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Abstract

We prove reducibility of a class of quasi-periodically forced linear equations of the form
Ou — 0z 0 (1 + a(wt,z))u + Qwt)u =0 z €T :=R/27Z,

where u = u(t, x), a is a small, C° function, Q is a pseudo differential operator of order —1, provided that w €
R" satisfies appropriate non-resonance conditions. Such PDEs arise by linearizing the Degasperis-Procesi (DP)
equation at a small amplitude quasi-periodic function. Our work provides a first fundamental step in developing
a KAM theory for perturbations of the DP equation on the circle. Following [3]], our approach is based on two
main points: first a reduction in orders based on an Egorov type theorem then a KAM diagonalization scheme.
In both steps the key difficulites arise from the asymptotically linear dispersion law. In view of the application
to the nonlinear context we prove sharp fame bounds on the diagonalizing change of variables. We remark that
the strategy and the techniques proposed are applicable for proving reducibility of more general classes of linear
pseudo differential first order operators.
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1 Introduction

The problem of reducibility and stability of Sobolev norms for quasi-periodically forced linear operators on the
circle is a classical one, and it has received new attention in the past few years. Informally speaking, given a linear
operator, say X, : H*(T,R) — H* *(T,R) (where T := R/27Z) depending on time in a quasi-periodic way,
we say that it is reducible if there exists a bounded change of variables depending quasi-periodically on time (say
mapping H® — H* for all times), which conjugates the linear PDE 0;u = X, u to the constant coefficient one

0w = Dy, D, :=diagjcz{d;}, d; €C.

The notion of reducibility has been first introduced for ODEs (see for instance [32], [21]], [30], [1]] and reference
therein). In the PDEs context this problem has been studied mostly in a perturbative regime, both on compact and
non-compact domains. The reducibility of linear operators entails relevant dynamical consequences such as the
control on the growth of Sobolev norms for the associated Cauchy problem.

The subject has been studied by many authors: we mention, among others, [12]], [17]l, [20], [291, [7], [39]. For
more details we refer for instance to [3] (and reference therein).

A strong motivation for the development of reducibility theory comes from KAM theory for nonlinear PDEs.
Actually, reducibility is a key ingredient in the construction of quasi-periodic solutions via quadratic schemes, such
as Nash-Moser algorithms. Indeed, the main issue is to invert the linearized PDE at a quasi-periodic approximate
solution, see [[16]. This reduces the problem to the study of a quasi-periodically forced linear PDE such as the ones
described above. We point out that in this context a sharp quantitative control on the reducing changes of variables
is fundamental. Regarding KAM theory for PDEs, we mention [33]],[43],[35]],[11] for equations on the circle,
[26],[23]1,[27),[42]],[22] for PDEs on T™. These works all deal with equations possessing bounded nonlinearities.
Regarding unbounded cases we mention [34], [36], [9] for semilinear PDEs and [3[],[4],[25],[28],[10],[2] for the
quasilinear case.

The main issues in all these problems are related to the geometry/dimension of the domain, the dispersion of the
PDE and the number of derivatives appearing in the nonlinearities. In particular the dispersionless case, i.e. the
case of (asymptotically) equally spaced spectral gaps, often exhibits unstable behaviours and explosion of Sobolev
norms (see [37]). In this paper we discuss operators of this type, proving reducibility and stability for a class of
quasi-periodically forced first order linear operators on the circle. In view of possible applications to KAM theory
we chose to consider a class of linear operators related to the Degasperis-Procesi equation. However, both the
strategy and the techniques are general and, we believe, can be applied to wider classes of first order operators.

The Degasperis-Procesi (DP) equation
Ut — Ugzt + Upze — Uy — Ulgpr — SUzUgze + duu, = 0. (1.1)

was singled out in [19] by applying a test of asymptotic integrability to a family of third order dispersive PDEs.
Later Degasperis-Holm-Hone [18] proved its complete integrability by providing a Lax pair and a bi-Hamiltonian
structure for this system.

Constantin and Lannes showed in [13]] that the Degasperis-Procesi equation, as well as the Camassa-Holm equation,
can be regarded as a model for nonlinear shallow water dynamics and it captures stronger nonlinear effects than the
classical Korteweg de Vries equation: for example, it exhibits wave-breaking phenomena and it shows peakon-like
solutions. Unlike the Camassa-Holm equation, the DP system exhibits also shock waves.

Since its discovery, lots of works have been written on this equation, mostly on the construction of very special
exact solutions such as traveling waves and peaked solitons. We wish to stress that in general the existence of a
Lax pair, in the infinite dimensional context, does not directly imply the possibility to construct Birkhoff (or action-
angle) variables or even simpler structure, such as finite dimensional invariant tori (the so-called finite gap solutions
for KAV and NLS on the circle). For results on the spectral theory of the DP equation we refer to [14],[131]).



In conclusion the problem of KAM theory for the DP equation is, at the best of our knowledge, still open. This is
one of the main motivations for proving this reducibility result. Before introducing our classes of operators let us
briefly describe the structure of the DP equation and in particular its linearized at a quasi-periodic function.

The equation (LI)) can be formulated as a Hamiltonian PDE u; = J V2 H (u), where V12 H is the L?-gradient
of the Hamiltonian

u?  ud
Hu)= | ———d 1.2
=[5~ ds (12
on the real phase space

H(T) = {u € H'(T,R) : /udx - o} (1.3)

T
endowed with the non-degenerate symplectic form

Qu,v) = /(J_lu)vdac, Vu,v € Hy(T), J = (1= 0pe) (4 — 0ps)0s. (1.4)
T
The Poisson bracket induced by € between two functions F, G: HJ(T) — R is
{F(u),G(u)} :=QXp, X¢) = / VF(u) JVG(u) dz, (1.5)
T

where X and X are the vector fields associated to the Hamiltonians F' and G, respectively.

Letv € N*:=N\ {0}, L > 0,v € (0,1).
Consider w € Oy where

Op = {w €[L,2L)" : |w-t| > % te Z”}, () := max{[(|, 1} (1.6)

and a quasi-periodic function u(t, 2) with zero average in x, small-amplitude and frequency w,
u(t, z) = eJ(wt, x), ek 1, 1.7)
where ¢ — J(¢, ) belongs to C*°(T*1; R). Linearizing equation (II) at u one obtains
vy = X, (wt)v, Xy (wt) = Xy(wt, J) := J o (1 + a(wt, x)), a(p,x) = a(J; ¢, ) (1.8)
with a(yp, ) € C>°(T**!;R) Lipschitz in w and J. In particular one has
lall gs(rvrigry < ellI s (rvrrry, Vs
Note that that J in (I.4) can be written as
J =0, + 300y, A= (1—0,) ", (1.9)
hence the operator X, (wt) in (I8) has the form
X, (wt) = (1 + a(wt, 2))0 + az(wt, x) + 3(1 — Opz) " 0s 0 (1 + a(wt, ) (1.10)

and it is a pseudo-differential operator of order one, moreover X, (wt) is a Hamiltonian vector field w.r.t. the DP
symplectic form (L.4).

In the paper [24], together with Montalto, we proved that transport operators of the form (1 + a(wt, z))d,., with
(w,1) € R¥*! diophantine, are reducible by a change of variables which has very sharp tame estimates in terms of
the Sobolev norm of the function a. Here we prove the same result for the more general class (L10). We have to
deal with two main issues:

e the operator (ILIQ) is not purely transport;



e we wish to diagonalize with a change of variables which is symplectic w.r.t. (L4).

As in [24]), the main difficulties, which turn out to be particularly delicate in our context, consist in giving sharp
estimates of the change of variables; in order to do this, we need to introduce a number of technical tools, for
instance a quantitative version of Egorov’s theorem.

We prove the following reducibility result.

Theorem 1. Fix v € (0,1), consider X, (wt) in (LIQ) with w € Oy (see (LA)), assume that ||J|| g=(1v+1,r) <
1 for some s > 1 large enough and |e| < eo(v) (recall (L), (LA)). Then there exists a Cantor set Oy C
Oq such that for all w € Oy there exists a quasi-periodic in time family of bounded symplectic maps ¥ (wt) :
H*(T;R) — H*(T;R), which reduces (L) to a diagonal constant coefficients operator with purely imaginary
spectrum. Moreover the Lebesgue measure of O \ O goes to 0 as v — 0.

From Theorem [l we deduce the following dynamical consequence.
Corollary 2. Consider the Cauchy problem

{ Ou = X, (wt)u,

u(0,z) = uo(z) € H*(T;R), (1.11)

with s > 1. If the Hypotheses of Theorem[[lare fulfilled then the solution of (L11) exists, is unique, and satisfies
(1 = () [luoll = (riry < ult, Ma=rry < (1 + ¢(s)) luoll g (rsm), (1.12)
forsome 0 < ¢(s) < 1foranyt € R.

We remark that (I.12) means that the Sobolev norms of the solutions of (I.T1) do not increase in time. This
is due to the quasi-periodic dependence on time of the perturbation. One could consider also problems with more
general time dependence. However one expects to give at best an upper bound on the growth of the norms (see [6]]).

We shall deduce Theorem[I] from Theorem [[.4 below. We first need to introduce some notations.

Functional space. Passing to the Fourier representation
u(p,w) = ui()ed™ = 3wy PG (0) =uj(p), Ty =u_g -y, (1.13)
JEL tezv jez
we define the Sobolev space
H* = {ulp,2) € TSR 2= Y0 Jug(65)* < oo} (1.14)
Lezv ,j€Z\{0}
where (¢, j) := max{1, |¢|,|j|}, |¢| :== >_7_;|¢;|. We denote by B,(r) the ball of radius r centered at the origin of
Hs.
Pseudo differential operators. Following [[10] and [38] we give the following Definitions.
Definition 1.1. A linear operator A is called pseudo differential of order < m if its action on any H*(T) with
s > m is given by
AZujeijz = Za(z,j)ujeijm ,
JEZ JEZ

where a(x, j), called the symbol of A, is the restriction to T X Z of a complex valued function a(x, &) which is C*
smooth on T X R, 2mw-periodic in x and satisfies

050 alw, &) < Cap(€)" %, Va,BEN. (1.15)

We denote by A[-] = Op(a)|] the pseudo operator with symbol a := a(x,j). We call OPS™ the class of the
pseudo differential operator of order less or equal to m and OPS™ := (), OPS™. We define the class S™ as
the set of symbols which satisfy (L13).



We will consider mainly operator acting on H*(T) with a quasi-periodic time dependence. In the case of pseudo
differential operators this correspond] to consider symbols a(p, x, &) with ¢ € T”. Clearly these operators can be
thought as acting on H*(T"T1).

Definition 1.2. Ler a(p, x,&) € S™ and set A = Op(a) € OPS™,

Alm.s.a := max sup||02a(., -, &)||s(&)~™+F, 1.16
|Am,s, 02152{%2%”5‘1( Olls(&) (1.16)

We will use also the notation |a|m 5.0 = |A|m,s.a-

Note that the norm |-, s o is non-decreasing in s and oe. Moreover given a symbol a (¢, ) independent of £, the
norm of the associated multiplication operator Op(a) is just the H* norm of the function a. If on the contrary the
symbol a(§) depends only on &, then the norm of the corresponding Fourier multipliers Op(a()) is just controlled
by a constant.

Linear operators. Let A: TV — L(L?(T)), ¢ — A(y), be a p-dependent family of linear operators acting on
L?(T). We consider A as an operator acting on H*(T"*1) by setting

(Au)(p,z) = (Alp)ulp,-)) ().

This action is represented in Fourier coordinates as

1= 3 A (@uple) = 3T 3T A= ey )

3,3 €L LELY JEL V' ELY ,j €L

Note that for the pseudo differential operators defined above the norm (I.16) provides a quantitative control of the
action on H*(T**1). Conversely, given a Topliz in time operator A, namely such that its matrix coefficients (with
respect to the Fourier basis) satisfy

»/7l/ -/ . 3 v
Aj—,z = A} (1=1) Vi,j' ez, Il €7, (1.18)
we can associate it a time dependent family of operators acting on H*(T) by setting

Alp)h =Y Al (Ohy et Yhe H(T).

j.5' €Z,LETV
Form = 1,...,v we define the operators 0, A(¢) as
O, Alu(p.x) = > > M=) AL~ ) upy eI, (1.19)

LeLY JEL L ELY j' €L

We say that A is a real operator if it maps real valued functions in real valued functions. For the matrix coefficients
this means that

AT (0) = AZT (—0).

Lipschitz norm. Fix v € N* and let O be a compact subset of R”. For a function u: O — E, where (E, ||-||r)
is a Banach space, we define the sup-norm and the lip-seminorm of w as

wllseP wl|suPs (@] = sup ||u(w) | g u lip — |l lip,O — su ||u(w1) B U(WQ)HE )
[ullz” = llullp weg” @le,  lulg = lulg B S ey (1.20)
w1 #w2

If E is finite dimensional, for any v > 0 we introduce the weighted Lipschitz norm:

: : lip,
el B = ull 57 + Alull . (1.21)

Isince w is diophantine we can replace the time variable with angles ¢ € T”. The time dependence is recovered by setting ¢ = wt.



If E is a scale of Banach spaces, say & = H?, for v > 0 we introduce the weighted Lipschitz norms

Il 7€ := ull € + AulliP, Vs = [v/2] +3 (1.22)
where we denoted by [r] the integer part of » € R. Similarly if A = Op(a(w, ¢, z,£)) € OPS™ is a family
of pseudo differential operators with symbols a(w, ¢, x, £) belonging to S™ and depending in a Lipschitz way on
some parameter w € O C R”, we set

O a\wi, @, T, —alw2, ¥, T, m,s—1,a
|AI7:C o == sup |Almsa +7 sup Op(a(wr, ¢ 2,€) = alws, ,2:6)) bms-1, . (1.23)
weO

wi,w2€0 |w1 - w2|

Hamiltonian linear operators. In the paper we shall deal with operators which are Hamiltonian according to the
following Definition.

Definition 1.3. We say that a linear map is symplectic if it preserves the 2-form Q in (L), similarly we say that a
linear operator M is Hamiltonian if M is a linear hamltonian vector field w.r.t. Q0 in (L4). This means that each
J=YM is real symmetric. Similarly, we call a family of maps ¢ — A(p) symplectic if for each fixed o A(yp) is
symplectic, same for the Hamiltonians. We shall say that an operator of the form w - 0, + M () is Hamiltonian if
M () is Hamiltonian.

Notation. We use the notation A <; B to denote A < C(s)B where C/(s) is a constant depending on some real
number s.

For w € Oy (see (L.A) we consider (in order to keep the parallel with (II0)) a quasi-periodic function £J €
C°°(T**1 R) such that, by possibly rescaling ¢,

13250 <1, so:=[v/2] +3 (1.24)

for some 1 > 0 sufficiently large. We consider classes of linear Hamiltonian operators of the form
Lo,=L,T)=w-0,—Jo(l+a(p,x))+ Qp), (1.25)
where a = a(p, z) = a(J;p,z) € C° (T R) and

Q := Op(q)[-], q=q(3; 02,8 =q(p,2,§) € S (1.26)

is Hamiltonian. We assume that a, ¢ depend on the small quasi-periodic function €J € C>°(T**! R) (with J as in
([T29)), as well as on w € Oy in a Lipschitz way and, for all s > s¢ we require that (recall (T23))

O ,O ~117Y,0
lall3%° +[a77 % 0 <s €llTl 3o (1.27)

s+og?

for some oo > 0. If J1, T2 € C°°(T*1, R) satisfy (L24) we assume
[Arzallp + [A12q]-1,5,0 <p €]|T1 = T2|lp+a (1.28)

for any p < so + p — 0 (u > 0p), where we set Aqza := a(Jy; ¢, x) — a(J2; ¢, x) and similarly for A;aq.

With this formulation our purpose is to diagonalize (in both space and time) the linear operator (I.23) with
changes of variables H*(T**1) — H*(T**1). Since L, is Topliz in time (see (LIF)), it turns out that these
transformations can be seen as a family of quasi-periodically time dependent maps acting on H*(T).

Theorem[Tlis a consequence of the following result.

Theorem 1.4 (Reducibility). Let v € (0,1) and consider L., in (L23) with w € Oy satisfying (L26)-(L27) with
ey~ 5/2 <« 1. Then there exists a sequence

. 4+ 52 .
dj:dj(.l) = mjm+7’j, ]EZ\{O}, TjER, Ty = —Tr—j (1.29)



with m = m(w,J), r; = r;(w,J) well defined and Lipschitz for w € Oy with |m — 1|90 sup;(5) |rj|”3/2’0° <
Ce, such that the following holds:
(1) for w in the set O = Oso(T) := Q1 N Qo, where (1> 20 +6)
N =00)={weO:|lw-L—mj|>27y)"", VjeZ\{0}, L€Z"} (1.30)
Qo =(0):={weOo:|w-£+dj—di| 220°(0)7, Vi, ke Z\{0}, L€ 2" (j,k0)# (j.4.0)},
(131)

there exists a linear, symplectic, bounded transformation ®: Oy, x H®* — H?® with bounded inverse O~ such that
forallw € O

PL,O ' =w- 0, — Dy, D, := diag,_(id;) ; (1.32)
(i%) the following tame estimates hold

3/2

[ 81 RIT* O <, Il + x> 2IBIT bl Vs > 50 (133)

for some constants o, C' > 0 depending on T, v;

(14i) the map ® is Topliz in time and via (LI8) induces a bounded transformation of the phase space H*(T;R)
depending quasi-periodically on time.

Let us briefly discuss how to deduce Theorem[dl from Theorem[T4l Consider the equation
Opu = X, (wt)u (1.35)

with X, (wt) in (LI0). The operator associated to (I33)) acting on quasi-periodic functionis £,, = w- 9, — X, (¢)
which has the form (.23 with Q(¢) = 0.

Under the action of the transformation v = ®(wt)u of the phase space H*(T;R) depending quasi-periodically
on time the equation (I.33) is transformed into the linear equation

O = Dy, D, = ®(wt) X, (wt)®H(wt) + ®(wt)dpd ™ (wt). (1.36)

The operator associated to (I.36) is ®L,® ! given in (I.32).

Let us makes some comments on the statement of our main result.

e If we consider a C°° Hamiltonian perturbation of the DP equation, say adding to the Hamiltonian (T.2))
a term like fT f(u) dx, where the density f € C°°(R,R), then the operator obtained by linearizing at a
quasi-periodic function has the same form of the operator £, in (L.23).

e Along the reducibility procedure in order to deal with small divisor problems, we use that w belongs to the
intersection of the sets (L30), (IL31). We point out that the diophantine constants appearing in the first order
Melnikov conditions (I.30) and the second order ones (I.3T) consist of different powers of a small constant
~. This fact is crucial in view of the measure estimates of the sets (I.30) and (I.31)), in particular for the proof
of Lemmal5.3]

Different scalings in y for non-resonance conditions are typical in problems with (asymptotically) linear
dispersion such as the Klein-Gordon equation, see [41]], [8]].

As said above, the linear operator £,, depends on a smooth function J in a Lipschitz way. This dependence is
preserved by the reducibility procedure, in the following sense.

Lemma 1.5 (Parameter dependence). Consider J1,Jo € C*°(T*T1 R) satisfying (L24). Under the assumptions
of Theorem[L 4 the following holds: for w € O (J1) N Ouo(J2) there is o > 0 such that

[Aram| < el|T1 = Tallsoror  sup(i)Ar2rs] < ey [T = Follsgto- (1.37)
J



The above quantitative lemma is important in view of application to KAM for nonlinear PDEs. Moreover it
easily implies an approximate reducibility result, which in turns implies a control of Sobolev norms for long but
finite times for all the operators £, (J) with J in a small ball.

Theorem 1.6 (Almost reducibility). Under the hypotheses of Theorem[L4) consider 31,35 € C*°(T*™* R) and
assume that L,,(31), L, (J2) as in (L23) satisfy (L2D)-(L28). Assume moreover that (L24) holds for J1, Jo and

sup [|31 = Jalsg4p < CpN~THY (1.38)
weOg

for N sufficiently large, 0 < p < 73/2/2. Then the following holds. For any w € O (J1) there exists a linear,
symplectic, bounded transformation ® x with bounded inverse @;,1 such that

DN Lo(32)0N =w -9, — DM + RM DMV .= DN (3,) = diago(i1d™ (32)). (1.39)
Here d§-N) (J2) has the form (L29) for some m™Y) = mN)(3y) and TJ(-N) = 7’§-N) (32) satisfying the bounds

m™ (3) = m(31)] + (§)r§™ (32) =15 (31)] < £C[T1 = Fallsgp + CeN 7" (1.40)
for some k > T and C > 0.
The remainder RN = J o a™) + QW) with o M) € C(T*+1;R), QW) Topliz in time, bounded on H?,
QWM (p): H*(TV) — H*+Y(T), satisfying

lat™]

70=00 < cONT"|| 2|25 1Q™v)ls < eONT (llvlls + 1F2llsspllvllse), YveH. (141)

s+

The maps ® 7, @' satisfy bounds like (L33).

