(
ϑ ⋆<ρ+1 (ω(ξ)#<ρ+1(m+ a))

)
(3.87)

+Op
(
ϑ ⋆≥ρ+1 (ω(ξ)#(m+ a)) + ϑ ⋆<ρ+1 (ω(ξ)#≥ρ+1(m+ a))

)

[Op(ϑ),Op(q)] = Op
(
ϑ ⋆<ρ−1 q

)
+Op

(
ϑ ⋆≥ρ−1 q)

)
. (3.88)

Here ω(ξ) is the symbol of the Fourier multiplier J = ∂x+3Λ∂x , i.e. ω(ξ) := iξ+3 iξ
1+ξ2 . One can directly verify

that all the symbols above are in S−1, indeed the commutator of two pseudo differential operators has as order the
sum of the orders minus one. By Lemma B.3 we verify that [Op(ϑ), Q̂], [Op(ϑ), B]Rρ ∈ Lρ,p for all choices of B.
By Lemma B.2 and (2.11) we have that the second summands in (3.87) and (3.88) belong to Lρ,p. We have proved
that

[Op(ϑ), B] = Op(rB) +RB , rB ∈ S−1 , RB ∈ Lρ,p .

Using (3.8), (3.77) and (3.79), we have by (B.12)

|rB|γ,O−1,s,α ≤s,α,ρ ‖β‖γ,Os+d1
+ ‖β‖γ,Os0+d1

(k1 + k2‖p‖γ,Os+d1
+ ‖a‖γ,Os+d1

). (3.89)

Similarly, by (B.13) we have

M
γ
RB

(s, b) ≤s,ρ ‖β‖γ,Os+d1
+ ‖β‖γ,Os0+d1

(k1 + k2‖p‖γ,Os+d1
+ ‖a‖γ,Os+d1

+M
γ

Q̂
(s, b)). (3.90)

Analogously by (B.14) and (B.15) we have

|∆12rB |−1,p,α ≤p,α,ρ ‖∆12β‖p+d1 + ‖β‖p+d1(k3(‖∆12p‖p+d1 + ‖∆12p‖s0+d1‖p‖p+d1) + ‖∆12a‖p+d1.

Similarly, by (B.13) we have

M∆12RB (p, b) ≤p,ρ ‖∆12β‖p+d1+

+ ‖β‖p+d1(k3(‖∆12p‖p+d1 + ‖∆12p‖p+d1‖p‖p+d1) + ‖∆12a‖p+d1 +M∆12Q̂
(p, b)). (3.91)

By Lemmata B.4, B.3 and B.1 we have that

[Op(ϑ), B]Op(1 − θ̃) = Op(r̃B) + R̃B , r̃B ∈ S−1 , R̃B ∈ Lρ,p ,

and r̃B , R̃B satisfy bounds like (3.89)-(3.91), with possibly a larger d1. Analogously, by Lemmata B.3 and B.1, we
have that [Op(θ), B]Rρ ∈ Lρ,p satisfies estimates like (3.90), (3.91). We conclude that

ΘτL0(Θτ )−1 = L0 +Op(r0) +R0
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where r0 ∈ S−1, R0 ∈ Lρ,p and satisfy the bounds (3.89)-(3.91) with possibly larger d1.

Conjugation by Aτ . We proved that

W τL0(W τ )−1 = AτL0(Aτ )−1 +AτOp(r0)(Aτ )−1 +AτR0(Aτ )−1. (3.92)

By an explicit computation one has that

AτDω(Aτ )−1 = Dω + J ◦ (TτβDωβ̃) + Op(r1) +R1

where r1 ∈ S−1, R1 ∈ Lρ,p are defined by

r1 := −3(iξ/(1 + ξ2))#<ρ−1Tτβ(Dωβ̃), R1 := −3Op((iξ/(1 + ξ2))#≥ρ−1Tτβ(Dω β̃)), (3.93)

and, by (B.12),(B.14), (B.13), (B.15), satisfy the following bounds

|r1|γ,O−1,s,α +M
γ
R1

(s, b) ≤s,α,ρ ‖β‖γ,Os+d2
, |∆12r1|−1,p,α +M∆12R1(p, b) ≤p,α,ρ ‖∆12β‖p+d2 .

Moreover
Aτ (J ◦ (m+ a))(Aτ )−1 = J ◦ Tτβ

(
(1 + β̃x)(m+ a)

)
+ R

(2) (3.94)

where
R
(2) :=

(
(1 − ΛR)−1 − 1

)
◦ Λ ◦ g ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m+ a)

)

+
(
(1− ΛR)−1 − 1

)
◦ Λ ◦ (g − 3) ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m+ a)

)

+
(
(1− ΛR)−1

)
◦ Λ ◦ (g − 3) ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m+ a)

)
(3.95)

with g and R defined in (3.12). In particular R(2) = Op(r2) +R2, r2 ∈ S−1, R2 ∈ Lρ,p and satisfy the following
bounds

|r2|γ,O−1,s,α +M
γ
R2

(s, b) ≤s,α,ρ ‖β‖γ,Os+d3
+ ‖β‖γ,Os0+d3

‖a‖γ,Os+d3
,

|∆12r2|−1,p,α +M∆12R2(p, b) ≤p,α,ρ ‖∆12β‖p+d3 .

Then, by (3.92), we conclude

W τL0(W τ )−1 = Dω − J ◦ (m+ a+) +Q∗, (3.96)

Q∗ := AτOp(q + r0)(Aτ )−1 +Aτ (Q̂+R0)(Aτ )−1 +Op(r1 + r2) +R1 +R2. (3.97)

By Theorem 3.4 and Lemma B.12 we have

AτOp(q+ r0)(Aτ )−1 = Op(r3) +R3, Aτ (Q̂+R0)(Aτ )−1 = R4 (3.98)

where r3 ∈ S−1 and R3, R4 ∈ Lρ,p. In order to bound r3 we use (3.46) with w = q + r0 so that

|w|γ,O−1,s,α ≤s,α,ρ k1 + k2‖p‖γ,Os+d4
+ ‖β‖γ,Os+d4

+ ‖a‖γ,Os+d4
. (3.99)

Note that in the formula (3.46) (recall the notations used in formula (3.46) and the fact that k1, k2, k3 ≥ 0 and
k1 + k2 + k3 = s) we have by interpolation

|w|γ,O−1,k1,α+k2+σ1
‖β‖γ,Ok3+σ1

≤s (k2‖p‖γ,Os+d5
+ ‖β‖γ,Os+d5

+ ‖a‖γ,Os+d5
)‖β‖γ,Os0+d5

+ ‖β‖s+d5(k1 + k2‖p‖γ,Os0+d5
+ ‖β‖γ,Os0+d5

+ ‖a‖γ,Os0+d5
).

Thus we get by (3.79)

|r3|γ,O−1,s,α +M
γ
R3

(s, b) ≤s,α,ρ k1 + k2‖p‖γ,Os+d5
+ ‖β‖γ,Os+d5

+ ‖a‖γ,Os+d5
,

|∆12r3|−1,p,α +M∆12R3(p, b) ≤p,α,ρ k3(‖∆12p‖p+d5 + ‖∆12p‖s0+d5‖p‖p+d5) + ‖∆12β‖p+d5 + ‖∆12a‖p+d5 .
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Moreover by (3.79)

M
γ
R4

(s, b) ≤s,ρ M
γ

Q̂
(s, b) + ‖β‖γ,Os+d6

+ ‖β‖γ,Os0+d6
(k1 + k2‖p‖γ,Os+d6

+ ‖a‖γ,Os+d6
),

M∆12R4(p, b) ≤p,ρ M∆12Q̂
(s, b) + ‖∆12β‖s+d6

+ ‖β‖p+d6(k3(‖∆12p‖p+d6 + ‖∆12p‖p+d6‖p‖p+d6) + ‖∆12a‖p+d6.

By (3.97) and (3.98) Q∗ in (3.96) is

Q∗ = Op(q+) + Q̂∗, q+ := r1 + r2 + r3, Q̂∗ := R1 +R2 +R3 +R4.

In particular, by the discussion above we have that the bounds (3.82) hold with σ3 ≥ d5 while bounds (3.83) and
(3.84) hold with σ3 ≥ d6. This concludes the proof.

Straightening theorem. By Proposition 3.5 the coefficient a+ of the transformed operator L+ = ΨLΨ−1 (see
(3.80)) is given by (3.81). The aim of this section is to find a function β (see (3.1)), or equivalently a flow Ψ of
(3.2), such that a+ is a constant, namely such that the following equation is solved (recall (3.3))

ω · ∂ϕβ̃ − (m+ a)(1 + β̃x) = constant. (3.100)

This issue is tantamount to finding a change of coordinates that straightens the 1-order vector field

ω · ∂

∂ϕ
− (m+ a(ϕ, x))

∂

∂x
.

This is the content of the following proposition. Actually this is a classical result on vector fields on a torus ([40]),
but for our purposes we need a version which provides quantitative tame estimates on the Sobolev norms.

Proposition 3.6. Let O0 ⊆ Rν be a compact set. Consider for ω ∈ O0 a Lipschitz family of vector fields on Tν+1

X0 := ω · ∂

∂ϕ
− (m0 + a0(x, ϕ;ω))

∂

∂x
,

2

3
< m0 <

3

2
, |m0|lip ≤ M0 < 1/2

a0 ∈ Hs(Tν+1,R) ∀s ≥ s0.

(3.101)

Moreover a0(x, ϕ;ω) = a0(x, ϕ, I(ω);ω) and it is Lipschitz in the variable I. There exists δ⋆ = δ⋆(s1) > 0 and

s1 ≥ s0 + 2τ + 4 such that, for any γ > 0 if

C(s1)γ
−1‖a0‖γ,O0

s1 := δ ≤ δ⋆ (3.102)

then there exists a Lipschitz function m∞(ω) = m∞(ω, I(ω)) with 1/2 < m∞ < 2 and |m∞ −m0|γ ≤ γδ with

∀ω ∈ Ωε such that in the set

P2γ
∞ = P2γ

∞ (I) :=

{
ω ∈ O0 : |ω · ℓ−m∞(ω)j| > 2γ

〈ℓ〉τ , ∀ℓ ∈ Z
ν , ∀j ∈ Z \ {0}

}
(3.103)

the following holds. For all ω ∈ P2γ
∞ one has |∆12m∞| ≤ 2|∆12〈a0〉| and there exists a smooth map

β(∞) : P0 × T
ν+1 → R , ‖β(∞)‖γ,O0

s ≤s γ
−1‖a0‖γ,O0

s+2τ+4, ∀s ≥ s0 (3.104)

so that Ψ(∞) : (ϕ, x) 7→ (ϕ, x+ β(∞)(ϕ, x)) is a diffeomorphism of Tν+1 and for all ω ∈ P2γ
∞

Ψ
(∞)
∗ X0 := ω · ∂

∂ϕ
+ (Ψ(∞))−1

(
ω · ∂ϕβ(∞) − (m0 + a0)(1 + β(∞)

x )
) ∂

∂x
= ω · ∂

∂ϕ
−m∞(ω)

∂

∂x
. (3.105)

Proof. We refer to Corollary 3.6 of [24] which is a generalization of Proposition 3.6 in the case x ∈ Td with
d ≥ 1.

Lemma 3.7. Under the assumption of Proposition 3.6, the function β(∞) defined in the Proposition 3.6 satisfies

the following estimate on the variation of the variable i(ω): ‖∆12β
(∞)‖p ≤ Cγ−1‖∆12a0‖p+σ for some σ > 0

such that p+ σ < s1.

Proof. We refer to Corollary 3.3 of [24].
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3.4 Proof of Theorem 1.10

Consider the vector field

ω · ∂

∂ϕ
− (1 + a(x, ϕ;ω))

∂

∂x
(3.106)

for ω ∈ O0 given in (1.6). By taking µ in (1.24) large enough and ε in (1.27) small enough we have that the
condition (3.102) is satisfied. Thus we apply Proposition 3.6 with a0  a in (3.106) and m0  1. Then there exist
a constant m(ω) = m∞(ω) and a function β̃(ω) defined on the set P2γ

∞ = Ω1 (see (3.103) and (1.30)) such that
(recall (3.105))

T −1

β̃

(
ω · ∂ϕβ̃ − (1 + a)(1 + β̃x)

)
= −m. (3.107)

Let β be the function such that (ϕ, x) 7→ (ϕ, x + β(ϕ, x)) is the inverse diffeomorphism of (ϕ, x) 7→ (ϕ, x +
β̃(ϕ, x)) and let Ψτ be the flow of the Hamiltonian PDE

uτ =
(
J ◦ b(τ)

)
u, b(τ) := b(τ, ϕ, x) =

β

1 + τβx
.

Let us call Φ1 := Ψ1 and recall that Φ1 = Φ1(ω) is defined for ω ∈ Ω1. We apply Proposition 3.5 to Lω in (1.25)
and we get

Φ1 Lω Φ−1
1 = Dω − J ◦ (1 + a+) +R, (3.108)

where, by (3.81) and (3.107),
a+(ϕ, x) = m− 1

and R = Op(r) + R̂, r = r(ω) ∈ S−1, R̂ ∈ Lρ,p(Ω1). Hence we have

Φ1 Lω Φ−1
1 = Dω −mJ +R. (3.109)

By (1.27) one has that Proposition 3.6 implies (1.49), (1.51). By (1.27), (3.104) the bound (3.82) reads as

|r|γ,Ω1

−1,s,α ≤ εγ−1‖I‖γ,O0

s+σ̂ , |∆12r|−1,p,α ≤p εγ−1(1 + ‖I‖p+σ̂)‖I1 − I2‖p+σ̂,

for some σ̂ > 0, since k1 = 0, k2 = ε,p = I. Moreover by (3.83), since k3 = ε, for 0 ≤ b ≤ ρ− 2 and s0 ≤ s ≤ S

M
γ

R̂
(s, b) ≤s εγ

−1‖I‖γ,O0

s+σ̂ (3.110)

and by (3.84), and Lemma 3.7, for 0 ≤ b ≤ ρ− 3 and s0 ≤ s ≤ S, we get

M∆12R̂
(p, b) ≤p εγ−1(1 + ‖I‖p+σ̂)‖I1 − I2‖p+σ̂. (3.111)

The bound (1.53) follows by Corollary 3.2, in particular by (3.42), and (3.104).

4 Diagonalization

The aim of this section is to prove Theorem 1.11. We first provide an abstract result for −1-modulo tame operators.

4.1 A KAM reducibility result for modulo-tame vector fields

We say that a bounded linear operator B = B(ϕ) is Hamiltonian if B(ϕ)u is a linear Hamiltonian vector field
w.r.t. the symplectic form J . This means that the corresponding Hamiltonian 1

2 (u, J
−1

B(ϕ)u) is a real quadratic
function provided that uj = ū−j and ϕ ∈ Tν . In matrix elements this means that

(J−1
B(ϕ))j

′

j = (J−1
B(ϕ))jj′ , (J−1B)j

′

j (ℓ) = (J−1
B)−j′

−j (−ℓ)

or more explicitely:

B
j′

j (ϕ) = − ω(j)

ω(j′)
B

−j
−j′ (ϕ) , B

j′

j (ℓ) = B
−j′

−j (−ℓ). (4.1)
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This representation is convenient in the present setting because it keeps track of the Hamiltonian structure and

B =
1

2
(u, J−1

B(ϕ)u) , G =
1

2
(u, J−1

G(ϕ)u) ⇒ {B,G} =
1

2
(u, J−1[B,G]u).

We introduce the following parameters

τ = 2ν + 6, b0 := 6τ + 6. (4.2)

In order to prove the Theorem 1.11 we need to work in the class of Lip-−1-majorant tame operators (see Definition
2.2) and the proof is based on an abstract reducibility scheme for a class of tame operators.

We investigate the reducibility of a Hamiltonian operator of the form

M0 = D0 + P0 , D0 = diag(i d
(0)
j ) , d

(0)
j = m

(
j(4 + j2)

1 + j2

)
. (4.3)

Here the functions d(0)j are well defined and Lipschitz in the set O0, |m − 1|γ,O0 ≤ Cε, while P0 is defined and
Lipschitz in ω belonging to the set Ω1. We fix

a := 6τ + 4, τ1 := 2τ + 2, (4.4)

we require that P0, 〈∂ϕ〉b0P0 are Lip- −1- modulo tame, with modulo-tame constants denoted by M
♯,γ3/2

P0
(s) and

M
♯,γ3/2

P0
(s, b0) respectively (recall Definitions 2.5, 2.6), in the set Ω1. Moreover m and P0 and the set Ω1 depend

on I = I(ω) and satisfy the bounds

|∆12m| ≤ K1‖I1 − I2‖s0+σ (4.5)

‖〈Dx〉1/2∆12P0〈Dx〉1/2‖L(Hs0), ‖〈Dx〉1/2∆12〈∂ϕ〉b0P0〈Dx〉1/2‖L(Hs0 ) ≤ K2‖I1 − I2‖s0+σ ,

for some σ,K1,K2 > 0, for all ω ∈ Ω1(I1) ∩ Ω1(I2) with

K1,M
♯,γ3/2

P0
(s0),M

♯,γ3/2

P0
(s0, b0) ≤ K2. (4.6)

We recall that ‖ · ‖L(Hs0 ) is the operatorial norm. We associate to the operator (4.3) the Hamiltonian

H0(η, u) := ω · η +
1

2
(u, J−1

M0u)L2(Tx).

Proposition 4.1 (Iterative reduction). Let σ > 0 be the loss of derivatives in (4.5) and consider an operator of

the form (4.3). For all s ∈ [s0,S], there is N0 := N0(S, b0) > 0 such that, if

N τ1
0 M

♯,γ3/2

P0
(s0, b0)γ

−3/2 ≤ 1 , (4.7)

(recall (4.4)) then, for all k ≥ 0:

(S1)k there exists a sequence of Hamiltonian operators

Mk = Dk + Pk , Dk := diagj∈Z\{0}(i d
(k)
j ) , (4.8)

with d
(k)
j defined for ω ∈ O0 and

d
(k)
j (ω) := d

(0)
j + r

(k)
j (ω) , r

(0)
j := 0 , r

(k)
j ∈ R , r

(k)
j = −r

(k)
−j . (4.9)

The operators Pk are defined for k ≥ 1 in a set Ωγ3/2

k := Ωγ3/2

k (I) defined as

Ωγ3/2

k :=
{
ω ∈ Ωγ3/2

k−1 : |ω · ℓ+ d
(k−1)
j − d

(k−1)
j′ | ≥ γ3/2

〈ℓ〉τ , ∀|ℓ| ≤ Nk−1, ∀j, j′ ∈ Z \ {0}, (j, j′, ℓ) 6= (j, j, 0)
}

(4.10)
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where Ωγ3/2

0 := Ω1 and Nk := N
(3/2)k

0 . Moreover Pk and 〈∂ϕ〉b0Pk are −1-modulo-tame with modulo-tame

constants respectively

M
♯,γ3/2

k (s) := M
♯,γ3/2

Pk
(s) , M

♯,γ3/2

k (s, b0) := M
♯,γ3/2

Pk
(s, b0), k ≥ 0 (4.11)

for all s ∈ [s0,S]. Setting N−1 = 1, we have

M
♯,γ3/2

k (s) ≤ M
♯,γ3/2

0 (s, b0)N
−a
k−1 , M

♯,γ3/2

k (s, b0) ≤ M
♯,γ3/2

0 (s, b0)Nk−1 , (4.12)

while for all k ≥ 1

〈j〉|d(k)j − d
(k−1)
j | ≤ M

♯,γ3/2

0 (s0, b0)N
−a
k−2. (4.13)

(S2)k For k ≥ 1, there exists a linear symplectic change of variables Qk−1, defined in Ωγ3/2

k and such that

Mk := Qk−1ω · ∂ϕQ−1
k−1 +Qk−1Mk−1Q−1

k−1. (4.14)

The operators Ψk−1 := Qk−1 − I and 〈∂ϕ〉b0Ψk−1, are −1-modulo-tame with modulo-tame constants satisfying,

for all s ∈ [s0,S],

M
♯,γ3/2

Ψk−1
(s) ≤ γ−3/2N τ1

k−1N
−a
k−2M

♯,γ3/2

0 (s, b0) , M
♯,γ3/2

Ψk−1
(s, b0) ≤ γ−3/2N τ1

k−1Nk−2M
♯,γ3/2

0 (s, b0) . (4.15)

(S3)k Let I1(ω), I2(ω) such that P0(I1), P0(I2) satisfy (4.5). Then for all ω ∈ Ωγ1

k (I1) ∩Ωγ2

k (I2) with γ1, γ2 ∈
[γ3/2/2, 2γ3/2] we have

‖〈Dx〉1/2∆12Pk〈Dx〉1/2‖L(Hs0) ≤ K2N
−a
k−1‖I1 − I2‖s0+σ, (4.16)

‖〈Dx〉1/2〈∂ϕ〉b0∆12Pk〈Dx〉1/2‖L(Hs0 ) ≤ K2Nk−1‖I1 − I2‖s0+σ . (4.17)

Moreover for all k = 1, . . . , n, for all j ∈ Sc,

〈j〉
∣∣∆12r

(k)
j −∆12r

(k−1)
j

∣∣ ≤ ‖〈Dx〉1/2∆12Pk〈Dx〉1/2‖L(Hs0 ) , (4.18)

〈j〉 |∆12r
(k)
j | ≤ K2‖I1 − I2‖s0+σ . (4.19)

(S4)k Let I1, I2 be like in (S3)k and 0 < ρ < γ3/2/2. Then

K2N
τ+1
k−1 ‖I1 − I2‖s0+σ ≤ ρ =⇒ Ωγ3/2

k (I1) ⊆ Ωγ3/2−ρ
k (I2) . (4.20)

The Proposition 4.1 is proved by applying repeatedly the following KAM reduction procedure :

Fix any N ≫ 1 and consider any operator of the form

M = D(ω) + P(ϕ, ω) , D(ω) = diag(i dj(ω))j∈Z , dj = d
(0)
j + rj , d

(0)
j := m(ω)

j(4 + j2)

(1 + j2)
.

Here the m, rj ∈ R are well defined and Lipschitz for ω ∈ O0 with

|1−m|γ,O0 ≤ Cε , rj = −r−j , sup
j
〈j〉|rj |γ

3/2,O0 < 2M♯,γ3/2

P0
(s0, b0). (4.21)

Assume that (recall (1.6), (1.30)) in a set O ≡ O(I) ⊆ Ω1(I) ⊆ O0 the operators P , 〈∂ϕ〉b0P are Hamiltonian,
real and −1-modulo tame with

γ−3/2N2τ+2
M

♯,γ3/2

P (s0, b0) < 1 . (4.22)

Assume finally that dj = dj(I), P(I), 〈∂ϕ〉b0P(I) are Lipschitz w.r.t. I namely for all ω ∈ O(I1) ∩ O(I2)

|∆12m| ≤ K1 ‖I1 − I2‖s0+σ, sup
j
〈j〉|∆12rj | < 2K0‖I1 − I2‖s0+σ

‖〈Dx〉1/2∆12〈∂ϕ〉aP〈Dx〉1/2‖L(Hs0 ) ≤ K2‖I1 − I2‖s0+σ , a = 0, b0

(4.23)
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for some constants K1 ≤ K0 (recall K2 in (4.5)). Let us define C ≡ C(γ3/2,τ,N,O)
D as

C := {ω ∈ O : |ω · ℓ + dj − dj′ | >
γ3/2

〈ℓ〉τ , ∀(ℓ, j, j′) 6= (0, j, j), |ℓ| ≤ N, j, j′ ∈ Z \ {0}}. (4.24)

For ω ∈ C let A(ϕ) be defined as follows

Aj′

j (ℓ) =
Pj′

j (ℓ)

i(ω · ℓ+ dj − dj′ )
, for |ℓ| ≤ N, and Aj′

j (ℓ) = 0 otherwise. (4.25)

Lemma 4.2 (KAM step). The following holds:

(i) The operator A in (4.25) is a Hamiltonian, −1-modulo tame matrix with the bounds

M
♯,γ3/2

A (s, a) ≤ γ−3/2N2τ+1
M

♯,γ3/2

P (s, a) , (4.26)

‖〈Dx〉1/2∆12〈∂ϕ〉aA〈Dx〉1/2‖L(Hs0 ) ≤ C γ−3/2N2τ+1
(
K2 +K0 γ

−3/2
M

♯,γ3/2

P (s0, a)
)
‖I1 − I2‖s0+σ) ,

(4.27)

for a = 0, b0, for all ω ∈ C(I1) ∩ C(I2) and for some σ > 0.

(ii) The operator Q = eA :=
∑

k≥0
Ak

k! is well defined and invertible, moreover Ψ = Q− I is a −1-modulo tame

operator with the bounds

M
♯,γ3/2

Q−I (s, a) ≤ 2M♯,γ3/2

A (s, a) ≤ 2γ−3/2N2τ+1
M

♯,γ3/2

P (s, a) ,

‖〈Dx〉1/2∆12〈∂ϕ〉aQ〈Dx〉1/2‖L(Hs0 ) ≤ 2γ−3/2N2τ+1
(
K2 +K0γ

−3/2
M

♯,γ3/2

P (s0, a)
)
‖I1 − I2‖s0+σ) ,

for a = 0, b0 and for some σ > 0. Finally z → Qz is a symplectic change of variables generated by the time one

flow of the Hamiltonian S0 = 1
2 (z, J

−1Az).

(iii) Set, for ω ∈ C (see (4.24)),

Q(ω · ∂ϕQ−1) +Q (D(ω) + P(ϕ, ω))Q−1 := M+ = D+(ω) + P+(ϕ, ω) (4.28)

where D+(ω) = diag(i d+j ) is Hamiltonian, diagonal, independent of ϕ and defined for all ω ∈ O0 with

d+j = d
(0)
j + r+j , r+j = −r+−j , sup

j
〈j〉|rj − r+j |γ

3/2,O0 ≤ M
♯,γ3/2

P (s0) ,

sup
j
〈j〉|∆12(rj − r+j )| ≤ K2‖I1 − I2‖s0+σ , ∀ω ∈ C(I1) ∩ C(I2).

(4.29)

For ω ∈ C we have the bounds

M
♯,γ3/2

P+ (s) ≤ N−b0M
♯,γ3/2

P (s, b0) + C(s)N2τ+1γ−3/2
M

♯,γ3/2

P (s)M♯,γ3/2

P (s0) . (4.30)

M
♯,γ3/2

P+ (s, b0) ≤ M
♯,γ3/2

P (s, b0) (4.31)

+N2τ+1γ−3/2C(s, b0)
(
M

♯,γ3/2

P (s, b0)M
♯,γ3/2

P (s0) +M
♯,γ3/2

P (s0, b0)M
♯,γ3/2

P (s)
)
.

Moreover for all ω ∈ C(I1) ∩ C(I2)

‖∆12P+‖L(Hs0 ) ≤ N−b0K2‖I1 − I2‖s+σ (4.32)

+ C(s0)N
2τ+1γ−3/2

M
♯,γ3/2

P (s0)
(
K2 + γ−3/2

M
♯,γ3/2

P (s0)K0

)
‖I1 − I2‖s+σ

‖∆12〈∂ϕ〉b0P+‖L(Hs0 ) ≤ K2‖I1 − I2‖s+σ +N2τ+1γ−3/2C(s0, b0)
(
M

♯,γ3/2

P (s0, b0)K2 (4.33)

+M
♯,γ3/2

P (s0)
(
K2 + γ−3/2

M
♯,γ3/2

P (s0, b0)K0

)

+ γ−3/2N2τ+1
M

♯,γ3/2

P (s0)M
♯,γ3/2

P (s0, b0)
(
K2 + γ−3/2

M
♯,γ3/2

P (s0)K0

))
‖I1 − I2‖s+σ
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for some σ > 0. The action of Q on the Hamiltonian H is given by (see (4.28))

H+ := e{S0,·}H = ω · η +
1

2
(w, J−1

M
+w).

Proof. Proof of (i): First we prove that A is a −1-modulo tame operator. By (4.24), (4.25) (recall (2.5), (2.6))

〈∂ϕ〉aA � γ−3/2N τ 〈∂ϕ〉aP , for a = 0, b0,

while
〈∂ϕ〉a∆ω,ω′A � γ−3/2N τ 〈∂ϕ〉a∆ω,ω′P + γ−3N2τ+1〈∂ϕ〉aP , for a = 0, b0

since

∆ω,ω′Aj′

j (ℓ) =
∆ω,ω′Pj′

j (ℓ)

i
(
ω · ℓ+ dj − dj′

) − i
Pj′

j (ℓ)
(
[(ω − ω′) · ℓ/(|ω − ω′|)] + ∆ω,ω′(dj − dj′ )

)
(
ω · ℓ+ dj − dj′

)2 .

By Lemma A.5-(i) and (4.21), (4.22) we deduce (4.26). The bounds (4.27) come from applying the Leibniz rule
and by (4.23)

|∆12Aj′

j (ℓ)| ≤
|∆12Pj′

j (ℓ)|
|ω · ℓ+ dj − dj′ |

+
|Pj′

j (ℓ)||∆12dj −∆12dj′ |
(ω · ℓ+ dj − dj′ )2

. (4.34)

We remark that in the second summand (recall that K1 ≤ K0)

|∆12dj −∆12dj′ |
|ω · ℓ+ dj − dj′ |

≤ |∆12m| |ω(j)− ω(j′)|
|ω · ℓ+ dj − dj′ |

+
|∆12rj |+ |∆12rj′ |
|ω · ℓ+ dj − dj′ |

(4.23),(4.5)
≤ C γ−3/2(K1N

τ+1 +N τK0)‖I1 − I2‖s0+σ ≤ Cγ−3/2N τ+1K0‖I1 − I2‖s0+σ.

The estimate on the first summand follows from the estimates on ∆12m and the fact that if |ω(j) − ω(j′)| > C|ℓ|
with C > 1 then |ω · ℓ + dj − dj′ | > C̃|ω(j) − ω(j′)| with C̃ > 0; the estimate on the second summand comes
from (4.21), (4.22). In conclusion we get (recall (4.23) for the definition of K2)

‖〈Dx〉1/2∆12〈∂ϕ〉aA〈Dx〉1/2‖L(Hs0 ) ≤ C
(
γ−3/2N τK2 + γ−3N2τ+1K0M

♯,γ3/2

P (s0, a)
)
‖I1 − I2‖s0+σ

for all ω ∈ C(I1) ∩ C(I2). The fact that A is Hamiltonian follows from (4.1) and from the fact that dj is odd in j
(recall (4.3)) and P is Hamiltonian.

Proof of (ii): By the boundness of A, the bound on its modulo-tame constant and the smallness condition (4.22)
we have that Q is well defined and invertible. The bounds are a consequence of Lemma A.5 (iv)-(v), the smallness
condition (4.22) and the estimates proved in statement (i).

Proof of (iii): We start by observing that

D+ + P+ = D + P − ω · ∂ϕA+ [A,D + P ] +
∑

k≥2

ad(A)k

k!
(D + P)−

∑

k≥2

ad(A)k−1

k!
(ω · ∂ϕA). (4.35)

Again by definition, A solves the equation

ω · ∂ϕA+ [D,A] = ΠNP − [P ]

where [P ] is the diagonal matrix with j-th eigenvalue Pj
j (0). Substituting in (4.35) we get

D+ + P+ = D + [P ] + Π⊥
NP +

∑

k≥1

ad(A)k

k!
(P)−

∑

k≥2

ad(A)k−1

k!
(ΠNP − [P ] ). (4.36)
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By the reality condition (4.1) we get Pj
j (0) = P−j

−j (0) = −Pj
j (0), which shows that Pj

j (0) is real and odd in j. By

Kirtzbraun Theorem we extend Pj
j (0) to the whole O0 preserving the | · |γ3/2

norm. We set

d+j = dj + (Pj
j (0))

Ext = d
(0)
j + rj + (Pj

j (0))
Ext , r+j := rj + (Pj

j (0))
Ext

where (·)Ext denotes the extension of the eigenvalue at O0, so that the bound (4.29) follows, by Lemma A.5 - (i)

and the bounds (4.23) on P and ∆12P . Now for ω ∈ C

P+ = Π⊥
NP +

∑

k≥1

ad(A)k

k!
(P)−

∑

k≥2

ad(A)k−1

k!
(ΠNP − [P ] ). (4.37)

By Lemma A.5-(iv) we have

M
♯,γ3/2

(adA)kP
(s) ≤ C(s)k

(
(M♯,γ3/2

A (s0))
k
M

♯,γ3/2

P (s) + k(M♯,γ3/2

A (s0))
k−1

M
♯,γ3/2

A (s)M♯,γ3/2

P (s0)
)

(4.38)

which implies (4.30), by using also A.5(iii). Finally

M
♯,γ3/2

(adA)kP
(s, b0) ≤ C(s, b0)

k
(
(M♯,γ3/2

A (s0))
k
M

♯,γ3/2

P (s, b0)

+ k(M♯,γ3/2

A (s0))
k−1

(
M

♯,γ3/2

A (s, b0)M
♯,γ3/2

P (s0) +M
♯,γ3/2

A (s0, b0)M
♯,γ3/2

P (s)
)

+ k(k − 1)(M♯,γ3/2

A (s0))
k−2

M
♯,γ3/2

A (s)M♯,γ3/2

A (s0, b0)M
♯,γ3/2

P (s0)
)

(4.39)

which implies (4.31). In order to obtain the bounds (4.32) and (4.33) on ∆12, we just apply Leibniz rule repeatedly
in (4.37) and then procede as before. More precisely we have for all ω ∈ C(I1) ∩ C(I2)

∆12(ad(A)kP) = ad(A)k∆12P +
∑

k1+k2=k−1

ad(A)k1ad(∆12A)ad(A)k2P . 2

Now we note that ‖〈Dx〉1/2A〈Dx〉1/2‖L(Hs0 ) ≤ M
♯,γ3/2

A (s0) and that for any matrices A,B we have

‖〈Dx〉1/2ad(A)B〈Dx〉1/2‖L(Hs0 ) ≤ C(s0)‖〈Dx〉1/2A〈Dx〉1/2‖L(Hs0)‖〈Dx〉1/2B〈Dx〉1/2‖L(Hs0 ).