Remark 1.7. In order to prove the above theorem the main point is to show the inclusion O, (J1) C QSN) N QgN),
where

2 _
AN = M (3y) = we Oyt w L —m™ j| = 200 yie g (0}, 4 < N, (1.42)

(0)
) 3/2 _
o™ =M (32) == {we gt w0+ d™ —d| > %

J

ik € Z\ {0}, |(| < N} (1.43)
One can deduce the following dynamical consequence.
Corollary 1.8. Under the Hypotheses of Theorem[[.0 consider the Cauchy problem

(1.44)

Oyu = Jo (1+a(3;¢,2))u— QT;p)u,
u(0,2) = up(x) € H*(T;R), s > 1.

Consider 31 as in Theorem[[.8land w € Oy (J1) (which is given in Theorem[[4). Then for any 7 in the ball (L38),
(@423 admits a unique solution which satisfies

sup  [Ju(t, Ml gserry < (1+¢(s))Juoll gs(T;r), (1.45)
te[—Tn,TN]

for some 0 < ¢(s) < 1 and some Ty > e~ N*. Finally, if 3 = 31 the bound (L43) holds for all times.

1.1 Strategy of the proof

In [3] Baldi-Berti-Montalto developed a strategy for the reducibility of a quasi-periodically forced linear opera-
tors, as a fundamental step in constructing quasi-periodic solutions for non-linear PDEs, via a Nash-Moser/ KAM
scheme. Indeed, the main point in the Nash-Moser scheme is to obtain tame estimates on high Sobolev norms
of the inverse of the linearized operator at a sequence of quasi-periodic approximate solutions. Given a diagonal



operator, its inverse can be bounded in any Sobolev norm by giving lower bounds on the eigenvalues. Therefore, if
an operator is reducible, the estimates on the inverse follow from corresponding tame bounds on the diagonalizing
changes of variables, see for instance (L33). Note that in order to use (L33) in a Nash-Moser scheme, the crucial
point is that the s-Sobolev norm of ® is controlled by the (s + ¢)-Sobolev norm J where o is fixed or at least
o=o(s)witho < s.

The main idea in the reducibility procedure of [3] is to perform two steps.
The first step consists in applying a quasi-periodically depending on time change of coordinates which conjugates
L., to an operator £ which is the sum of a diagonal unbounded part and a bounded, possibly smoothing, remainder.
This is called the regularization procedure and, in fact, reduces the reducibility issue to a semilinear case.
The second step consists in performing a KAM-like scheme which completes the diagonalization of £}

Step one. The operator L, differs from the transport operator considered in [24] by a regularizing pseudo differ-
ential operator. Then, in order to make the coefficient of the leading order constant one can apply a map

Toulp, z) = u(p, + B(p,x)). (1.46)

If we choose /3 correctly, this map conjugates L, to constant coefficients plus a bounded remainder. Such a map
however is clearly not symplectic. In order to find the symplectic equivalent of this transformation we study the

flow of the hyperbolic PDE
O () = (Job)UT (), b= —L

T 1+ 78, (1.47)

Uy = u,

which is generated by the Hamiltonian

S(r,p,u) = /b(T, ga,x)u2dx.

By construction if the flow of (L47) is well defined then it is symplectic.
First, in Proposition[3.Jlwe show that ¥™ is the composition of

ATu = (14 78,) u(p, = + 76(p, x))

with a pseudo differential operator O plus a remainder. O is one smoothing in the x variable, while the remainder
is p-smoothing in the x variable for some very large p.

Remark 1.9. We point out that the strategy used in Proposition[3 1l for constructing of the symplectic version of the
torus diffeomorphism is applicable for more general symplectic structure, provided that J is pseudo differential.

Next, we study how the map U™ conjugates L, ; this is the content of Proposition[3.3l Egorov’s theorem ensures
that the main order of the conjugated operator U7 L, (U7) =1 is

a+(907x) = _(w : a‘PB)(%x + 6(()0%%)) + (1 + a((p,x + 6(@)‘%)))(1 + Bm(@vx + 6(@)‘%))) -1

where z + 3 (i, x) is the inverse of the diffeomorphism of the torus x +— x + 3(p, z). The function S is chosen
as the solution of a quasi-periodic transport equation a (¢, 2) = const. This equation has been treated in [24] and
the Corollary 3.6 in [24] gives the right 3 with estimates.

The map W7 is the flow of a hyperbolic PDE, hence the Egorov theorem guarantees that U™ L,,(¥7)~! is again a
pseudo differential operator, whose leading order is constant. The fact that 7 is symplectic also ensures that the
zero order terms vanish and the non-constant coefficients terms are one smoothing in the x- variables.

In order to have sufficiently good bounds on the symbol of the transformed operator, we provide a quantitative
version of the Egorov theorem (see Theorem 3.4 in Section[3). As before, the idea is to express such operator as
a pseudo-differential term (whose symbol we can be bounded in a very precise way) plus a remainder which is
p-smoothing in the x variable for some very large p.



The Egorov theorem regards the conjugation of a pseudo differential operator Py = Op(po) € OPS™ by the flow
of a linear pseudo differential vector field Xu = Op(x)u of order d with d € (0,1]. It is well known that the
transformed operator P(7) = Op(p(7)) € OPS™ satisfies the Heisenberg equation

0.P =[x, P] (1.48)

(see (3.30)) and that the symbol p(7) satisfies O-p = {p, x} ar, Where {-, -} s are the Moyal brackets. The proof
consists in making the ansatz that the new symbol p can be written as sum of decreasing symbolsp = >, p; (see
(3:31)) and solving the Heisenberg equation order by order. This gives a set of triangular ODEs for the symbols p;
(see (332)). The r.h.s of (L48) is of order m + d — 1, hence if d < 1 the leading order symbol p,, (7) = po. The
remaining terms are easily computable by iteration. A detailed discussion of the case d = 1/2 can be found in [[10]
and [2].

If d = 1 then the equation for p,, is a Hamilton equation with Hamiltonian x, hence p,,(7) is given by po trans-
ported by the flow of the Hamiltonian y (see (3.36)). Consequently the symbols p;, ¢ < m, are given by ODE of
the same kind but with forcing terms. We need to control the norms |p;|; s, With the norm |po|m, s+o1,a40, With
o1 + o3 < s. This requires some careful analysis (see Lemma[3.3).

Before stating the main regularization theorem let us briefly describe our class of remainders i.e. operators
which are sufficiently smoothing in the z-variable that they can be ignored in the pseudo-differential reduction, and
are diagonalized in the KAM scheme. We call such remainders £, , (for some p > 3, p > sg). Roughly speaking
we require that an operator R in £, , is tame as a bounded operator on [1° and p-regularizing in space; moreover its
derivatives in ¢ of order b < p — 2 are tame and (p — b)-regularizing in space. This definition is made quantitative
by introducing constants M, (s, b), see Definition[2.8lin Section 2]

The most important features of this class are that it is closed for conjugation by maps 75 as in (I.4€) and that any
‘R in £, ;, is modulo-tame and hence can be diagonalized by a KAM procedure.

Theorem 1.10 (Regularization). Let p > 3 and consider L, in (L23). There exist 11 > po > 0 such that, if
condition (L24) is satisfied with . = ju1 then the following holds for all p < sq + 1 — pis.
There exists a constant m(w) which depend in a Lipschitz way w.r.t. w € Oy, satisfying

|m — 179 < Ce, (1.49)

such that for all w in the set Q1 (J) (see (L3Q)) there exists a real bounded linear operator &1 = ®1(w) : Oy x HS —
H? such that
LY =1 L,07' =w-0p —mJ +R. (1.50)

The constant m depends on J and for w € Q1 (J31) N Q1(J2) one has
|Arzm| < el|T1 — Tallsg+p1 5 (1.51)

where Ajom := m(J1) — m(Js). The remainder in (L30) has the form R = Op(r) + R wherer € S~1, R
belongs to £, , (see Def.[2.8) and

5,92 2% —1y~117,O
P20+ M (5,0) e 2y IS0, 0 p-2, )

|A12r|*172070¢ + MAmR(pab) Spﬂ EfyilHjl - jQHSoJﬁul 0<b< P — 3

Moreover if u = u(w) depends on w € Qy in a Lipschitz way then

7,00

+ Q Q — 1~ O
@7 |7 < [Jul| 7% + ey ITIT50 lull 2 (1.53)

Finally &, ®1* are symplectic (according to Def. [L3).

Step two. We apply a KAM algorithm which diagonalizes £7. As in the first step, an important point is to imple-
ment such algorithm by requiring only a smallness condition on a low norm of the remainder of the regularization
procedure. Hence in order to achieve estimates on high Sobolev norms for the changes of variables it is not suf-
ficient that the non- diagonal terms are bounded. To this purpose, following [2], we work in the class of modulo
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tame operators (see Def. (2.6)), more precisely we need that R in (L30) is modulo tame and one smoothing in the
x-variable together with its derivatives in times up to some sufficiently large order, this follows from our definition
of £, , and properties of pseudo-differential operators, see LemmalA.4]l Our strategy is mostly parallel to [2], hence
we give only a sketch of the proof for completeness.

Theorem 1.11. (Diagonalization) Fix S > so. Assume that w — J(w) is a Lipschitz function defined on Oy,
satisfying (L24) with pn > py where py := py(v) is given in Theorem[[ 10l Then there exists 6y € (0,1), Ny > 0,
Coy > 0, such that, if

NEoery3 < 4y, (1.54)

then the following holds.

(i) (Eigenvalues). For all w € Oy there exists a sequence

4+ 52

dj(w) = dj(w,I(w)) := m(w)jm +rjw), J#0, (1.55)
with m in (L49). Furthermore, for all j # 0
3
su_p<j>|7"j|"72’oU < Ck, Tj=—T_j (1.56)

J

for some C' > 0. All the eigenvalues id; are purely imaginary.

(1) (Conjugacy). For all w in the set Oy := Q1(3) N Q2(T) (see (L3Q), (L3TD) there is a real, bounded, invert-
ible, linear operator ®o(w): H® — H*, with bounded inverse ®; *(w), that conjugates L7, in (L30) to constant
coefficients, namely

Loo(w) i= Ba(w) o LT 0 &5 H(w) = w - Dy + D(w), D(w) := diag; s {id;(w)}. (1.57)

The transformations ®o, ®, Y are symplectic, tame and they satisfy for sp < s < S

3/2 3/2

— — ~117,O
O < ey ey PRI IR,

_ 3/2
I(®5" — DAY 20 Oso | eq=3/2||p| 7% 0 (1.58)

with h = h(w). Moreover, for w € O (J1) N O (T2) we have the following bound for some o > 0:

sup(j)|Arari| < ey |31 — Tallspto- (1.59)
J

It remains to prove measure estimates for the Cantor set O, = 21 N Q. In Section3] we prove the following.

Theorem 1.12 (Measure estimates). Let O, be the set of parameters in (L30)-(L31). For some constant C' > 0
one has that
|00\ Ouo| < CyL¥ (1.60)

We discuss the key ideas to prove the above result. Recalling (I.30)-(I.31)) we may write
Oy \ Oy = U (R@jk U ng) (1.61)
Lz ,j,keZ\{0}

where
Rojk = {w € Op : lw-L+dj —di| <2732(0)77},

. _ (1.62)
Qrj ={we O |w-L+mj| <2v()"7}

where d; are given in (L33). Since, by (L8) and v > 73/2, Ry = () for j = k, in the sequel we assume that
J# k.
The strategy of the proof of Theorem[T.12]is the following.

(¢) Since the union in (L6T) runs over infinite numbers of indices /¢, j, k, we first need some relation between them
which is given in Lemma 5.l Note that, since the dispersion law j + 5(1 + j2)71(4 + j2) is asymptotically
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linear, for fixed ¢ there are infinitely many non-empty bad sets Ry;;, to be considered. It is well known that if the
dispersion law grows as j¢, d > 1 as j — oo then, thanks to good separation properties of the linear frequencies,
there are only a finite number of sets to be considered for any fixed ¢ € Z". This is the key difficulty to deal with.

(1) We provide the estimates of each “bad” set in (L62) when £ € Z”, j, k € Z \ {0}. This is done in Lemma[5.2]

(ii7) We deal with the problem of the summability in j, k. We show (in Lemmal[53) that, if ||, |j| > ||, then the
sets Ry, ;1 are included in sets of type Q¢ ;—x, which depends only on the difference j — k and so are finite for fixed
L.

2 Functional Setting

In this Section we introduce some notations, definitions and technical tools which will be used along the paper. In
particular we introduce rigorously the spaces and the classes of operators on which we work.
We refer to the Appendix A in [24] for technical lemmata on the tameness properties of the Lipschitz and

Sobolev norms in (L14),([22).

Linear Tame operators.

Definition 2.1 (c-Tame operators). Given o > 0 we say that a linear operator A is o-tame w.r.t. a non-decreasing
sequence {M (o, s)}S_. (with possibly S = +00) if:

s=50
[Aulls < Ma(o, s)||ullsyro +Malo, so)lluflsro  we H, 2.1

forany so < s < S. We call M (0, s) a TAME CONSTANT for the operator A. When the index o is not relevant
we write M 4 (o, 8) = MA(s).

Definition 2.2 (Lip-o-Tame operators). Let o > 0 and A = A(w) be a linear operator defined for w € O C R”.
Let us define
A(w) — A(w')

Ay A=
’ o]

, w,w €0. (2.2)

Then A is Lip-o-tame w.r.t. a non-decreasing sequence {4 (o, s) f:SO if the following estimate holds

Sug | Aulls, v S;lp [(Aw,w A)ls-1 <s m}(avs)llull%-‘w + 9)?1(0, sulls+o, v e H?, (2.3)
we wHw’

We call (0, s) a LIP-TAME CONSTANT of the operator A. When the index o is not relevant we write
M (0, 5) = My (s).

Modulo-tame operators and majorant norms. The modulo-tame operators are introduced in Section 2.2 of
[10]. Note that we are interested only in the Lipschitz variation of the operators respect to the parameters of the
problem whereas in [10] the authors need to control also higher order derivatives.

Definition 2.3. Let u € H*, s > 0, we define the majorant function u(p,x) := Zlezu_jezmgj|ei(‘}“/’+”). Note
that [Jul[s = [|ul[s. |

Definition 2.4 (Majorant operator). Let A € L(H?®) and recall its matrix representation (L11). We define the
majorant matrix A as the matrix with entries

()7 (0) =[] (O G el ter”
We consider the majorant operatorial norms

M| sy := sup || Mulls. 2.4)
[lulls<1

12



We have a partial ordering relation in the set of the infinite dimensional matrices, i.e. if
M 2N & M ()] <N (O] V4,50 = M| ey < IN|l ey, [1Mulls < [Malls < [|[Nuls. 25)

Since we are working on a majorant norm we have the continuity of the projections on monomial subspace, in
particular we define the following functor acting on the matrices

M7 (¢ if 10| < K
s =4 M (0 lll,— ’ Mk =1 Tl
0 otherwise

Finally we define for by € N

(0 M5 (£) = (6> M (€). 2.6)
If A = A(w) is an operator depending on a parameter w, we control the Lipschitz variation, see formula2.2] In the
sequel let 1 > v > v3/2 > 0 be fixed constants.

Definition 2.5 (Lip-c-modulo tame). Let o > 0. A linear operator A .= A(w), w € O C RY, is Lip-o-modulo-

. . 3/2 . . .
tame w.r.t. an increasing sequence {imﬁﬁ (s) f:SO if the majorant operators A, Awyw/A are Lip-o-tame w.r.t.

these constants, i.e. they satisfy the following weighted tame estimates: for o > 0, for all s > sg and for any
u e H?,

3/2 3/2
sup [|Aulls, sup 72 AuwrAulls < MG (0, 50)[ull o + MG (0, 8) 5o 40 2.7
weO w#w' €O -
. #,43/2 . . #7372 .
where the functions s — 957" (0,8) > 0 are non-decreasing in s. The constant M~ (o, s) is called
3/
the MODULO-TAME CONSTANT of the operator A. When the index o is not relevant we write Dﬁ&'yd 2(0, s) =
3/2

ML ().
Definition 2.6. We say that A is Lip-—1-modulo tame if (D,)"/? A(D,)'/? is Lip-0-modulo tame. We denote

3/2 3/2

)1/2A(DI>1/2(0’S)’ m&ﬁ (s,a):

3/2
MY (s) == M) M eipyapya(058), @20 (28)

x

In the following we shall systematically use —1 modulo-tame operators. We refer the reader to Appendix [A]]
for the properties of Tame and Modulo-tame operators.

Pseudo differential operators properties. We now collect some classical results about pseudo differential oper-
ators introduced in Def. [[.T] adapted to our setting.

Composition of pseudo differential operators. One of the fundamental properties of pseudo differential oper-
ators is the following: given two pseudo differential operators Op(a) € OPS™ and Op(b) € OPS™ , for some
m, m’ € R, the composition Op(a) o Op(b) is a pseudo differential operator of order m + m’. In particular

Op(a) o Op(b) = Op(a#b), 2.9)
where the symbol of the composition is given by
(a#d)(w,8) =Y alw, &+ )bj()e’” = Y ar—; (€ +5)b;(&)e™*. (2.10)
JEL k,jEZ

Here the * denotes the Fourier transform of the symbols a(z, £) and b(x, §) in the variable 2. The symbol a#b has
the following asymptotic expansion: for any N > 1 one can write

N-1
(atb)(z, &) = Z n,—;aga(x,f)aﬁb(z,é) +ry(z,§), ry € Sm+m’—N,
n=0
1 - (2.11)
vl = ﬁ / (=N YO ), € + 7/)ON (G, €)' dr.

JEZ
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Definition 2.7. Let N € N,0< k < N, a € S™ andb € S™, we define (see 2.11))

N—-1
1
aftpb = m(aga)(aj;b), atnb =Y a#ib, a#tsnb =Ty, (2.12)
k=0

Adjoint operator. Let A := Op(a) € OPS™. Then its L?-adjoint A* is a pseudo differential operator such that
A*=0p(a®),  a*(x,&) =) a;(§ — j)er. (2.13)
JEZ

Parameter family of pseudo differential operators. We shall deal also with pseudo differential operators de-
pending on parameters ¢ € T":

(Au)(p,x) = Za(g@,x,j)ujeijz, a(e,z,j) € S™.
JEL

The symbol a(p, x, ) is C*° smooth also in the variable . We still denote A := A(p) = Op(a(p,-)) = Op(a).
For the symbols of the composition operator with Op(b(¢, x, €)) and the L2-adjoint we have the following formulas

(a#b)(p,2,€) = D alp, .6+ )blp, 4, &) €9 = >~ a(t =5 = j,&+ (', 5,§) e,

JEL jyj/’GZ,
teer” (2.14)
a*(p,2,8) =Y alp, 6 —j)eim = D a(l,4,& - j)eiltetin,
JEL LELY JETL

Classes of Smoothing Remainders. The KAM scheme performed in Sectiondlis based on an abstract reducibility
algorithm which works in the space of modulo-tame operators. In order to control the majorant norm (2.4) of the
remainder of the regularization procedure it is useful to introduce a class of linear “tame” smoothing operators.