This implies that for all ω ∈ C(I1) ∩ C(I2) (recall (4.23) for the definition of K2)

‖〈Dx〉1/2∆12(ad(A)kP)〈Dx〉1/2‖L(Hs0 ) ≤ (C(s0)M
♯,γ3/2

A (s0))
kK2 (4.40)

+ kC(s0)
k(M♯,γ3/2

A (s0))
k−1γ−3/2

M
♯,γ3/2

P (s0)(N
τK2 + γ−3/2N2τ+1K0M

♯,γ3/2

P (s0))‖I1 − I2‖s0+σ.

Now by definition

∆12P+ = Π⊥
N∆12P +

∑

k≥1

∆12(
ad(A)k

k!
P)−

∑

k≥2

∆12

(ad(A)k−1

k!
(ΠNP − [P ])

)
, (4.41)

so we use Lemma A.5- (iii) in oder to bound the first summand and (4.40) in order to bound the remaining ones. In
the same way

∆12〈∂ϕ〉b0(ad(A)kP) = ad(A)k∆12〈∂ϕ〉b0P +
∑

k1+k2=k−1

ad(A)k1ad(∆12A)ad(A)k2 〈∂ϕ〉b0P

+
∑

k1+k2=k−1

ad(A)k1ad(〈∂ϕ〉b0A)ad(A)k2∆12P

+
∑

k1+k2=k−1

ad(A)k1ad(∆12〈∂ϕ〉b0A)ad(A)k2P

+
∑

k1+k2+k3=k−2

ad(A)k1ad(〈∂ϕ〉b0A)ad(A)k2ad(∆12A)ad(A)k3P

+
∑

k1+k2+k3=k−2

ad(A)k1ad(∆12A)ad(A)k2ad(〈∂ϕ〉b0A)ad(A)k3 ,

2Recall the usual convention that a(∆12b)c ≡ a(I1)(∆12b)c(I2).
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where the last two terms appear only if k ≥ 2. We proceed as for (4.40) and obtain the bound

‖〈Dx〉1/2∆12〈∂ϕ〉b0(ad(A)kP)〈Dx〉1/2‖L(Hs0 ) ≤ (C(s0)M
♯,γ3/2

A (s0))
kK2 (4.42)

+ kC(s0)
k(M♯,γ3/2

A (s0))
k−1γ−3/2

M
♯,γ3/2

P (s0, b0)(N
τK2 + γ−3/2N2τ+1K0M

♯,γ3/2

P (s0))

+ kC(s0)
k(M♯,γ3/2

A (s0))
k−1

M
♯,γ3/2

A (s0, b0)K2

+ kC(s0)
k(M♯,γ3/2

A (s0))
k−1γ−3/2

M
♯,γ3/2

P (s0)(N
τK2 + γ−3/2N2τ+1K0M

♯,γ3/2

P (s0, b0))

+ 2k(k − 1)C(s0)
k(M♯,γ3/2

A (s0))
k−2

M
♯,γ3/2

A (s0, b0)γ
−3/2

M
♯,γ3/2

P (s0) (4.43)

(N τK2 + γ−3/2N2τ+1K0M
♯,γ3/2

P (s0))‖I1 − I2‖s0+σ

from which one deduces the (4.33).

4.2 Proof of Theorem 1.11

In this section we conclude the proof of Theorem 1.11. We first provide a preliminary result.

Lemma 4.3. Consider ρ := s0 + b0 + 3, p = s0 and the operator L+
ω (see (1.50)) in Theorem 1.10 . We have that

P0 := R (with R in (1.50)) is −1-modulo-tame with modulo-tame constants satisfying the (4.6) with

σ := µ1, K1 := ε, K2 := εγ−1, (4.44)

where µ1 is given by Theorem 1.10.

Moreover the constant m and the operator P0 satisfy, for all ω ∈ Ω1(I1) ∩ Ω1(I2), the bounds (4.5).

Proof. Recalling the form of R in Theorem 1.10 we have that Lemma A.4 implies that P0 is −1-modulo tame with
modulo tame constants satisfying (recalling the Definition A.4 and the fact that γ3/2 < γ)

M
♯,γ3/2

P0
(−1, s),M♯,γ3/2

P0
(−1, s, b0) ≤s B

γ
R(s, s0 + b0)

(A.9)
≤ M

γ
R(s, ρ− 2) (4.45)

which implies

M
♯,γ3/2

P0
(s, b0) ≤ M

γ
R(s, b), M

♯,γ3/2

P0
(s0, b0) ≤ εγ−1. (4.46)

Using (1.24), (1.52) one gets the (4.6) with the parameters fixed in (4.44). In the same way, by Lemma A.4, (1.51),
(1.52), (1.24) we get the (4.5).

Proof of Theorem 1.11. We want to apply Proposition 4.1 to the operator L+
ω in (1.50) (see also Theorem 1.10).

It is convenient to remark that L+
ω gives the dynamics of a quadratic time-dependent Hamiltonian. Passing to the

extended phase space, L+
ω corresponds to the Hamiltonian

H := H(η, u) = ω · η +
1

2
(u, J−1

M0u)L2(Tx) , M0 = D0 + P0

where

D0 = diag(i d
(0)
j )j∈Z\{0} , d

(0)
j = m

(
j(4 + j2)

1 + j2

)
, P0 := R. (4.47)

By Lemma 4.3 we have that m andP0 satisfy (4.5), (4.6) with the choice of parameters in (4.44). Then the smallness
assumption (4.7) follows by the smallness condition on ε in (1.54) provided that N0 in formula (1.54) is chosen as
in Proposition 4.1. We can conclude that Proposition 4.1 applies to L+

ω in (1.50).

By (4.13) we have that the sequence (dkj )k∈N in (4.9) is Cauchy, hence the limit d∞j = d
(0)
j + r∞j exists and, also

by (4.9), r∞j satisfies (1.56).
Now we claim that (recall (1.30)-(1.31) and (4.10))

O∞ ⊆
⋂

k≥0

Ωγ3/2

k . (4.48)
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Indeed we have for |ℓ| ≤ Nk

|ω · ℓ+ dkj − dkj′ | ≥ |ω · ℓ + d∞j − d∞j′ | − |rkj − r∞j | − |rkj′ − r∞j′ |
(4.13)
≥ 2γ3/2

〈ℓ〉τ − M
♯,γ3/2

0 (s0, b0)

N a
k−2

≥ γ3/2

〈ℓ〉τ

since M
♯,γ3/2

0 (s0, b0) ≤ γ3/2N−τ1
0 and 〈ℓ〉τ ≤ N τ

k ≤ N a
k−2 due to (4.4). We conclude that O∞ ⊆ Ωγ3/2

k+1 . Thus
the sequence (Ψk)k∈N (recall item (S2)k in Prop. 4.1) is well defined on O∞.
We define

Φk = Q0 ◦ · · · ◦ Qk.

We claim that there exists Φ∞ := limk→∞ Φk in the topology induced by the operatorial norm. First we note that,
by using (4.15) and (4.7), for any k we have

M
♯,γ3/2

Φk
(s) ≤

k∑

j=0


M

♯,γ3/2

Qj
(s)

∏

i6=j

M
♯,γ3/2

Qi
(s0)


 ≤ 2

k∑

j=0

M
♯,γ3/2

Qj
(s) ≤ C

(
1 + max

j=0,...,k
M

♯,γ3/2

Ψj
(s)

)
. (4.49)

By Lemmata A.5 and A.4 we have

M
γ3/2

Φk−Φk−1
(s, b0) ≤s M

♯,γ3/2

Φk−Φk−1
(s, b0) ≤s M

♯,γ3/2

Ψk
(s, b0) +M

♯,γ3/2

Ψk
(s0, b0) max

j=0,...,k
M

♯,γ3/2

Ψj
(s, b0)

+M
♯,γ3/2

Ψk
(s, b0) max

j=0,...,k
M

γ3/2,♯
Ψj

(s0, b0)
(4.15)
≤s N τ1

k N−a
k−1M

♯,γ3/2

0 (s, b0)γ
−3/2.

Thus by

‖(Φk+m − Φk)h‖γ
3/2,O∞

s ≤
k+m∑

j=k

‖(Φj − Φj−1)h‖γ
3/2,O∞

s

and by (4.45) we have that (recall (4.7) and (4.4))

M
γ3/2

Φk+m−Φk
(s, b0) ≤s0,b0 M

γ
R(s, ρ− 2)N τ1

k N−a
k−1γ

−3/2
(1.52),(4.46)

≤s0,b0 εγ−1‖I‖γ,O0

s+µ1
N

−2(τ+(1/3))
k ,

hence (Φk)k∈N is a Cauchy sequence in L(Hs) and for Φ∞ the estimate (1.58) holds. The operators Φk are close
to the identity, hence the same is true for Φ∞ and by Neumann series it is invertible. One can prove that for Φ−1

∞

the estimate (1.58) holds.
Let us prove the (1.59). We first show that, for any n ∈ N one has

〈j〉|rj(I1)− rj(I2)| ≤ εγ−1‖I1 − I2‖s0+σ + εγ−1CN−a
n−1, (4.50)

with Nn defined in Prop. 4.1. This would implies the thesis. For k = n+ 1 one can estimates

|rj(I1)− rj(I2)| ≤ |rj(I1)− r
(k)
j (I1)|+ |r(k)j (I1)− r

(k)
j (I2)|+ |r(k)j (I2)− rj(I2)|

by using (4.13), (4.19), with K2 ∼ εγ−1 to get the (4.50).

5 Measure estimates and conclusions

Here we conclude the proof of Theorem 1.4 by showing that Theorem 1.12 holds. We first need some preliminary
results. Let us define

ω(j) :=
4 + j2

1 + j2
j , (5.1)
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and remark that if j 6= k (both non-zero)

|ω(j)− ω(k)| = |j − k|
∣∣∣1 + 3

1− jk

(1 + j2)(1 + k2)

∣∣∣ ≥ 1

2
|j − k| . (5.2)

Recall that τ > 2ν + 1 is fixed in (1.6).

Lemma 5.1. If Rℓjk 6= ∅, then |ℓ| ≥ C1|ω(j)− ω(k)|for some constant C1 > 0.

If Qℓj 6= ∅ then |ℓ| ≥ C2|j| for some constant C2 > 0.

Proof. Since |ω||ℓ| ≥ |ω · ℓ| our first claim follows, setting C1 := (8|ω|)−1, provided that we prove

8|ω · ℓ| ≥ |ω(j)− ω(k)|

If Rℓjk 6= ∅, then there exist ω such that

|dj(ω)− dk(ω)| < 2γ3/2〈ℓ〉−τ + 2|ω · ℓ|. (5.3)

Moreover, recall (1.49) and (1.56), we get

|dj(ω)− dk(ω)| ≥ |m||ω(j)− ω(k)| − |rj(ω)| − |rk(ω)| ≥
1

3
|ω(j)− ω(k)|. (5.4)

Thus, for ε small enough

2|ω||ℓ| ≥ 2|ω · ℓ| ≥
(
1

3
− 2γ3/2

〈ℓ〉τ |ω(j)− ω(k)|

)
|ω(j)− ω(k)| ≥ 1

4
|ω(j)− ω(k)|

and this proves the first claim on Rℓjk . If |mj| ≥ 2|ω · ℓ| then by (1.6)

|ω · ℓ+mj| ≥ |m||j| − |ω · ℓ| ≥ 2|ω · ℓ| − |ω · ℓ| = |ω · ℓ| ≥ γ〈ℓ〉−τ .

Hence if Qℓj 6= ∅ we have |j| ≤ 2|ω · ℓ||m|−1 ≤ C−1
2 |ℓ|, where C2 := |m|(4|ω|)−1. This concludes the proof.

By (1.62), we have to bound the measure of the sublevels of the function ω 7→ φ(ω) defined by

φR(ω) := ω · ℓ+ dj(ω)− dk(ω) = ω · ℓ + im(ω)(ω(j)− ω(k)) + (rj − rk)(ω),

φQ(ω) := ω · ℓ+m(ω)j.
(5.5)

Note that φ also depends on ℓ, j, k, I.
By Lemma 5.1 it is sufficient to study the measure of the resonant sets Rℓjk defined in (1.62) for (ℓ, j, k) 6=

(0, j, j). In particular we will prove the following Lemma.

Lemma 5.2. Let us define for η ∈ (0, 1) and σ ∈ N > 0

Rℓjk(η, σ) :=
{
ω ∈ O0 : |ω · ℓ+ dj − dk| ≤ 2η〈ℓ〉−σ

}
, Qℓj(η, σ) :=

{
ω ∈ O0 : |ω · ℓ+mj| ≤ 2η〈ℓ〉−σ

}
.

Recalling that O0 ∈ [−L,L], we have that |Rℓjk(η, σ)| ≤ CL(ν−1)η〈ℓ〉−σ . The same holds for Qℓj(η, σ).

Proof. We give the proof of Lemma 5.2 for the set Rℓjk (with ℓ 6= 0) which is the most difficult case.
Split ω = sℓ̂+ v where ℓ̂ := ℓ/|ℓ| and v · ℓ = 0. Let ΨR(s) := φR(sℓ̂+ v), defined in (5.5). By using (1.49),(1.56)
and Lemma 5.1 we have

|ΨR(s1)−ΨR(s2)| ≥ |s1 − s2|
(
|ℓ| − |j − k||m|lip,O0 − (|rj |lip,O0 + |rk|lip,O0)

)
≥|ℓ|

2
|s1 − s2| (5.6)

for ε small enough (see (1.54)). As a consequence, the set ∆ℓjk := {s : sℓ̂+ v ∈ Rljk} has Lebesgue measure

|∆ℓjk| ≤ 2 |ℓ|−1 4 η 〈ℓ〉−σ = 8 η〈ℓ〉−σ−1.

The Lemma follows by Fubini’s theorem.
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Lemma 5.3. There exists C > 0 such that setting τ1 = ν + 2 then, for all j, k such that |j|, |k| ≥ C〈ℓ〉τ1γ−(1/2),

one has Rℓjk(γ
3/2, τ) ⊆ Qℓ,j−k(γ, τ1).

Proof. By (1.56), (1.49) we have (recall also (5.2)) that

|ω · ℓ+ dj − dk| ≥
2γ

〈ℓ〉τ1 − 2|j − k| C

|j||k| −
C̃ε

min{|j|, |k|} ≥ 2γ

〈ℓ〉τ1 − Cγ

C〈ℓ〉2τ1−1
− C̃ε

√
γ

C〈ℓ〉τ1 ≥ γ3/2

〈ℓ〉τ
(5.7)

for C big enough and since ε(
√
γ)−1 ≪ 1.

Proof of Theorem 1.12. Let τ > 2ν + 4. We have
∣∣∣∣∣∣

⋃

ℓ∈Zν ,j,k∈Z\{0}

Rℓjk

∣∣∣∣∣∣
≤

∑

ℓ∈Zν,|j|,|k|≥C〈ℓ〉τ1γ−(1/2)

|Rℓjk|+
∑

ℓ∈Zν ,|j|,|k|≤C〈ℓ〉τ1γ−(1/2)

|Rℓjk|.

On one hand we have that, using Lemmata 5.3 and 5.2,
∑

ℓ∈Zν ,|j|,|k|≥C〈ℓ〉τ1γ−(1/2)

|Rℓjk| ≤ C
∑

j−k=h,|h|≤C|ℓ|

Lν−1γ〈ℓ〉−τ1 ≤ CLν−1γ
∑

ℓ∈Zν

〈ℓ〉−(τ1−1) ≤ C̃Lν−1γ,

for some C̃ ≥ C > 0. On the other hand

∑

ℓ∈Z
ν ,|j|,|k|≤C〈ℓ〉τ1γ−(1/2),

|j−k|≤C|ℓ|

|Rℓjk| ≤ Cγ(3/2)Lν−1
∑

ℓ∈Zν

|ℓ|〈ℓ〉τ1√
γ〈ℓ〉τ ≤ CγLν−1

∑

ℓ∈Zν

〈ℓ〉−(τ−τ1−1) ≤ CγLν−1.

The discussion above implies estimates (1.60).

Proof of Theorem 1.4 (Reducibility). It is sufficient to set Φ := Φ2◦Φ1 whereΦ1(ω) is the map given in Theorem
1.10 while Φ2 in Theorem 1.11. The bound (1.33) follows by (1.53) and (1.58). Theorem 1.12 provides the measure
estimate on the set O∞ in (1.34).

Proof of Theorem 1.6 (Almost Reducibility). Consider Lω(I1), Lω(I2) under the hypotheses of Theorem 1.6.
Theorems 1.10 and 1.11 applies to the operator Lω(I1) hence the results of Theorem 1.4 holds for ω in the set
Ω1(I1) (see (1.30)). Recalling Remark 1.7 let us assume that

O∞(I1) ⊂ ΛN (I2)
(1.42),(1.43)

= Ω
(N)
1 ∩ Ω

(N)
2 . (5.8)

We show that the thesis will follows. Indeed we can apply the iterative Lemma 5.2 in Section 5 of [24] for n =
1, 2, . . . , k < ∞ where the larger is N the larger is k. Actually k has to be chosen in such a way Nk ≡ N where

Nn = N
( 3
2 )

n

0 . Hence Lω(I2) can be conjugated to an operator of the form

L̃ω(I2) := ω · ∂ϕ −m(N)J − J ◦ a(N)(I2;ϕ, x) + R̃(N)(I2)

where the constant m(N) and the real function a(N) satisfy the bounds (1.40), (1.41) respectively. The linear
operator R̃(N) = Op(r̃) + R̂+ where r̃ ∈ S−1, R̂+ ∈ Lρ,p and satisfy the hypotheses of Proposition 4.1. For

ω ∈ Ω
(N)
2 (I2) one can iterate the procedure of Prop. 4.1 with 1 ≤ n ≤ k < ∞. It is important to note that the

maps Qn−1 given in (S2)n are the identity plus Ψn−1 a −1-modulo-tame operator. By (4.15) and (1.41) on a(N)

one has that
Qn−1 ◦ J ◦ a(N)(ϕ, x) ◦ Q−1

n−1 = J ◦ a(N)(ϕ, x) + Pn

with Pn satisfying the second bound in (1.41) for any n ≤ k. In other words these terms are already “small” and
they are not to be taken into account in the reducibility procedure. By the reasoning above one can prove (1.39)
and (1.41). It remains to show that (5.8) and the (1.40). First we have Ω1(I1) ⊂ Ω

(N)
1 (I2) Remark 5.3 in [24]. To

show the inclusion Ω2(I1) ⊂ Ω
(N)
2 (I2) we reason as follows.
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We first note that, by Lemma 5.1, if |ω(j)−ω(k)| > C−1
1 |ℓ| then Rℓjk(I1) = Rℓjk(I2) = ∅ (recall (1.62)), so that

our claim is trivial. Otherwise, if |ω(j)− ω(k)| ≤ C−1
1 |ℓ| ≤ C−1

1 N we claim that for all j, k ∈ Z we have (recall
(4.4))

|(d(N)
j − d

(N)
k )(I2)− (dj − dk)(I1)| ≤ εγ−1N

(
sup
ω∈O0

‖I1 − I2‖s0+µ +N− 3
2 a
)

∀ω ∈ O∞(I1). (5.9)

The (5.9) imply the (1.40). We now prove that (5.9) implies that Ω2(I1) ⊂ Ω
(N)
2 (I2). For all j 6= k, |ℓ| ≤ N ,

ω ∈ O∞(I1) by (5.9)

|ω · ℓ+ d
(N)
j (I2)− d

(N)
k (I2)| ≥ |ω · ℓ+ dj(I1)− dk(I1)| − |(d(N)

j − d
(N)
k )(I2)− (dj − dk)(I1)|

≥ 2γ3/2〈ℓ〉−τ − εγ−1N− 3
2 a ≥ 2(γ3/2 − ρ)〈ℓ〉−τ

(5.10)

where we used (1.38).
Proof of (5.9). By (1.55) (recalling (5.1))

(d
(N)
j − d

(N)
k )(I2)− (dj − dk)(I1) = (m(N)(I2)−m(I1))(ω(j) − ω(k))

+ (r
(N)
j (I2)− rj(I1)) + (r

(N)
k (I2)− rk(I1)).

(5.11)

Choose k ∈ N such that Nk−1 ≡ N . In this way we have that r(N)
j (I2) coincides with r

(k)
j given in Proposition

4.1. We apply Proposition 4.1-(S4)k in order to conclude that

Ωγ3/2

k (I1) ⊆ Ωγ3/2−ρ
k (I2), (5.12)

since the smallness condition in (4.20) is satisfied by (1.38). Then by (4.48)

O∞(I1) ⊆
⋂

j≥0

Ωγ3/2

j (I1) ⊆ Ωγ3/2

k (I1)
(5.12)
⊆ Ωγ3/2−ρ

k (I2). (5.13)

For all ω ∈ O∞(I1) ⊆ Ωγ3/2

k (I1) ∩ Ωγ3/2−ρ
k (I2), we deduce by Proposition 4.1-(S3)k

〈j〉|r(k)j (I2)− r
(k)
j (I1)|

(4.19)
≤ εγ−1‖I2 − I1‖s0+σ.

(5.14)

We have, by (4.13), for any k ∈ N

〈j〉|rj(I1)− r
(n+1)
j (I1)| ≤ 〈j〉

∑

j≥k

|r(j+1)
j (I1)− r

(j)
j (I1)| ≤ M

♯,γ∗

0 (s0, b)
∑

j≥n

N−a
j

(4.46)
≤ εγ−1N−a

k . (5.15)

Therefore ∀ω ∈ O∞(I1), ∀j ∈ Z we have (recall the choice of k above)

〈j〉|r(N)
j (I2)− rj(I1)| ≤ 〈j〉

(
|r(k)j (I2)− r

(k)
j (I1)|+ |rj(I1)− r

(k)
j (I1)|

)

(5.14),(5.15)
≤ εγ−1‖I1 − I1‖s0+σ + CM

♯,γ∗

0 (s0, b)N
−a
k .

Using similar reasonings, the iterative Lemma 5.2 in Section 5 of [24] and recalling |j−k| . |ℓ| one can prove that

|m(N)(I2)−m(I1)||j|≤Cε‖I2 − I1‖s0+2|ℓ|. (5.16)

This concludes the proof of (5.9).
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A Technical Lemmata

A.1 Tame and Modulo-tame operators

In the following we collects some properties of operators which are “Lip-tame” or “Lip-modulo-tame” according
to Definitions 2.2 and 2.5.

Lemma A.1 (Composition of Lip-Tame operators). Let A and B be respectively Lip-σA-tame and Lip-σB-tame

operators with tame constants respectively M
γ
A(σA, s) and M

γ
B(σB , s). Then the composition A ◦ B is a Lip-

(σA + σB)-operator with

M
γ
A◦B(σA+B, s) ≤ M

γ
A(σA, s)M

γ
B(σB , s0 + σA) +M

γ
A(σA, s0)M

γ
B(σB , s+ σA). (A.1)

The same holds for σ-tame operators.

Proof. The proof follows by the definitions and by using triangle inequalities.

Lemma A.2. Let A be a Lip-σ-tame operator. Let u(ω), ω ∈ O ⊂ R
ν be a ω-parameter family of Sobolev

functions Hs, for s ≥ s0. Then

‖Au‖γ,Os ≤s M
γ
A(σ, s)‖u‖γ,Os0 +M

γ
A(σ, s0)‖u‖γ,Os . (A.2)

Proof. By definition (2.3) we have MA(σ, s) ≤ M
γ
A(σ, s) and ‖u‖s ≤ ‖u‖γ,Os . Then the thesis follows by the

triangle inequalities

|ω − ω′|−1‖A(ω)u(ω)−A(ω′)u(ω′)‖s ≤ ‖(∆ω,ω′A)u(ω)‖s + ‖A(ω′)∆ω,ω′u‖s.

Lemma A.3. Let A = Op(a(ϕ, x,D)) ∈ OPS0 be a family of pseudo differential operators which are Lipschitz

in a parameter ω ∈ O ⊂ Rν . If |A|γ,O0,s,0 < +∞ (recall (1.23)) then A is a 0-tame operator with

M
γ
A(σ, s) ≤ C(s)|A|γ,O0,s,0. (A.3)

Proof. We refer to the proof of Lemma 2.21 of [10].

Given an operator A ∈ Lρ,p we define

M
γ

∂
b1
ϕmA

(−1, s) := M
γ

〈Dx〉1/2∂
b1
ϕmA〈Dx〉1/2

(0, s), M
γ

∂
b1
ϕm [A,∂x]

(−1, s) := M
γ

〈Dx〉1/2∂
b1
ϕm [A,∂x]〈Dx〉1/2

(0, s).

the Lip-0-tame constant of 〈Dx〉1/2A〈Dx〉1/2, 〈Dx〉1/2∂b
ϕm

A〈Dx〉1/2, 〈Dx〉1/2[∂b
ϕm

A, ∂x]〈Dx〉1/2, for any m =
1, . . . , ν, 0 ≤ b1 ≤ b and we set

B
γ
A(s, b) := max

0≤b1≤b
m=1,...,ν

max
(
M

γ

∂
b1
ϕmA

(−1, s),Mγ

∂
b1
ϕm [A,∂x]

(−1, s)
)
. (A.4)

We have the following result.

Lemma A.4. Let s0 ≥ [ν/2] + 3, s0 ∈ N, b0 ∈ N and recall (2.7), Def. 2.8 and (2.8).
(i) Let A ∈ Lρ,p with ρ := s0 + b0 + 3, p = s0, then A is a −1-modulo tame operator. Moreover

M
♯,γ3/2

A (s) ≤ max
m=1,...,ν

M
γ3/2

∂
s0
ϕm [A,∂x]

(−1, s), (A.5)

M
♯,γ3/2

A (s, b0) ≤ max
m=1,...,ν

M
γ3/2

∂
s0+b0
ϕm [A,∂x]

(−1, s). (A.6)

‖〈Dx〉1/2∆12A〈Dx〉1/2‖L(Hs0), ‖〈Dx〉1/2∆12〈∂ϕ〉b0A〈Dx〉1/2‖L(Hs0 ) ≤ B∆12A(s0, b0) (A.7)
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where

B∆12A(s0, b) := max
0≤b1≤b
m=1,...,ν

max
(
N∂

b1
ϕm∆12A

(−1, s0),N∂
b1
ϕm [∆12A,∂x]

(−1, s0)
)
. (A.8)

(ii) If A := Op(a) with a = a(ω, i(ω)) in Sm with m ≤ −1 depending on ω ∈ O0 ⊂ Rν in a Lipschitz way and

on i in a Lipschitz way, then A is a −1-modulo tame operator and bounds (A.5)-(A.7) hold.

Proof. Consider b ∈ N and ρ ∈ N with ρ ≥ b+ 3. We claim that if A ∈ Lρ,p (see Def. 2.8) then one has

B
γ
A(s, b) ≤ρ,s M

γ
A(s, ρ− 2), B∆12A(p, b) ≤ρ,p M∆12A(p, ρ− 3). (A.9)

The fact that 〈Dx〉1/2A〈Dx〉1/2 is Lip-0-tame follows by (2.15) since ρ ≥ 1. Indeed 〈Dx〉−ρ+1 is bounded in x
and for any h ∈ Hs

‖〈Dx〉
1
2A〈Dx〉

1
2h‖γ,O0

s ≤ ‖〈Dx〉−ρ+1
(
〈Dx〉ρ−

1
2A〈Dx〉

1
2

)
h‖γ,O0

s

≤s M
γ
A(−ρ, s)‖h‖γ,O0

s0 +M
γ
A(−ρ, s0)‖h‖γ,O0

s .

By studying the tameness constant of ∂~bϕA, [A, ∂x], [∂
~b
ϕA, ∂x]∆12A, ∂

~b
ϕ∆12A, [∆12A, ∂x] and [∂~bϕ∆12A, ∂x] for

~b ∈ Nν , |~b| = b, following the same reasoning above one gets the (A.9).

We have, by Cauchy-Schwarz,

‖〈Dx〉1/2A〈Dx〉1/2u‖2s ≤
∑

ℓ∈Zν ,j∈Z

〈ℓ, j〉2s
( ∑

ℓ′∈Zν ,j′∈Z

〈j′〉1/2|(A)j
′

j (ℓ− ℓ′)|〈j〉1/2|uℓ′j′ |
)2

≤
∑

ℓ∈Zν ,j∈Z

〈ℓ, j〉2s
( ∑

ℓ′∈Zν ,j′∈Z

〈ℓ− ℓ′〉s0 |j − j′|
〈ℓ− ℓ′〉s0 |j − j′| 〈j

′〉1/2|(A)j
′

j (ℓ− ℓ′)|〈j〉1/2|uℓ′j′ |
)2

≤
∑

ℓ∈Zν ,j∈Z

〈ℓ, j〉2s(
∑

ℓ′∈Zν ,j′∈Z

Cℓj) (
∑

ℓ′∈Zν ,j′∈Z

〈j〉〈j′〉|j − j′|2〈ℓ− ℓ′〉2s0 |(A)j
′

j (ℓ− ℓ′)|2|uℓ′j′ |2)

≤ C
∑

ℓ′∈Zν ,j′∈Z

|uℓ′j′ |2(
∑

ℓ∈Zν ,j∈Z

〈ℓ, j〉2s 〈j〉〈j′〉|j − j′|2〈ℓ− ℓ′〉2s0 |(A)j
′

j (ℓ− ℓ′)|2)

since

C :=
∑

ℓ,ℓ′∈Zν ,j,j′∈Z

Cℓj < ∞, Cℓj :=
∑

ℓ′∈Zν ,j′∈Z

1

〈ℓ− ℓ′〉2s0 |j − j′|2 .

By the fact that for any 1 ≤ m ≤ ν (recall (1.19))

∑

ℓ∈Zν,j∈Z

〈ℓ, j〉2s〈j〉〈j′〉|j − j′|2〈ℓm − ℓ
′

m〉2s0 |(A)j
′

j (ℓ− ℓ′)|2

≤ 2(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s))2〈ℓ′, j′〉2s0 + 2(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s0))
2〈ℓ′, j′〉2s

and 〈ℓ− ℓ′〉 ≤ maxm=1,...,ν〈ℓm − ℓ
′

m〉 we obtain

‖〈Dx〉1/2A〈Dx〉1/2u‖2s ≤ 2 max
m=1,...,ν

(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s0))
2‖u‖2s + 2 max

m=1,...,ν
(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s))2‖u‖2s0 .

Following the same reasoning above we conclude the same bound for ‖〈Dx〉1/2∆ω,ω′A〈Dx〉1/2u‖2s, it is sufficient

to substitute Aj′

j (ℓ − ℓ′) with
(
Aj′

j (ℓ − ℓ′, ω)− Aj′

j (ℓ − ℓ′, ω′)
)
/(ω − ω′) in the computations above. By the fact

that γ3/2 < 1 we deduce (A.5). The proofs of (A.6), (A.7) are analogous. The proof of item (ii) follows using
the above computations by noting that ∂ϕmA and the commutator [A, ∂x] are still pseudo-differential operators of
order −1.
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Lemma A.5. Recall (2.5). The following holds.

(i) If A � B and ∆ω,ω′A � ∆ω,ω′B for all ω 6= ω′ ∈ O, we may choose the modulo-tame constants of A so that

M
♯,γ3/2

A (s) ≤ M
♯,γ3/2

B (s) .

(ii) Let A be a −1 modulo-tame operator with modulo-tame constant M
♯,γ3/2

A (s). Then 〈Dx〉1/2A〈Dx〉1/2 is

majorant bounded Hs → Hs

‖〈Dx〉1/2A〈Dx〉1/2‖L(Hs) ≤ 2M♯,γ3/2

A (s) , |Aj
j(0)|γ

3/2 ≤ M
♯,γ3/2

A (s0)〈j〉−1.