Definition 2.8. Fix so > (v + 1)/2 and p, S € N with s < p < S with possibly S = +oo. Fix p € N, with
p > 3 and consider any subset O of R”. We denote by £, , = £, ,(0) = £, ,(O) the set of the linear operators
A= A(w): H3(T"*1) — H*(T"*1), w € O with the following properties:

e the operator A is Lipschitz in w,

e the operators 8214, [GEA, 0z, for all b= (b1,...,b,) € N” with 0 < |6| < p — 2 have the following properties,
forany s < s < S, with possibly S = 4o0:

(i) forany mi,mo € R, my,my > 0and my +mo = p — |B| one has that the operator (Dm>m182A<Dz>m2 is
Lip-0-tame according to Def. 2.2 and we set
ingA(—p+ Ibl,s):=  sup stDmlaEA(DWQ (0, 5); (2.15)

m1+m2:/)*\5|
mi,m2>0

(ii) for any my,my € R, my,mg > 0 and my + my = p — |b| — 1 one has that (D,)™ [QE,A,GZKDZ)’”? is
Lip-0-tame according to Def. 2.2 and we set

. —p+[b|+1,5):= g . : 2.1
93?[81;,4732]( p + |b| + ;S) m1+m§1ilp)_|ﬁ‘_1m<DI>m1 [6314,81]([)1)7”2 (07 S) ( 6)
ml,mQZO
We define for 0 <b < p — 2
M, (s,b) ::Og‘lgal)ibmax (EmggA(—p + |6|,s),9ﬁg3[1476m](—p+ | + 1,8)) . (2.17)
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Assume now that the set O and the operator A depend on i = i(w), and are well defined for w € Oy C Q. for all i
satisfying (L24). We consider iy = i1 (w), 12 = i2(w) and for w € O(i1) N Oliz) we define

A12A = A(Zl) - A(’LQ) (218)

We require the following:

e The operators GE,AQA, [QEAQA, 0z, for 0 < |6| < p — 3, have the following properties, for any so < s < S,
with possibly S = +oc:

(iii) for any mi,ms € R, my,ms > 0 and my +mo = p — |B| — 1 one has that <Dz>m18§,A12A<Dz>m2 is
bounded on HP into itself. More precisely there is a positive constant ‘ﬁanAmA(fp + |B| + 1,p) such that,
forany h € HP, we have

sup [(Dx)™ 05 A12A(Da)"hllp < Mg n,, 4(—p + [B + L, p) [ 2ll; (2.19)
mi+mao=p—|b|—1
m1,m2>0

(iv) for any my,mg € R, my,ma > 0 and my +my = p — |b| — 2 one has that (D)™ [85A12A7 Oz [(Dy )2
is bounded on HP into itself. More precisely there is a positive constant ‘ﬁ[agAuA’am] (—p+ |5| + 2, p) such
that for any h € H? one has

Sup (D)™ O A2 A, (D) hlly < Mg 5,0y (=0 + B+ 2,) [ (220
m1+m2:p;|0b\72

We define for0 <b < p—3

Ma,,a(p,b) := maxmax(fﬁg —p+ bl +1,p), N5 —p+[b| +2, )
M1z (p,b) = max 98 a1, (=P [l 1,0), Mg (4, 4 5,1 (=P + [P +2,p) 2.21)

By construction one has that M (s,b1) < M (s,b2) if b1 < by < p — 2 and Ma,,a(p,b1) < Ma,,a(p, b2)
ifb1 <bsy < p—3.

For the properties of the classes of operators we introduced above, we refer to Appendix [B.1l

3 Regularization procedure

The aim of this section is to prove Theorem[1.10

3.1 Flow of hyperbolic Pseudo differential PDEs

First we analyze the structure of the flow map that we use to conjugate the operator (I.2Z3)) to a diagonal operator
plus a smoothing term.

We study the flow U7 of the vector field generated by the Hamiltonian

1
S(r,p,u) = 5 /b(T,cp,z)Ude b(r,,x) = % 3.1

and 3 is some smooth function. We first need to show that U7 is well defined as map on H* (see Proposition[3.1)).
Then we study the structure of W7 L, (¥7) ™1, see Proposition[3.3l
The flow associated to the Hamiltonian (3.1)) is given by

0,0 (u) = (J o b)T7 (u), WOy = u, (3.2)
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where b(7, ¢, x) is defined in (BI) with 8 € C°°(T**!) to be determined.
In the following proposition we prove that the flow of (3.2) ¥™ = C™ o A", where AT is the operator
ATh(p, x) = (1+ 782 (p, 2))h(p, x + T78(¢, 7)), peT’, zeT,

¢ : (3.3)
(AT) " hip,y) = (1 + By (1, 0,9) h(p,y + B(T,0,9)), €T, yeT,

where B(T; x,€) is such that

x—=y=x+718(p,x) & y»—)z:y+ﬂ~(7,<p,z), 7€ 0,1],

and C7 is the sum of a pseudo differential operator of order —1 with a smoothing remainder belonging to the class
Lyp forany p € N, p > 3, s < p < po(p) provided that /5 satisfies an appropriate p-smallness condition (see
G.9).

First we define

_ p
A= (1= 0%, X:=0,0b b:.= . 34
(1= 0.0) 0 . (34
We remark that the torus diffeomorphism A7 satisfies
0, AT =XAT, A’ =1 (3.5)

We refer to the Appendix [B.2] for some properties of the operator A7 in (B3).

Proposition 3.1. Let O C RY be a compact set. Fix p > 3, S > sg large enough and consider a function
B = B(w,T(w)) € C>(T**1), Lipschitz in w € O and in the variable 3. There exist o1 = o1(p) > 001 > & =
g(p) >0and1 > 6= 46(p,S) > 0 such that if

,0
1BIl5550, < 9, (3.6)
then, for any o € T, the equation (3.2) has a unique solution U7 () in the space

CO([0,1; H) N CH([0,1]; H™Y),  Vs0 <5 < S.

Moreover, for any so < p < sg + 01 — &, one has W™ = AT o C™ where AT is defined in (3.3) and

CT=0"+R(p), O :=0p(l+9(r,¢ ) (3.7
with (recall (L18)), for any s > sq,
017 0 oo 1817590 18190] 1 p.aSpaop [1812Bllp4on - (3.8)

and R™(p) € £,,(0) (see Def. 2.8) with, for sy < s < S,
M} (5,0) <sap 181252, 0<b<p—2, Maur- D) <pp |[A128]ptor, 0<b<p—3. (3.9)

Proof. Let us reformulate the problem (3.2) as U™ = A” o C7 where C™ := (A7)~! o U7 satisfies the following
system

0,C"u=L"C"u, C'u = u, (3.10)
where L™ = Op(I(r, ¢, x, £)) is a pseudo differential operator of order —1 of the form
LT = A (3A8z o b(T)) (A7) = —(1 - AD‘{)% o Aog(r g, z) 08, 0 By, ) (3.11)
where (recall (3.4))
g(r e x) =31+ Bi(p.x)),  Ri=Op(folp,2) + filp)if),
folgra) o= 32 + 23, — U zﬂg)am ((1 +151)2> . filg,a) = %(1 +Bz)? 0 <m> SO
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Analysis of L. The following estimates hold

Igll7C <s @+ 18IS 181LS L), I£ollZC + LANTC + 1 fo + fiEITE, <s 18115
[A129]lp + A2 follp + [ A12f1llp <p [[A128]p+3

By the fact that L™ in (3.11) is one smoothing in space, the problem (B.10) is locally well-posed in H*(T,,). By the
composition Lemma[B4] we have that T — AR =1 — (Op(r) + R) with (see (3.13))

(3.13)

|r|'ylsa —S,0,p Hﬁ”ero'o’ M’Y (S b SP ||/BHS+O'[)’ Ogbgp_Qa (3]4)

[Av2r—1p.a Spap 1Bllproo Manr(P,d) <pp l1Bllpre,, 0<o<p—3 (3.15)

for some o > 0. By Lemma[B.8] Lemma[B4land (3.14) we have that (I— AR) ™! = I+Op(7)+ R, Aogod, o3 =
Op(d) + @, with bounds on the symbols and the tame constants similar to (3.14), (3.I3) with possibly larger 0.

Then
L™ =(1+ Op() + R) o (Op(d) + @) ™= BHop) + R,

where

|l|’Ya <

v |A12l|-1p,0 <p,p [A128]p+5: - (3.16)

M}YZP (Sa ) =s,p ||ﬂ”s+017 0 <b< P — 25 MAIZRP (p,b) Sp,ﬂ ||A12ﬂ||27+517 0 <b< P — 3; (317)

for some constant 51 = 71 (p). Note that in principle we get a slightly different constant in each inequality, we are
just taking the biggest of them for simplicity.

Approximate solution of (310). Now we look for an approximate solution ©7 = Op(1 + J(r, ¢, x,&)) for the
system (@.I0). In order to do that we look for a symbol ¥ = Zg;i 9_k (7, @, z, &) such that

079 =1+ 149+ S™°, (0, p, 2, &) = 0.

We solve it recursively as follows:

(97-19,111, afﬁfk:r,k, 1<l€§p71 (3]8)
1971(07 <)05:L'5§) = 0’ 7‘97]6(0’8071:75) = 05 '
where
k—1
T_j = Z I _40_j € S7F. (3.19)
j=1
Hence we have . .
V_1(1) = / I(s)ds, Vg (1) = / r_x(s)ds. (3.20)
0 0
By recursion we have that
|Q9 k|%k s,x SS a,k HﬁHerkJro’l( so+k+a'1) _1’ 1 S k S P — 1’ (32])
18120 k| ke p.a <pok 1Bl5shss, 18128 s kta s (3.22)
and so we get (3.8). We write C™ = ©7 + R7, where R” is an operator which satisfies the equation
0,R"=L"R"+Q", with  R° =0, (3.23)
where
p—1
QT :=0p(q(r)) + R,07, q(r):= Y I#>p1-10-1 € 5" (3.24)
k=1
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and by Lemma[B.2]

Yy
Mg (5:0) <

(3.25)

S+U2 50+U2

with &3 := G2(p) > 1. By Lemma[B.3] the operator Q7 belongs to £, ,(O) and we have the following bounds

M’Y (S b) < Hﬂ“erng MAMQ" (p,b) < ”Al?ﬂHPJr&z‘ (3.26)

Note that these bounds hold uniformly for 7 € [0, 1]. Now we have to prove that R" is belongs to the class £, ,
(see Def. 28). By this fact we will deduce that C'™ and its derivatives are tame on H*(T*1).

Estimates for the remainder R”. We prove the bounds (3.9), i.e. we show that R” belongs to £, ,(O) in Def.
for 7 € [0, 1]. We use the integral formulation for the problem (3.23)), namely

R = /T(Lth + Q") dt. (3.27)

0

We start by showing that R satisfies item () of Definition 2.8 with b = 0. Let mi,ms € R, my,ms > 0 and
my + mo = p. We check that the operator (D)™ R™ (D, )™2 is Lip-O-tame according to Definition 2.2 We have

(D)™ R™(D,)™? :/ (Dm>m1Lt<Dz>_m1(Dz)mlRt<Dz>m2dt—|—/ (D)™ Q"(D,)™dt. (3.28)
0 0
By (B.26) we have, for sp < s < S, that
I [ D@t o

for 7 € [0,1], w € H*. Moreover, by recalling the definition of L* in (3.I6), by using the fact that R, in (3.I7) is
in the class £, , and using the estimates (3.16) on the symbol / we claim that

79 <o 181355, Ml

(3.29)

So+o’2|| ||S’

|| / o)™ LHDLY ™ wdt] 7€ <o 18125, lullso + 181755, lulls (3.30)

Indeed the bound for Op({) are trivial. In order to treat the remainder R, we note that

<Dw>m1RP<DI>_m1 = <Dw>mlRP<Dm>p_ml (Dz)™"
and (D,)™ R,(D,)?~™* is Lip-0-tame, since R, € £, ,, moreover (D,) " € £, ,. Then by Lemma [A]] our
claim follows. By using bounds (3.29) and (3.3Q) with s = s( one obtains

sup (D)™ R (D)™ uls® <, WA s, sup 1(D2)™ R (D)™ uls + [Blwsaallelen: @31
T€l0, €10,

hence, by (3.26) and for § in (3.6) small enough, one gets

sup D2 B (D) 1€ S 1313, Il (3.32)
T7€|0,

for any u € H*. Now for any 59 < s < S, by (3.29), (3.30), the smallness of 3 in (3.6) and estimate (3.32), we
have

s (D)™ R™(Da) ™ ul 7 < 18115, l1ulls + 18IS, Nellso -
T€|(0,

This means that

sup Mh. (—p, 5) <ap 18115, (3.33)
T€[0,1]

For b € N” with [b| = b < p — 2, we consider the operator (’)ERT and we show that (D) 0% RT(D,)™ is
Lip-0-tame for any m1, ms € R, mq, ms > 0 and my + me = p — b. We prove that

,O
mZDm>m16ERT<Dm>m2 (07 S) SSJ’ ||/8||z+5'37 my + ma = p— b7 (334)
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for some G3 := G3(p) > G2 > 0, by inductionon 0 < b < p — 1. For b = 0 the bound follows by (333). Assume
now that (3.34) holds for any b such that 0 < b < b < p — 2. We show (3.34) for b = b + 1. By (3.27) we have

AR (D)™ = X Cil D) [ (D)™ 0% L0 D) s

b1+bs=b (3.35)
+/ (Dy)™ (BBQY)(Dy)™ dt.
0
By (3268) we know that, for any ¢ € [0, 1], the operator (D)™ (8}:’,Qt) (Dy)™2 is Lip-0-tame. We write

m 3 bo ( ot ma _ mi (b1t —m1—|b1 mi+|b1| b2 ( pt m
(Da)™ (85 LNOZ (R')(Dy) ™ = (D)™ (9 L) (D)™~ P Dy )™t 922 (R (D) ™2 (3.36)
We study the case |by| < b — 1. By the inductive hypothesis we have that (Dz>m1+|b3‘8§ (R')(D,)™2 is Lip-0-

tame since mj + |b_i| 4+ 1my =
of the bound (3.30) we have

= |by|. By reasoning as for the proof

1(D2y™ (@ LY Dy ™™ P29 < 181237, luallso + 181275, lulls, (3.37)

foru € H®, 5o < s < 8. By (38.37), the inductive hypothesis on 8};:2 R7™ and (3.28) we get

.,
P Dy (a8 10)0% (g () S 1815, (339

Note also that By Lemma[A.6] bounds (3.17) and (3.16) we have that (3.37) holds for b; = 0. Hence

D mlaﬁRT mo 5,0 < D mlaﬁRT D.\m2 5,0
sup [[(D,)™ LR (D)™ ul|7C <, 18175, sup [(Da)™ 2R (D)™ ul];
T€[0,1] T€[0,1]

+ 1181172, s (D)™ 05 R™ (D)™ 1° (3.39)

+ ||6| s+0'3||u||50 + ||6| so+0'3|| ||‘S

Hence using (3.39) for s = sg and the smallness of 3 in (3.6) we get

sup 1(D2)™ 0L R™ (D)™ ul| 2, <o 1812 T 12l (3.40)
T7¢€|0,

Then using again (3.40) one obtains the bound for any sp < s < S

up M (p 4 os) = sup s D i gy (009) S 1B, B4
’ m1,m2>0
|b]<b

The estimates for M- 9,1(s) and sm[ag "9 ](s) follow by the same arguments. We have obtained the estimate
%] »Yr

for M};- (s,b) in (3.9). The estimate on the Lipschitz variation with respect to the variable i (3.9) follows by by
Leibnitz rule and by (3.9) for R, (3.16), (3.26) as in the previous cases. We proved (3.9) with o1 = 73. O

Corollary 3.2. Fixn € N. There exists o = o(p) such that, if | 3|7
for s € [s0,S],

< 1, then the flow U7 () of B2) satisfies

so+o

sup 07wl + sup 1(@7) 70 <, (Jlul,
7€[0,1] 7€[0,1]

sup [[(U7 = Dul7€ + sup [[((¥7)* = Dul|79 <, (Hﬂl e [
7€[0,1] 7€[0,1]

s+UHUHSO) ; (3.42)

2 ullsge1) -
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For any |a| < n, my,ma € R such that my +m
ox = 0. (|a|, m1, ma) and 6 = §(ma, s) such thatlfHﬂH
one has

(|a|am1am2)’
< 1forp+ o, < 59+ s, then

||v,0
S0

<9, and ||ﬂH

S0+ pP+ox

7,0
S

Ss,b,mhmg

sup |[|(Dz)”" 0707 (9)(Da) " ul

s+u*
T€[0,1]

s (D)~ 05 A12¥7 (0)(Da) ™" ullp <pomy.ms [[ullpllAr2Bllpsp.,  m1+ma=]lal+1.
7€[0,1

Proof. The estimates on U7 follow by using Lemmata[B.9] [B.10land the result of Proposition[3.1l In order to prove
the bounds (3.42)) for the adjoint (U'7)* it is sufficient to reformulate Proposition[3.1]in terms of (¥7)*. O
3.2 Quantitative Egorov analysis

The system (3.2)) is an Hyperbolic PDE, thus we shall use a version of Egorov Theorem to study how pseudo dif-
ferential operators change under the flow W7. This is the content of Theorem [3.4] which provides precise estimates
for the transformed operators.

Notation. Consider an integer n € N. To simplify the notation for now on we shall write, X the sum over
indexes k1, ko, k3 € Nsuchthat ky < n, k1 + ko + ks =nand ky + ko > 1.

We need the following lemma.

Lemma 3.3. Let O be a subset of R”. Let A be the operator defined for w € S™ as
Aw = w(f(x),g(x)€), f(z):=z+B(x), g(x):= 1+ Bu(z))" (3.43)

Sfor some smooth function [ such that ||ﬂH2SUJr2 < 1. Then A is bounded, namely Aw € S™ and

|Aw|m s, < |w|m s, + Z|w|m k1,a+ko ‘5||k3+50+2 (344)

for s > 0. For s = sq it is convenient to consider the rougher estimate | Aw[};%, ., < < |w[2.9 s0,0+50"
Proof. It follows directly by Lemma[A.8lin Appendix[Al O

Theorem 3.4 (Egorov). Fix p > 3, p > so, m € Rwith p+m > 0. Let w(z,§) € S™ with w = w(w, I(w)),
Lipschitz inw € O C R” and in the variable 3. Let A" be the flow of the system (B3). There exist o1 := o1(m, p)
and § := 6(m, p) such that, if

Hﬁl SU+G'1 (3'45)
then A”Op(w)(AT)~! = Op(q(,€)) + R where g € S™ and R € £, ,,(0). Moreover; one has that the following

estimates hold:

|q m,s,o <m S, p |w|m s,a+oq + Z|w|m k1,a+ko+o1 ||/6Hk;3+o'1 (346)
|A12G|m.p,a Smpap [Wmp+1a+o; |\A125Hp+1 + [A12w[m p,atoy

* *
+ Z|w|m,k1,a+k2+01 ||6Hk3+01 ||A12B||80+1 + Z|A12w|m7k17k2+a+01 ||6Hk3+01' (3.47)
p+1 P

Furthermore foranyb < p—2and so < s < S

MV (S b) —S,m,p |w|m ,8+p,01 + Z|w|m k1,ko+o1 Hﬂ| k3+a'1 (348)
s+p
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and for anyb < p — 3,

Ma,,r(p,b) Sm.p,p |w|m,p+p,a1 ||A125||p+01 + |A12w|m,s+p701

* *
+ Z|w|m7k17k2+61 ”ﬂHkB.Jrch HAlQﬂHSOJﬂH + Z|A12w|m7k17k2+61 Hﬂ”kerch'
p+p p+p

Proof. The operator P(7) := A™Op(w) (A7) ™" satisfies the Heisenberg equation

0-P(t) =[X,P(1)], X=28,0b=:Op(y),
P(0) = Op(w).

We construct an approximate solution of (3.30) by considering a pseudo differential operator Op(g) with

m—+p—1

q= Z mek(zaé)
k=0

such that (see (3.:30) and note that y := bif + b,.)

a‘er = {bf, Q'm}a aTQm—k = {bf, qm—k} + -k E>1
qm(0) = w ¢m-1(0) =0 -
where for k > 1 (recall (A.27)), denoting by w = w(h, k) := k — h + 1,
1 k—1
T'm—k = T{bz; mekJrl} - Z meh#wx
h=0
1 = 1
=—=-0 m— bxm - of m— o Smik .