(iii) Suppose that 〈∂ϕ〉b0A, b0 ≥ 0, is −1 modulo-tame. Then the operator Π⊥
NA is −1 modulo-tame with modulo-

tame constant

M
♯,γ3/2

Π⊥

NA
(s) ≤ min{N−b0M

♯,γ3/2

〈∂ϕ〉b0A(s),M
♯,γ3/2

A (s)} . (A.10)

(iv) Let A, B be two −1 modulo-tame operators with modulo-tame constantsM
♯,γ3/2

A (s), M
♯,γ3/2

B (s). Then A+B
is −1 modulo-tame with modulo-tame constant

M
♯,γ3/2

A+B (s) ≤ M
♯,γ3/2

A (s) +M
♯,γ3/2

B (s) . (A.11)

The composed operator A ◦B is −1 modulo-tame with modulo-tame constant

M
♯,γ3/2

AB (s) ≤ C(s)
(
M

♯,γ3/2

A (s)M♯,γ3/2

B (s0) +M
♯,γ3/2

A (s0)M
♯,γ3/2

B (s)
)
. (A.12)

Assume in addition that 〈∂ϕ〉b0A, 〈∂ϕ〉b0B are −1 modulo-tame with modulo-tame constants M
♯,γ3/2

〈∂ϕ〉b0A(s) and

M
♯,γ3/2

〈∂ϕ〉b0B(s) respectively, then 〈∂ϕ〉b0(AB) is −1 modulo-tame with modulo-tame constant satisfsying

M
♯,γ3/2

〈∂ϕ〉b0(AB)(s) ≤ C(s, b0)
(
M

♯,γ3/2

〈∂ϕ〉b0A(s)M
♯,γ3/2

B (s0) +M
♯,γ3/2

〈∂ϕ〉b0A(s0)M
♯,γ3/2

B (s)

+M
♯,γ3/2

A (s)M♯,γ3/2

〈∂ϕ〉b0B(s0) +M
♯,γ3/2

A (s0)M
♯,γ3/2

〈∂ϕ〉b0B(s)
)
. (A.13)

Finally, for any k ≥ 1 we have, setting L = adk(A)B, ad(A)B := AB −BA:

M
♯,γ3/2

〈∂ϕ〉b0L(s) ≤ C(s, b0)
k
[
(M♯,γ3/2

A (s0))
k
M

♯,γ3/2

〈∂ϕ〉b0B(s)

+ k(M♯,γ3/2

A (s0))
k−1

(
M

♯,γ3/2

〈∂ϕ〉b0A(s)M
♯,γ3/2

B (s0) +M
♯,γ3/2

〈∂ϕ〉b0A(s0)M
♯,γ3/2

B (s)
)

+ k(k − 1)(M♯,γ3/2

A (s0))
k−2

M
♯,γ3/2

A (s)M♯,γ3/2

〈∂ϕ〉b0A(s0)M
♯,γ3/2

B (s0)
]
.

(A.14)

The same bound holds if we set L = AkB.

(v) Let Φ := I + A and assume, for some b0 ≥ 0, that A, 〈∂ϕ〉b0A are Lip–1-modulo tame and the smallness

condition

8C(S, b0)M♯,γ3/2

A (s0) < 1 , C(S, b0) = max
s0≤s≤S

C(s, b0) (A.15)

holds. Then the operator Φ is invertible, Ǎ := Φ−1−I is −1 modulo-tame together with 〈∂ϕ〉b0A with modulo-tame

constants

M
♯,γ3/2

Ǎ
(s) ≤ 2M♯,γ3/2

A (s) , (A.16)

M
♯,γ3/2

〈∂ϕ〉b0 Ǎ
(s) ≤ 2M♯,γ3/2

〈∂ϕ〉b0A(s) + 8C(S, b0)M♯,γ3/2

〈∂ϕ〉b0A(s0)M
♯,γ3/2

A (s) . (A.17)
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Proof. In the following we shall sistematically use the fact that if B is an operator with matrix coefficients ≥ 1,
then A � A ◦B = A ◦B = A ◦B. Note that 〈Dx〉1/2 is a diagonal operator with positive eigenvalues.

(i) Assume that A � B i.e. |Aj′

j (ℓ)| ≤ |Bj′

j (ℓ)| for all j, j′, ℓ. Then, by (2.5),

‖〈Dx〉1/2A〈Dx〉1/2u‖s ≤ ‖〈Dx〉1/2A〈Dx〉1/2u‖s ≤ ‖〈Dx〉1/2B〈Dx〉1/2u‖s.

The same reasoning holds for 〈Dx〉1/2∆ω,ω′A〈Dx〉1/2, so that the result follows.
(ii) The first bound is just a reformulation of the definition, indeed

sup
‖u‖s≤1

‖〈Dx〉1/2A〈Dx〉1/2u‖s ≤ sup
‖u‖s≤1

(M♯,γ3/2

A (s0)‖u‖s +M
♯,γ3/2

A (s)‖u‖s0) ≤ 2M♯,γ3/2

A (s).

In order to prove the second bound we notice that setting

Bj′

j (ℓ) =

{
〈j〉Aj

j(0) ℓ = 0 and j = j′,

0 otherwise,

we have B � 〈Dx〉1/2A〈Dx〉1/2, same for ∆ω,ω′B. Fix any j0 and consider the unit vector u(j0) in Hs0(Tν+1)
defined by uj,ℓ = 0 if (j, ℓ) 6= (j0, 0) and uj0,0 = 〈j0〉−s0 . We have by (2.5)

〈j0〉|Aj0
j0
(0)| = ‖Bu(j0)‖s0 ≤ ‖〈Dx〉1/2A〈Dx〉1/2u(j0)‖s0 ≤ M

♯,γ3/2

A (s0).

The same holds for γ3/2〈j0〉|∆ω,ω′Aj0
j0
(0)|.

(iii) We remark that |Aj′

j (ℓ)| ≤ N−b0〈ℓ〉b0 |Aj′

j (ℓ)| if |ℓ| ≥ N and the same holds for |∆ω,ω′Aj′

j (ℓ)|. Therefore we
have

Π⊥
NA � N−b0〈∂ϕ〉b0Π⊥

NA � N−b0〈∂ϕ〉b0A
and clearly Π⊥

NA � A and the result follows by (i). See also Lemma 2.27 of [10].
(iv) The computations involved in this proof are similar to the ones in Lemma 2.25 of [10]. For the first bound we
just remark that

〈Dx〉1/2(A+B)〈Dx〉1/2 � 〈Dx〉1/2A〈Dx〉1/2 + 〈Dx〉1/2B〈Dx〉1/2,
and the same for the Lipschitz variation, so that (A.11) follows. Regarding the second we note that

〈Dx〉1/2A ◦B〈Dx〉1/2 � 〈Dx〉1/2A ◦B〈Dx〉1/2 � 〈Dx〉1/2A〈Dx〉1/2 ◦ 〈Dx〉1/2B〈Dx〉1/2 ,
〈Dx〉1/2∆ω,ω′A ◦B〈Dx〉1/2 � 〈Dx〉1/2∆ω,ω′A〈Dx〉1/2 ◦ 〈Dx〉1/2B〈Dx〉1/2

+ 〈Dx〉1/2A〈Dx〉1/2 ◦ 〈Dx〉1/2∆ω,ω′B〈Dx〉1/2,

so that (A.12) follows. For the third bound we note that

〈ℓ〉b0
∑

j1,ℓ1+ℓ2=ℓ

Aj1
j (ℓ1)B

j′

j1
(ℓ2) ≤ C(b0)

∑

j1,ℓ1+ℓ2=ℓ

(〈ℓ1〉b0 + 〈ℓ2〉b0)Aj1
j (ℓ1)B

j′

j1
(ℓ2) (A.18)

and the same holds for ∆ω,ω′A ◦B and A ◦∆ω,ω′B. Hence by (A.18)

〈Dx〉1/2〈∂ϕ〉b0(A ◦B)〈Dx〉1/2 � C(b0)
(
〈Dx〉1/2〈∂ϕ〉b0A〈Dx〉1/2 ◦ 〈Dx〉1/2B〈Dx〉1/2

+ 〈Dx〉1/2A〈Dx〉1/2 ◦ 〈Dx〉1/2〈∂ϕ〉b0B〈Dx〉1/2
)
,

same for the Lipshitz variations. The result follows from the estimate on the composition.
In order to prove (A.14) we note that

〈Dx〉1/2adk(A)B〈Dx〉1/2 � adk
(
〈Dx〉1/2A〈Dx〉1/2)

)
〈Dx〉1/2B〈Dx〉1/2 ,
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where ad(A)B := AB +BA, since adk(A)B � adk(A)B. Similarly

〈∂ϕ〉b0〈Dx〉1/2adk(A)B〈Dx〉1/2 � adk
(
〈Dx〉1/2A〈Dx〉1/2)

)
〈Dx〉1/2〈∂b0

ϕ 〉B〈Dx〉1/2

+
∑

k1+k2=k−1,
k1,k2≥0

adk1

(
〈Dx〉1/2A〈Dx〉1/2)

)
ad(〈Dx〉1/2〈∂b0

ϕ 〉A〈Dx〉1/2)

adk2

(
〈Dx〉1/2A〈Dx〉1/2)

)
〈Dx〉1/2B〈Dx〉1/2 .

Completely analogous bounds can be proved for the Lipschitz variations, by recalling that

∆ω,ω′ad(A)B = ad(∆ω,ω′A)B(ω) + ad(A(ω′))∆ω,ω′B.

The result follows, by induction, from the estimate on the composition. The estimate (A.14) when C = Ak ◦ B
follows in the same way using

〈∂ϕ〉b0〈Dx〉1/2(A)k◦B〈Dx〉1/2 � (〈Dx〉1/2A〈Dx〉1/2)k ◦ 〈Dx〉1/2〈∂ϕ〉b0B〈Dx〉1/2

+
∑

k1+k2=k−1

(
〈Dx〉1/2A〈Dx〉1/2)

)k1
(
〈Dx〉1/2〈∂b0

ϕ 〉A〈Dx〉1/2
)(

〈Dx〉1/2A〈Dx〉1/2)
)k2

〈Dx〉1/2B〈Dx〉1/2.

(v) follows by Neumann series, Ǎ =
∑

k≥1(−1)k Ak, and from (A.14) with L = Ak ◦B, B = I.

A.2 Pseudo differential operators

First of all we note that the norm (1.23) satisfies

∀ s ≤ s′, α ≤ α′ ⇒ | · |γ,Om,s,α ≤ | · |γ,Om,s′,α, | · |γ,Om,s,α ≤ | · |γ,Om,s,α′

m ≤ m′ ⇒ | · |γ,Om′,s,α ≤ | · |γ,Om′,s,α.
(A.19)

In the following lemma we collect properties of pseudo differential operators which will be used in the sequel. We
remark that along the Nash-Moser iteration we shall control the Lipschitz variation respect to the torus embedding
i := i(ϕ) of the terms of the linearized operator at i. Hence we consider pseudo differential operators which depend
on this variable.

Lemma A.6. Fix m,m′,m′′ ∈ R. Let i be a torus embedding. Consider symbols

a(i, λ, ϕ, x, ξ) ∈ Sm, b(i, λ, ϕ, x, ξ) ∈ Sm′

, c(λ, ϕ, x, ξ) ∈ Sm′′

, d(λ, ϕ, x, ξ) ∈ S0

which depend on λ ∈ O and i ∈ Hs in a Lipschitz way. Set

A := Op(a(λ, ϕ, x, ξ)), B := Op(b(λ, ϕ, x, ξ)),

C := Op(c(λ, ϕ, x, ξ)), D := Op(d(λ, ϕ, x, ξ)).

Then one has

(i) for any α ∈ N, s ≥ s0,

|A ◦B|γ,Om+m′,s,α ≤m,α C(s)|A|γ,Om,s,α|B|γ,Om′,s0+α+|m|,α + C(s0)|A|γ,Om,s0,α|B|γ,Om′,s+α+|m|,α. (A.20)

One has also that, for any N ≥ 1, the operator RN := Op(rN ) with rN defined in (2.11) satisfies

|RN |γ,Om+m′−N,s,α ≤m,N,α
1

N !

(
C(s)|A|γ,Om,s,α+N |B|γ,Om′,s0+2N+α+|m|,α+

C(s0)|A|γ,Om,s0,α+N |B|γ,Om′,s+2N+α+|m|,α

)
;

(A.21)
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|∆12RN [i1 − i2]|γ,Om+m′−N,s,α ≤m,N,α
1

N !

(
C(s)|∆12A[i1 − i2]|γ,Om,s,α+N |B|γ,Om′,s0+2N+α+|m|,α+

C(s0)|∆12A[i1 − i2]|γ,Om,s0,α+N |B|γ,Om′,s+2N+α+|m|,α

)

+
1

N !

(
C(s)|A|γ,Om,s,α+N |∆12B[i1 − i2]|γ,Om′,s0+2N+α+|m|,α

+ C(s0)|A|γ,Om,s0,α+N |∆12B[i1 − i2]|γ,Om′,s+2N+α+|m|,α

)
;

(A.22)

(ii) the adjoint operator C∗ := Op(c∗(λ, ϕ, x, ξ)) in (2.13) satisfies

|C∗|γ,Om′′,s,0 ≤m |C|γ,Om′′,s+s0+|m′′|,0; (A.23)

(iii) consider the map Φ := I +D, then there are constants C(s0, α), C(s, α) ≥ 1 such that if

C(s0, α)|D|γ,O0,s0+α,α ≤ 1

2
, (A.24)

then, for all λ, the map Φ is invertible and Φ−1 ∈ OPS0 and for any s ≥ s0 one has

|Φ−1 − I|γ,O0,s,α ≤ C(s, α)|D|γ,O0,s+α,α. (A.25)

Proof. Item (i) and (iii) are proved respectively in Lemmata 2.13 and 2.17 of [10]. The estimates (A.20) and
(A.21) are proved in Lemma 2.16 of [10]. The bound (A.22) is obtained following the proof of Lemma 2.16 of [10]
and exploiting the Leibniz rule.

Remark A.7. When the domain of parameters O depends on the variable i then we are interested in estimating the

variation ∆12A := A(i1)−A(i2) on O(i1) ∩ O(i2) instead of the derivative ∂i. The bound (A.22) holds also for

∆12 by replacing i1 − i2  ı̂.

Commutators. By formula (2.11) the commutator between two pseudo differential operators
A := Op(a(λ, ϕ, x, ξ)), B := Op(b(λ, ϕ, x, ξ)) with a ∈ Sm and b ∈ Sm′

, is a pseudo differential operator such
that

[A,B] := Op(a ⋆ b), a ⋆ b(λ, ϕ, x, ξ) :=
(
a#b− b#a

)
(λ, ϕ, x, ξ). (A.26)

The symbols a ⋆ b (called the Moyal parenthesis of a and b) admits the expansion

a ⋆ b = −i{a, b}+ r2(a, b), {a, b} = ∂ξa∂xb− ∂xa∂ξb ∈ Sm+m′−1, (A.27)

where

r2(a, b) =
[
(a#b)− 1

i
∂ξa∂xb

]
−
[
(b#a)− 1

i
∂ξb∂xa

]
∈ Sm+m′−2. (A.28)

Following Definition 2.7 we also set

a ⋆k b := a#kb − b#ka, a ⋆<N b :=

N−1∑

k=0

a ⋆k b, a ⋆≥N b := a#≥Nb− b#≥Na. (A.29)

As a consequence, using bounds (A.20) and (A.21), one has

|[A,B]|γ,Om+m′−1,s,α ≤m,m′ C(s)|A|γ,Om,s+2+|m′|+α,α+1|B|γ,Om′,s0+2+α+|m|,α+1

+ C(s0)|A|γ,Om,s0+2+|m′|+α+1,α+1|B|γ,Om′,s+2+α+|m|,α+1.
(A.30)

The last inequality is proved in Lemma 2.15 of [10].
We now give a lemma on symbols defined on Td. Recalling Definition 1.1 and (1.16) we define

|Aw|m,s,α := sup
ξ∈Rd

max
0≤|~α1|≤α

‖∂~α1

ξ Aw‖s〈ξ〉−m+|~α1|, (A.31)

we recall the notation

∂~α
y :=

d∏

i=1

∂α(i)

yi
, ~α := (α(1), . . . , α(d)).
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Lemma A.8. Let O be a subset of Rν . Let p = pλ as in the previous lemma, let A be the linear operator defined

for all w = wλ(x, ξ) ∈ Sm(Td), λ ∈ O, as

Aw = w(f(x), g(x)ξ), f(x) := x+ p(x), g(x) = (I +Dp)−1, x ∈ T
d, ξ ∈ R

d (A.32)

such that ‖p‖γ,O2s0+2 < 1. Then A is bounded, namely Aw ∈ Sm, with

|Aw|γ,Om,s,α ≤s,m,α |w|γ,Om,s,α +
∑

k1+k2+k3=s,
k1<s,k1,k2,k3≥0,

k1+k2≥1

|w|γ,Om,k1,α+k2
‖p‖γ,Ok3+s0+2. (A.33)

Proof. We adopt the notation |·|W s,∞ instead of |·|s,∞ (see estimate (A.1) in [24] ) in order to avoid confusion with
the norm of the symbols. We also denote with Ds

ξ the s-th Fréchet derivative with respect to ξ.
We study

Dα
ξ D

sw(f, gξ) =

s∑

k=1

k∑

r=0,∑
(ji+ni)=s

Ckrjn (Dk−r+α
ξ Drw)[Dj1f, . . . , Djrf,Dn1g ξ, . . . , Dnk−rg ξ, g, . . . , g︸ ︷︷ ︸

α times

]

(A.34)
where j := (j1, . . . , jr), n := (n1, . . . , nk−r). In the following formulas we shall denote g, . . . , g︸ ︷︷ ︸

α times

by gα. For

k = 1 and r = 0 we get from the expression (A.34) (and estimating |g|L∞ ≤ 2)

‖(D1+α
ξ w)[Dsg ξ, gα]‖L2(Td) ≤α |w|m,0,α+1|D2p|W s−1,∞ (A.35)

and for r = 1
‖(Dα

ξ Dw)[Dsf, gα]‖L2(Td) ≤α |w|m,1,α|D2p|W s−2,∞ . (A.36)

For k = s we have that ji = ni = 1 for all i and we get from (A.34)

‖
s∑

r=0

(Ds−r+α
ξ Drw)[Df, . . . , Df︸ ︷︷ ︸

r times

, Dg ξ, . . . , Dg ξ︸ ︷︷ ︸
s−r times

, gα]‖L2(Td) ≤
s∑

r=0

|w|m,r,α+(s−r)|f |rW 1,∞ |D2p|s−r
L∞

≤s

∑

s1+p=s,
s1,p≥0

|w|m,s1,α+p|D2p|pL∞ ≤s |w|m,s,α +
∑

s1+p=s,
s1,p≥0,s1<s

|w|m,s1,α+p|D2p|L∞ .
(A.37)

It remains to estimate
s−1∑

k=2

k∑

r=0,∑
(ji+ni)=s

Ckrjn (Dk−r+α
ξ Drw)[Dj1f, . . . , Djrf,Dn1g ξ, . . . , Dnk−rg ξ, gα]. (A.38)

We call ℓ ≥ 1 the number of indices ji that are ≥ 2 and we rename these ones σi. Then
∑

i(σi+ni) = s−(k−ℓ) =
s− k + ℓ. The L2-norm of (A.38) can be estimated by

s−1∑

k=2

k∑

r=0

∑

ℓ≥1

|w|m,r,α+(k−r)|Df |k−ℓ
L∞ |Dσ1f |L∞ . . . |Dσℓf |L∞ |Dn1g|L∞ . . . |Dnk−rg|L∞

≤s

s−1∑

k=2

k∑

r=0

∑

ℓ≥1

|w|m,r,α+(k−r)|Dσ1−2D2p|L∞ . . . |Dσℓ−2D2p|L∞ |Dn1−1D2p|L∞ . . . |Dnk−r−1D2p|L∞

≤s

s−1∑

k=2

k∑

r=0

∑

ℓ≥1

|w|m,r,α+(k−r)|D2p|k+ℓ−r−1
L∞ |D2p|W s−2k−ℓ+r,∞

≤s

s−1∑

k=2

k∑

r=0

|w|m,r,α+(k−r)|D2p|W s−k−1,∞ ≤
∑

s1+p+s3=s−1,
s>s1,p,s3≥0

|w|m,s1,α+p|D2p|W s3,∞ .

(A.39)
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Then by (A.35), (A.36), (A.37), (A.39) we have (A.33) for |Aw|m,s,α. For the Lipschitz variation we observe that

∆λ,λ′(w(λ, f(λ), g(λ)ξ)) = A(∆λ,λ′w) +ADw[∆λ,λ′f ] +ADξw[∆λ,λ′g ξ]. (A.40)

One follows exactly the strategy above but considering s−1 derivatives instead of s (recall (1.23)). This is important
since in formula (A.40) we have one extra derivative either in x or ξ.

B Pseudo differential calculus and the classes of remainders

B.1 Properties of the smoothing remainders

In the first step of our reduction procedure in order to prove Theorem 3.4 we need to work with operators which are
pseudo differential up to a remainder in the class Lρ. In the following we shall study properties of such operators
under composition, inversion etc...

The following Lemma guarantees that the class of operators in Def. 2.8 is closed under composition.

Lemma B.1. If A and B belong to Lρ, for ρ ≥ 3 (see Def. 2.8) , then A ◦B ∈ Lρ,p and, for s0 ≤ s ≤ S,

M
γ
A◦B(s, b) ≤s,ρ

∑

b1+b2=b

(Mγ
A(s0, b1)M

γ
B(s, b2) +M

γ
A(s, b1)M

γ
B(s0, b2)) , b ≤ ρ− 2, (B.1)

M∆12(A◦B)(p, b) ≤p,ρ

∑

b1+b2=b

(
M∆12A(p, b1)MB(p, b2) +MA(p, b1)M∆12B(p, b2)

)
, b ≤ ρ− 3. (B.2)

Proof. We start by noting that Mγ
A◦B(−ρ, s) defined in (2.15) with A A ◦B is controlled by the r.h.s. of (B.1).

Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ. We can write

〈Dx〉m1A ◦B〈Dx〉m2 = 〈Dx〉m1A〈Dx〉m2〈Dx〉−ρ〈Dx〉m1B〈Dx〉m2 .

By hypothesis we know that A belongs to the class Lρ, hence by (i) of Definition 2.8 one has that 〈Dx〉m1A〈Dx〉m2

is a 0−tame operator. For the same reason also 〈Dx〉m1B〈Dx〉m2 is a 0−tame operator. Note also that, since ρ ≥ 0,
then 〈Dx〉−ρ : Hs(Tν+1) → Hs(Tν+1) is a 0−tame operator. Hence, using Lemma A.1 for any u ∈ Hs one has

‖〈Dx〉m1A ◦B〈Dx〉m2u‖s ≤s (MA(−ρ, s)MB(−ρ, s0) +MA(−ρ, s0)MB(−ρ, s))‖u‖s0
+MA(−ρ, s0)MB(−ρ, s0)‖u‖s,

(B.3)

where MA(−ρ, s), MB(−ρ, s) are defined in (2.15). Then we may set

MA◦B(−ρ, s) = C(s)
(
MA(−ρ, s)MB(−ρ, s0) +MA(−ρ, s0)MB(−ρ, s)

)
.

Reasoning as in (B.3) one can check that

M
γ
A◦B(−ρ, s) ≤ C(s)

(
M

γ
A(−ρ, s)Mγ

B(−ρ, s0) +M
γ
A(−ρ, s0)M

γ
B(−ρ, s)

)
.

Let us study the operator ∂~bϕ(A ◦B) for ~b ∈ N
ν and |~b| ≤ ρ− 2. We have

∂
~b
ϕ(A ◦B) =

∑

~b1+~b2=~b

(∂
~b1
ϕ A)(∂

~b2
ϕ B). (B.4)

We show that any summand in (B.4) satisfies item (i) of Def. (2.8). Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1+m2 =
ρ− |~b|. We write

〈Dx〉m1(∂
~b1
ϕ A)(∂

~b2
ϕ B)〈Dx〉m2 = 〈Dx〉m1(∂

~b1
ϕ A)〈Dx〉y〈Dx〉−y−w〈Dx〉w(∂ ~b2

ϕ B)〈Dx〉m2
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with y := ρ− | ~b1| −m1, w = ρ− | ~b2| −m2 and note that −y−w = −ρ ≤ 0. Moreover m1 + y = ρ− | ~b1|, and
w+m2 = ρ− | ~b2|. Hence the operators 〈Dx〉m1(∂ ~b1

ϕ A)〈Dx〉y and 〈Dx〉w(∂ ~b2
ϕ b)〈Dx〉m2 are Lip-0-tame operator.

Hence, using Lemma A.1 one has

‖〈Dx〉m1(∂
~b1
ϕ A)(∂

~b2
ϕ B)〈Dx〉m2‖γ,Os ≤ M

γ

∂
~b1
ϕ A

(−ρ+ | ~b1|, s)Mγ

∂
~b2
ϕ B

(−ρ+ |~b2|, s0)‖u‖s0 (B.5)

+M
γ
A(−ρ+ | ~b1|, s0)Mγ

B(−ρ+ | ~b2|, s)‖u‖s0
+M

γ
A(−ρ+ | ~b1|, s0)Mγ

B(−ρ+ | ~b2|, s0)‖u‖s,

for u ∈ Hs. We can conclude that Mγ

∂~bϕ(A◦B)
(−ρ + |~b|, s) is controlled by the r.h.s. of (B.1). Regarding the

operator [A ◦B, ∂x] we reason as follows. We prove that

[A ◦B, ∂x] = A[B, ∂x] + [A, ∂x]B. (B.6)

satisfies item (ii) of Definition (2.8). Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− 1. Moreover

〈Dx〉m1 [A, ∂x]B〈Dx〉m2 = 〈Dx〉m1 [A, ∂x]〈Dx〉y〈Dx〉−y−z〈Dx〉zB〈Dx〉m2 ,

with y = ρ − 1 −m1, z = ρ −m2. Hence by definition (see Def. (2.8)) we have that 〈Dx〉m1 [A, ∂x]〈Dx〉y and
〈Dx〉zB〈Dx〉m2 are Lip-0−tame. Thus one can conclude, as done above, that M[A,∂x]B(−ρ+1, s) is controlled by

the r.h.s. of (B.1). One can reason in the same way for the first summand in (B.6) and for the operator [∂~bϕ(AB), ∂x].
This proves (B.1).
Let us study the term

∆12(A ◦B) = (∆12A)B(I2) +A(I1) (∆12B). (B.7)

By definition both 〈Dx〉m1∆12A〈Dx〉m2 , 〈Dx〉m1∆12B〈Dx〉m2 with m1 +m2 = ρ− 1 are bounded operators on
Hs (see (2.21) and Def. 2.1). In order to prove (B.2) one can bound the two summand in (B.7) by following the
same procedure used to prove (B.1).

The next Lemma shows that, if ρ ≥ 3, OPS−ρ ⊂ Lρ,p (see Section 2 for the definition of OPSm).

Lemma B.2. Fix ρ ≥ 3 and consider a symbol a = a(ω, I(ω)) in S−ρ depending on ω ∈ O ⊂ Rν and on I in a

Lipschitz way. One has that A := op(a(ϕ, x, ξ)) ∈ Lρ,p (see 2.8) and

M
γ
A(s, b) ≤s,ρ |a|γ,O−ρ,s+ρ,0, M∆12A(p, b) ≤p,ρ |∆12a|−ρ,p+ρ,0. (B.8)

Proof. Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1+m2 = ρ. We need to show that 〈Dx〉m1A〈Dx〉m2 satisfies item (i)
of Definition 2.8. By definition it is the composition of three pseudo differential operators hence, by Lemma A.3
and by formula (A.20) of Lemma A.6 one has that

M
γ
〈Dx〉m1A〈Dx〉m2

(0, s) ≤s |〈Dx〉m1A〈Dx〉m2 |γ,O0,s,0 ≤s |〈Dx〉m1 |m1,s,0|a|γ,O−ρ,s+|m1|,0
|〈Dx〉m2 |m2,s+|m1|+ρ,0

≤s |a|γ,O−ρ,s+|m1|,0
(B.9)

This means that
M

γ
A(−ρ, s) ≤s |a|γ,O−ρ,s+ρ,0.

Secondly we consider the operator (∂~bϕop(a(ϕ, x, ξ))) = op(∂~bϕa(ϕ, x, ξ)) for ~b ∈ Nν and |~b| ≤ ρ−2. It is pseudo

differential and its symbol ∂~bϕa(ϕ, x, ξ) is such that

|∂~bϕa|γ,O−ρ,s,α ≤ |a|γ,O
−ρ,s+|~b|,α

.

Following the same reasoning used in (B.9) (recall that m1 +m2 = ρ− |~b|) one obtains

M
γ

∂~bϕA
(−ρ+ |~b|, s) ≤s |a|γ,O−ρ,s+|~b|+(ρ−|~b|),0

= C(s) |a|γ,O−ρ,s+ρ,0.
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The operator [A, ∂x] = A∂x−∂xA can be treated in the same way, discussing each of the two summands separately,
(we are not taking advantage of the pseudo dfferential structure in order to control the order of the commutator),
with m1 +m2 = ρ− 1,

M
γ
〈Dx〉m1∂xA〈Dx〉m2

(0, s) ≤s |〈Dx〉m1∂xA〈Dx〉m2 |γ,O0,s,0 ≤s |a|γ,O−ρ,s+ρ,0.

The same strategy holds for [∂~bϕA, ∂x] Hence one gets the first of (B.8). The second bound in (B.8) can be obtained
by noting that ∆12A = op(∆12a)[·] and then following almost word by word the discussion above.

The next Lemma shows that Lρ,p is closed under left and right multiplication by operators in S0.

Lemma B.3. Let a ∈ S0 and B ∈ Lρ,p, then Op(a) ◦B,B ◦Op(a) ∈ Lρ,p and satisfy the bounds

M
γ
Op(a)◦B(s, b) ≤s,ρ |a|γ,O0,s+ρ,0M

γ
B(s0, b) + |a|γ,O0,s0+ρ,0M

γ
B(s, b) (B.10)

M∆12(Op(a)◦B)(p, b) ≤p,ρ |∆12a|1,p+ρ,0MB(p, b) + |a|0,p+ρ,0M∆12B(p, b) ,

for all s0 ≤ s ≤ S. Moreover if B ∈ Lρ+1 then ∂ϕmB, [∂x, B], m = 1, . . . , ν, are in Lρ,p and satisfy the bounds

M
γ
∂ϕmB(s, b),M

γ
[∂x,B](s, b) ≤ M

γ
B(s, b + 1) , b ≤ ρ− 2

M∂ϕm∆12B(p, b),M[∂x,∆12B](p, b) ≤ M∆12B(p, b+ 1) , b ≤ ρ− 3
(B.11)

for all s0 ≤ s ≤ S. Note that in (B.11) the constants in the right hand side control the tameness constants of B as

an element of Lρ+1.

Proof. We start by studying the Lip-0-tame norm of

〈Dx〉m1∂
~b1
ϕ Op(a) ◦ ∂~b2ϕ B〈Dx〉m2 = 〈Dx〉m1∂

~b1
ϕ Op(a)〈Dx〉−m1 ◦ 〈Dx〉m1∂

~b2
ϕ B〈Dx〉m2 ,

with |~b1|+ |~b2| = |~b| and m1 +m2 = ρ− |~b|. By Lemma A.3 and formula (A.20)

M
γ

〈Dx〉m1∂
~b1
ϕ Op(a)〈Dx〉−m1

(0, s) ≤s |a|γ,O0,s+|~b1|+m1,0
≤s |a|γ,O0,s+ρ,0

hence by Lemma A.1 we have

M
γ

〈Dx〉m1∂~bϕ(Op(a)B)〈Dx〉m2
(−ρ+ |~b|, s) ≤s,ρ |a|γ,O0,s+ρ,0M

γ
B(s0, b) + |a|γ,O0,s0+ρ,0M

γ
B(s, b) .

Regarding

〈Dx〉m1∂
~b
ϕ[∂x,Op(a)B]〈Dx〉m2 = 〈Dx〉m1∂

~b
ϕ([∂x,Op(a)]B)〈Dx〉m2 + 〈Dx〉m1∂

~b
ϕ(Op(a)[∂x, B])〈Dx〉m2

we only need to consider the first summand as the second can be discussed exactly as above. Recalling that by
definition m1 +m2 = ρ− |~b| − 1 we write for |~b1|+ |~b2| = |~b| and m1 +m2 = ρ− |~b|

〈Dx〉m1∂
~b1
ϕ [∂x,Op(a)]∂

~b2
ϕ B〈Dx〉m2 = 〈Dx〉m1∂

~b1
ϕ [∂x,Op(a)]〈Dx〉−m1−1〈Dx〉m1+1∂

~b2
ϕ B〈Dx〉m2

and the result follows by recalling that

M
γ

〈Dx〉m1∂
~b1
ϕ [∂x,Op(a)]〈Dx〉−m1−1

(0, s) ≤s |a|γ,O0,s+|~b1|+m1,0
≤s |a|γ,O0,s+ρ,0 .

The bounds (B.11) follows by the fact that ∂~bϕ∂ϕm = ∂~b0ϕ with |~b0| = |~b| + 1 and M
γ
A(s, b) ≤ M

γ
A(s, b + 1) if

A ∈ Lρ+1.