By Lemma([B.4l or directly by interpolation, one has

k—1 k—1
O ,0 ,O ,O
|Tm_k|:n—k,s,oz < Z'qm_hnn—h,s,a—i-w + Z|qm_h|Zn—h,so,a+w||6”’sy+w+2’
h=0 h=0

k—1 k—1

|A12rm—k m—k,p,a < Z|A12(Jm—h|m—h,p,a+w + Z|A12Qm—h|m—h,so,a+w||6”p+w+2
h=0 h=0
k—1
+ Z|(Zm_h|m—h,p7a+W||A125||p+w+2-
h=0

Hence we can solve (3.32) iteratively. Let us denote by 777 (z, ) the solution of the characteristic system

—&(s) = ba(s, x(s))&(s)
with initial condition ™™ = (z, £). Then the first equation in (3:32)) has the solution

qm(Ta ZL',&) - w(,y'r,o(l.,g))

where

7@, = (f(ra).g(r,2)),  flr,2) = +76(), g(ra):
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Hence by Lemma[3.3]we have

|qm| .S, —SD& |w|mso¢ +Z|w|m k17a+k2||ﬂ||k3+50+2
For any k > 1, the solution of (3.32) is

Gm—r (T, 2, §) 2/0 Pon—e (Y02, €)) dt

We observe that
Y0z, €) = (f,5€)
with B
1+ t8.(f(t, T, x))

J;(t,T;x) 5:$+76(1‘)+B(tax+7—ﬁ($))a g(taTax) = 1+Tﬂx($)

Thus if Ar := r(f, §&) we have (recall that 7 € [0, 1])
|qm k| ksa—5a|Arm k|m k,s,a” |qm k|m ksoa—a |A7"m k| ksoa—|rm k|m k,so,a+so
and by LemmaB3lwith A ~ A

v,0

|QW—k —k,s,c Séa |Tm k|m k,s,a +Z|Tm k'm k,ky, a+k2||ﬁ||k3+so+2

We want to prove inductively, for k = 0,...,m + p,

v,0
|Gm—k m ks, Ss,a P|w|m JO Z|w|m k1 otka+k(s0+2) ||6||k3+50+2+ka
S

,0 .0
|Qm7k |7n—k,so,o¢ Savp|w|2’b,50,a+50+k(so+2) :

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

For k = 0 this is proved in (3.38)). Now assume that (3.64) holds, up to some & — 1 > 0. We use (3.33) to bound
Qm—r- First we give a bound for r,,,_j in terms of the norm of the symbol w. To shorten the formulas let us denote

t =50+ 2.
By (3.33) and the inductive hypothesis (3.64) we get

,O
|7’m k|m k,s,« SS @, p |w|m s,a+2k + Z|w|m kl,a-i-kz-l-kt”ﬂHZg-i-t-i-k:'
s

Then by (3.63) and (3.63)

,O
|qm k‘| —k,s,« _sak: Z ( Z |’LU Z’L,nl,a+n2+kt+kz||6||n3+t+k)||ﬁ||k3+t

s ni+nz+nz=ki+k

0
+ |w|m siat2k T Z| wl) kl,a+k2+kt||ﬂ||k3+t+k + Z|w|m fv st ka2 1Bl e

,O
5 a,k |w|m s,a+2k + Z| m kl,a-l-k:g-i-kt”ﬂ”’]z;;—i-t—i-k

that is the estimate (3.64). By (3.39) we have

A12Qm7k(7_7x7§) :/ A12(7ﬂm7k(’)/0 S’YTO( 75))) ds
0
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and recalling (3.61)
|A12(Jm7k|mfk,s,a Ss,a|fzi(az7’mfk) (A12f>|m7k,s,a + |A(8§Tmfk> (A12§§>|m7k,s,a
+ |A(A127‘m—k)|m—k,s,a-

The first two terms of the right hand side in (3.67) are bounded by (3.63) and Lemma A.1 in Appendix A of [24].
For the last summand we proceed by induction as above using (3.34). We obtain

(3.67)

|A12Gm—klm—kp.a < |Wlmpt1,a+26+1]1 8128 p+1
*

+ Z|w|m,k1,a+k2+SO+1+ktH5||ks+so+t+k|\A125|\so+1

Pt (3.68)
+ |w|m,so+1,a+so+1+kt||A12ﬁ||so+1 + |A12w|m,p,a+2k
+ Z|A12w|m,k1,k2+a+kt||5Hk3+so+t+k-
P
Then we have (3.46) and (347). Now we have (recall (3.31))
P(r)=Q+R, @ = Op(q) € OPS™ (3.69)
and by the construction of ) we get that
9. R(r) = [X, R ,
R(0)=0
where
m—+p—1
M= =0p(ifbesg-pr1} + Y Gmos#zmoriirpx) € OPS. (3.71)
k=0

By Lemma we deduce that M € £, and using (A2]) (recall also the Definition (277)) we have for all
sp<s<S8

M’/Y\/[(Sv ) <spm |w|m ,5+p,01 +Z|w|m kl,k2+gl|‘ﬂ”k3+gl b S p727 (372)
s+p

MAIQM(p)b) SP |w|m7P+01701 ||A12ﬁllp+01 + HA126H50+01 Z|w|m7k17k2+01 ||6Hk3+01
p+p

+ |A12w|m,p+o'1,al + Z|A12w|m,k1,k2+al ||6Hp+a’1; b < P — 3 (373)
p+p

for some o1 > 0. If V(1) := R(7).A" then it solves 0,V = XV + MA” and so
/ AT(A5)PMAds = R(t / AT (A I MAS (A7) (3.74)
By LemmaB.I2R"™ € £, ), forany 7 € [0, 1]. By (B.42) we have that, for any 7 € [0, 1], taking o possibly larger
than before in order to fit the assumptions of Lemma|[B.12]
Mr (5,B) <o M (s) + [| 81735, Mg (s0)- (3.75)
Then by Leibniz rule and Lemmal[B.TT] we have by (3.73)

Ma,,r(8,b) <s M (p, )| A128]]p + My (2, b)[| A128]lp ]| Bllp+on
+ MAle(pa b) + MAle(pa b)”BHP-HTl'

We obtain (3.48) and (3.49) by using respectively (3.72) and (3.73). O
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3.3 Conjugation of a class of first order operators

In this Section we prove an important abstract conjugation Lemma which is needed to prove Theorem [[10] We
shall also recall a Moser-like theorem for first order linear operators (see Proposition[3.6) which has been proved in

[24).

A conjugation Lemma for a class of pseudo differential operators. The following proposition describes the
structure of an operator like £, conjugated by the flow of a system like (3.2).

Proposition 3.5 (Conjugation). Let O be a subset of R”. Fix p > 3, o € N, p > sq and consider a linear operator
L:=w-0,—Jo(m+a(p,x))+Q (3.76)

where m = m(w) is a real constant, a = a(w,I(w)) € C°°(T*T1) is real valued, both are Lipschitz in w € O and
a is Lipschitz in the variable 3. Moreover Q = Op(q(p, z, €)) + Q with O € £,,(0)and q = q(w,I(w)) € S~1
satisfying

R ] vt (3.77)

|A120]-1p.0 <p.a k3 [|A12P]lpros (1 + [[Pllptos)- (3.78)

Here ki, ko,k3, 09 > 0 are constants depending on q while p = p(w,J(w)) € C(T**1), is Lipschitz in w and in
the variable J
There are o5 = 03(p) > d2 = da(p) > 0and 6, := 0.(p) € (0, 1) such that, if

Hﬁl SU+G'3 + ||a’| SU+G'3 So+0’3 + kl + M (80’ ) S 6* ’ (3'79)

the following holds for p < so + o3 — . Consider ¥ := U the flow at time one of the system (3.2), where b is
defined in (3.4). Then we have

Ly =VLU =w-y — Jo(m+ay(p,2) + Q4 (3.80)

m+ai(p, ) = —(w-0,8)(p,x + Blp, 2)) + (m+ alp,z + Be,2))) (1 + Bul(,x + B(p,x)))  (3.81)

with (3 the function such that x + 3(p, ) is the inverse of the diffeomorphism of the torus © — x + 3(p, ). The
operator Q4 = Op(q+ (¢, z,£)) + Q. with

4+ M1 s 0 Ssa K1+ Rallplo, + 18135, + lall3S,

(3.82)
|A120+|-1,p,0 <pa.p k3([|A12Pllp+os + [[A12Plptos [[Pllp+os) + [[A128]p+0s + D120 pt0s
and O, € L£,.p(O) with, for sy < s < S,
Mé (S b) <é 3P MV ( s+0'3 s+0'3 + ||a||s+037 b S pP— 2’ (383)

MA12Q+ (P, D) <p,p MAIZQ(p,b) + k3[|A12pllp+os (1 + [[Pllptos) + [[A128]lptos + [|A12a][ptos (3.84)
foranyb < p— 3.
Proof. Let U™ be the flow in (3.2). We can write U™ := A" 0 (O7 + R"), where A" is defined in (3.3), and ©7, R™
given by Prop. B1lin (3.7). We define the map W7 := A7 o ©T. We claim that setting R” = (©7) 'R we have
ST — WTEO(W‘r)—l - \IJTEO(\IJT)—l _ AT@T[£07§T](I + ET)—l(@T)—l(AT)—l c Ep,p;

and sup, ¢(9 1) Mg~ (s,b),8up, ¢ (9,1) Ma,, 57 (s, b) satisfy bounds (3.83) and (3.84). We first study the conjugation
of £ by W7. In order to prove our claim we just have to note that R € £,41,p by Lemma[BJ3] moreover, by
formula (BI1) , [w -y, R"] = w - d,R" and [0, R™] € £, ,. This means that [£°, R™] € £, ,, so that our claim
follows by Lemmata[B.1] [B.3] [B.8land[B.12].
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Conjugation by ©7. By Lemma[B.8 we have (87)~! := I — Op(¥J) + R,, with

|19|%150¢ —=s,x SJrDo’ Mgp(s SP Hﬁ|s+bg’ bgoSp—Q’
|A1219|71,p,a >p,a HA125HP+007 MAme(pab) Spp ”Al?ﬂ”erDo 0<b<p-—3,

(3.85)

for sg < s < S and for some 9y = 09(p). Throughout the proof we shall denote by 0, an increasing sequence of
constants, depending on p, which keeps track of the loss of derivatives in our procedure. Moreover we shall omit
writing the constraints sp < s < §,0<b < p—2,0<b < p— 3 when we write the bounds for the operators
belonging to £, ;.

We wish to compute

©7B(07)~! = B+ [Op(¥), BJOp(1 — J) + [Op(¥), BIR,

for B=w-d,,J o (m+a),0p(q), Q.
Let us start by studying the commutator [Op(¢}), B], our purpose is to write it as a pseudo differential term plus a
remainder in £, ,. We have (recalling the Definition[2.7]and formula (A.29))

[Op(¥),w - 0,] = —Op(w - 9,0) (3.86)

[Op(?), J o (m + a)] = Op (¥ *<pt1 (W(&)#<pr1(m +a))) (3.87)
+O0p (0 x3p41 (WEFH(M + @) + 0 x<p1 (WEF#p1(m + a)))

(0p(1). Op(a)] = Op(# %<1 a) + Op (9 42,1 ) (3.58)

Here w(§) is the symbol of the Fourier multiplier J = 0, + 3A0, , i.e. w(§) =i+ 3%. One can directly verify
that all the symbols above are in S™!, indeed the commutator of two pseudo differential operators has as order the
sum of the orders minus one. By Lemmal[B.3]we verify that [Op(9), Q], [Op(¢¥), BJR, € £,,, for all choices of B.
By Lemma[B2land (ZI1) we have that the second summands in (3.87) and (3.88) belong to £, ,. We have proved
that

[Op(ﬂ)aB]:Op(rB)+RBv B GS?l; Rp G2/),;7-

Using .8, B.77) and (B79), we have by (B.12)

"B |%1 o Ss,ap 118115 5+al so+01(k1 + Xa|lp|ld 5+al + |lal 5+al) (3.89)
Similarly, by (B-13) we have
M’Y (5 b) < P Hﬁ”eral + ||6H50+01(k1 + k2||p||s+al + ||a||s+al +Mé(s,b)). (3.90)

Analogously by (B.I4) and (B.I3) we have
[As2rB|-1p,0 <pap [A128]lp+0, + 1Bllp+2, (3([[Ar2pllp+a, + [ A12pllso+2, IPllp42,) + [[Ar2a]lpro, -
Similarly, by (B-13)) we have

MAuRB (pab) SP,P HA126|‘P+01+
+ [[Bllp+o, (k3 (| Ar2pllp+a, + [[A12P]lp+0, IDllp+0.) + [[Ar2allp2, + My ,5(p,0)). (39D

By Lemmata[B.4l [B3]and [B.T] we have that

[Op(¥), BOp(1 — ) = Op(ip) + Rp, FpeS™', Rpecl,,,

and 73, R satisfy bounds like (3.89)-(3:91), with possibly a larger 91. Analogously, by Lemmata[B.3]and[B1] we
have that [Op(0), BJR, € £, , satisfies estimates like (3.90), (3.91). We conclude that

07L%©O7) "t = L%+ Op(ro) + Ro
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where ro € S™1, Ry € £, and satisfy the bounds (3:89)-(3.91) with possibly larger ;.
Conjugation by A”. We proved that

WTLOWT) ™t = ATLO(AT) ™t + ATOp(ro) (A7) F + ATRo (A7) L. (3.92)
By an explicit computation one has that
ATDy (A7)t =Dy, + J 0 (TraDusff) + Op(r1) + R

wherer € S™1, Ry € £,,p are defined by

=3(/(L+ E)#<p-1Tr5(DuB),  Ra = =30p((i€/(1 + &) #2p-1Tr5(Duf)), (3.93)
and, by (B12),(B14), (B13), (BI3), satisfy the following bounds
P17 s + MR, (5,) <sap 18105, 181271 —1p.0 + Ma,=, (9,0) <paup |8128]lp+0s-
Moreover
AT(Jo(m+a)(A) " =JoTos ((1 + o) (m + a)) +R® (3.94)
where

R .= ((1 —AR) - 1) oMNogod,o 7;.5((1 + Bm)(m + a))
+ (=A%) —1) 0 Ao (g-3)0 0 0 Tep (14 Fo)(m +a)) (3.95)
+ ((1 - Aiﬁ)*l) oAo(g—3)o0d, 0 ﬁg((l + o) (m + a))

with g and % defined in (312). In particular R®®) = Op(r3) + Ra, 7 € S™L, Ry € £,.p and satisfy the following
bounds o
|T2|’1’1,s,a + M%Q (s,b) < >s,a,p ||/8||s+03 + ||/8||so+03||a||5+03’

|A1272|-1p,0 + Ma, R, (P, 0) <pap 18128 p10s-
Then, by (3.92), we conclude

WTLOWT) L =D, —Jo(m+ay)+ Q., (3.96)
Q. 1= AT0p(q + 7o) (A7) "1 + AT(Q + Ro) (A7) + Op(ry +12) + Ry + Ro. (3.97)

By Theorem[3.4]and Lemma[B.12] we have
ATOp(q+70) (A7) = Op(rs) + Rs, AT(Q+Ro)(AT) ' =Ry (3.98)
where r3 € S~ and R3, R4 € £, 5. In order to bound r3 we use (346) with w = q + r¢ so that

|w|7 1,s,a <s,a,p K1 + k2||p||5+a4 =+ ||/8||s+04 + ||a’||s+04 (3.99)

Note that in the formula (3.46) (recall the notations used in formula (3.46) and the fact that kq, ko, k3 > 0 and
k1 + ko + k3 = s) we have by interpolation

|w|%1 Jk1,a+ka+o1 1811 k3+a'1 <s (&2|lplld s+a5 + 1813 s+a5 + [lal s+b5)||6| s0+05
H11Blls05 (51 + k2112 Toy + 1811250, + a2, )-
Thus we get by (3.79)

|7°3|%1 sa T M;Yad (s,b) <s a0 K1+ ks | pl]3. s+a5 + ||ﬁ||s+05 + llally s+a5a
|A1273]-1,p,0 + Ma;,Rs (9, D) <pa,p K3(|A12D]lpt0s + | A120]|s0+05 [Pl p+os) + 1A128] pro5 + |Ar2] pt05-

26



Moreover by (3.79)
M, (s,b) <s,p M(s,0) + 1811756 + 181250, (k1 + B2l 239, + lall i),
Ma R (P 1) <pp My, 5(8:0) + [|A12][ 5404
+ [1Bllp+0s (k3 (| Ar2pllptos + [[A12Pl[p+2s [Pllp+as) + | 126 pt-as-
By (3:97) and (398) Q. in (3.96) is
Q.=0p(ar)+ 9., qri=r14+72473, Qui=Ri+Rs+Rs+ Ry

In particular, by the discussion above we have that the bounds (3.82) hold with o3 > 05 while bounds (3.83) and
(3:84) hold with o3 > 0¢. This concludes the proof. O

Straightening theorem. By Proposition[3.3] the coefficient a of the transformed operator £, = LU ~! (see
(B:80)) is given by (B.81). The aim of this section is to find a function 3 (see (3.I)), or equivalently a flow ¥ of
(B2, such that a is a constant, namely such that the following equation is solved (recall (3.3))

w- 9,6 — (m +a)(1+ B,) = constant. (3.100)

This issue is tantamount to finding a change of coordinates that straightens the 1-order vector field

0
w - Frie (m—i—a((p,x))%.

This is the content of the following proposition. Actually this is a classical result on vector fields on a torus ([40]),
but for our purposes we need a version which provides quantitative tame estimates on the Sobolev norms.
Proposition 3.6. Let Oy C R” be a compact set. Consider for w € Og a Lipschitz family of vector fields on T"*1

0 0 2 3 -
Xoi=w-=— — (mo +ag(z, p;w)) =, = <my<—=,|mo|'™ < My<1/2
0 B (mo o(@, ¢ ))(’)x 3 0S5 Imol 0 / (3.101)

ap € H¥ (T R) Vs > sp.

Moreover ag(z, o;w) = ao(x, ¢, I(w);w) and it is Lipschitz in the variable 3. There exists 0. = 04(s1) > 0 and
81 > S0 + 27 + 4 such that, for any v > 0 if

C(s1)v Hlao|| 7,9 =6 < 6, (3.102)

then there exists a Lipschitz function meo(w) = Meo(w, I(w)) with 1/2 < ms < 2 and Mmoo — mo|? < 73 with
Yw € Q. such that in the set

PY = P2(3) = {wGOO |w €= (w)j] > <§>

the following holds. For all w € P2 one has |A1amso| < 2|A12{ao)| and there exists a smooth map

VleZ' VieT\ {0}} (3.103)

B Py x TVH 5 R, |81 <, ~

s+27+4, Vs > sg (3.104)

so that U(>®) : (o, x) = (o, + B (@, x)) is a diffeomorphism of T'*' and for all w € P2

0o 0 ool — . o)y O 0 0
T Xy = w- 35" (TN (w- 9,80 — (mg + ag)(1 + S >))% —we g Moo (@) 5. (3.105)
Proof. We refer to Corollary 3.6 of [24] which is a generalization of Proposition in the case = € T? with
d>1. O

Lemma 3.7. Under the assumption of Proposition the function 5> defined in the Proposition 3.0 satisfies
the following estimate on the variation of the variable i(w): ||A125), < Cy7||A1sa0||pto for some o > 0
such that p + o < si.

Proof. We refer to Corollary 3.3 of [24]. O
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3.4 Proof of Theorem [1.10

Consider the vector field 9 P
-— —(1 ; — 3.106
o5 = (4 alo i) 3 6.106)
for w € Qg given in (L. By taking p in (L24) large enough and ¢ in (I.27) small enough we have that the
condition (3.102) is satisfied. Thus we apply Proposition3.6 with ag ~~ a in (3.106) and m ~~ 1. Then there exist

a constant m(w) = M (w) and a function 3(w) defined on the set PX = € (see (3.103) and (L30)) such that
(recall (3.103)

T (w08 - L+ a)(1+ ) = —m. (3.107

Let 8 be the function such that (p,x) — (¢, + B(p,x)) is the inverse diffeomorphism of (p,x) — (@, +

B(p,x)) and let U7 be the flow of the Hamiltonian PDE

ur = (Job(r)) u, b(r) :=b(1,p,2) = 1+ 78,

Let us call ®; := W' and recall that ®; = ®;(w) is defined for w € ;. We apply Proposition[Z3lto £, in (L23)
and we get
O L, P ' =D, —Jo(1+ay)+R, (3.108)

where, by (3.81) and (3.107),

ay(p,x)=m—1
andR =0p(r)+R.r=rw) e S, R e £,.p(€1). Hence we have
O L, =D, —mJ+R. (3.109)
By (LZ7) one has that Proposition 3.6 implies (T.49), (L31). By (.27, (3.104) the bound (3.82) reads as
e 0 ey THTITD, 1At 1pa <p ey U+ [Tlpe) 131 = Tallprs,
for some 6 > 0, since k; = 0, ky = &,p = J. Moreover by (3.83)), since k3 = ¢,for0 < b < p—2andsy < s < S
M (s,b) <5 ey [T 12 (3.110)
and by (3.84), and Lemma[3.7 for0 <b < p — 3 and 5o < s < S, we get
My 7 (0,0) <p ey (14 |Tlpra) 1 — Tallprs- (3.111)

The bound (I.33) follows by Corollary 3.2l in particular by (3.42), and (3.104).

4 Diagonalization

The aim of this section is to prove Theorem[[.T1l We first provide an abstract result for —1-modulo tame operators.