The next Lemma gives a canonical way to write the composition of two pseudo differential operators as a pseudo
differential operator plus a remainder in Lρ,p. Of course Lemma A.6 says that such a composition is itself a pseudo
differential operator, so in principle one could take the remainder to be zero. The purpose of this Lemma is to get
better bounds with respect to (A.20), the price to pay is that we do not control the symbol of the composition but
only an approximation up to a smoothing remainder of order −ρ.
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Lemma B.4 (Composition). Let a = a(ω) ∈ Sm, b = b(ω) ∈ Sm′

be defined on some subset O ⊂ Rν with

m,m′ ∈ R and consider any ρ ≥ max{−(m+m′+1), 3}. Assume also that a and b depend in a Lipschitz way on

the parameter I. There exist an operator Rρ ∈ Lρ,p such that (recall Definition (2.7)) setting N = m+m′+ρ ≥ 1

Op(a#b) = Op(c) +Rρ, c := a#<Nb ∈ Sm+m′

where

|c|γ,Om+m′,s,α ≤s,ρ,α,m,m′ |a|γ,Om,s,N−1+α|b|
γ,O
m′,s0+N−1,α + |a|γ,Om,s0,N−1+α|b|

γ,O
m′,s+N−1,α, (B.12)

M
γ
Rρ

(s, b) ≤s,ρ,m,m′ |a|γ,Om,s+ρ,N |b|γ,Om′,s0+2N+|m|,0 + |a|γ,Om,s0,N
|b|γ,Om′,s+ρ+2N+|m|,0. (B.13)

for all 0 ≤ b ≤ ρ− 2 and s0 ≤ s ≤ S. Moreover one has

|∆12c|m+m′,p,α ≤p,α,ρ,m,m′ |∆12a|m,p,N−1+α|b|m′,p+N−1,α

+ |a|m,p,N−1+α|∆12b|m′,p+N−1,α

(B.14)

M∆12Rρ(p, b) ≤p,ρ,m,m′ |∆12a|m+1,p+ρ,N |b|m′,p+2N+|m|,0

+ |a|m,p+ρ,N |∆12b|m′+1,p+2N+|m|,0.
(B.15)

for all 0 ≤ b ≤ ρ− 3 and where p is the constant given in Definition 2.8.

Proof. To shorten the notation we write ‖·‖s := ‖·‖γ,Os . For β ∈ R, using formula (2.11) and by the tameness of
the product, we have

‖∂β
ξ c‖s ≤s

N−1∑

k=0

1

k!

∑

β1+β2=β

Cβ1β2

(
‖∂β1+k

ξ a‖s ‖∂β2

ξ ∂k
xb‖s0 + ‖∂β1+k

ξ a‖s0 ‖∂β2

ξ ∂k
xb‖s

)
.

Thus, recalling (1.16), one gets

|c|m+m′,s,α ≤s≤s,α

N−1∑

k=0

1

k!
sup
ξ∈R

(
max

0≤β1≤α
‖∂β1+k

ξ a‖s〈ξ〉−m+β1 max
0≤β2≤α

‖∂β2

ξ ∂k
xb‖s0〈ξ〉−m′+β2

+ max
0≤β1≤α

‖∂β1+k
ξ a‖s0〈ξ〉−m+β1 max

0≤β2≤α
‖∂β2

ξ ∂k
xb‖s〈ξ〉−m′+β2

)
,

which implies (B.12). In the same way we obtain the bound (B.14) by using the following fact

∆12(∂
k
ξ a ∂

k
xb) = ∂k

ξ (∆12a) ∂
k
xb+ ∂k

ξ a ∂
k
x(∆12b).

We remark that Rρ is the pseudo differential operator RN considered in Lemma A.6 (recall N = m+m′ + ρ). By
Lemma B.2

M
γ
Rρ

(B.8)
≤ s,ρ,m,m′ |Rρ|−ρ,s+ρ,0

then by formula (A.21) of Lemma A.6 we get the bounds (B.13). The bounds (B.15), follow in the same way.

Remark B.5. Note that if m+m′ ≤ −ρ ≤ −3 then by Lemma B.2 Op(a) ◦Op(b) ∈ Lρ,p.

Lemma B.6. Fix ρ ≥ 3 and n ∈ N, n < ρ. Let a ∈ S−1 depending in a Lipschitz way on a parameter i. Then

there exist a symbol c(n) ∈ S−n and a operator R
(n)
ρ ∈ Lρ,p such that

Op(a)n = Op(c(n)) +R(n)
ρ . (B.16)

Moreover the following bounds hold

|c(n)|γ,O−n,s,α ≤n,s,α,ρ |a|γ,O−1,s+(n−1)(ρ−3),α+ρ−3

(
|a|γ,O−1,s0+(n−1)(ρ−3),α+ρ−3

)n−1
, (B.17)

|∆12c
(n)|−n,p,α,ρ ≤ |∆12a|−1,p+(n−1)(ρ−3),α+ρ−3|a|n−1

−1,p+(n−1)(ρ−3),α+ρ−3 (B.18)

M
γ

R
(n)
ρ

(s, b) ≤s,ρ,b,n |a|γ,O−1,s+n(ρ−3)+ρ,ρ−2

(
|a|γ,O−1,s0+n(ρ−3)+ρ,ρ−2

)n−1
(B.19)

M
∆12R

(n)
ρ

(p, b) ≤p,n,b |∆12a|0,p+n(ρ−3)+ρ,ρ−2

(
|a|−1,p+n(ρ−3)+ρ,ρ−2

)n−1
(B.20)

for all s0 ≤ s ≤ S and where p is the constant given in Definition 2.8.
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Proof. We define c(1) := a ∈ S−1, and, for n ≥ 2,

c(n) := a#<ρ−2c
(n−1), R(n)

ρ :=

n−2∑

k=0

[Op(a)]kOp(a#≥ρ−2c
(n−k−1))

By using Lemma B.4 we have that (B.17) is satisfied for n = 2. Now given (B.17) for n we prove it for n+ 1. For
simplicity we write ≤n,s,α=≤. We have

|a#<ρ−2c
(n)|γ,O−n−1,s,α ≤ |a|γ,O−1,s,α+ρ−3|c(n)|γ,O−n,s0+ρ−3,α + |a|γ,O−1,s0,α+ρ−3|a(n)|γ,O−n,s+ρ−3,α

≤ |a|γ,O−1,s+n(ρ−3),α+ρ−3

(
|a|γ,O−n,s0+n(ρ−3),α+ρ−3

)n
,

hence (B.17) is proved. Arguing as above one can prove (B.18).
Now fix 2 ≤ k ∈ N and define rk := a#≥ρ−2c

(k−1) ∈ S−ρ. We apply repeatedly (B.10) in oder to get

M
γ
Rk

(s, b) ≤s,ρ,b (|a|γ,O−1,s0+ρ,0)
k−1

(
|a|γ,O−1,s+ρ,0M

γ
Op(rn−k)

(s0, b) + |a|γ,O−1,s0+ρ,0M
γ
Op(rn−k)

(s, b)
)
,

with Rk := (Op(a)kOp(rn−k)). Now by Lemma B.2 we have that for all k ≥ 2

M
γ
Op(rk)

(s, b) ≤s,ρ,b |rk|γ,O−ρ,s+ρ,0

Now by (A.21) with m = −1,m′ = −k + 1, N = ρ− 2 we have

|rk|γ,O−ρ,s,0 ≤ |rk|γ,O−ρ−k+2,s,0

(B.17)
≤ |a|γ,O−1,s+k(ρ−3),ρ−2(|a|

γ,O
−1,s0+k(ρ−3),ρ−2)

k−1

Then
M

γ

R
(n)
ρ

(s, b) ≤s,ρ,b |a|γ,O−1,s+n(ρ−3)+ρ,ρ−2

(
|a|γ,O−1,s0+n(ρ−3)+ρ,ρ−2

)n−1
.

We follow the same strategy in order to study the operator

∆12

(
Op(a)kRρ(n−k)

)
= kOp(a)k−1Op(∆12a)Rρ(n−k) +Op(a)k∆12Rρ(n−k)

and we get (B.20).

Remark B.7. Note that if n ≥ ρ ≥ 3 and a ∈ S−1 then Op(a)n ∈ Lρ,p, by Lemma B.2.

Corollary B.8. Let a ∈ S−1 and consider I− (Op(a) + T ), where T ∈ Lρ,p = Lρ,p (recall Def. 2.8) with ρ ≥ 3.

There exist a constant C(S, α, ρ) such that if

C(S, α, ρ)
(
|a|γ,O−1,p+(ρ−1)(ρ−2)+3,ρ−2 +M

γ
T (s0, b)

)
< 1, (B.21)

where S is a fixed constant appearing in the Def. 2.8, then I− (Op(a) + T ) is invertible and

(I− (Op(a) + T ))−1 = I + Op(c) +Rρ (B.22)

where

|c|γ,O−1,s,α ≤s,α,ρ |a|γ,O−1,s+(ρ−2)(ρ−3),α+ρ−3, |∆12c|−1,s,α ≤ |∆12a|−1,p+(ρ−2)(ρ−3),α+ρ−3 (B.23)

and Rρ ∈ Lρ,p with

M
γ
Rρ

(s, b) ≤ |a|γ,O−1,s+(ρ−1)(ρ−2)+3,ρ−2 +M
γ
T (s, b), 0 ≤ b ≤ ρ− 2, (B.24)

M∆12Rρ(p, b) ≤ |∆12a|−1,p+(ρ−1)(ρ−2)+3,ρ−2 +M∆12T (p, b) , 0 ≤ b ≤ ρ− 3, (B.25)

for all s0 ≤ s ≤ S.
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Proof. To shorten the notation we write |·|γ,Om,s,α = |·|m,s,α. We have by (B.21) and Neumann series

(I− (Op(a) + T ))−1 = I +
∑

n≥1

(Op(a) + T )n = I +

ρ−1∑

n=1

(
Op(a)n +

∞∑

n=1

R̃(n)
ρ

)
+

∑

n≥ρ

Op(a)n

= I +

ρ−1∑

n=1

(
Op(c(n)) +R(n)

ρ + R̃(n)
ρ

)
+

∑

n≥ρ

(
Op(a)n + R̃(n)

ρ

)

where R̃(n)
ρ := (Op(a)+T )n−Op(a)n and c(n) and R

(n)
ρ are given by Lemma B.6 (and we are setting R

(1)
ρ = 0).

We define the symbol c and the operator Rρ in (B.22) as

c :=

ρ−1∑

n=1

c(n), Rρ :=

ρ−1∑

n=1

(R(n)
ρ + R̃(n)

ρ ) +
∑

n≥ρ

R̃(n)
ρ +

∑

n≥ρ

Op(a)n. (B.26)

By using (B.17) we get

|c|−1,s,α ≤s,α,ρ

ρ−1∑

n=1

|a|−1,s+(n−1)(ρ−3),α+ρ−3

(
|a|−1,s0+(n−1)(ρ−3),α+ρ−3

)n−1

which implies the first of (B.23). The second one in (B.23) is obtained as above by using (B.18). The bounds (B.24),
(B.25) on Rρ in (B.26) can be proved similarly by using Lemmata B.2, B.3, B.4 and B.6.
In order to bound the I variation we note

∆12(1− (Op(a) + T ))−1 = −(1− (Op(a) + T ))−1(Op(∆12a) + ∆12T )(1− (Op(a) + T ))−1 ,

and proceed as above.

B.2 The torus diffeomorphisms

In this Section we wish to study conjugation of elements of Lρ under the action of the map Aτ introduced in (3.5).
We first give some properties of Aτ defined in (3.3).

Lemma B.9. Assume that β := β(ω, I(ω)) ∈ Hs(Tν+1) for some s ≥ s0, is Lipschitz in ω ∈ O ⊆ Ωε and

Lipschitz in the variable i. If ‖β‖γ,Os0+µ ≤ 1, for some µ ≫ 1, then, for any s ≥ s0 and u ∈ Hs with u = u(ω)
depending in a Lipschitz way on ω ∈ O, one has

sup
τ∈[0,1]

‖Aτu‖γ,Os , sup
τ∈[0,1]

‖(Aτ )∗u‖γ,Os ≤s

(
‖u‖γ,Os + ‖β‖γ,Os+σ‖u‖γ,Os0

)
(B.27)

sup
τ∈[0,1]

‖(Aτ − I)u‖γ,Os , sup
τ∈[0,1]

‖((Aτ )∗ − I)u‖γ,Os ≤s

(
‖β‖γ,Os0+σ‖u‖γ,Os+1 + ‖β‖γ,Os+σ‖u‖γ,Os0

)
(B.28)

for some σ = σ(s0). The inverse map (Aτ )−1 satisfies the same estimates but with possibly larger σ.

Proof. The bounds (B.27)-(B.28) in norm ‖ · ‖s follows by an explicit computation using the formula (3.3) and
applying Lemma A.3 in Appendix A in [24]. If β = β(ω) is a function of the parameters ω ∈ O, hence we need to
study the term

sup
ω1 6=ω2

‖(Aτ (ω1)−Aτ (ω2))u‖s−1

|ω1 − ω2|
(B.29)

in order to estimate the Lip-norm introduced in (1.22). We reason as follows. By (3.3) we have for ω1, ω2 ∈ O

(Aτ (ω1)−Aτ (ω2))u = (1 + τβx(ω1))
[
u(ω1, x+ β(ω1))− u(ω1, x+ β(ω2))

]

+ (1 + τβx(ω1))
[
u(ω1, x+ β(ω2))− u(ω2, x+ β(ω2))

]

+ τu(ω1, x+ β(ω2))(βx(ω1)− βx(ω2)).

(B.30)
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Using the estimates in Lemma A.3 in [24] and interpolation arguments we get

‖u(ω1, x+ β(ω1))− u(ω1, x+ β(ω2))‖s−1 ≤s ‖β(ω1)− β(ω2)‖s0‖u‖s
+ ‖β(ω1)− β(ω2)‖s+1‖u‖s0
≤s

(
‖β‖γ,Os+s0+1‖u‖γ,Os0 + ‖β‖γ,Os0 ‖u‖γ,Os

)
|ω1 − ω2|.

The term we have estimated above is the most critical one among the summand in (B.30). The other estimates
follow by the fact that u(ω, ϕ, x) and β(ω, ϕ, x) are Lipschitz functions of ω ∈ O. One can reason in the same
way to get the estimates on the inverse map (Aτ )−1 by recalling that it has the same form of Aτ (see (3.3)) and
β = −Aτ β̃.

Lemma B.10. Fix b ∈ N. For any α ∈ Nν , |α| ≤ b, m1,m2 ∈ R such that m1 +m2 = |α|, for any s ≥ s0 there

exists a constant µ = µ(|α|,m1,m2) and δ = δ(m1, s) such that if

‖β‖2s0+|m1|+2 ≤ δ, ‖β‖γ,Os0+µ ≤ 1, (B.31)

then one has

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕAτ (ϕ)〈Dx〉−m2u‖γ,Os ≤s,b,m1,m2 ‖u‖s + ‖β‖γ,Os+µ‖u‖s0. (B.32)

The inverse map (Aτ )−1 satisfies the same estimate.

Proof. We prove the bound (B.32) for the ‖ · ‖s norm since one can obtain the bound in the Lipschitz norm ‖ · ‖γ,Os

using the same arguments (recall also the reasoning used in (B.30)). We take h ∈ C∞, so that ∂α
ϕAτ (ϕ)h ∈ C∞

for any |α| ≤ b and we prove the bound (B.32) in this case. The thesis will follows by density.
We argue by induction on α. Given α ∈ Nν we write α′ � α if α′

n ≤ αn for any n = 1, . . . , ν and α′ 6= α.
Let us check (B.32) for α = 0. Let us define Ψτ := 〈Dx〉mAτ (ϕ)〈Dx〉−m with m = −m1 = m2. One has that
Ψ0 := I (where I is the identity operator). One can check that Ψτ solves the problem (recall (3.5))

∂τΨ
τ = XΨτ +GτΨτ , (B.33)

where Gτ := [〈Dx〉m, X] 〈Dx〉−m. Therefore by Duhamel principle one has

Ψτ = Aτ +Aτ

∫ τ

0

(At)−1GtΨt dt.

By Lemma A.6 and (A.30) one has that |Gτ |0,s,0 ≤s ‖β‖s+m+3, for s ≥ s0, hence by estimate (B.27), Lemma A.3
we have

sup
τ∈[0,1]

‖Ψτh‖s ≤s ‖h‖s + ‖β‖s+σ‖h‖s0 + ‖β‖s0+m+3 sup
τ∈[0,1]

‖Ψτh‖s

+ (‖β‖s+m+3 + ‖β‖s+σ) sup
τ∈[0,1]

‖Ψτh‖s0
(B.34)

for some σ > 0 given in Lemma B.9. For δ in (B.31) small enough, then the (B.34) for s = s0 implies that
supτ∈[0,1] ‖Ψτh‖s0 ≤s0 ‖h‖s0 . Using this bound in (B.34) one gets the (B.32).
Now assume that the bound (B.32) holds for any α′ � α with |α| ≤ b and m1,m2 ∈ R with m1 +m2 = |α′|. We
now prove the estimate (B.32) for the operator 〈Dx〉−m1∂α

ϕAτ (ϕ)〈Dx〉−m2 for m1 +m2 = |α|. Differentiating
the (3.5) and using the Duhamel formula we get that

∂α
ϕAτ (ϕ) =

∫ τ

0

Aτ (ϕ)(At(ϕ))−1F t
αdt, F t

α :=
∑

α1+α2=α,
|α2|+1≤α

C(α1, α2) ∂x [(∂
α1
ϕ b)∂α2

ϕ At(ϕ)].
(B.35)

For any m1 +m2 = |α| and any τ, s ∈ [0, 1] we write

〈Dx〉−m1∂x(∂
α1
ϕ b)∂α2

ϕ At(ϕ)〈Dx〉−m2

= 〈Dx〉−m1∂x(∂
α1
ϕ b)〈Dx〉−m2+|α2|〈Dx〉m2−|α2|∂α2

ϕ At(ϕ)〈Dx〉−m2 .
(B.36)
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Hence in order to estimate the operator 〈Dx〉−m1Aτ (At(ϕ))−1F t
α〈Dx〉−m2 we need to estimate, uniformly in

τ, s ∈ [0, 1] the term

(
〈Dx〉−m1Aτ (At)−1〈Dx〉m1

)(
〈Dx〉−m1∂x(∂

α1
ϕ b)〈Dx〉−m2+|α2|

)(
〈Dx〉m2−|α2|∂α2

ϕ At(ϕ)〈Dx〉−m2

)
. (B.37)

For s ≥ s0, by the inductive hypothesis one has

‖〈Dx〉−m1Aτ (At)−1〈Dx〉m1h‖s ≤s,m1 ‖h‖s + ‖β‖γ,Os+µ‖h‖s0 , (B.38)

‖〈Dx〉m2−|α2|∂α2
ϕ At(ϕ)〈Dx〉−m2h‖s ≤s,b,m2 ‖h‖s + ‖β‖γ,Os+µ‖h‖s0. (B.39)

provided that α1 6= 0. We estimate the second factor in (B.37). We first note that

−m1 −m2 + 1+ |α2| = 1 + |α2| − |α| ≤ 0.

This implies that 〈Dx〉−m1∂x(∂
α1
ϕ b)〈Dx〉−m2+|α2| belongs to OPS0, and in particular, using Lemma A.6 and

(A.19), we obtain
|〈Dx〉−m1∂x(∂

α1
ϕ b)〈Dx〉−m2+|α2||0,s,0 ≤b,m1,m2 ‖a‖γ,Os+|m1|+|α2|

. (B.40)

To obtain the bound (B.32) it is enough to use bounds (B.38), (B.39),(B.40), Lemma A.3 and recall the smallness
assumption (B.31).

About the estimate for the inverse of Aτ , we note that ∂τ (Aτ )−1 =
(
∂y ◦ b̃

)
(Aτ )−1 with b̃ := ∂τ β̃

1+β̃y
and ‖b̃‖s ≤

‖β‖s+σ̃ for some σ̃ > 0. Then one can follow the same arguments above with ∂y ◦ b̃ instead of X and b̃ instead of
b.

Lemma B.11. Let b ∈ N and let p > 0 be the constant given in Def. 2.8. For any |α| ≤ b, m1,m2 ∈ R such

that m1 + m2 = |α| + 1, for any s ≥ s0 there exists a constant µ = µ(|α|,m1,m2), σ = σ(|α|,m1,m2) and

δ = δ(s,m1) > 0 such that if ‖β‖s0+µ ≤ δ and ‖β‖p+σ ≤ 1 then one has

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕ∆12Aτ (ϕ)〈Dx〉−m2u‖p ≤s,b,m1,m2 ‖u‖p‖∆12β‖p+µ (B.41)

The operators ∆12(Aτ )∗, ∆12(Aτ )−1 satisfy the same estimate.

Proof. The Lemma can be proved arguing as in the proof of Lemma B.10 using (Aτ )∗ = (1 + τβ)−1 Aτ .

We have the following Lemma.

Lemma B.12. Fix ρ ≥ 3, consider O ⊂ Rν and let R ∈ Lρ,p(O) (see Def. 2.8). Consider a function β such that

β := β(ω, i(ω)) ∈ Hs(Tν+1) for some s ≥ s0, assume that it is Lipschitz in ω ∈ O and i. Let Aτ be the operator

defined in (3.3). There exists µ = µ(ρ) ≫ 1, σ = σ(ρ) and δ > 0 small such that if ‖β‖γ,Os0+µ ≤ δ and ‖β‖γ,Op+σ ≤ 1,

then the operator M τ := AτR(Aτ )−1 belongs to the class Lρ. In particular one has, for s0 ≤ s ≤ S,

M
γ
Mτ (s, b) ≤ M

γ
R(s, b) + ‖β‖γ,Os+µM

γ
R(s0, b), b ≤ ρ− 2 (B.42)

M∆12Mτ (p, b) ≤ M∆12Rτ (p, b) + ‖∆12β‖p+µM
γ
Rτ (p, b), b ≤ ρ− 3. (B.43)

Proof. We start by showing that M τ satisfies item (i) of Definition 2.8. Let m1,m2 ∈ R, m1,m2 ≥ 0 and
m1 +m2 = ρ. We write

〈Dx〉m1M τ 〈Dx〉m2 = 〈Dx〉m1Aτ 〈Dx〉−m1〈Dx〉m1R〈Dx〉m2〈Dx〉−m2(Aτ )−1〈Dx〉m2 .

Recall that by hypothesis the operator 〈Dx〉m1R〈Dx〉m2 is Lip-0-tame with constants M
γ
R(−ρ, s) see (2.15).

Lemma (B.10) implies the estimates

‖〈Dx〉m1Aτ (ϕ)〈Dx〉−m1u‖γ,Os , ‖〈Dx〉−m2(Aτ (ϕ))−1〈Dx〉m2u‖γ,Os ≤s,ρ ‖u‖s + ‖β‖γ,Os+µ‖u‖s0,
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for τ ∈ [0, 1], which implies that 〈Dx〉m1M τ 〈Dx〉m2 is Lip-0−tame with constant

M
γ
〈Dx〉m1Mτ 〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(−ρ, s) + ‖β‖γ,Os+µM

γ
R(−ρ, s0). (B.44)

Hence M τ is Lip-(−ρ)-tame with constant Mγ
Mτ (−ρ, s) = supm1+m2=ρ

m1,m2≥0
M

γ
〈Dx〉m1Mτ 〈Dx〉m2

(0, s). Fix b ≤ ρ−2

and let m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− b. We note that for any ~b ∈ Nν with |~b| = b

∂
~b
ϕM =

∑

~b1+~b2+ ~b3=~b

C(| ~b1|, | ~b2|, | ~b3|)(∂ ~b1
ϕ Aτ )∂

~b2
ϕ R(∂

~b3
ϕ (Aτ )−1), (B.45)

for some constants C(| ~b1|, | ~b2|, | ~b3|) > 0, hence we need to show that each summand in (B.45) satisfies item (i)
of Definition 2.8. We write

〈Dx〉m1(∂
~b1
ϕ Aτ )∂

~b2
ϕ R(∂

~b3
ϕ (Aτ )−1)〈Dx〉m2 =

= 〈Dx〉m1(∂
~b1
ϕ Aτ )〈Dx〉y〈Dx〉−y(∂

~b2
ϕ R)〈Dx〉z〈Dx〉−z(∂

~b3
ϕ (Aτ )−1)〈Dx〉m2 ,

(B.46)

where y = −| ~b1|−m1, z = ρ−| ~b2|− | ~b1|−m1. Since y+m1 = −| ~b1| and −z+m2 = −| ~b3|, hence by Lemma
B.10 the operators

〈Dx〉m1(∂
~b1
ϕ Aτ )〈Dx〉y, 〈Dx〉−z(∂

~b3
ϕ (Aτ )−1)〈Dx〉m2 ,

satisfy bounds like (B.32). Moreover −y + z = ρ− | ~b2| and −y, z ≥ 0, hence, by the definition of the class Lρ,p,

we have that the operator 〈Dx〉−y(∂ ~b2
ϕ R)〈Dx〉z is Lip-0-tame. Following the reasoning used to prove (B.44) one

obtains
M

γ

〈Dx〉m1∂~bϕMτ 〈Dx〉m2
(0, s) ≤s,ρ M

γ
R(s, b) + ‖β‖γ,Os+µM

γ
R(s, b). (B.47)

Let us consider the operator [M τ , ∂x]. We write

[M τ , ∂x] = Aτ [R, ∂x](Aτ )−1 +AτR[(Aτ )−1, ∂x] + [Aτ , ∂x]R(Aτ )−1, (B.48)

for τ ∈ [0, 1]. We need to show that each summand in (B.48) satisfies item (ii) in Definition (2.8). Let m1,m2 ∈ R,
m1,m2 ≥ 0 and m1 +m2 = ρ− 1. We first note that

〈Dx〉m1Aτ [R, ∂x](Aτ )−1〈Dx〉m2 =

= 〈Dx〉m1Aτ 〈Dx〉−m1〈Dx〉m1 [R, ∂x]〈Dx〉m2〈Dx〉−m2(Aτ )−1〈Dx〉m2 ,
(B.49)

hence, by applying Lemma B.10 to estimate the terms

〈Dx〉−m2(Aτ )−1〈Dx〉m2 , 〈Dx〉m1(Aτ )−1〈Dx〉−m1

and using the tameness of the operator 〈Dx〉m1 [R, ∂x]〈Dx〉m2 (recall that R ∈ Lρ,p) one gets

M
γ
〈Dx〉m1Aτ [R,∂x](Aτ )−1〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(s, b) + ‖β‖γ,Os+µM

γ
R(s0, b). (B.50)

The term [Aτ , ∂x]R(Aτ )−1 in (B.48) is more delicate. Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− 1. We
write

〈Dx〉m1 [Aτ , ∂x]〈Dx〉−m1−1〈Dx〉m1+1R〈Dx〉m2〈Dx〉−m2(Aτ )−1〈Dx〉m2 . (B.51)

By Lemma B.10 we have that 〈Dx〉−m2(Aτ )−1〈Dx〉m2 satisfies a bound like (B.32) with α = 0. The operator
〈Dx〉m1+1R〈Dx〉m2〈Dx〉m1+1R〈Dx〉m2 is Lip-0-tame since R ∈ Lρ,p and m1 + m2 + 1 = ρ. Moreover by an
explicit computation (using formula (3.3)) we get

[Aτ , ∂x] = τ
βxx

1 + τβx
Aτ + τβxAτ∂x. (B.52)
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We claim that, for s ≥ s0 and u ∈ Hs, one has

‖〈Dx〉m1 [Aτ , ∂x]〈Dx〉−m1−1u‖γ,Os ≤s,ρ ‖β‖γ,Os0+µ‖u‖s + ‖β‖γ,Os+µ‖u‖s0 , (B.53)

for some µ > 0 depending only on s, ρ. The first summand in (B.52) satisfies the bound (B.53) thanks to Lemma
A.6 for the estimate of 〈Dx〉m1βxx(1+τβx)

−1〈Dx〉−m1 and thanks Lemma B.10 to estimate 〈Dx〉m1Aτ 〈Dx〉−m1 .
For the second summand we reason as follow: we write

〈Dx〉m1τβxAτ∂x〈Dx〉−m1−1 =
(
〈Dx〉m1βx〈Dx〉−m1

)(
〈Dx〉m1Aτ 〈Dx〉−m1

)
∂x〈Dx〉−1

and we note that the operator ∂x〈Dx〉−1 is bounded on Hs. Hence the bound (B.53) follows by applying Lemmata
A.6 and B.10. By the discussion above one gets

M
γ
〈Dx〉m1 [Aτ ,∂x]R(Aτ )−1〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(s, b) + ‖β‖γ,Os+µM

γ
R(s, b). (B.54)

One can study the tameness constant of the operator AτR[(Aτ )−1, ∂x] in (B.48) by using the same arguments
above.
We check now that M τ satisfies item (iii) of Def. 2.8. Let m1,m2 ∈ R, m1,m2 ≥ 0 and m1 +m2 = ρ− |~b| − 1.
We write for ~b ∈ Nν , |~b| = b

[∂
~b
ϕAτR(Aτ )−1, ∂x] =

∑

~b1+~b2+~b3=~b

C(| ~b1|, | ~b2|, | ~b3|)
[
(∂

~b1
ϕ Aτ )(∂

~b2
ϕ R)(∂

~b3
ϕ (Aτ )−1), ∂x

]
(B.55)

and we note that

[(∂
~b1
ϕ Aτ )(∂

~b2
ϕ R)(∂

~b1
ϕ (Aτ )−1), ∂x] = (∂

~b1
ϕ Aτ )

[
(∂

~b2
ϕ R), ∂x

]
(∂

~b3
ϕ Aτ )−1)

+ (∂
~b1
ϕ Aτ )(∂

~b2
ϕ R)

[
(∂

~b3
ϕ (Aτ )−1), ∂x

]

+
[
(∂

~b1
ϕ Aτ ), ∂x

]
(∂

~b2
ϕ R)(∂

~b3
ϕ (Aτ )−1).

(B.56)

The most difficult term to study is the last summand in (B.56). We have that

〈Dx〉m1

[
(∂

~b1
ϕ Aτ ), ∂x

]
(∂

~b2
ϕ R)(∂

~b3
ϕ (Aτ )−1)〈Dx〉m2 =

= 〈Dx〉m1

[
(∂

~b1
ϕ Aτ ), ∂x

]
〈Dx〉−y〈Dx〉y(∂ ~b2

ϕ R)〈Dx〉z〈Dx〉−z(∂
~b3
ϕ (Aτ )−1)〈Dx〉m2 ,

(B.57)

with z = m2 + | ~b3| and y = ρ− | ~b2| − | ~b3| −m2. Note the operator 〈Dx〉−z(∂ ~b3
ϕ (Aτ )−1)〈Dx〉m2 satisfies bound

like (B.32) with α = ~b3; moreover the operator 〈Dx〉y(∂ ~b2
ϕ R)〈Dx〉z is Lip-0-tame since y + z = ρ − | ~b2| and

R ∈ Lρ,p. Note also that, since m1 +m2 = ρ− |~b| − 1, one has y = m1 + | ~b1|+ 1. We now study the tameness
constant of

〈Dx〉m1

[
(∂

~b1
ϕ Aτ ), ∂x

]
〈Dx〉−m1−| ~b1|−1.

By differentiating the (B.52) we get

∂
~b1
ϕ [Aτ , ∂x] =

∑

~b′1+~b′′1=~b1

τ(∂
~b′1
ϕ g)(∂

~b′′1
ϕ Aτ ) + τ(∂

~b′1
ϕ βx)(∂

~b′′1
ϕ Aτ )∂x, (B.58)

where g = βxx/(1 + τβx). We claim that

‖〈Dx〉m1 [∂
~b1
ϕ Aτ , ∂x]〈Dx〉−m1−| ~b1|−1u‖γ,Os ≤s,ρ ‖u‖s‖β‖γ,Os0+µ + ‖β‖γ,Os+µ‖u‖s0 , (B.59)

for some µ > 0 depending on s, ρ. We study the most difficult summand in (B.58). We have

〈Dx〉m1(∂
~b′1
ϕ βx)(∂

~b′′1
ϕ Aτ )∂x〈Dx〉−m1−|~b1|−1 = 〈Dx〉m1(∂

~b′1
ϕ βx)〈Dx〉−m1−| ~b1|+| ~b′′1 |

× 〈Dx〉m1+|~b1|−|~b′′1 |(∂
~b′′1
ϕ Aτ )〈Dx〉−m1−|~b1|∂x〈Dx〉−1.

(B.60)
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The (B.59) follows for the term in (B.60) by using Lemmata A.6, B.10 and the fact that ∂x〈Dx〉−1 is bounded on
Hs. On the other summand in (B.58) one uses similar arguments. By the discussion above one can check that

M
γ

〈Dx〉m1 [∂~bϕAτ ,∂x]R(Aτ )−1〈Dx〉m2
(0, s) ≤s,ρ M

γ
R(s, b) + ‖β‖γ,Os+µM

γ
R(s0, b). (B.61)

The fact that the operator M satisfies items (iii)-(iv) of Definition (2.8) can be proved arguing as done above for
items (i)-(ii).
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