4.1 A KAM reducibility result for modulo-tame vector fields

We say that a bounded linear operator B = B(y) is Hamiltonian if B(p)u is a linear Hamiltonian vector field
w.r.t. the symplectic form .J. This means that the corresponding Hamiltonian 1 (u, J~*B()u) is a real quadratic
function provided that u; = %_; and ¢ € T". In matrix elements this means that

(J7'B(¢))) = (J'B(p)l, (J7B) ()= (J7'B)ZL ()

or more explicitely:

B (o) = Ui ). B (0) =B (0. @1



This representation is convenient in the present setting because it keeps track of the Hamiltonian structure and
1 1 1
B = 5(“7 ‘]_IB(SD)U) s g= 5(“5 J_lG(cp)u) = {Bv g} = 5(“7 J_l[Ba G]u)
We introduce the following parameters
T=2v+6, by:=67+6. 4.2)

In order to prove the Theorem [ 1l we need to work in the class of Lip-—1-majorant tame operators (see Definition
2.2) and the proof is based on an abstract reducibility scheme for a class of tame operators.
We investigate the reducibility of a Hamiltonian operator of the form

. 4 .2
Mo =Dy + Py, Do=diag(id’), d\ =m (%) . 4.3)

Here the functions d;o) are well defined and Lipschitz in the set Og, |m — 1|"Y’OU < Ce, while Py is defined and
Lipschitz in w belonging to the set 2;. We fix

a:=67+4, T =27+ 2, (4.4)

we require that Py, (9,)° Py are Lip- —1- modulo tame, with modulo-tame constants denoted by 9)12533/2 (s) and

3/ . .. .
Dﬁg,zs ’ (s,bg) respectively (recall Definitions 2.3, 2.6), in the set £2;. Moreover m and Py and the set £2; depend
on J = J(w) and satisfy the bounds

|Arom| < Kq||T1 — T2l sg+o 4.5)
D)2 A1aPo(Da) 2|l ooy (D) ? Ar2(0,)* Po(Da) [l £ a0y < Kol|T1 — Tz |lspso

for some o, K1, Ky > 0, for all w € 1(J1) N Q1 (J2) with

3/2

3/2
K1, 57 (s0), M7 (s0,bp) < K. (4.6)

We recall that || - [| (<o) is the operatorial norm. We associate to the operator #3) the Hamiltonian

1
Ho(n,u) :=w-n+ 5(% J " Mou) 2t ).

Proposition 4.1 (Iterative reduction). Let o > 0 be the loss of derivatives in (£.3) and consider an operator of
the form @3). For all s € [sq, S|, there is Ny := No(S,bg) > 0 such that, if

NFOET" (50, o)y /% < 1, @.7)

(recall (@&4)) then, for all k > 0:

(S1), there exists a sequence of Hamiltonian operators
My =Dy + P, Dy :=diagjez oy (1d}"), (4.8)
with d§k) defined for w € Og and
(k) — 400 (k) 0) ._ (k) (k) _ _.(F)
di’(w):=d;" +r;"(w), r; =0,r" €R, r=—r’ 4.9)
The operators Py, are defined for k > 1 in a set QZSM = QZSM (3) defined as
y ~3/2 (k—1) (k—1) ’73/2 .y .y .
Qk = {wer—l : |w£+d_] 7d_]/ |ZW}V|£|§N]€*17VJ7] EZ\{O}a (]7]76)7&(]5‘770)}
(4.10)
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3/2 k
where Q) = Q and Ny, := NO(B/Q) . Moreover Py, and (0,)* Py, are —1-modulo-tame with modulo-tame
constants respectively

3/2 3/2 3/2
M7 () =M (s), M (s,b0) 1= M (s,bo), k>0 4.11)
oraitl s € |s . dettin —1 =1, we nave
forall s € [sg,S]. Setting N 1, we h
3/2 3/2 _a 3/2 3/2
ML (5) S MET (s,00) N2, LT (5,00) <MY (5,b0) Nip—1 (4.12)

while forall k > 1
G — D] < amET (50, Do) N3 (4.13)

(S2)k For k > 1, there exists a linear symplectic change of variables Qj,—1, defined in stm and such that
My = Qk—lw : az,aQ];,ll + Qk—le—l Q];,ll (4]4)

The operators Vy,_1 := Q1 — Land <8¢>b0\11k_1, are —1-modulo-tame with modulo-tame constants satisfying,
forall s € [sg,S],

3/2 _ - —a , 3/2 , 3/2 _ - , 3/2
My (5) <4 3ANTL N EAMET (s,00), MG (s,b0) < 4T ENTL Nueo T (s,bg) . (4.15)

(S:;?;)2k Let 3?}/(;)) Jo(w) such that Po(31), Po(J2) satisfy @3). Then for all w € Q) (I1) N Q)2 (T2) with 1,72 €
[v372/2,274%/%] we have

(D) Ao Pr(Da) 2| £ ao0y < KNy 31— Fallaptor (4.16)
(D) 2(0,)% A1 Pi( D) 2| £ o0y < KoNi—1[[31 — Falsoo - 4.17)
Moreover forallk =1,...,n, forall j € S¢,
()| — Apr Y| < (D) A Pu (D) |l £ty » (4.18)
() 18127 | < K| 31 — Fa gt - (4.19)

(S4),, Let 31, Ja be like in (S3), and 0 < p < 73/2 /2. Then

/2 /2 _

3 3
KoN[ 31 = Jallsgro < p = Q (31)C Q] ~*(32). (4.20)
The Propositiond.1lis proved by applying repeatedly the following KAM reduction procedure :

Fix any N > 1 and consider any operator of the form

. 4 .2
M= D)+ Plpw), D) = dinglids@))jez, dj=d” +r;, d¥ = m(uw) 23T
J J T+
Here the m, r; € R are well defined and Lipschitz for w € Oy with
L—m[® < Ce, ry=—r_y, sup(f)lr;]”" % < 29057 (50, b0). 4.21)

J

Assume that (recall (LE), (L30)) in a set O = O(J) C Q1(J) C Oy the operators P, (J,)" P are Hamiltonian,
real and —1-modulo tame with ,
3/2

A3 NZTH2NET (50, bg) < 1. (4.22)

Assume finally that d; = d;(J), P(J), (0,)®°P(3J) are Lipschitz w.r.t. J namely for allw € O(J1) N O(J2)

|Arem| < K1 |31 = Jalsgto,  sup(i)|Arar;| <2 Kol|T1 — Tal[so+0
s s J (4.23)
(D) A10(0,) “P(D2)"? || £are0y < Kol Tt — Tollsgros @ =0,bg
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32
for some constants K; < K (recall Ky in (&3)). Let us define C = ng N0 g

3/2
C:={we0: |W'€+dj*dj/|>r<y€7v V(¢,5,5") #(0,5,5), [t]| <N, j,j" € Z\{0}}. (4.24)
For w € C let A(yp) be defined as follows
E PI () , .
A (0) = for [¢([<N, and A} (¢)=0 otherwise. (4.25)

- 1(w€+d] 7dj/)’
Lemma 4.2 (KAM step). The following holds:
(i) The operator A in @23) is a Hamiltonian, —1-modulo tame matrix with the bounds

Mt (s,0) < 432N HIMET (5, a) | (4.26)
_ - _ , 3/2 ~
(D)2 A12(0) AD) 2| £ rr00) < Cy 32N (Ko + Koy ™27 (s0,a)) |31 — J2llsote) »

4.27)

fora =0,by, for allw € C(J1) N C(J2) and for some o > 0.

(i%) The operator Q = et = Zk>0 ’2—? is well defined and invertible, moreover ¥ = Q — 1 is a —1-modulo tame
operator with the bounds a

My (s,a) < 200507 (5,0) < 29I ANTHME (s, a),
B . _ ~3/2 ~
(D)2 81200, QD e aeay < 297/ 2N?H (K + Koy 005 (30, )) 31 = Talago)

for a = 0,bg and for some o > 0. Finally z — Qz is a symplectic change of variables generated by the time one
flow of the Hamiltonian Sy = % (z, J~1 Az).

(i1i) Set, for w € C (see @24)),
Qw- 0,971 + Q(D(w) + P(p,w)) Q7" := My = D¥(w) + P (p,w) (4.28)

where DT (w) = diag(i dj) is Hamiltonian, diagonal, independent of v and defined for all w € Oy with

df =d® ot =t sup(h)l Y0 <ol (o),
J (4.29)
sgp(j>|A12(rj - ;r)| < Kol|J1 — Jallsg40, Vw € C(T1) NC(Ta).
For w € C we have the bounds
MmE" (5) < N72mET™” (5, bg) + C(s) N2y =3 20057 ()95 (). (4.30)
i7" (s, b9) < ML (5, bo) 431)
+ N2 =320 (s, ) (9323;73/2 (5, b0) 05" (s0) + M7 (50, bo)mils™™"? (s)) .
Moreover for all w € C(J1) N C(J2)
1812PH || 2700y < N7 K331 — Jal 40 (4.32)
+ Cs0) Ny =3/2mE0™ (s0) (Ko + =2/ (50) Ko ) 131 = Tallsso
| 8120000 P | a0 < Kall 31 = Tallse + N27+1y=3/2C (50, bo) (357" (50, bo) Kz (4.33)

3/2 _ 3/2
+ M (s0) (K2 + 3 2mEY (So,bo)Ko)

o - i 3/2 i 3/2 _ 1 3/2
+ 732N ()" (50, bo) (Kng'y 8/20m% (SO)KO)) 131 = Tolsso

31



for some o > 0. The action of Q on the Hamiltonian H is given by (see ({E28))

1
Hy = elSoty — . n+ §(w, J—1M+w).

Proof. Proof of (i): First we prove that A is a —1-modulo tame operator. By @.24), (.23)) (recall 2.3), 2.6))

(0,)* A=y 32N (9,)*P, for a = 0,by,

while
(0,) Dy A =Y 32NT(,) Ay P + 4y >NPHHD,)P, for a = 0,bg
since
Ayt () = B PLO PLO (=) b/l = D+ B (ds = d)
w,w’ 5 i(w'f-i-dj—dj/) (w'€+djfdjr)2

By Lemma[A3}i) and (@21), (@.22) we deduce (£.26). The bounds (@.27) come from applying the Leibniz rule
and by (£.23)
< |A12P] (0)] [P} (O)]|Ar2d; — Arady |

We remark that in the second summand (recall that K1 < Kj)

Az A7 ()

(4.34)

|A1ad; — Aqady/| lw(d) —w(G) | [Asary| + [Arary|
< |Ayam]|
- O+ d; — dy ol dy—dy] | w-C+d;—dy

EZ3), @5
< Cy 3 (K NTT 4+ NTKo) (|91 — D2llsgtro < Cy ¥ 2NTT K131 — Ja|sp o

The estimate on the first summand follows from the estimates on Aj2m and the fact that if |w(j) — w(j")| > C|/|
with C' > 1then |w - £+ d;j — dj/| > Clw(j) — w(j’)| with C' > 0; the estimate on the second summand comes
from (@21)), (£22). In conclusion we get (recall (23) for the definition of K>)

_ - _ - , 3/2 ~ ~
(D)2 A12(0,) A(D) || pieoy < C (7 32NT Ky + 43N MEY (50, 0)) (131 = Tl so 40

forall w € C(J1) N C(J2). The fact that A is Hamiltonian follows from (£.I) and from the fact that d; is odd in j
(recall (43) and P is Hamiltonian.

Proof of (ii): By the boundness of A, the bound on its modulo-tame constant and the smallness condition ({.22)
we have that Q is well defined and invertible. The bounds are a consequence of LemmalA 3] (iv)-(v), the smallness
condition (#22)) and the estimates proved in statement ().

Proof of (iii): We start by observing that

d(A)* d(A)k-1
D++7>+:D+P—w-a¢A+[A,D+P]+Za gd) (D+P)—ZBL(T)(M-6¢A). (4.35)

k>2 E>2

Again by definition, .4 solves the equation
w- 0, A+ [D,A] =TINP — [P]

where [P] is the diagonal matrix with j-th eigenvalue Pg (0). Substituting in (4.33) we get

ot 4t =D Pl + 3 A )y A iy e s

k>1 k>2
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By the reality condition (1) we get Pg (0) = P:; (0) = —ij(O), which shows that Pj(O) is real and odd in j. By

Kirtzbraun Theorem we extend Pj (0) to the whole Oy preserving the | - |'V3/2 norm. We set

df = dj+ (PJ(0)™ = d” +r; + (PJ(0))™, rf :=r;+(P](0)™

where (-)®** denotes the extension of the eigenvalue at Oy, so that the bound #29) follows, by Lemma [A3]- (i)
and the bounds (@.23) on P and A2P. Now forw € C

d(A)* d(A)k-1
7Hﬁ7>+za 5{,) (P)—ZMT?(HNP—[P]). (4.37)
k>1 ’ E>2 ’
By LemmalA3H(iv) we have
3/2 3/2 3/2 o 3/2 3/2
ME yep () < C)* (O (50)) P () + ™ (s0) ™ ()5 (50)) (438)

which implies (£.30), by using also[A.3Viii). Finally

3/2 3/2
M7 (5 b0) < O, o) (0 (50)) "™ (5, o)

3/2 _ 3/2 3/2 3/2 3/2
+ RO (s0))F 1(93@ (5, b0) " (s0) + M (50, b )9 (s)) (4.39)
3/2 _ 3/2 3/2 3/2
k(= 1) (50)) 2 ()M (0, D) (50) )

which implies (£.31). In order to obtain the bounds (£.32) and (£.33) on A15, we just apply Leibniz rule repeatedly
in (@37) and then procede as before. More precisely we have for all w € C(J1) N C(J2)

Ara(ad(A)FP) = ad(A)f AP+ Y ad(A)Mad(Apd)ad(A)=P. B
ki1+ko=k—1

Now we note that || (Dm)1/2A<D )I/QHC(HSU) 9)2&73/2 (s0) and that for any matrices A, B we have
(D) 2ad(A) B(D2) 2 || g0y < Cls0) (D) > ADL)Y 2| oo 1(D) V2 BDLY 2| a0
This implies that for all w € C(J1) N C(J2) (recall {@23)) for the definition of K5)
3/2
(D)2 Asa(ad (A PYDN?|| £ars0) < (Cls0)5T (50))F Ko (4.40)
2 5/

+ kc(so)k(fmwd (50))]671’Y73/25m§>’7 (50)(NTK3 + 773/2]\727“}(09373573 (soNlIT1 — T2||sp+o-

Now by definition

d
ApPt =TEARP+ Y Ap® N (AT [P))), (4.41)

k>1 k>2

so we use Lemmal[A.3} (iii) in oder to bound the first summand and (&40) in order to bound the remaining ones. In
the same way

A12(0,)™ (ad(A)*P) = ad(A)* A12(0,) P+ D ad(A)* ad(ArzA)ad(A)*=(9,)" P
k1+ko=k—1

+ ) ad(A)Mad((9,) A)ad(A)F2 AP

k1+ko=k—1

+ > ad(A)Mad(A12(0,)™ A)ad(A)r P

k1+ko=k—1

+ > ad(A)* ad((9,)™ A)ad(A)*2ad(A 12 A)ad(A)F=P
ki+ka+kz3=k—2

+ > ad(A)* ad(Ara.A)ad(A)*2ad((9,)™ A)ad(A)k:

ki+ko+ks=k—2

2Recall the usual convention that a(A12b)c = a(J1)(A12b)c(J2).
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where the last two terms appear only if & > 2. We proceed as for (£40) and obtain the bound

1{D2) 2 A12(0,) (ad (A)* P) (D)2 2170y < (Cls0)M ™ (50)) K (4.42)
+ KC(s0) <smM "(50)) T2 (50, bo) (VT Ky + 42N R (50))
+ kC (s0)* (O (50))F 195" (50, bo) Kz
+ kC(s0) (%" (so))k Ly=3/2907" (so)(NTKQ—|—7_3/2N27+1K09ﬁ§;73/2(50,bo))
+ 2k(k — 1)C(s0) (MK (50)* 20057 (0, b0)7 =225 (s0) (4.43)
(NTKa + 72N> Ko™ (50)) 191 = Tallso o
from which one deduces the (4.33)). [l

4.2 Proof of Theorem [I.11]

In this section we conclude the proof of Theorem [[.T1] We first provide a preliminary result.

Lemma 4.3. Consider p := so + bg + 3, p = sg and the operator L}, (see (L3Q)) in Theorem[[ I0. We have that
Po := R (with R in (L3D)) is —1-modulo-tame with modulo-tame constants satisfying the (@) with

o=, K =¢ Ky=ey ! (4.44)

where i1 is given by Theorem[L 10l
Moreover the constant m and the operator Py satisfy, for all w € Q1(J1) N Q1(J2), the bounds @3).

Proof. Recalling the form of R in Theorem[L.I0 we have that Lemma[A.4limplies that Py is —1-modulo tame with
modulo tame constants satisfying (recalling the Definition[A.4]and the fact that v3/2 < ~)

93?5,’:3/2(—1, s), 93?5,’:3/2(—1, s,bg) <s Bk (s, s0 + bo) @ MY, (s, p — 2) (4.45)

which implies
MmE"" (5,bo) < M (s,b), MY (s0,b0) < ey, (4.46)
Using (T24), (I.32) one gets the (@.8) with the parameters fixed in (@.44). In the same way, by Lemmal[A.4] (L37),
(L32), (T24) we get the (&3). O

Proof of Theorem[L.T1l We want to apply Proposition @] to the operator £} in (L30) (see also Theorem [L.10).
It is convenient to remark that £ gives the dynamics of a quadratic time-dependent Hamiltonian. Passing to the
extended phase space, £ corresponds to the Hamiltonian

1 _
H = H(n,u) zw-n+§(u,J 1MOU)L2(’]1‘I)a M0:D0+7)0
where )
o i(4+ j
Do = diag(id\”)jen oy, 4 =m <%> . Poi=TR. (4.47)

By Lemmal4.3]we have that m and Py satisfy (4.3)), (#.6) with the choice of parameters in (£.44). Then the smallness
assumption (&.7) follows by the smallness condition on ¢ in (I.34) provided that Ny in formula (I.34)) is chosen as
in Proposition 11 We can conclude that Proposition Tl applies to £ in (L30).

By @I3) we have that the sequence (d’?) ken in @9 is Cauchy, hence the limit d3° = d;o) + r$° exists and, also
by .9), r° satisfies (1.36).
Now we clalm that (recall (L30)-(L.31)) and (@.10))

o.cN”. (4.48)
k>0
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Indeed we have for || < N,
|w~€+d?—d§/|2|w~€+d;’° d37| — |T 7T00|7|7’;-€/7TQ/0

J
@) 2’}/3/2 _ gﬁﬁo”y (So,bo) > ’73/2
Ik Ni oy (T

since W%’Vd/Z(so,bo) < 32Ny ™ and (¢)T < NJ < N?_, due to @4). We conclude that O, C Qk+1 Thus
the sequence (W, )gen (recall item (S2)y, in Prop. B is well defined on O
We define

by =Qpo---0Qy.
We claim that there exists P, := limy_, oo P in the topology induced by the operatorial norm. First we note that,
by using @.13) and (7)), for any k we have

k
3/2 3/2 3/2 3/2
MY (s) < D ME (s) [[MET (s0) <2§ My (s) < C(1+ max, zmm (s).  (4.49)
=0 i#j

By Lemmata[A3land[A:4] we have

3/2 3/2 3/2
M, s, (5.00) <o MG, (s00) <o T (5,00) + 95T (50, 00) max Y (5, o)

3/2 m _ 3/2 _
+ 07 (s, o) max sm7 “H(s0,b0) <a NTNZ2MET(5,00)y 2

7=0,...,
Thus by
, k+m ,
3/2 3/2
[(@regm — rR[TO> <D [(®5 = @;_1)Rl7 €
=k
and by ([@43) we have that (recall (.7) and #.4))
3/2 - —a - m’m _ O 2(7+(1/3
MY, 0, (5:50) Ssooo M (5,0 = INT N2y < ey IITS N 2T,

hence (P )ken is a Cauchy sequence in £(H*) and for @, the estimate (L38) holds. The operators @, are close
to the identity, hence the same is true for ®., and by Neumann series it is invertible. One can prove that for !
the estimate (1.38)) holds.

Let us prove the (I.39). We first show that, for any n € N one has

(D (I1) = r5(32)| < ey T = Tallsoro +e7ON2, (4.50)
with N,, defined in Prop. [l This would implies the thesis. For k = n + 1 one can estimates
~ k) o~ k) o~ k)~ k)~ ~
Irj(31) = r(32)] < [r;(31) = 7 @) + 17 (@1) = 750 @) + [V (35) = 7 (30)]

by using @13), @I9), with K5 ~ ey~ to get the ([£30).

5 Measure estimates and conclusions

Here we conclude the proof of Theorem[I.4]by showing that Theorem[[.12]holds. We first need some preliminary
results. Let us define
4+ 52

wli) = 11

V3 (5.
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and remark that if j # % (both non-zero)
1—jk 1

w(j) —w(k)| =1j — Kl IS mam = 2

G — k. (5.2)

Recall that 7 > 2 + 1 is fixed in (L.6).

Lemma 5.1. If Ryji, # 0, then (| > C1|w(j) — w(k)|for some constant Cy > 0.
If Qu; # 0 then || > Cs|j| for some constant Cy > 0.

Proof. Since |w||¢| > |w - £| our first claim follows, setting C; := (8|w]|) ™!, provided that we prove
8lw - €] = |w(j) —w(k)]
If Ryji; # 0, then there exist w such that
|dj (w) — di(w)] < 293/2(0)™7 +2|w - £]. (5.3)
Moreover, recall and (L36), we get

|dj(w) = de(w)| = [m|w(j) = w(k)] = |rj(w)] = |re(@)] = %Iw(j) —w(k)l. G4

Thus, for € small enough

3/2
2holl] 2 2012 (3 = =y ) 0 ~ w0 = 3le) — (k)

and this proves the first claim on Ryjx. If [mj| > 2|w - £| then by (L.6)

jw-£4mj| = |mllj] = |- £ = 2w - €] = |w- £ = |- £ = 7).

Hence if Q; # () we have |j| < 2|w-£||m|~" < C5 '|¢|, where Oy := |m|(4|w|)~". This concludes the proof. [

By ([.62), we have to bound the measure of the sublevels of the function w — ¢(w) defined by

Pr(w) i =w- -+ dj(w) — di(w) = w - £ +im(w)(w(j) —w(k)) + (r; —ri)(w),

5.5
bo (@) i=w - £+ m(w)j. e

Note that ¢ also depends on ¢, j, k, J.
By Lemma[5]] it is sufficient to study the measure of the resonant sets Ryj; defined in (L62) for (¢, 7, k) #
(0, 4, 7). In particular we will prove the following Lemma.

Lemma 5.2. Let us define forn € (0,1) ando € N > 0
Ryjk(n,0) == {w €Oy :|w-l+d;j —di| < 277([)7”}, Qei(n,0) = {w €0y |w-L+mj| < 277(€>*"}.
Recalling that Oy € [—L, L], we have that | Ry;1.(n, 0)| < CLY~=Yn(¢)=°. The same holds for Q.;(n, o).

Proof. We give the proof of Lemma[5.2] for the set Ry, (with £ # 0) which is the most difficult case.
Splitw = sf +v where £ := £/|¢| and v -£ = 0. Let W (s) := ¢pr(sl +v), defined in (33). By using (L49),(L36)
and Lemma[3.J we have

_ . _ /
[Wr(s1) — Wr(s2)| = |s1 — sa| (J€] — [ — Kl|m|"PC0 — (|| + Irkll””’o"))z%ﬁ — 52 (5:6)

for & small enough (see (I.34). As a consequence, the set Agjr :={s: sl+ve Ryji } has Lebesgue measure
[Agje| <2007 4 (0)~7 = 8n()~7 1.

The Lemma follows by Fubini’s theorem. (|
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Lemma 5.3. There exists C > 0 such that setting 1 = v + 2 then, for all j, k such that |j|,|k| > C(£)1~~(1/2),
one has jok(vs/Q, 7) C Qe j—k(7, 1)

Proof. By (1.36), (1L49) we have (recall also (5.2)) that
C Ce 27y Cr éf—:\/'_y y3/2

2y
lw-l+d; —di| > ——— —2|j — k| = - > — — — > 5.7)
! (oHm Ikl min{[j], [k} = (O™ c{*m=t c{h)™ T ()T
for C big enough and since 6(\/'7)*1 < L O
Proof of Theorem[1.12\ Let 7 > 2v + 4. We have
U Ryjy| < > [ Reji| + > | Rk
(e 5 keZ\ (0} eezv 5.kl 2C(0) 14—/ tezv i), |k <c(f) T y— (/2
On one hand we have that, using Lemmata[3.3and 5.2
S Rwlse Y pohg o Yt son,
Lezv,|j), k| >c() 1y —(1/2) Jj—k=h,|n|<C{| tezr
for some C' > (' > 0. On the other hand
. (3/2) rv—1 |€|<€>T1 v—1 —(r—m1-1) v—1
> |Reji| < Cy3DLr=1 Y S CL > (0 < CyL" .
ZGZV,\j\,\k\SCM)Tl'y*(l/Q), ey ﬁ ey
li—k|<Cle]
The discussion above implies estimates (1.60). O

Proof of Theorem [L.4] (Reducibility). Itis sufficient to set ® := Po0P; where @1 (w) is the map given in Theorem
[LI0while ®5 in Theorem[I.T1l The bound (L.33) follows by (I.33) and (I.38). Theorem[[.12]provides the measure
estimate on the set O, in (I.34). O

Proof of Theorem [L.6] (Almost Reducibility). Consider £,,(J1), £,,(J2) under the hypotheses of Theorem [l
Theorems and [[LTT] applies to the operator £,,(J1) hence the results of Theorem [[L4] holds for w in the set
Q1 (71) (see (L30)). Recalling Remark [[7]let us assume that

T2 @T43) QM M),

Ooo(jl) C AN(jQ) (5.8)

We show that the thesis will follows. Indeed we can apply the iterative Lemma 5.2 in Section 5 of [24]] for n =
1,2,...,k < oo where the larger is N the larger is k. Actually % has to be chosen in such a way N, = N where

Ny = N, é%)n- Hence L,,(J2) can be conjugated to an operator of the form
Zw(jz) =w- 0, — m™MJ_Jo a(N)(jQ; 0, z) + ﬁ(N)(jQ)

where the constant (") and the real function a(AN) satisfy the bounds (L.40), (I respectively. The linear
operator R™Y) = Op(7) + Rt where 7 € S~ R € £, and satisfy the hypotheses of Proposition &I} For
w € QéN)(jg) one can iterate the procedure of Prop. Bl with 1 < n < k < co. It is important to note that the
maps Q,,_1 given in (S2),, are the identity plus ¥,,_; a —1-modulo-tame operator. By @I3) and (L4I) on a")
one has that

Qn_10Joa™(p,z)o0 Q' =Jo a™ (¢, 2) + Pn

with P, satisfying the second bound in (L41)) for any n < k. In other words these terms are already “small” and
they are not to be taken into account in the reducibility procedure. By the reasoning above one can prove (1.39)

and (L4). It remains to show that (3.8) and the (L4Q). First we have Q4 (J1) C Q§N>(32) Remark 5.3 in [24]]. To
show the inclusion Q2(J;) C QgN) (J2) we reason as follows.
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We first note that, by Lemma[5] if |w(j) —w(k)| > C; '|¢] then Ryjx(31) = Rejx(J2) = 0 (recall (LED)), so that
our claim is trivial. Otherwise, if |w(j) — w(k)| < C7 (| < C7'N we claim that for all §, k € Z we have (recall

(21)

(@) — dM)(32) — (d; — di)(31)] < e N sup 131 = Dollssn + N73%)  Vwe On(dr).  (5.9)
weOq

The (3.9) imply the (L40). We now prove that (3.9) implies that Q5(J1) C QéN)(jg). Forall j # k, |¢] < N,
w € Ox(T1) by B9

jw £+ d™M (33) — dM (32)] 2w €+ dj(31) — di(T)] — (™) — dN)(3a) — (dj — di)(31)]

. (5.10)
> 273/2@)—7— _ 6’7_1N_5a > 2(73/2 _ P)<€>_T
where we used (L.38).
Proof of (3.9). By (I.33) (recalling (3.1))
(@) — d™)(32) — (d; — di)(31) = (m™) (3) — m(31) (w(F) — w(k)) s

+ (TJ('N) (J2) —rj(31)) + (r,(cN) (J2) — ri(31)).

Choose k € N such that Ny_; = N. In this way we have that r§-N) (J2) coincides with r§-k)

1l We apply Proposition.I}H(S4), in order to conclude that

given in Proposition

O3 c (), (5.12)
since the smallness condition in (£.20) is satisfied by (I.38). Then by (£.48)
EI2)
Oy c N oncoy o) < o ). (5.13)
j=0

Forallw € O (J1) C st/z (31) N st/hp(%), we deduce by Proposition &1} (S3),

@19
. k) (1~ k) (1~ — ~
I (@2) =P @) < ey T2 = Tillapto- (5.14)
We have, by @.13), forany k € N
M (30) — D (501 < (5 S D (30— 9 (501 < ot N T s
()l (1) =50 < (G) DIy (00) = (3] < MG (s0,0) Y N2 < ey TINGE L (5.15)
izk izn
Therefore Vw € O (J1), Vj € Z we have (recall the choice of k above)

Y @2) = 5@ < G (1P @2) = 10 @01+ Iy (30) = P (30))

EIDED - B
< ey U191 = Tillsoro + CIME™ (s, )N 2.

Using similar reasonings, the iterative Lemma 5.2 in Section 5 of [24]] and recalling |j — k| < |¢| one can prove that
[m ™ (32) = m(I)||jI<Cel|T2 = Tulso+21€]- (5.16)

This concludes the proof of (3.9). O
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A Technical Lemmata

A.1 Tame and Modulo-tame operators

In the following we collects some properties of operators which are “Lip-tame” or “Lip-modulo-tame” according
to Definitions 2.2l and 2.3

Lemma A.1 (Composition of Lip-Tame operators). Let A and B be respectively Lip-o a-tame and Lip-o g-tame
operators with tame constants respectively M\ (o4, s) and M} (op, s). Then the composition A o B is a Lip-
(04 + op)-operator with

My p(0atrn,s) <My (oa,s)ML(op, 50 +0a) + M) (0a,50)ME (0B, 5+ 04). (A1)
The same holds for o-tame operators.
Proof. The proof follows by the definitions and by using triangle inequalities. (|

Lemma A.2. Let A be a Lip-o-tame operator. Let u(w), w € O C R” be a w-parameter family of Sobolev
functions H®, for s > sg. Then

14Ul <5 D0, (0, 8)|ull 337 + D04 (o, s0)[[ull €. (A2)

Proof. By definition @3) we have M 4(0,s) < M) (0, s) and ||lul|s < |lu||2'C. Then the thesis follows by the
triangle inequalities
jw — T AWu(w) = AW u@)ls < [(AwwAu@)ls + [|AW) Auwruls.
O

Lemma A.3. Let A = Op(a(y,x, D)) € OPS® be a family of pseudo differential operators which are Lipschitz
in a parameter w € O C R”. If|A|g:SO < 400 (recall (L23)) then A is a O-tame operator with

M) (0,5) < C(s)| A3 (A3)
Proof. We refer to the proof of Lemma 2.21 of [10]. O

Given an operator A € L, , we define

Sﬁgbl L(=Ls) =)

(Dayrag, a2 08 My 4 1 (71,8) =T

14.0:] (D2, (4.0, 0ey1r2 0 8

the Lip-0-tame constant of (D)2 A(D)'/2, (Dy)'/208  A(Dy)'/2, (D) /208, A, 0,)(Dy)/?, for any m =
1,...,v,0 <b; < band we set

g — vy _ Y _
B (s,b) == [nax max (mailmA( 1, s),mailm [A,am]( 1, s)) (A4)
m=1,..., v

We have the following result.

Lemma Ad4. Let so > [v/2] + 3, sp € N, by € N and recall @71), Def. 2.8 and 2.3).
(i) Let A € L, , with p 1= sy +bg + 3, p = so, then A is a —1-modulo tame operator. Moreover

e (s) < M (1, s) A5)

5) = mI:nE,iX,U avsﬁgn, [A,0:] »Sh ( ’
#,y°/? v*/? _

M (s,bg) < mgé%,ymaf}ﬁjbo [A,az]( 1,8). (A.6)

(D)2 A1 ADN || £emeoys (D) Ar2(8p) A(DL) 2| 220y < Baszalso,bo) (A7)
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where

Ba,,a(s0,b) := max max (‘ﬁ
12 ( 05 ) 0<b; <b H°1
m=1,..., v

Anaa— 1’50)’916‘3%%12147%](71’SO))' (A-8)

Ym

(1) If A := Op(a) with a = a(w,i(w)) in S™ with m < —1 depending on w € Oy C R” in a Lipschitz way and
on i in a Lipschitz way, then A is a —1-modulo tame operator and bounds (A3)-(A) hold.

Proof. Considerb € N and p € N with p > b+ 3. We claim thatif A € £, , (see Def. then one has
B(s,0) <ps M (5,0 =2),  Ba,a(p,d) <pp Maj,a(p,p—3). (A.9)

The fact that (D,)'/2 A(D,)"/? is Lip-0-tame follows by @Z.I3) since p > 1. Indeed (D,)~**! is bounded in z
and forany h € H?®

I(D2) % A(Da)hI|TP < [{Da) ™7 ((Da)?™ 2 A(Dy) ) | O
<o M (=p, )13 + M, (—p, 50) |47

By studying the tameness constant of 82/1, (A, 0], [82/1, 0z]A12A, 8EA12A, [A12A4,0,] and [8EA12A, 0] for
b € N”, |b| = b, following the same reasoning above one gets the (A.9).

We have, by Cauchy-Schwarz,

DA 2l < 3 i (X A € O ey )

ez jer verr et
(=)l =341, 112 1172 2
< P — 1Al
S ( X g A (€= O )
e jez. v jer
< D DT DY Cy) Y NN — P = 1A (= ) Pluwy )
tezv jer verr et verr et
<C Y ueyPCOY S (G DG — P =)0 (A)] (0= O)F)
verr i er tezv jer
since 1
C .= Z Cyj < 00, Cyj = T
L0 ELY 4,5 €L very i el <£ - £I> 0 |.7 - jll

By the fact that for any 1 < m < v (recall (1.19))

S DG = 5Pl = £,)* (A (€= )P
CELY ,JEL
,Ys/z

< 2(Me0

V’WL

o (LR 20 L (1) U )

and (¢ — 0"y < maxy=1,.. v {lm — E;n> we obtain

3/2 3/2
(D) 2AD.) )2 <2 max (D" o (<Loso) Pl +2 max (0" (1,82 ull,

Following the same reasoning above we conclude the same bound for ||(D,)*/?A,, Auw A(Dy)*u 2 itis sufficient
to substitute Azi, (¢ — ') with (Agi, =0, w)— Azi, (¢ —¢',w"))/(w — w’) in the computations above. By the fact
that v3/2 < 1 we deduce (A3). The proofs of (A.6), (A7) are analogous. The proof of item (ii) follows using
the above computations by noting that d,,,, A and the commutator [A4, 0,] are still pseudo-differential operators of
order —1. O
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Lemma A.5. Recall @3). The following holds.
() IfA=<Band A, v A=A, B forall w# w' € O, we may choose the modulo-tame constants of A so that

3/2

(s) MG (s).

%

8

/
(i1) Let A be a —1 modulo-tame operator with modulo-tame constant 9.7?&73 2(s) Then (Dm>1/2A(Dm>1/2 is
majorant bounded H® — H*®

3/2 ; 3/2
(D) P ADN | oaey < 257 (), |AL(O)

3/2 o
< IMET (s0) (7).
(iii) Suppose that (9,)®° A, by > 0, is —1 modulo-tame. Then the operator Iy A is —1 modulo-tame with modulo-
tame constant o

“(s) < min{ NP (). M5 (9)) (A.10)

ﬁﬂ
m (9,)

y . 3/2 3/2
(iv) Let A, B be two —1 modulo-tame operators with modulo-tame constants smﬁ;” (s), S)ﬁﬁf;'y (s). Then A+ B
is —1 modulo-tame with modulo-tame constant
3/2 3/2

M (s) < M () + o (s) (A.11)

The composed operator A o B is —1 modulo-tame with modulo-tame constant

3/2 3/2

M4 () < C(s) (M ()05 (s0) + MK (s0) T (5)) (A.12)

Assume in addition that (9,)*° A, (0,)®° B are —1 modulo-tame with modulo-tame constants 93?%’613;:014(5) and

Dﬁg B, yvo B( s) respectively, then (0,,)" (AB) is —1 modulo-tame with modulo-tame constant satisfsying

3/2 3/2

3/ 3/2
m%él)bo(AB)(S) < C(Sa bO) (m(g )boA( )Smﬁ (50) =+ m?bl)bo,q(so)mﬂév (5)

3/2 3/2
P @t s+ ) () (A1)

Finally, for any k > 1 we have, setting L = ad*(A)B, ad(A)B := AB — BA:
3/2 3/2
M oo (5) < Cls,b0) [ (s0))PmE ()
/2 3/2 3/2
kR (50) 1 (M a (9197 (s0) + M 4 (o)™ (9)) (A.14)

3/2 3/2

3/2 o
k(= 1) (30) 2T ()] g (s0)E ™ (50)]

The same bound holds if we set L = A*B

(v) Let ® := 1+ A and assume, for some by > 0, that A, <6¢>bUA are Lip—I1-modulo tame and the smallness
condition oo
8C(S, b)Y (s0) <1,  C(S,by) = max _C(s, bo) (A.15)

s0<s<

holds. Then the operator ® is invertible, A := &~ —1 is —1 modulo-tame together with (D,)®0 A with modulo-tame
constants

i (s) < 25m'i’”3/2( ), (A.16)
3/2

3/2
sm‘” boA( s) < 205 boA( ) +8C(S,bo)MET L, (s0) M (s). (A.17)
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Proof. In the following we shall sistematically use the fact that if B is an operator with matrix coefficients > 1,
then A < Ao B = Ao B = Ao B. Note that (DJE>1/2 is a diagonal operator with positive eigenvalues.

(i) Assume that A < B i.e. |A§/(€)| < |B§/(€)| for all 7, 5/, £. Then, by 2.3),
1/2 1/2 1/2 1/2 1/2 1/2
(D)2 A(DY P ulls < (D) * A(DL) P ulls < (D)2 B(D) " ?ulls.

The same reasoning holds for (D$>1/2Aw7w1A<Dz)1/2, so that the result follows.
(ii) The first bound is just a reformulation of the definition, indeed

1/2 1/2 , 3/2 , 3/2 1 3/2
S D) PAD)Pulls < Sup 1(93%‘27 (so)lulls + 957 (s)][ullse) < 22057 ().

In order to prove the second bound we notice that setting

. VAT(0) €= -
Bj (6) = {OMJ (0) £=0 and j =7,
0 otherwise,

we have B =< (DI>1/2A(DJE>1/2, same for A, .+ B. Fix any jo and consider the unit vector u0) in %0 (T¥*1)
defined by u; ¢ = 0if (4,¢) # (jo,0) and uj, 0 = (jo) *°. We have by Z.3)

i . . . 3/2
(Go)| A% (0)] = ([ Bub) |5, < [(D2)" > A(D)?ul||, < M5 (s0).

The same holds for v%/2 (jo) | A, v A2 (0)].

(iii) We remark that |A§, ()] < N=Po <€>b“|A§/ (0)| if |¢] > N and the same holds for |Aw7w/A§/(€)|. Therefore we
have
My A < N72(9,) T A < N7°0(9,,)%0 A

and clearly I A < A and the result follows by (). See also Lemma 2.27 of [10].
(iv) The computations involved in this proof are similar to the ones in Lemma 2.25 of [10]. For the first bound we
just remark that

(D) *(A+ BY(D)"? 2 (Do) P A(D)? + (D1)B(D,)'?,

and the same for the Lipschitz variation, so that (A.11) follows. Regarding the second we note that

(D2)"?A0 B(D)? < (D,)? Ao B(D,)"? < (D)2 A(D)? o (D)?B(D,)"?,

+(D)YPADYY? 0 (D)2 A L w B(D,)Y?,

so that (A_12)) follows. For the third bound we note that

O 3" AN)BL (L) < Clog) D ((41)% + (£)*0) AT (1) B (6) (A.18)
J1l1+L2=L j1,41+la2=1L

and the same holds for A,, v A o B and Ao A, .+ B. Hence by (AI8)
(D2)/2(0,)% (A 0 B)(D2)/* 2 Clo0) ((Da)'* (0, A(D) 2 0 (Do) /2 B(D,) /2

(DL 2D 0 (D) (0, BD.) )

same for the Lipshitz variations. The result follows from the estimate on the composition.
In order to prove (A.14) we note that

(D.)"*ad"(4)B(D,) /> < ad® (D) A(D.)"*)) (D.)/*B(D)'?,
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where ad(A)B := AB + BA, since ad”(A) B < ad"(A)B. Similarly
(0,0 (D) *ad () BID,)* = ad® (D)2 A(D.)"%)) (D) (02) B(D2) /2
Y ad ((02PAD)) ad(D) 2O AD) )

k1+ka=k—1,
k1,k2>0

ad® ((D$>1/2A(D$>1/2)) <Dz>1/2§<Dm>1/2 .
Completely analogous bounds can be proved for the Lipschitz variations, by recalling that
Ay wad(A)B = ad(Ay v A)B(w) + ad(A(w')) Ay o B.

The result follows, by induction, from the estimate on the composition. The estimate (A.14) when C = A* o B
follows in the same way using

(0)° (D) 2 (A)FoB(DL)"? < (D) /2 A(DL)*)F 0 (D)2 (0,) B(D,)
Y (A ) " (00202 A (100 A0 )
k1+ko=k—1
<Dx>1/2B<Dz>1/2-

(v) follows by Neumann series, A = Y°, -, (—1)* A¥, and from (AT4) with L = A* o B, B =1. O

A.2 Pseudo differential operators
First of all we note that the norm ([.23)) satisfies

At

m,s,a’

Vs<s, a<d é| |0

sa— |ms a0 | | sa—
5,0

m/’ sa—| m’,s,a"

(A.19)
m<m' =]

In the following lemma we collect properties of pseudo differential operators which will be used in the sequel. We
remark that along the Nash-Moser iteration we shall control the Lipschitz variation respect to the torus embedding
i :=i(¢p) of the terms of the linearized operator at i. Hence we consider pseudo differential operators which depend
on this variable.

Lemma A.6. Fix m,m’,m” € R. Let i be a torus embedding. Consider symbols
a(i, A 2,€) € 5™, (i A p,2,6) € 8™, e(Np,2,6) € 5™, (N p,2,€) € S°
which depend on \ € O and i € H? in a Lipschitz way. Set

A= Op(a()‘a ‘pvxvg))a B := Op(b()\, 9071'76)))
C:= Op(c()\,cp,z,é)), D := Op(d(>U Sﬁyx,f))

Then one has
(i) forany a € N, s > s,

|AOB|m+m/ S, Sma ( )|A|msa| |m ,sot+a+|m|,« +C(SO)|A|m ,50,Q |B|m/ Js+a+|m|,a (AZO)

One has also that, for any N > 1, the operator Ry = Op(ry) with v defined in @I satisfies

|RN|;YrZ?m/7Ns « Sm,N,a ENz] ( ( )|A|m s a+N|B|m ,S N+a+|m +
5, N1 02N -+atmla (A21)

( )|A|m 1,50, aJerBlm’ ,s+2N+a+|m|, )
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.0 1 .0 v,0
|A123N[21 - 12]|Zl+m/,N,S a <m,N,a ﬁ (C(S)|A12A[Zl - 12”21 s a+N| |m’ ,50+F2N+a+|m|,a +

(SO)|A12A[11 - ZQ”m 1,50, a+N|B|m ,s+2N+a+|m|, )

X (A22)
o
+ ﬁ( ()AL a1 Blin = a7 so+2N+a+|m|,a
O
+ C(s0)| AL, asn|Ar2Bliy — ][] s+2N+at|ml, )
(i1) the adjoint operator C* := Op(c* (N, p, x,£)) in @I3) satisfies
IC* 107 40 Som |CI0T st .05 (A.23)
(i) consider the map ® := 1+ D, then there are constants C'(sg, «), C(s, &) > 1 such that if
1
C(SO’ )|D|O sota,a S 2 (A24‘)

then, for all \, the map ® is invertible and ®~' € OPS° and for any s > so one has
| 7I|Osa < C(S a)|D|O sta,a” (A25)

Proof. Ttem (i) and (iii) are proved respectively in Lemmata 2.13 and 2.17 of [10]. The estimates (A.220) and
(AZT)) are proved in Lemma 2.16 of [10]. The bound (A22)) is obtained following the proof of Lemma 2.16 of [10]
and exploiting the Leibniz rule. O

Remark A.7. When the domain of parameters O depends on the variable i then we are interested in estimating the
variation A1 A = A(i1) — A(i2) on O(i1) N Oliz) instead of the derivative 0;. The bound (A22) holds also for
A1s by replacing iy — i ~ 1.

Commutators. By formula (Z10)) the commutator between two pseudo differential operators
A :=Op(a(\, ¢, 2,8)), B := Op(b(A\, ¢, x,€)) witha € S™ and b € S™ , is a pseudo differential operator such
that

[A,B] := Op(axb), axb(\ p,x,§) = (a#b — b#a) N, o, x,8). (A.26)
The symbols a x b (called the Moyal parenthesis of a and b) admits the expansion
axb=—i{a,b} +12(a,b), {a,b} = Bcad,b— dpadeh € S 1 (A.27)
where 1 1
ra(a,b) = | (a#b) — Yagaagﬁb} - [(b#a) - Y@gbaza} e gmtm'=2, (A.28)
Following Definition 27 we also set
N—1
a*g b= a#ib — b#a, axcnbi= Y axpb, axs>n b= a#tsnb — b#sna. (A.29)
k=0
As a consequence, using bounds (A.20) and (A.21), one has
7,0
|[A B]|m+m/ 1,s,c m m’ C( )|A|’Y ,s+2+|m/ |+a, a+1| |m’ ,s0+2+a+|m|,a+1 (A 30)
o .
+ C(SO)|A|m so+2+\m’|+a+1,a+l| |m’,s+2+a+|m\,a+1'

The last inequality is proved in Lemma 2.15 of [10].
We now give a lemma on symbols defined on T¢. Recalling Definition[[.Tland (I.I6) we define

AWl g0 = aalA met|d| A31
| Aw SUp 19¢™ Awll (€)™ : (A3D)

we recall the notation

d
O R
:HGyi ,od=(aW,... o).
i=1
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Lemma A.8. Let O be a subset of R”. Let p = p) as in the previous lemma, let A be the linear operator defined
forallw = wy(z,&) € S™(T), A € O, as

Aw = w(f(x),9(2)¢), f(z):=x+p(x), g(z)=(0+Dp)~", zeT,{cR? (A32)
such that ||p||250_|r2 < 1. Then A is bounded, namely Aw € S™, with

|A’LU| ,8,0 _sma |w|msa + Z |w|m ki, a+k2||p||k3+so+2 (A33)
k1+ko+kz=s,
k1<s,k1,k2,k32>0,
k1+ko>1
Proof. We adopt the notation |-|yy=.- instead of |-|s  (see estimate (A.1) in [24] ) in order to avoid confusion with
the norm of the symbols. We also denote with D¢ the s-th Fréchet derivative with respect to &.
We study

DgD*w(f, g¢) = Z Z Chrjn (D™D w)[D7 f,..., D7 f, D™ g¢, ..., D™ rgé,g,...,g]

Z(Jj'f‘"z) —s o times
(A.34)
where j := (j1,...,7r), n := (n1,...,nk—). In the following formulas we shall denote ¢,...,g by g*. For
—
o times
k =1and r = 0 we get from the expression (A34) (and estimating |g|r~ < 2)
I(DgTw)[D*g &, g% L2(ray Sa [Wlm.0.041| D> plyws—1. (A.35)
and forr =1
|(Dg Dw)[D* f, gl L2 (1) <a [0 1,0 D*plyys—2.00 . (A.36)

For k = s we have that j; = n; = 1 for all 7 and we get from (A34)

1> (DD w)[Df, ..., Df, Dgé, ..., Dg&, g°1lracray < Y _|Wlmrats—m |l D?pl5
r=0 . f r=0

r times s—r times (A.37)
Ss Z |w|m,sl,a+p|D2p|poo Ss |w|m,s,a + Z |w|m751,&+P|D2p|L°°'
s1+p=s, s1+p=s,
s1,p>0 s1,p20,81<s

It remains to estimate

S > Chejn (DETTTOD WD f, . DI f, DM g, D" g€, g (A.38)
S (tni)=s

We call £ > 1 the number of indices j; that are > 2 and we rename these ones ;. Then ), (0;+n;) = s—(k—{) =
s — k + £. The L?-norm of (A.38) can be estimated by

s—1 k
SO S bt e [DFEDT flioe o |D7 fl e | DM gl e . [ D g e
k=2r=0

s—1

=0 0>1
k
<o D Y bt (b | D7 2Dl [ D7D e | DM D e | D T D2
k=2r=0/¢>1
s—1 k
<s Zlelm,r,aJr(kﬂ")|D2p|]£i—°é_r_1|D2P|WS*2’V4+Tv°°
k=2 7r—0 ¢>1
s—1 k
<s ZZ|w|mma+(kfr)|D2p|WS*k*1v°° < Z |w|m,81,a+p|D2p|Ws3'°°-
k=2 r=0 s1+p+sz=s—1,

$>s51,p,53>0

(A.39)
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Then by (A33), (A36), (A37), (A39) we have (A33) for | Aw|,, s o. For the Lipschitz variation we observe that
Ax v (w(X, f(A), g(N)E)) = A(Ax xw) + ADw[Ax x f] + A Dew[Ax x g &l (A.40)

One follows exactly the strategy above but considering s—1 derivatives instead of s (recall (.23)). This is important
since in formula (A-40) we have one extra derivative either in z or £. O

B Pseudo differential calculus and the classes of remainders

B.1 Properties of the smoothing remainders

In the first step of our reduction procedure in order to prove Theorem[3.4] we need to work with operators which are
pseudo differential up to a remainder in the class £,. In the following we shall study properties of such operators
under composition, inversion etc...

The following Lemma guarantees that the class of operators in Def. 2.8]is closed under composition.
Lemma B.1. If A and B belong to £,, for p > 3 (see Def-2.8) , then Ao B € £, ), and, for so < s < S,

MZXOB(va) SS,P Z (Ml(soabl)M%(vaQ) + Ml(sabl)Mg(SOabQ)) ) b < pP— 25 (Bl)

bi1+bo=b
MAlz(AoB) (pa b) Sp,p Z (MAIZA(p) bl)MB (pa b2) + MA(pa bl)MAuB(pv b2)) , b<p—3. (B.2)
b1+ba=b

Proof. We start by noting that 9, | 5(—p, s) defined in (2Z.I3) with A ~~ A o B is controlled by the r.h.s. of (B).
Let mi,mo € R, mqy,ms > 0 and mq + me = p. We can write

(D)™ Ao B(Dy)™ = (Dz)™ A(Dy)"™* (D) ™" (D)™ B(D)™*.

By hypothesis we know that A belongs to the class £, hence by (i) of Definition[2.8one has that (D)™ A(D,)™2
is a 0—tame operator. For the same reason also (D)™ B(D,,)™* is a 0—tame operator. Note also that, since p > 0,
then (D,)~° : H*(T**') — H*(T"*!) is a 0—tame operator. Hence, using Lemma[AJlfor any u € H® one has

[(Dz)™ Ao B{Dz)™ulls <s (Ma(—p,s)Mp(—p,so) +Ma(=p,s0)Mp(—p,s))|[uls,

+ D=, 50) M (=, s0) -
where M4 (—p, 5), Mp(—p, s) are defined in ZT3). Then we may set
Maos(—p, ) = C(5) (Ma(=p, )M (—p, 50) + Ma(—p,50)Mis(~p,5)) .
Reasoning as in (B.3)) one can check that
M5 (- 5) < O(5) (M3 (=, Y (—p. 50) + M (—p. 50) M (. 5)) .
Let us study the operator GE(A o B) forb € N” and [b| < p — 2. We have
B(AoB)= Y (9A)(02B). (B.4)

b1 +ba=b

We show that any summand in (B:4) satisfies item (i) of Def. 2.8). Let mq, m2 € R, my,me > 0 and my + ms =
p — |b|. We write

(D)™ (951 A) (022 B)(Dy)™ = (D)™ (95 A) (D) (D) V=" (Dy)“ (9% B) (D)™
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with gy := p — |b€| —my,w=p-— |b§| — my and note that —y — w = —p < 0. Moreoverm| +y = p — |b}|, and
w +mg = p — |by|. Hence the operators (D, )™ (02t A)(Dy)¥ and (D)™ (922b){ D)™ are Lip-0-tame operator.
Hence, using Lemmal[A_ Tl one has

I{Dz)™ (9 A) (O BY{Dy)™ (|10 <MV (=p+ [b1], )M (—p + [bal, s0) |l (B.5)
+ 9y (=p + b1, 50)IME (—p + b2l 8)lul s,
+ 9 (=p + [b1], 50)ME (—p + [bal, so)lulls,
for u € H*®. We can conclude that Qﬁgb (4o B)( p + [b|, s) is controlled by the r.h.s. of (BI). Regarding the

operator [A o B, 0] we reason as follows We prove that
[Ao B,0,] = A[B, 0;] + [A, 0;]B. (B.6)
satisfies item (47) of Definition 2.8). Let my, ms € R, my, ma > 0 and my + ms = p — 1. Moreover
(Dz)"™[A, 0:]B(Dy)™* = (D)™ [A, 0, [{ D) (D) ¥~ *(Dz)* B(Dz)™,

withy = p — 1 —mi, 2 = p — ma. Hence by definition (see Def. (2.8)) we have that (D)™ [A, 9,](D,)¥ and
(Dy)*B(D;)™? are Lip-0—tame. Thus one can conclude, as done above, that 0 4 9,15 (—p+1, s) is controlled by

the r.h.s. of (BI). One can reason in the same way for the first summand in (B.6) and for the operator [82 (AB), 0,].

This proves (B.1).
Let us study the term

A12(A 9 B) = (A12A> B(jg) + A(jl) (A12B> (B7)

By definition both (D, )" A5 A(D, )™, (D,)™ A1 B(D,)™? with m; + mg = p — 1 are bounded operators on
H? (see 2.21I) and Def. 2.1). In order to prove (B.2) one can bound the two summand in (B.7) by following the
same procedure used to prove (B.I). O

The next Lemma shows that, if p > 3, OPS™" C £, , (see Section 2l for the definition of OP.S™).
Lemma B.2. Fix p > 3 and consider a symbol a = a(w,I(w)) in S~ dependingonw € O C R” andon T in a
Lipschitz way. One has that A := op(a(p, x,§)) € £, (see2.8) and
M), (s,b) <s,p |a|—p s+p,07 Maza(p,b) <p,p [A12a]—pptp,0- (B.8)

Proof. Letmy, My € R, my, mg > 0and my +mo = p. We need to show that (D)™ A(D,)™2 satisfies item ()
of Definition 2.8l By definition it is the composition of three pseudo differential operators hence, by Lemma[AJ]
and by formula m of Lemmal[A.6] one has that

mZDﬁmlA(DI)mz (075) <s |<Dm>m1A<D >m2|g <s |<Dz>m |m1750|a|7p stlmal, 0|< > 2|mQ,s+|m1\+p7O

0
SN ®9)

This means that
,0
qu(_Pa S) <s |a|zp,s+p70'

Secondly we consider the operator (ngp(a(ga, x,€))) = op(@ia(g&, z,€)) forb € N” and |b| < p— 2. Itis pseudo
differential and its symbol 85(1(90, x, &) is such that

05al e < lal”0

pae S U 46,0
Following the same reasoning used in (B.9) (recall that m; + mo = p — |b|) one obtains

= ,O
mggA(ip + |b|7 S) SS |a’|7p é-HbH—(p ‘bl) O (S) |a|1p,S+P,O'
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The operator [A, J,] = Ad,, — 0, A can be treated in the same way, discussing each of the two summands separately,
(we are not taking advantage of the pseudo dfferential structure in order to control the order of the commutator),
with mq +me = p — 1,

My s, 4 yra(08) e (D)™ D ADL)™ (35 <o a2,

The same strategy holds for [82/1, 0.] Hence one gets the first of (B.8)). The second bound in (B.8) can be obtained
by noting that Aj2 A = op(Aj2a)[-] and then following almost word by word the discussion above. O

The next Lemma shows that £, ,, is closed under left and right multiplication by operators in S0,
Lemma B.3. Leta € S° and B € £, ,, then Op(a) o B, B o Op(a) € £, , and satisfy the bounds
M ayo5(5:) Ssp |alg:5%p.0Mb (50, B) + a3+ p oM (5, b) (B.10)
Ma,2(0p(a)oB) (P B) <p.p [A120l1 p4p.oMB (P, b) + |aloptp.0Ma,, 5(p,b),
forall sp < s <S. Moreoverif B € £,11 then 0,, B,[0:,B], m=1,...,v, arein £, , and satisfy the bounds
Mgw (S b) M[a B](va)SM’é(va+1)a b§p72
MacpmAIZB(p7 )aM[Bm,AuB] (p,b) < MAlzB(pab + 1) , b<p— 3

forall sy < s < 8. Note that in (BI1) the constants in the right hand side control the tameness constants of B as
an element of £,41.

(B.11)

Proof. We start by studying the Lip-0-tame norm of
m b b mo m b —m m b m
(D)™ 91 Op(a) 0 02 B(Dy)™* = (Dq)™* 0 Op(a)(Dx) ™™ 0 (Dq)™ 02 B(Dy)™?,

with [b1] + |ba| = |b] and m1 4 ma = p — |b|. By Lemma[AJ3]and formula (A.20)

m B < 7.0 < al?:©
(Dy)™18% Op(a)(Dy)~™1 (0,) <s |a|0,s+\b1|+m170 = |a|075+970
hence by Lemmal[A_ Tl we have

= 0 e
mZDm>m16E(Op(a)B)<Dm>m2 (7p + |b|7 S) Ss,p |a’|g,s+p,0M'é(SO’b) + |a|g,50+p,0M’é(s’b) .
Regarding
(Dm>m15;[8m,Op(a)B](DCE)mQ = <Dm>m16};([a:m Op(a)|B)(Dy)™* + <Dz>m18};(0p(a)[6w,B])(Dz>m2

we only need to consider the first summand as the second can be discussed exactly as above. Recalling that by
definition my 4+ mo = p — |b| — 1 we write for |by| + [b2| = |b| and my + ma = p — ||

mi t;1 t;2 mo __ mi 51 —mi—1 mi+1 52 mo
(Dz) azp [81701)(0‘)]8(,0 B(D;)™ = (D) a(p [0z, Op(a)|(Dx) (Da) azp B(Dy)
and the result follows by recalling that

,

(Dy)m1 83 [8,,0p(a))(Dy)~m1 =1 (0,s) < |a|o ss+[B1]|+m1,0 Ss |a|0 »54p,0
The bounds (BIT) follows by the fact that 959, = O with [bo| = [b] + 1 and M) (s,b) < MJj(s,b + 1) if
Ac £p+1. O

The next Lemma gives a canonical way to write the composition of two pseudo differential operators as a pseudo
differential operator plus a remainder in £, ,,. Of course Lemmal[A.@] says that such a composition is itself a pseudo
differential operator, so in principle one could take the remainder to be zero. The purpose of this Lemma is to get
better bounds with respect to (A.2Q), the price to pay is that we do not control the symbol of the composition but
only an approximation up to a smoothing remainder of order —p.
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Lemma B.4 (Composition). Let a = a(w) € S™, b = b(w) € S™ be defined on some subset O C R” with
m,m’ € R and consider any p > max{—(m+m’+1),3}. Assume also that a and b depend in a Lipschitz way on
the parameter 3. There exist an operator R, € £, , such that (recall Definition D)) setting N = m~+m/+p > 1

Op(a#b) = Op(c) + R,, ¢:=a#nbe S
where
|C|m+m s,x Ss sP M m’la’|m s,N— 1+a|b|m S0+ N—1,« + |a’|m ,80,N — 1+a|b|m s+N—1,a (B12)

M}YZP (Sa ) <S pym,m’ |a’|m ,8+p, N|b|m/ ,80+2N+|m|,0 + |a|m ,50, N|b|m/ ,s+p+2N+|m|,0° (B~13)
orall0 <b < p—2and sy < s <S. Moreover one has
p

|A12C|m+m’,p,a Sp,a,p,m,m’ |A12a|m,p,N71+a |b|m’,p+N71,a

(B.14)
+lalmp, N—1+alA12blm prN-1,a
MAIZRp (pa ) =p,p,m,m’ |A12a|m+1,p+p,N|b|m’ p+2N+|m|,0 (B 15)
+ lalmp+p, N [A12b]m 41 pran+im],0-
forall 0 <b < p— 3 and where p is the constant given in Definition[2.8]
Proof. To shorten the notation we write ||-||s := ||-||[7°°. For 8 € R, using formula (ZII) and by the tameness of
the product, we have
N-1
+k +k
logells < D 5 D G (188" all. 108705l + 110" all sy 1967 5b]])-
k=0 " Bi+pB2=

Thus, recalling (LI6), one gets
k; _ _ ’
lelmtm 5,0 Ss<s,a Z P Sup o Dax ||5ﬂlJr alls(¢)~m Oé%ggaﬂafzafbﬂsdﬁ P

Bi1+k —m+B B2 qk —m/+8
b max 08 ¥l (€7 max 032080 (6 7).

which implies (B.12)). In the same way we obtain the bound (B.14) by using the following fact
A12(0fa 0kb) = 0¢ (A12a) OFb + Ofa OF (A1ab).

We remark that R, is the pseudo differential operator R considered in Lemmal[A.6l(recall N = m +m' + p). By
LemmalB.2

, E3
R, S s,p,m,m/’ |Rp|—p,s+p,O
then by formula (A.21) of Lemmal[A 6l we get the bounds (B-13). The bounds (B:I3), follow in the same way. [

Remark B.5. Note that if m +m' < —p < —3 then by Lemma[B.21Op(a) o Op(b) € £, .

Lemma B.6. Fix p > 3andn € N, n < p. Let a € S™! depending in a Lipschitz way on a parameter i. Then
there exist a symbol ¢\™) € S~" and a operator R,(Jn) € £, such that

Op(a)™ = Op(c™) + Rg”). (B.16)
Moreover the following bounds hold
™ |—n s,0 Sns,anp |a’|171(?s+(n71)(p73),a+p73(| |’Y Liso+(n— 1)(,373),a+p—3)nil7 (B.17)
|Arzc n)|fn,p7a,p < |A12a|—1,p+(n—1)(p—3),a+9—3|a|n1 p+(n—1)(p—3),a+p—3 (B.18)
M 0y (5:0) Sopon 1070 sy pa (1007 g nomtyppe) (B.19)
MAHREJ” (P,®) <p.np |A12a|0m+n(p—3)+p7p—2(|a|—1,p+71(p—3)+p,p—2)n_1 (B.20)

forall sg < s < 8 and where p is the constant given in Definition2.8
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Proof. We define ¢ :=a € S~', and, forn > 2,

n—2
o= atcpac™Y, R = 3" [0p(a)]FOp(a#tz,-2c"+)
k=0

By using Lemma[B.4] we have that (B.17) is satisfied for n = 2. Now given (B.17)) for n we prove it for n + 1. For
simplicity we write <,, s o=<. We have

7,0 7,0 7,0 7,0 7,0
|a#<p*20(n)|fnfl,s,a < |a’| 1,s,a+p— 3|C n)| n,so+p—3,x + |a’| 1,s0,a+p— 3|a | n,s+p—3,a
< n
— |a|—1,s+n(p—3),a+p—3(|a|—n,so+n(p—3),a+p—3) ’
hence (B.17) is proved. Arguing as above one can prove (B.I8).
Now fix 2 < k € N and define 7y, := a#>,_oc*~1) € S~P. We apply repeatedly (BI0) in oder to get

O - ; ,O
M, (5:5) <o (a1, pi0) ™ (1017 oMy (500) + lal oMy (5:9))
with Ry, := (Op(a)*Op(r,—x)). Now by Lemma[B.2l we have that for all k > 2
Mgp(m)(s b) <spb |7ﬂk|fp 54p,0

Now by (A21) withm = —1,m' = —k + 1, N = p — 2 we have

,0 ,0 k—1
|7"k|—p50— |7"k| k42,50 = |a|11,s+k(p—3),p—2(|a’|zl,so+k(p—3),p—2)

Then

n—1
M7 <")(S b) < 5,0,P |a| Ls+n(p—3)+p,p— 2(| | 1,s0+n(p—3)+p,p— 2) ’

We follow the same strategy in order to study the operator

Aqo (Op(a)kRp(nfk)) = /{:Op(a)k_lop(Alga)Rpmfk) + Op(a)kAlng(nfk)
and we get (B.20). O
Remark B.7. Note that ifn > p > 3 and a € S~' then Op(a)" € £, ,,, by LemmalB2]

Corollary B.8. Let a € S™! and consider 1 — (Op(a) + T'), where T € £, ,, = £, , (recall Def. Z.8) with p > 3.
There exist a constant C(S, «, p) such that if

C(S:0,0) (10171 (1) o232 + M (50.D)) < 1, (B.21)
where S is a fixed constant appearing in the Def. 2.8 then 1 — (Op(a) + T)) is invertible and
(I—(Op(a) + T))~" =14 Op(c) + R, (B.22)
where
| |71 sa Ss,a.p |a|1’fs+(p_2)(p_3),a+p_3, |Ar2¢| 1,50 < [A120] 1 piy(p—2)(p—3),04p—3 (B.23)
and R, € £, , with
M), (s,p) < |a| "

1,s+(p—1)(p—2)+3,p—2 + M”IY’(Sa b)v 0 S b S p— 27 (B24)

MAlsz (p7 b) < |A12a’|—1,p+(p—1)(p—2)+3,p—2 + MAHT(pa b) ) 0 <b< p— 37 (B25)
forall s < s < 8.
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Proof. To shorten the notation we write |-|;9 , = [-|;m,s,o. We have by (B2I) and Neumann series

-1

(I—(Op(a)+ 1) =1+ > (Op(a) + T)" =1+ (Op(a)n +y R,g”>) +3 " Op(a)

n>1 n=1 n>p

=1+ pil (Op(c<">) + R + R,ﬁ”)) +> (Op(a)” - R,ﬁ”))
n=1

n>p

B

where R,(Jn) := (Op(a) +T)™ — Op(a)™ and ¢™) and R,() ") are given by LemmalB.6] (and we are setting Rp Y = 0).
We define the symbol ¢ and the operator R, in (B22) as

p—1 p—1
ci=Y R, := Z(RI(J”) + R,()")) + Z R,()") + Z Op(a)". (B.26)
n=1 n=1 n>p n>p
By using (B.17) we get
p—1
n—1
|C|—1,s,oz Ss,oz,p Z|a|71,s+(n71)(p73),a+p73(|a|71,50+(n71)(p73),a+p73)

n=1

which implies the first of (B.23). The second one in (B.23) is obtained as above by using (B.18)). The bounds (B.24),
(B:23) on R, in (B.26) can be proved similarly by using Lemmata[B.2] [B.3] [B.4land [B.6l

In order to bound the J variation we note
Aj3(1—(Op(a) +T))~" = —=(1 = (Op(a) + T)) " (Op(Ai2a) + AT)(1 = (Op(a) + T)) ",

and proceed as above. O

B.2 The torus diffeomorphisms

In this Section we wish to study conjugation of elements of £, under the action of the map .A” introduced in (3.3).
We first give some properties of A” defined in (3.3).

Lemma B9 Assume that B = ﬂ( (w)) € H*(T"*Y) for some s > sq, is Lipschitz inw € O C Q. and

Soﬂt < 1, for some pu > 1, then, for any s > so and u € H*® with u = u(w)
depending in a Llpschztz way onw € O, one has

sup [ A7u[2€, sup (A w2 <. (el € + 18125 uls°) (B.27)
T€l0, 7€[0,1]
sup [[(A” = Dl sup (A7) = Dull 7€ <, (181256 el 23 + 18125 1ul°) (B.28)

7€[0,1] 7€[0,1]
for some o = o (sq). The inverse map (A™)~! satisfies the same estimates but with possibly larger o.

Proof. The bounds (B:227)-(B28)) in norm || - ||s follows by an explicit computation using the formula (3.3) and
applying Lemma A.3 in Appendix A in [24]. If § = B(w) is a function of the parameters w € O, hence we need to

study the term

wup A1) = A (o))l (8.29)
LA)l;éUJQ |w1 - W2|

in order to estimate the Lip-norm introduced in (I.22). We reason as follows. By (3.3)) we have for wy,ws € O

(AT (w1) = AT (w2))u = (14 78z (w1)) [u(wr, & + Blwr)) — u(wr, z + B(ws))]
+ (1 + 78z (w1)) [ulwr, = + Bw2)) — u(wa, = + Bw2))] (B.30)
+ Tu(wi, z + B(ws)) (Be(wi) — Ba(w2)).
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Using the estimates in Lemma A.3 in [24]] and interpolation arguments we get

[uwr, @ + Bwr)) — wlwr, @ + Blwa))l[s—1 <s [[B(wr) = Blw2)llso llulls
+[18(wr) = Blwa)lls+llullso

,0 , ) )
<o (1817 el 230 + 18I Nl © Y fon = .

The term we have estimated above is the most critical one among the summand in (B.30). The other estimates
follow by the fact that u(w, ¢, x) and S(w, p, x) are Lipschitz functions of w € . One can reason in the same
way to get the estimates on the inverse map (A7)~! by recalling that it has the same form of A™ (see (3.3)) and
B=—-A"5. O

Lemma B.10. Fixb € N. Forany o € N”, |a| < b, m1, ma € R such that my + ma = |«
exists a constant 1 = p(|al, mq, ma) and 6 = §(myq, s) such that if

, for any s > sq there

,O
18ll2sg4mr 42 < 6 118105, <1, (B.31)

then one has

—m1 Qo AT —-m ,O
sup (D)™™ 83 AT (9)(Da) ™™ ul| 7€ <spmama el + 18135 lullso- (B.32)
T7€|0,

The inverse map (A7)~ satisfies the same estimate.

Proof. We prove the bound (B32)) for the || - || s norm since one can obtain the bound in the Lipschitz norm || - ||7:©
using the same arguments (recall also the reasoning used in (B.30)). We take h € C°, so that I3 A (p)h € O
for any || < b and we prove the bound (B:32) in this case. The thesis will follows by density.

We argue by induction on «. Given o € N” we write o/ < aif o), < ap, foranyn =1,...,v and o # a.

Let us check (B:32) for o = 0. Let us define U™ := (D, )™ A" (¢)(D,)~™ with m = —m; = ma. One has that
WO := T (where I is the identity operator). One can check that U7 solves the problem (recall (3.3))

0,0 = XU + GTU7, (B.33)

where G™ := [(D,)™,X] (D,)~™. Therefore by Duhamel principle one has
U7 = A" + AT/ (AHTIG ! dt.
0

By Lemmal[A.6land (A.30) one has that |G" |o.5.0 <s || 8]|s+m-+3, for s > so, hence by estimate (B.27), Lemmal[A.3|
we have
sup [[W7h|ls <s [|hlls + [|Blls+ollRllso + [IB]lso+m+3 sup [[¥7A|s

T€[0,1] 7€[0,1]

+ (18lls+mt3 + [1Blls+) sup [N

TE]

(B.34)

for some o > 0 given in Lemma [B.9l For § in (B.31) small enough, then the (B34) for s = sq implies that
sup,c(o,1] 19 hllso <so [IRls,- Using this bound in (B.34) one gets the (B.32).

Now assume that the bound (B:32) holds for any o’ < « with |a| < b and mq,mg € R with my + ma = |o/|. We
now prove the estimate (B.32) for the operator (D)~ "1 93.A™ (p)(D,)~"* for my + my = |a|. Differentiating
the (3.3) and using the Duhamel formula we get that

o AT o " T t —1 it t . %1 s At
g AT () /0 AT(p)(A' (@) Fpdt,  F, = MZZQ Cla, az) 0y [(05'0)052 A™()]- (B.35)
las|+1<a
For any my + mg = |a| and any 7, s € [0, 1] we write
(D)™™ 0205 0)05 A" () (Da) ™™

B.36
— <DI>_m1ax(aglb)<Dz>_m2+la2‘<Dm>m2_‘a2|332¢4t(<p)<Dz>_m2_ ( )
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Hence in order to estimate the operator (D, )~ A™ (At (p)) "1 FL(D,)~™ we need to estimate, uniformly in
7,8 € [0,1] the term

(402) 7 A7 (A TH D™ ) ((D2) 7™ 0, (931 0) (D)~ 41921} (D)2 lo2l e Al (0)(D2) ™72 ). (B3T)
For s > s¢, by the inductive hypothesis one has
(D)™™ AT (A THD)™ Rl sy 1olls + BN Bllso, (B.38)

[(Dg)y™> 1921922 A () (D) ™2 Rl s <spima Il + I1BIT Nl so- (B.39)
provided that cv; # 0. We estimate the second factor in (B237). We first note that

—myp —mg + 1+ |ag| =1+ |ag| — |a] <0.

This implies that (D,) ™0, (8glb)<Dz>*m2+‘°‘2| belongs to OPS?, and in particular, using Lemma [A.6] and
(A.19), we obtain
|<Dm>_mlaz(8glb)<D . ma+|az| 10.5.0 <b,my.ms HaHerlmllJr\azl (B.40)

To obtain the bound (B32) it is enough to use bounds (B38), (B:39),(B.40), Lemma[A3] and recall the smallness
assumption (B.37).
About the estimate for the inverse of A", we note that 9. (A7)~ = (9, 0 b) (A7) ~! with b :=

||8]| s+ for some & > 0. Then one can follow the same arguments above with d,, o b instead of X and b instead of
b. O

Lemma B.11. Let b € N and let p > 0 be the constant given in Def. 28 For any |a| < b, m1,ma € R such
that my + ma = |a| 4+ 1, for any s > sq there exists a constant p = p(|al,m1,ma), o = o(|a|,m1, ms) and
0 =9d(s,m1) > 0such that if || B||so+n < 6 and || B||p+o < 1 then one has

81[101)1]”<Dz>"’“5SA12AT(<P)<DI>‘"”UH;7 Ssomimy [[ullplA128]lp+p (B.41)
T€|(0,

The operators A12(AT)*, A12 (A7)~ satisfy the same estimate.
Proof. The Lemma can be proved arguing as in the proof of Lemma[B.I0 using (A7)* = (1 4+ 76)"1 A™. O
We have the following Lemma.

Lemma B.12. Fix p > 3, consider O C R” and let R € £, ,(O) (see Def. 2.8). Consider a function (8 such that
B:= B(w,i(w)) € H*(T"*L) for some s > so, assume that it is Lipschitz in w € (9 andi Let A™ be the operator
defined in B3). There exists p = p(p) > 1, 0 = o(p)

50+u — p+a =
then the operator M7 := A™ R(A™)~1 belongs to the class £,. In particular one has, for so < s < S,
M}, (s,b) < M}(s,b) + || B 20 M}(s0,b),  b<p—2 (B.42)
MAle" (pv b) < MAlzR" (pa b) + HAlQﬂHer#M’}yV (pa b), b<p-3. (B.43)

Proof. We start by showing that M™ satisfies item (¢) of Definition Let mq,ms € R, mq,ma > 0 and
mq + mo = p. We write

(Da)™ M™(Dg)™* = (D)™ AT(Dy) ™™ (D)™ R(Dg)™* (D) =2 (A7) " (D)™,

Recall that by hypothesis the operator (D)™ R(D,)™2 is Lip-0-tame with constants 2t} (—p, s) see (Z.I3).
Lemma (B.I0Q) implies the estimates

(D)™ AT (2)(Da) ™™ ul| 19, I D)™™ (A" ()™ {Da) ™ ul| 79 < |

s+u||u||607
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for 7 € [0, 1], which implies that (D,)"™* M ™ (D, )™2 is Lip-0—tame with constant

LMY (—p, 50)- (B.44)

szm)ml MT(Dg)™m2 (0’ 5) SS,P ml’b(_pa 5) + ||6| S+

Hence M7 is Lip-(—p)-tame with constant M}, (—p, $) = SUPm, +ma=p SDT D)y M7 (D) ma (0,s). Fixb< p—2

mi,m2>0
and let m1,mg € R, mq, ms > 0 and my + mo = p — b. We note that for any b € N” with |6| =b
OBM= > C(bil, b2l [03]) (92 AT R(AE (A7) 7Y, (B.45)
bi+bo+b3=b

for some constants C'(|by |, b2/, [bs|) > 0, hence we need to show that each summand in (B.43) satisfies item (i)
of Definition 2.8 We write

(D)™ (851 AT)% R(OE (A7) 1) (D,)™ =

. B ) (B.46)
= (Da)™ (05 AT)( D) (D) (952 R)(Dr)*(Dar) (9 (A7) ™1 )(Da) ™,

where y = —[by| —m1, 2 = p— |ba| — |b1| — m1. Since y +my = —|by| and —z +my = —|b3|, hence by Lemma
B. 10l the operators
m by AT —2 (b3 T\—1 m
(D)™ (03 AT)(Dz)¥,  (Dg) (0 (A7) )(Da)™,
satisfy bounds like (B:32). Moreover —y + z = p — |ba| and —y, z > 0, hence, by the definition of the class Lp.p

we have that the operator (D)~ (8"2 R)(D,)? is Lip-0-tame. Following the reasoning used to prove (B.44) one
obtains
o
o5 a1y 0:5) S Ml B) 4 BT (,) B.47)

Let us consider the operator [M 7, 0,]. We write
(M7, 0,] = AR, 0] (A7) ™ + ATR[(A7) 71, 0] + [A7, Qu] R(AT) Y, (B.48)

for T € [0, 1]. We need to show that each summand in (B48) satisfies item (i7) in Definition (Z.8). Let my, ms € R,
mq, me > 0 and my + mo = p — 1. We first note that

(D)™ AT[R, 8,])(AT) " H(D,)™ =

N B B (B.49)
= (Dg)™ A™(Dz) ™" (D)™ [R, 0| (D)™ (D) ™™ (A7) ™" (D)™,
hence, by applying Lemma[B.10 to estimate the terms
(Da)™™2(AT)"H(Dz)™,  (Da)™ (AT)"H (D)™™
and using the tameness of the operator (D)™ [R, 0,](D,)™? (recall that R € £, ;) one gets
O
M ym ar [R.0u] (A7) -1 (D ymz (058) S50 Mip(s, D) + [81133,ME (s0, b). (B.50)

The term [A™, 9,]R(A7)~" in (B48) is more delicate. Let mq,ma € R, my,mz > 0and m; +mg = p — 1. We
write

(D)™ [A7, 00)( D) ™™ (D)™ T R(D)™ (D)~ (A7) (D) ™. (B.51)
By Lemma [B.I0 we have that (D,)~™2(A")~1(D,)™* satisfies a bound like (B32) with o = 0. The operator
(D)™ R(D,)™2 (D, )™ R(D,)™2 is Lip-0-tame since R € £,,, and m; + m2 + 1 = p. Moreover by an
explicit computation (using formula (3.3)) we get

Baa

[A7,0.] = gy

AT + 7, A79,. (B.52)
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We claim that, for s > sg and v € H?, one has

(D)™ [AT, 8:)(Da) ™™ " ull 7 <o 18132 llulls + 1817wl so, (B.53)

for some p > 0 depending only on s, p. The first summand in (B:32)) satisfies the bound (B.33) thanks to Lemma
[A-@for the estimate of (D, )™ B, (1+78,) "1 (D,) "™ and thanks Lemma[B.I0to estimate (D, )™ A" (D, )™,
For the second summand we reason as follow: we write

(Da)™ 7 A7 0s (D)™™ ™ = ({D2)™ Bo(D2) ™™ ) (D)™ A™(D2) ™™ ) 0u( D)

and we note that the operator d,.(D,.) ~! is bounded on H*. Hence the bound (B.33) follows by applying Lemmata
and[B-10 By the discussion above one gets

0
M D,y 0,1 R(An) -1 (Dyma (0:8) oo Mip(s,0) + 185, M (s, b)- (B.54)

One can study the tameness constant of the operator A R[(A7)~!, 9,] in (B.48) by using the same arguments
above.

We check now that M7 satisfies item (iiz) of Def. Letmy,ma € R, my,ms > 0and my +my = p — |f§| — 1.
We write forb € NV, [b| = b

EARA) )= Y Olfeil feal, [eal) [ (0 AN @F )@ (A7) ), 0] (B.55)
4y
and we note that
(981 A7) (98 R) (08 (A7) 1), 8] = (081 A7) | (9 R), ] (95 A7) )

(D5 AT R) (98 (AT) 1), 0] (B.56)
+ (05 A7), 0.] (0% R) (05 (A7) ),

The most difficult term to study is the last summand in (B:36). We have that
(Da)™ [ (D5 A7), 0| (98 R) (@ (A7) 1 )(Da)™ = .
= (D)™ [(05 A7), 0, (D)~ (D) (95 R)(D.)* (D)0 (A7) ") (Da)™, |

with z = mg + |bs| and y = p — |ba| — |bs| — ms. Note the operator (D)~ ((’)‘“ (AT)~1)(D,)™2 satisfies bound
like (B32) with o = b3; moreover the operator (D, )Y (8:;2 R)(D,)? is Lip-O-tame since y + z = p — |by| and
R € £, ,. Note also that, since m; +ma = p — |f§| — 1,onehasy = my + |b_i| + 1. We now study the tameness
constant of

(D)™ (05 A7), 0, ] (D)~ il
By differentiating the (B.:32) we get

AT 0] = S (@ g)OF A7) + (9 ) (05 AT, (B.58)

b +b)=b;
where g = B44/(1 + 70;). We claim that
1(D2)™ 05 AT, 0, 1Dy~ =P a2 < ull 1812 + 18125 ullsos (B.59)
for some i > 0 depending on s, p. We study the most difficult summand in (B.38)). We have
(D)™ (05 B.) (0 A7)0, (D)~ 7Y = (D™ (0 8,) (D)~ ~wi T

L e = (B.60)
X <Dz>m1+|b1‘_‘bl l(awl AT)<D1>_m1_‘bl‘az<Dx>_l-
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The ([B39) follows for the term in (B260) by using Lemmata [A.6 [B-I0] and the fact that 9,.(D,) ! is bounded on
H#. On the other summand in (B:38) one uses similar arguments. By the discussion above one can check that

0
SDTZDI)"H [3&447762]3(_/47)71 (Dy)m2 (07 S) SSyP MY{(S’ b) + HﬂH’ser,uM’IY%(SOv b)' (B61)
The fact that the operator M satisfies items (747)-(iv) of Definition (2.8 can be proved arguing as done above for
items (4)-(41). O
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